Package ‘rlfsm’

November 5, 2019

Type Package
Title Simulations and Statistical Inference for Linear Fractional Stable Motions
Version 1.0.0
Maintainer Dmitry Otryakhin <d.otryakhin.acad@protonmail.ch>
Author Dmitry Otryakhin [aut, cre],
 Stepan Mazur [aut],
 Mathias Ljungdahl [ctb]
Description Contains functions for simulating linear fractional stable motions, according to
developed by Stoev and Taqqu (2004) <doi:10.1142/S0218348X04002379>, as well as
functions for computing important statistics used with these processes intro-
duced by Mazur, Otryakhin and Podolskij (2018) <arXiv:1802.06373>, and also different quanti-
ties related to those statistics.
License GPL-3
 Tools-for-parameter-estimation-of-the-linear-fractional-stable-motion
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Depends methods, foreach, doParallel
Imports ggplot2, stabledist, reshape2, plyr, Rdpack
Suggests elliptic, spatstat, testthat, stringi
RdMacros Rdpack
NeedsCompilation no
Repository CRAN
Date/Publication 2019-11-05 13:40:02 UTC
R topics documented:

alpha_hat ... 2
a_p 4
a_tilda 4
CLT 5
ContinEstim 6
GenHighEstim 7
GenLowEstim 8
H_hat 9
h_kr 9
increment 10
MCestimLFSM 11
MinContrastEstim ... 13
m_pk 14
Norm_alpha 15
path 16
paths 17
Path_array 18
phi 19
phi_of_alpha 20
Plot_dens 20
Plot_list_paths ... 21
Plot_vb 22
Retrieve_stats 23
R_hl 24
sf 25
sigma_hat 26
theta 27
U_g 28
U_gh 29
U_ghuv 29

Index 31

<table>
<thead>
<tr>
<th>alpha_hat</th>
<th>Statistical estimator for alpha</th>
</tr>
</thead>
</table>

Description

Defined for the two frequencies as

\[\hat{\alpha}_{\text{high}} := \frac{\log | \log \varphi_{\text{high}}(t_2; \tilde{H}_{\text{high}}(p, k)_n, k)_n | - \log | \log \varphi_{\text{high}}(t_1; \tilde{H}_{\text{high}}(p, k)_n, k)_n |}{\log t_2 - \log t_1} \]

\[\hat{\alpha}_{\text{low}} := \frac{\log | \log \varphi_{\text{low}}(t_2; k)_n | - \log | \log \varphi_{\text{low}}(t_1; k)_n |}{\log t_2 - \log t_1} \]
Usage

\[\text{alpha}_\text{hat}(t1, t2, k, \text{path}, H, \text{freq}) \]

Arguments

- **t1**: real number such that \(t2 > t1 > 0 \)
- **t2**: real number such that \(t2 > t1 > 0 \)
- **k**: increment order
- **path**: sample path of lfsm on which the inference is to be performed
- **H**: Hurst parameter
- **freq**: Frequency of the motion. It can take two values: "H" for high frequency and "L" for the low frequency setting.

Details

The function triggers function \(\phi \), thus Hurst parameter is required only in high frequency case. In the low frequency, there is no need to assign \(H \) a value because it will not be evaluated.

References

Examples

```r
m<-45; M<-60; N<-2^14-M
alpha<-1.8; H<-0.8; sigma<-0.3
freq='H'
r=1; k=2; p=0.4; t1=1; t2=2

# Estimating alpha in the high frequency case
# using preliminary estimation of H
lfsm<-path(N=N,m=m,M=M,alpha=alpha,H=H,
           sigma=sigma,freq='L',disable_X=FALSE,seed=3)$lfsm

H_est<-H_hat(p=p,k=k,path=lfsm)
H_est
alpha_est<-alpha_hat(t1=t1,t2=t2,k=k,path=lfsm,H=H_est,freq=freq)
alpha_est
```
a_p

Function a_p.

Description
Computes the corresponding function value from Mazur et al. 2018.

Usage
```
a_p(p)
```

Arguments
- `p` power, real number from (-1,1)

References

a_tilda

Creates the corresponding value from the paper by Stoev and Taqqu (2004).

Description
Creates the corresponding value from the paper by Stoev and Taqqu (2004).

Usage
```
a_tilda(N, m, M, alpha, H)
```

Arguments
- `N` a number of points of the lfsm.
- `m` discretization. A number of points between two nearby motion points
- `M` truncation parameter. A number of points at which the integral representing the definition of lfsm is calculated. So, after `M` points back we consider the rest of the integral to be 0.
- `alpha` self-similarity parameter of alpha stable random motion.
- `H` Hurst parameter

References
The function explores numerical properties of statistical estimators operating on random processes. Deprecated.

Description

The function is left for backward compatibility. The newer version of it is \texttt{MCestimLFSM}. The function is useful, for instance, when one needs to compute standard deviation of $\hat{\alpha}_{high}$ estimator given a fixed set of parameters.

