Package ‘ri2’

January 24, 2019

Type Package

Title Randomization Inference for Randomized Experiments

Version 0.1.2

Description Randomization inference procedures for simple and complex randomized designs, including multi-armed trials, as described in Gerber and Green (2012, ISBN: 978-0393799954). Users formally describe their randomization procedure and test statistic. The randomization distribution of the test statistic under some null hypothesis is efficiently simulated.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports generics, ggplot2, pbapply

Depends randomizr (>= 0.16.0), estimatr

Suggests testthat, knitr, rmarkdown, ri

RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Alexander Coppock [aut, cre]

Maintainer Alexander Coppock <acoppock@gmail.com>

Repository CRAN

Date/Publication 2019-01-24 22:00:03 UTC

R topics documented:

 conduct_ri ... 2
 ri2 ... 5

Index 6
conduct_ri

Conduct Randomization Inference

Description

This function makes it easy to conduct three kinds of randomization inference.

Usage

```r
conduct_ri(formula = NULL, model_1 = NULL, model_2 = NULL,
            test_function = NULL, assignment = "Z", outcome = NULL,
            declaration = NULL, sharp_hypothesis = 0, studentize = FALSE,
            IPW = TRUE, IPW_weights = NULL, sampling_weights = NULL,
            permutation_matrix = NULL, data, sims = 1000, progress_bar = FALSE,
            p = "two-tailed")
```

Arguments

- `formula`: an object of class formula, as in `lm`. Use formula when conducting significance tests of an Average Treatment Effect estimate under a sharp null hypothesis. For the difference-in-means estimate, do not include covariates. For the OLS covariate-adjusted estimate, include covariates.
- `model_1`: an object of class formula, as in `lm`. Models 1 and 2 must be "nested." `model_1` should be the "restricted" model and `model_2` should be the "unrestricted" model.
- `model_2`: an object of class formula, as in `lm`. Models 1 and 2 must be "nested." `model_1` should be the "restricted" model and `model_2` should be the "unrestricted" model.
- `test_function`: A function that takes data and returns a scalar test statistic.
- `assignment`: a character string that indicates which variable is randomly assigned. Defaults to "Z".
- `outcome`: a character string that indicates which variable is the outcome variable. Defaults to NULL.
- `declaration`: A random assignment declaration, created by `declare_ra`.
- `sharp_hypothesis`: either a numeric scalar or a numeric vector of length k - 1, where k is the number of treatment conditions. In a two-arm trial, this number is the hypothesized difference between the treated and untreated potential potential outcomes for each unit. In a multi-arm trial, each number in the vector is the hypothesized difference in potential outcomes between the baseline condition and each successive treatment condition.
- `studentize`: logical, defaults to FALSE. Should the test statistic be the t-ratio rather than the estimated ATE? T-ratios will be calculated using HC2 robust standard errors or their clustered equivalent. CLUSTERING NOT YET IMPLEMENTED.
- `IPW`: logical, defaults to TRUE. Should inverse probability weights be calculated?
conduct_ri

IPW_weights a character string that indicates which variable is the existing inverse probability weights vector. Usually unnecessary, as IPW weights will be incorporated automatically if IPW = TRUE. Defaults to NULL.

sampling_weights a character string that indicates which variable is the sampling weights vector. Optional, defaults to NULL. NOT YET IMPLEMENTED

permutation_matrix An optional matrix of random assignments, typically created by obtain_permutation_matrix.

data A data.frame.
sims the number of simulations. Defaults to 1000.
progress_bar logical, defaults to FALSE. Should a progress bar be displayed in the console?
p Should "two-tailed", "upper", or "lower" p-values be reported? Defaults to "two-tailed"

Details

1. Conduct hypothesis tests under the sharp null when the test statistic is the difference-in-means or covariate-adjusted average treatment effect estimate. 2. Conduct "ANOVA" style hypothesis tests, where the f-statistic from two nested models is the test statistic. This procedure is especially helpful when testing interaction terms under null of constant effects. 3. Arbitrary (scalar) test statistics

Examples

Data from Gerber and Green Table 2.2

Randomization Inference for the Average Treatment Effect

table_2.2 <- data.frame(d = c(1, 0, 0, 0, 0, 0, 1),
 y = c(15, 15, 20, 20, 10, 15, 30))

Declare randomization procedure
declaration <- declare_ra(N = 7, m = 2)

Conduct Randomization Inference
out <- conduct_ri(y ~ d,
 declaration = declaration,
 assignment = "d",
 sharp_hypothesis = 0,
 data = table_2.2)

summary(out)
plot(out)
tidy(out)

Randomization Inference for an Interaction
```
N <- 100
declaration <- randomizr::declare_ra(N = N, m = 50)

Z <- randomizr::conduct_ra(declaration)
X <- rnorm(N)
Y <- .9 * X + .2 * Z + 1 * X * Z + rnorm(N)
dat <- data.frame(Y, X, Z)

ate_obs <- coef(lm(Y ~ Z, data = dat))[[2]]

out <- conduct_ri(
  model_1 = Y ~ Z + X,
  model_2 = Y ~ Z + X + Z * X,
  declaration = declaration,
  assignment = "Z",
  sharp_hypothesis = ate_obs,
  data = dat, sims = 100
)

plot(out)
summary(out)

summary(out, p = "two-tailed")
summary(out, p = "upper")
summary(out, p = "lower")
tidy(out)

# Randomization Inference for arbitrary test statistics

## In this example we're conducting a randomization check (in this case, a balance test).

N <- 100
declaration <- randomizr::declare_ra(N = N, m = 50)

Z <- randomizr::conduct_ra(declaration)
X <- rnorm(N)
Y <- .9 * X + .2 * Z + rnorm(N)
dat <- data.frame(Y, X, Z)

balance_fun <- function(data) {
  f_stat <- summary(lm(Z ~ X, data = data))$f[1]
  names(f_stat) <- NULL
  return(f_stat)
}

## confirm function works as expected
balance_fun(dat)

## conduct randomization inference
out <-
```
`ri2 package`
Index

conduct_ri, 2
declare_ra, 2
lm, 2
obtain_permutation_matrix, 3
ri2, 5
ri2-package (ri2), 5