Usage

\begin{verbatim}
CLT(Nmc, s, m, M, alpha, H, sigma, fr, Inference, ...)
\end{verbatim}

Arguments

- \texttt{Nmc} \hspace{1cm} Number of Monte Carlo repetitions
- \texttt{s} \hspace{1cm} sequence of path lengths
- \texttt{m} \hspace{1cm} discretization. A number of points between two nearby motion points
- \texttt{M} \hspace{1cm} truncation parameter. A number of points at which the integral representing the definition of lfsm is calculated. So, after M points back we consider the rest of the integral to be 0.
- \texttt{alpha} \hspace{1cm} self-similarity parameter of alpha stable random motion.
- \texttt{H} \hspace{1cm} Hurst parameter
- \texttt{sigma} \hspace{1cm} Scale parameter of lfsm
- \texttt{fr} \hspace{1cm} frequency. Either "H" or "L"
- \texttt{Inference} \hspace{1cm} statistical function to apply to sample paths
- \texttt{...} \hspace{1cm} parameters to pass to Inference

Details

CLT performs Monte-Carlo experiments to compute parameters according to procedure Inference. More specifically, for each element of \texttt{s} it generates \texttt{Nmc} lfsm sample paths with length equal to \texttt{s[i]}, performs the statistical inference on each, obtaining the estimates, and then returns their different statistics. It is vital that the estimator returns a list of named parameters (one or several of 'sigma', 'alpha' and 'H'). CLT uses the names to lookup the true parameter value and compute its bias.

For sample path generation CLT uses a light-weight version of \texttt{path}, \texttt{path_fast}. In order to be applied, function \texttt{Inference} must accept argument 'path' as a sample path.
Value

It returns a list containing the following components:

- **CLT_dataset**: a data frame, standardized values of the estimates depending on path length \(s \)
- **BSdM**: a data frame, means, biases and standard deviations depending on \(s \)
- **Inference**: a closure used to obtain estimates
- **alpha, H, sigma**: the parameters for which CLT performs path generation
- **freq**: frequency, either 'L' for low- or 'H' for high frequency

ContinEstim

Parameter estimation procedure in continuous case.

Description

Parameter freq is preserved to allow for investigation of the inference procedure in high frequency case.

Usage

```r
ContinEstim(t1, t2, p, k, path, freq)
```

Arguments

- **t1, t2**: real number such that \(t2 > t1 > 0 \)
- **p**: power
- **k**: increment order
- **path**: sample path of Ifsm on which the inference is to be performed
- **freq**: Frequency of the motion. It can take two values: "H" for high frequency and "L" for the low frequency setting.

References

Examples

```r
m<-45; M<-60; N<-2^10-M
alpha<-0.8; H<-0.8; sigma<-0.3
p<-0.3; k=3; t1=1; t2=2

lfsm<-path(N=N,m=m,M=M,alpha=alpha,H=H,
sigma=sigma,freq='L',disable_X=FALSE,seed=3)$lfsm
ContinEstim(t1,t2,p,k,path=lfsm,freq='L')
```
GenHighEstim

Description

General estimation procedure for high frequency case when 1/alpha is not a natural number. "Unnecessary" parameter freq is preserved to allow for investigation of the inference procedure in low frequency case.

Usage

GenHighEstim(p, p_prime, path, freq, low_bound = 0.01, up_bound = 4)

Arguments

- **p**: power
- **p_prime**: power
- **path**: sample path of lfsm on which the inference is to be performed
- **freq**: Frequency of the motion. It can take two values: "H" for high frequency and "L" for the low frequency setting.
- **low_bound**: positive real number
- **up_bound**: positive real number

Details

In this algorithm the preliminary estimate of alpha is found via using `uniroot` function. The latter is given the lower and the upper bounds for alpha via low_bound and up_bound parameters. It is not possible to pass 0 as the lower bound because there are numerical limitations on the alpha estimate, caused by the length of the sample path and by numerical errors. p and p_prime must belong to the interval (0,1/2) (in the notation kept in rlfsm package) The two powers cannot be equal.

References

Examples

```r
m<-45; M<-60; N<-2^10-M
sigma<-0.3
p<-0.2; p_prime<-0.4

### Continuous case
lfsm<-path(N=N,m=m,M=M,alpha=1.8,H=0.8,
sigma=sigma,freq='L',disable_X=FALSE,seed=3)$lfsm

GenHighEstim(p=p,p_prime=p_prime,path=lfsm,freq="H")
```
GenLowEstim

Low frequency estimation procedure for lfsm.

Description
General estimation procedure for low frequency case when 1/alpha is not a natural number.

Usage
GenLowEstim(t1, t2, p, path, freq = "L")

Arguments
- **t1**: real number such that t2 > t1 > 0
- **t2**: real number such that t2 > t1 > 0
- **p**: power
- **path**: sample path of lfsm on which the inference is to be performed
- **freq**: Frequency of the motion. It can take two values: "H" for high frequency and "L" for the low frequency setting.

References

Examples
```r
m<-45; M<-60; N<-2^10-M
sigma<-0.3
p<-0.3; k=3; t1=1; t2=2

### Continuous case
lfsm<-path(N=N,m=m,M=M,alpha=1.8,H=0.8,
   sigma=sigma,freq="L",disable_X=FALSE,seed=3)$lfsm
GenLowEstim(t1=t1,t2=t2,p=p,path=lfsm,freq="L")

### H-1/alpha<0 case
lfsm<-path(N=N,m=m,M=M,alpha=0.8,H=0.8,
   sigma=sigma,freq="L",disable_X=FALSE,seed=3)$lfsm
```
Description

The statistic is defined as

\[
\hat{H}_{\text{high}}(p, k)_n := \frac{1}{p} \log_2 R_{\text{high}}(p, k)_n, \quad \hat{H}_{\text{low}}(p, k)_n := \frac{1}{p} \log_2 R_{\text{low}}(p, k)_n
\]

Usage

\[
H_{\text{hat}}(p, k, \text{path})
\]

Arguments

- **p**: power
- **k**: increment order
- **path**: sample path of Ifsm on which the inference is to be performed

References

Function \texttt{h_kr}

Description

Function \(h_{k,r} : R \rightarrow R \) is given by

\[
h_{k,r}(x) = \sum_{j=0}^{k} (-1)^{j} \binom{k}{j} (x - r_j)^{H - 1/\alpha}, \quad x \in R
\]

Usage

\[
h_{kr}(k, r, x, H, alpha, l = 0)
\]
Arguments

- **k**: order of the increment, a natural number
- **r**: difference step, a natural number
- **x**: real number
- **H**: Hurst parameter
- **alpha**: self-similarity parameter of alpha stable random motion.
- **l**: a value by which we shift x. Is used for computing function f_.+l and is passed to integrate function.

References

Examples

```r
### Plot h_kr ###
s<-seq(0,10, by=0.01)
h_val<-sapply(s,h_kr, k=5, r=1, H=0.3, alpha=1)
plot(s,h_val)
```

Description

Difference of the kth order. Defined as following:

\[\Delta_{n,r}^{i,k} X := \sum_{j=0}^{k} (-1)^j \binom{k}{j} X_{(i-rj)/n}, i \geq rk. \]

Index i here is a coordinate in terms of point_num. Although R uses vector indexes that start from 1, increment has i varying from 0 to N, so that a vector has a length N+1. It is done in order to comply with the notation of the paper. This function doesn’t allow for choosing frequency n. The frequency is determined by the path supplied, thus n equals to either the length of the path in high frequency setting or 1 in low frequency setting. increment() gives increments at certain point passed as i, which is a vector here. increments() computes high order increments for the whole sample path. The first function evaluates the formula above, while the second one uses structure diff(diff(...)) because the formula is slower at higher k.

Usage

```r
increment(r, i, k, path)

increments(k, r, path)
```
MCestimLFSM

Arguments

- **r**: difference step, a natural number
- **i**: index of the point at which the increment is to be computed, a natural number.
- **k**: order of the increment, a natural number
- **path**: sample path for which a kth order increment is computed

References

Examples

```r
m<-45; M<-60; N<-2^10-M
alpha<-0.8; H<-0.8; sigma<-0.3
lfsm<-path(N=N,m=m,M=M,alpha=alpha,H=H,
            sigma=sigma,freq='L',disable_X=FALSE,seed=3)$lfsm

tryCatch(
    increment(r=1,i=length(lfsm),k=length(lfsm)+100,path=lfsm),
    error=function(c) 'An error occurs when k is larger then the length of the sample path')

increment(r=3,i=50,k=3,path=lfsm)

path=c(1,4,3,6,8,5,3,5,8,5,1,8,6)

r=2; k=3
n <- length(path) - 1
DeltaX = increment(seq(r*k, n), path = path, k = k, r = r)
DeltaX == increments(k=k,r=r,path)
```

MCestimLFSM: Numerical properties of statistical estimators operating on the linear fractional stable motion.

Description

The function is useful, for instance, when one needs to compute standard deviation of \(\hat{\alpha}_{\text{high}} \) estimator given a fixed set of parameters.

Usage

```r
MCestimLFSM(Nmc, s, m, M, alpha, H, sigma, fr, Inference, ...)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nmc</td>
<td>Number of Monte Carlo repetitions</td>
</tr>
<tr>
<td>s</td>
<td>sequence of path lengths</td>
</tr>
<tr>
<td>m</td>
<td>discretization. A number of points between two nearby motion points</td>
</tr>
<tr>
<td>M</td>
<td>truncation parameter. A number of points at which the integral representing the definition of lfsm is calculated. So, after M points back we consider the rest of the integral to be 0.</td>
</tr>
<tr>
<td>alpha</td>
<td>self-similarity parameter of alpha stable random motion.</td>
</tr>
<tr>
<td>H</td>
<td>Hurst parameter</td>
</tr>
<tr>
<td>sigma</td>
<td>Scale parameter of lfsm</td>
</tr>
<tr>
<td>fr</td>
<td>frequency. Either "H" or "L"</td>
</tr>
<tr>
<td>Inference</td>
<td>statistical function to apply to sample paths</td>
</tr>
<tr>
<td>...</td>
<td>parameters to pass to Inference</td>
</tr>
</tbody>
</table>

Details

MCestimLFSM performs Monte-Carlo experiments to compute parameters according to procedure Inference. More specifically, for each element of s it generates Nmc lfsm sample paths with length equal to s[i], performs the statistical inference on each, obtaining the estimates, and then returns their different statistics. It is vital that the estimator returns a list of named parameters (one or several of 'sigma', 'alpha' and 'H'). MCestimLFSM uses the names to lookup the true parameter value and compute its bias.

For sample path generation MCestimLFSM uses a light-weight version of path, path_fast. In order to be applied, function Inference must accept argument 'path' as a sample path.

Value

It returns a list containing the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>a data frame, values of the estimates depending on path length s</td>
</tr>
<tr>
<td>data_nor</td>
<td>a data frame, normalized values of the estimates depending on path length s</td>
</tr>
<tr>
<td>means, biases, sds</td>
<td>data frames: means, biases and standard deviations of the estimators depending on s</td>
</tr>
<tr>
<td>Inference</td>
<td>a function used to obtain estimates</td>
</tr>
<tr>
<td>alpha, H, sigma</td>
<td>the parameters for which MCestimLFSM performs path generation</td>
</tr>
<tr>
<td>freq</td>
<td>frequency, either 'L' for low- or 'H' for high frequency</td>
</tr>
</tbody>
</table>

Examples

Set of global parameters

```r
m<-25; M<-60
p<-.4; p_prime<-.2; k<-2
t1<1; t2<-2
NmonteC<-5e1
```
MinContrastEstim 13

S<-c(1e2,3e2)
alpha<-1.8; H<-0.8; sigma<-0.3

How to plot empirical density
theor_3_1_H_clt<-MCestimLFSM(s=S,fr='H',Nmc=NmonteC,
m=m,M=M,alpha=alpha,H=H,
sigma=sigma,ContinEstim,
t1=t1,t2=t2,p=p,k=k)
l_plot<-Plot_dens(par_vec=c('sigma','alpha','H'),
MC_data=theor_3_1_H_clt, Nnorm=1e7)

For MCestimLFSM() it is vital that the estimator returns a list of named parameters
H_hat_f <- function(p,k,path) {hh<-H_hat(p,k,path); list(H=hh)}
theor_3_1_H_clt<-MCestimLFSM(s=S,fr='H',Nmc=NmonteC,
m=m,M=M,alpha=alpha,H=H,
sigma=sigma,H_hat_f,
p=p,k=k)

The estimator can return one, two or three of the parameters.
est_1 <- function(path) list(H=1)
theor_3_1_H_clt<-MCestimLFSM(s=S,fr='H',Nmc=NmonteC,
m=m,M=M,alpha=alpha,H=H,
sigma=sigma,est_1)
est_2 <- function(path) list(H=0.8, alpha=1.5)
theor_3_1_H_clt<-MCestimLFSM(s=S,fr='H',Nmc=NmonteC,
m=m,M=M,alpha=alpha,H=H,
sigma=sigma,est_2)
est_3 <- function(path) list(sigma=5, H=0.8, alpha=1.5)
theor_3_1_H_clt<-MCestimLFSM(s=S,fr='H',Nmc=NmonteC,
m=m,M=M,alpha=alpha,H=H,
sigma=sigma,est_3)

MinContrastEstim Statistical estimator of sigma, alpha and H in low frequency setting based on minimal contrast estimation comparing the empirical characteristic function with the true one

Description

Estimates H using the \(H_{\text{hat}} \) function while sigma and alpha are obtained via

\[
\arg \min_{\sigma, \alpha} \int_0^\infty \left(\varphi_n(t) - \varphi_{\sigma, \alpha, H_{\text{hat}}}(t) \right)^2 \exp\left(-\frac{t^2}{2}\right) dt
\]
where φ_n is the empirical characteristic function, see phi, and $\varphi_{\sigma,\alpha,H_{hat}}$ is the characteristic function of the kth order increment wrt the parameters σ, α, H_{hat}, see also increment.

Usage

MinContrastEstim(path, k, p, order_GH)

Arguments

path low frequency sample path from which the parameters should be estimated.
k order of increments.
p any real number, the power used for H_{hat}.
order_GH number of weights in the Gauss-Hermite approximation of the integral, see the gauss.hermite function from the spatstat package.

Details

This algorithm approximates the above integral using Gauss-Hermite quadrature and uses the L-BFGS-B method from the optim function to minimize over the parameters sigma and alpha. Due to numerical problems estimation of sigma below 0.01 and alpha or H below 0.05 is currently not possible.

References

Examples

```r
m0 = 256
M0 = 600
alpha0 = 1.8
H0 = 0.8
sigma0 = 0.3
n = 100
X <- path(N = n, m = m0, M = M0, alpha = alpha0, H = H0, sigma = sigma0, freq = 'L')$lfsm
MinContrastEstim(path = X, k = 2, p = 0.4, order_GH = 8)
```

Description

defined as $m_{p,k} := E[|\Delta_k|X|^p]$ for positive powers. When p is negative (-p is positive) the equality does not hold.

Usage

m_pk(k, p, alpha, H, sigma)
Norm_alpha

Arguments

- **k**: increment order
- **p**: a positive number
- **alpha**: self-similarity parameter of alpha stable random motion.
- **H**: Hurst parameter
- **sigma**: Scale parameter of lfsm

Details

The following identity is used for computations:

\[
\frac{m_{-p,k}}{a_{-p}} = \frac{(\sigma \|h_k\|_\alpha)^{-p}}{\alpha a_{-p}} \int_\mathbb{R} \exp(-|y|^\alpha)|y|^{-1+p} dy = \frac{2(\sigma \|h_k\|_\alpha)^{-p}}{\alpha a_{-p}} \Gamma(p/\alpha)
\]

References

Norm_alpha

Alpha-norm of an arbitrary function

Description

Alpha-norm of an arbitrary function

Usage

Norm_alpha(fun, alpha, ...)

Arguments

- **fun**: a function to compute a norm
- **alpha**: self-similarity parameter of alpha stable random motion.
- **...**: a set of parameters to pass to integrate

Details

fun must accept a vector of values for evaluation. See ?integrate for further details. Most problems with this function appear because of rather high precision. Try to tune rel.tol parameter first.

References

Examples

Norm_alpha(h_kr, alpha=1.8, k=2, r=1, H=0.8, l=4)
Description

The function creates a 1-dimensional lfsm sample path using the numerical algorithm from the paper by Stoev and Taqqu. Linear fractional stable motion is defined as

$$X_t = \int_{\mathbb{R}} \left\{ (t - s)^{H - 1/\alpha} - (-s)^{H - 1/\alpha} \right\} dL_s$$

Usage

```r
path(N = NULL, m, M, alpha, H, sigma, freq, disable_X = FALSE,
levy_increments = NULL, seed = NULL)
```

Arguments

- `N`: a number of points of the lfsm.
- `m`: discretization. A number of points between two nearby motion points.
- `M`: truncation parameter. A number of points at which the integral representing the definition of lfsm is calculated. So, after M points back we consider the rest of the integral to be 0.
- `H`: Hurst parameter.
- `sigma`: Scale parameter of lfsm.
- `freq`: Frequency of the motion. It can take two values: "H" for high frequency and "L" for the low frequency setting.
- `disable_X`: is needed to disable computation of X. The default value is FALSE. When it is TRUE, only a levy motion is returned, which in turn reduces the computation time. The feature is particularly useful for reproducibility when combined with seeding.
- `levy_increments`: increments of Levy motion underlying the lfsm.
- `seed`: this parameter performs seeding of path generator.

Value

It returns a list containing the motion, the underlying Levy motion, the point number of the motions from 0 to N and the corresponding coordinate (which depends on the frequency), the parameters that were used to generate the lfsm, and the predefined frequency.

References

See Also

`paths` simulates a number of lfsm sample paths.

Examples

Path generation

```r
m<-256; M<-600; N<-2^10-M
alpha<-1.8; H<-0.8; sigma<-0.3
seed=2

List<-path(N=N,m=m,M=M, alpha=alpha, H=H,
           sigma=sigma, freq='L', disable_X=FALSE, seed=3)

# Normalized paths
Norm_lfsm<-List[['lfsm']]/max(abs(List[['lfsm']]))
Norm_oLm<-List[['levy_motion']]/max(abs(List[['levy_motion']]))

# Visualization of the paths
plot(Norm_lfsm, col=2, type="l", ylab="coordinate")
lines(Norm_oLm, col=3)
leg.txt <- c("lfsm", "oLm")
legend("topright", legend = leg.txt, col =c(2,3), pch=1)

# Creating Levy motion
levyIncrems<-path(N=N, m=m, M=M, alpha, H, sigma, freq='L',
                   disable_X=TRUE, levy_increments=NULL, seed=seed)

# Creating lfsm based on the levy motion
lfsm_full<-path(m=m, M=M, alpha=alpha, H=H, sigma=sigma, freq='L',
                 disable_X=FALSE, levy_increments=levyIncrems$levy_increments,
                 seed=seed)

sum(levyIncrems$levy_increments==
     lfsm_full$levy_increments)==length(lfsm_full$levy_increments)
```

`paths` **Generator of a set of lfsm paths.**

Description

It is essentially a wrapper for `path` generator, which exploits the latest to create a matrix with paths in its columns.
Path_array

Path array generator

Description

The function takes a list of parameters (alpha, H) and uses `expand.grid` to obtain all possible combinations of them. Based on each combination, the function simulates an Ifsm sample path. It is meant to be used in conjunction with function `Plot_list_paths`.

Usage

```r
Path_array(N, m, M, l, sigma)
```
phi

Arguments

N a number of points of the lfsm.
m discretization. A number of points between two nearby motion points
M truncation parameter. A number of points at which the integral representing the
definition of lfsm is calculated. So, after M points back we consider the rest of
the integral to be 0.
l a list of parameters to expand
sigma Scale parameter of lfsm

Value

The returned value is a data frame containing paths and the corresponding values of alpha, H and
frequency.

Examples

l=list(H=c(0.2,0.8),alpha=c(1,1.8), freq="H")
arr<Path_array(N=300,m=30,M=100,l,l,sigma=0.3)
str(arr)
head(arr)

phi Phi

Description

Defined as

$$\varphi_{\text{high}}(t; H, k)_n := V_{\text{high}}(\psi_t; k)_n \quad \text{and} \quad \varphi_{\text{low}}(t; k)_n := V_{\text{low}}(\psi_t; k)_n$$

, where \(\psi_t(x) := \cos(tx)\)

Usage

phi(t, k, path, H, freq)

Arguments

t positive real number
k increment order
path sample path of lfsm on which the inference is to be performed
H Hurst parameter
freq Frequency of the motion. It can take two values: "H" for high frequency and
"L" for the low frequency setting.
Details

Hurst parameter is required only in high frequency case. In the low frequency, there is no need to assign H a value because it will not be evaluated.

References

| phi_of_alpha | Inverse alpha estimator |

Description

A function from a general estimation procedure which is defined as $m^p - p'_k / m^p'_- p_k$, originally proposed in [13].

Usage

phi_of_alpha(p, p_prime, alpha)

Arguments

- p: power
- p_prime: power

References

| Plot_dens | (alpha,H,sigma)- density plot |

Description

Plots the densities of the parameters (alpha,H,sigma) estimated in Monte-Carlo experiment. Works in conjunction with MCestimLFSM function.

Usage

Plot_dens(par_vec = c("alpha", "H", "sigma"), MC_data, Nnorm = 1e+07)
Plot_list_paths

Arguments

- `par_vec` vector of parameters which are to be plotted
- `MC_data` a list created by `MCestimLFSM`
- `Nnorm` number of point sampled from standard normal distribution

See Also

`Plot_vb` to plot variance- and bias dependencies on n.

Examples

```r
m<-45; M<-60
p<-.4; p_prime<-.2
t1<-1; t2<-2; k<-2
NmonteC<-5e2
S<-c(1e3,1e4)
alpha<-.8; H<-0.8; sigma<-0.3
theor_4_1_clt_new<-MCestimLFSM(s=S,fr='L',Nmc=NmonteC,
m=m,M=M,
alpha=alpha,H=H,sigma=sigma,
GenLowEstim,t1=t1,t2=t2,p=p)
par_vec=c('sigma','alpha','H')
l_plot<-Plot_dens(par_vec=par_vec, MC_data=theor_4_1_clt_new, Nnorm=1e7)
l_plot
```

Plot_list_paths

Rendering of path lattice

Description

Rendering of path lattice

Usage

`Plot_list_paths(arr)`

Arguments

- `arr` a data frame produced by `Path_array`.

Examples

```r
l=list(H=c(0.2,0.8),alpha=c(1,1.8), freq="H")
arr<-Path_array(N=300,m=30,M=100,l=l,sigma=0.3)
p<-Plot_list_paths(arr)
p
```
A function to plot variance- and bias dependencies of estimators on the lengths of sample paths. Works in conjunction with \texttt{MCestimLFSM} function.

\section*{Usage}
\texttt{Plot_vb(data)}

\section*{Arguments}
\begin{itemize}
 \item \texttt{data} a list created by \texttt{MCestimLFSM}
\end{itemize}

\section*{Value}
The function returns a ggplot2 graph.

\section*{See Also}
\texttt{Plot_dens}

\section*{Examples}

\begin{verbatim}
Light weight computations
m<-25; M<-50
alpha<-1.8; H<-0.8; sigma<-0.3
S<-c(1:3)*1e2
p<-.4; p_prime<-.2; t1<-1; t2<-2
k<-2; NmonteC<-50

Here is the continuous H-1/alpha inference procedure
theor_3_1_H_clt<-MCestimLFSM(s=S,fr='H',Nmc=NmonteC,
 m=m,M=M,alpha=alpha,H=H,
 sigma=sigma,ContinEstim,
 t1=t1,t2=t2,p=p,k=k)
Plot_vb(theor_3_1_H_clt)

More demanding example (it is better to use multicore setup)
General low frequency inference
m<-45; M<-60
\end{verbatim}
alpha<-0.8; H<-0.8; sigma<-0.3
S<-c(1:15)*1e2
p<-.4; t1<-1; t2<-2
NmonteC<-50

Here is the continuous H-1/alpha inference procedure
theor_4_1_H_clt<-MCestimLFSM(s=S,fr="H",Nmc=NmonteC,
m=m,M=M,alpha=alpha,H=H,
sigma=sigma,GenLowEstim,
t1=t1,t2=t2,p=p)

Retrieve_stats(paths=Y,true_val=sigma,Est=sigma_hat,t1=t1,k=2,alpha=alpha,H=H,freq="L")
Description

Defined as

\[R_{\text{high}}(p, k)_n := \frac{\sum_{i=2k}^{n} |\Delta_{i,k} X|^p}{\sum_{i=k}^{n} |\Delta_{i,k} X|^p}, \]

\[R_{\text{low}}(p, k)_n := \frac{\sum_{i=2k}^{n} |\Delta_{i,k} X|^p}{\sum_{i=k}^{n} |\Delta_{i,k} X|^p}, \]

Usage

\texttt{R_hl(p, k, path)}

Arguments

\texttt{p} \hspace{1cm} \text{power}

\texttt{k} \hspace{1cm} \text{increment order}

\texttt{path} \hspace{1cm} \text{sample path of lfsm on which the inference is to be performed}

Details

The computation procedure for high- and low frequency cases is the same, since there is no way to control frequency given a sample path.

References

Examples

\texttt{m<-45; M<-60; N<-2^{10}-M}
\texttt{alpha<-0.8; H<-0.8; sigma<-0.3}
\texttt{p<-0.3; k=3}

\texttt{lfsm<-path(N=N, m=m, M=M, alpha=alpha, H=H,}
\texttt{ sigma=sigma, freq='L', disable_X=FALSE, seed=3)}
\texttt{R_hl(p=p, k=k, path=lfsm)}
Statistic V

Description

Statistic of the form

\[V_{\text{high}}(f; k, r)_n := \frac{1}{n} \sum_{i=rk}^{n} f \left(n^H \Delta_{i,k}^n X \right), \]

\[V_{\text{low}}(f; k, r)_n := \frac{1}{n} \sum_{i=rk}^{n} f \left(\Delta_{i,k}^r X \right) \]

Usage

\[sf(path, f, k, r, H, freq, ...) \]

Arguments

- **path**: sample path for which the statistic is to be calculated.
- **f**: function applied to high order increments.
- **k**: order of the increments.
- **r**: step of high order increments.
- **H**: Hurst parameter.
- **freq**: frequency.
- **...**: parameters to pass to function f

Details

Hurst parameter is required only in high frequency case. In the low frequency, there is no need to assign H a value because it will not be evaluated.

References

See Also

- **phi** computes V statistic with \(f(\cdot) = \cos(\cdot) \)
Examples

\begin{verbatim}
m<-45; M<-60; N<-2^10-M
alpha<-1.8; H<-0.8; sigma<-0.3
freq='L'
r=1; k=2; p=0.4
S<-(1:20)*100

path_lfsm<-function(...){
 List<-path(...)
 List$lfsm
}

Pths<-lapply(X=S,FUN=path_lfsm,
m=m, M=M, alpha=alpha, sigma=sigma, H=H,
freq=freq, disable_X = FALSE,
levy_increments = NULL, seed = NULL)

f_phi<-function(t,x) cos(t*x)
f_pow<-function(x,p) (abs(x))^p

V_cos<-sapply(Pths,FUN=sf,f=f_phi,k=k,r=r,H=H,freq=freq,t=1)
ex<-exp(-(abs(sigma*Norm_alpha(h_kr,alpha=alpha,k=k,r=r,H=H,l=0)$result)^alpha))

Illustration of the law of large numbers for phi:
plot(y=V_cos, x=S, ylim = c(0,max(V_cos)+0.1))
abline(h=ex, col=’brown’)

Illustration of the law of large numbers for power functions:
Mpk<-m_pk(k=k, p=p, alpha=alpha, H=H, sigma=sigma)

sf_mod<-function(Xpath,...) {
 Path<-unlist(Xpath)
 sf(path=Path,...)
}

V_pow<-sapply(Pths,FUN=sf_mod,f=f_pow,k=k,r=r,H=H,freq=freq,p=p)
plot(y=V_pow, x=S, ylim = c(0,max(V_pow)+0.1))
abline(h=Mpk, col=’brown’)
\end{verbatim}

sigma_hat

Statistical estimator for sigma

Description

Statistical estimator for sigma
Usage

\[\sigma_{\hat{}}(t_1, k, \text{path}, \alpha, H, \text{freq}) \]

Arguments

- \(t_1 \): real number such that \(t_2 > t_1 > 0 \)
- \(k \): increment order
- \(\text{path} \): sample path of \(\text{lfsm} \) on which the inference is to be performed
- \(\alpha \): self-similarity parameter of alpha stable random motion.
- \(H \): Hurst parameter
- \(\text{freq} \): Frequency of the motion. It can take two values: "H" for high frequency and "L" for the low frequency setting.

Examples

```r
m<-45; M<-60; N<-2^14-M
alpha<-1.8; H<-0.8; sigma<-0.3
freq='H'
r=1; k=2; p=0.4; t1=1; t2=2

# Reproducing the work of ContinEstim
# in high frequency case
lfsm<-path(N=N,m=m,M=M,alpha=alpha,H=H,
            sigma=sigma,freq='L',disable_X=FALSE,seed=1)$lfsm

H_est<-H_hat(p=p,k=k,path=lfsm)
H_est
alpha_est<-alpha_hat(t1=t1,t2=t2,k=k,path=lfsm,H=H_est,freq=freq)
alpha_est

sigma_est<-tryCatch(
    sigma_hat(t1=t1,k=k,path=lfsm,
              alpha=alpha_est,H=H_est,freq=freq),
    error=function(c) 'Impossible to compute sigma_est')
sigma_est
```

theta

Function of the form

\[\theta(g, h)_p = a_p^{-2} -2 \int_{\mathbb{R}^2} |xy|^{1-p}U_{g, h}(x, y)dx dy \]

Description

Function of the form

\[\theta(g, h)_p = a_p^{-2} \int_{\mathbb{R}^2} |xy|^{-1-p}U_{g, h}(x, y) dx dy \]
Usage

theta(p, alpha, sigma, g, h)

Arguments

p
power, real number from (-1,1)

alpha
self-similarity parameter of alpha stable random motion.

sigma
Scale parameter of lfsm

g
functions $g, h : \mathbb{R} \rightarrow \mathbb{R}$ with finite alpha-norm (see `Norm_alpha`).

h
functions $g, h : \mathbb{R} \rightarrow \mathbb{R}$ with finite alpha-norm (see `Norm_alpha`).

References

\[U_g \]
\[alpha \text{ norm of } u^*g \]

Description

alpha norm of u^*g

Usage

\[U_g(g, u, ...) \]

Arguments

\[g \]
functions $g, h : \mathbb{R} \rightarrow \mathbb{R}$ with finite alpha-norm (see `Norm_alpha`).

\[u \]
real numbers

\[... \]
additional parameters to pass to `Norm_alpha`

Examples

\[g<-function(x) \exp(-x^2) \]
\[g<-function(x) \exp(-\text{abs}(x)) \]
\[U_g(g=g, u=4, alpha=1.7) \]
U_{gh}

α-norm of $u^*g + v^*h$.

Description

α-norm of $u^*g + v^*h$.

Usage

$U_{gh}(g, h, u, v, \ldots)$

Arguments

- g: functions $g, h : \mathbb{R} \rightarrow \mathbb{R}$ with finite α-norm (see Norm_{α}).
- h: functions $g, h : \mathbb{R} \rightarrow \mathbb{R}$ with finite α-norm (see Norm_{α}).
- u: real numbers
- v: real numbers
- \ldots: additional parameters to pass to Norm_{α}

Examples

```r
g <- function(x) exp(-x^2)
h <- function(x) exp(-abs(x))
U_{gh}(g=g, h=h, u=4, v=3, alpha=1.7)
```

U_{ghuv}

A dependence structure of 2 random variables.

Description

It is used when random variables do not have finite second moments, and thus, the covariance matrix is not defined. For $X = \int_{\mathbb{R}} g_s dL_s$ and $Y = \int_{\mathbb{R}} h_s dL_s$ with $\|g\|_\alpha, \|h\|_\alpha < \infty$. Then the measure of dependence is given by $U_{g,h} : \mathbb{R}^2 \rightarrow \mathbb{R}$ via

$$U_{g,h}(u,v) = \exp(-\sigma^\alpha \|ug + vh\|_{\alpha}^\alpha) - \exp(-\sigma^\alpha (\|ug\|_{\alpha}^\alpha + \|vh\|_{\alpha}^\alpha))$$

Usage

$U_{ghuv}(\alpha, \sigma, g, h, u, v, \ldots)$

Arguments

- α: self-similarity parameter of alpha stable random motion.
- σ: Scale parameter of lfsm.
- g, h: functions $g, h : \mathbb{R} \rightarrow \mathbb{R}$ with finite α-norm (see Norm_{α}).
- v, u: real numbers
- \ldots: additional parameters to pass to U_{gh} and U_{g}
Examples

g<-function(x) exp(-x^2)

h<-function(x) exp(-abs(x))

U_ghuv(alpha=1.5, sigma=1, g=g, h=h, u=10, v=15,
 rel.tol = .Machine$double.eps^0.25, abs.tol=1e-11)
Index

a_p, 4 U_gh, 29
a_tilda, 4 U_ghuv, 29
alpha_hat, 2 unisroot, 7
CLT, 5 GenHighEstim, 7
ContinEstim, 6 GenLowEstim, 8
expand.grid, 18
GenHighEstim, 7
GenLowEstim, 8
H_hat, 9, 13, 14
h_kr, 9 increment, 10, 14
increment (increment), 10 increments (increment), 10
m_pk, 14 MCestimLFSM, 5, 11, 20-22
MinContrastEstim, 13

Norm_alpha, 15, 28, 29
path, 16, 17, 18
Path_array, 18, 21
paths, 17, 17
phi, 3, 14, 19, 25
phi_of_alpha, 20
Plot_dens, 20, 22
Plot_list_paths, 18, 21
Plot_vb, 21, 22
R_hl, 24 Retrieve_stats, 23

sf, 25 theta, 27
sigma_hat, 26 U_g, 28

31