Package ‘revss’

December 14, 2021

Type Package
Title Robust Estimation in Very Small Samples
Version 1.0.2
Date 2021-12-12
Description Implements the estimation techniques described in Rousseeuw & Verboven (2002) <doi:10.1016/S0167-9473(02)00078-6> for the location and scale of very small samples.
License BSD_2_clause + file LICENSE
URL https://github.com/aadler/revss
BugReports https://github.com/aadler/revss/issues
Encoding UTF-8
Suggests testthat, covr
Imports stats
NeedsCompilation no
Config/testthat/edition 3
Author Avraham Adler [aut, cph, cre] (<https://orcid.org/0000-0002-3039-0703>)
Maintainer Avraham Adler <Avraham.Adler@gmail.com>
Repository CRAN
Date/Publication 2021-12-14 22:50:02 UTC

R topics documented:

revss-package .. 2
adm ... 3
robLoc ... 4
robScale .. 5

Index 8
Description

Implements the estimation techniques described in Rousseeuw & Verboven (2002) <doi:10.1016/S0167-9473(02)00078-6> for the location and scale of very small samples.

Details

The DESCRIPTION file:

Package: revss
Type: Package
Title: Robust Estimation in Very Small Samples
Version: 1.0.2
Date: 2021-12-12
Authors@R: c(person(given = "Avraham", family = "Adler", role = c("aut", "cph", "cre"), email = "Avraham.Adler@gmail.com", comment = c(ORCID = "0000-0002-3039-0703"))),
Description: Implements the estimation techniques described in Rousseeuw & Verboven (2002) <doi:10.1016/S0167-9473(02)00078-6> for the location and scale of very small samples.
License: BSD_2_clause + file LICENSE
URL: https://github.com/aadler/revss
BugReports: https://github.com/aadler/revss/issues
Encoding: UTF-8
Suggests: testthat, covr
Imports: stats
NeedsCompilation: no
Config/testthat/edition: 3
Author: Avraham Adler [aut, cph, cre] (<https://orcid.org/0000-0002-3039-0703>)
Maintainer: Avraham Adler <Avraham.Adler@gmail.com>

Index of help topics:

adm Average Distance to the Median
revss-package Robust Estimation in Very Small Samples
robLoc Robust Estimate of Location
robScale Robust Estimate of Scale

Author(s)

NA

Maintainer: NA
Description

Compute the mean absolute deviation from the median, and (by default) adjust by a factor for asymptotically normal consistency.

Usage

adm(x, center = median(x), constant = sqrt(pi / 2), na.rm = FALSE)

Arguments

- x: A numeric vector.
- center: The central value from which to measure the average distance. Defaults to the median.
- constant: A scale factor for asymptotic normality defaulting to $\sqrt{\frac{\pi}{2}}$.
- na.rm: If TRUE then NA values are stripped from x before computation takes place.

Details

Computes the average distance, as an absolute value, between each observation and the central observation—usually the median. In statistical literature this is also called the mean absolute deviation around the median. Unfortunately, this shares the same acronym as the median absolute deviation (MAD), which is the median equivalent of this function.

General practice is to adjust the factor for asymptotically normal consistency. In large samples this approaches $\sqrt{\frac{2}{x}}$. The default is to multiple the results by the reciprocal, but the asymptotic behavior may not hold with the smaller sample sizes for which this package is intended.

If na.rm is TRUE then NA values are stripped from x before computation takes place. If this is not done then an NA value in x will cause mad to return NA.

Value

$$ADM = C \frac{1}{n} \sum_{i=1}^{n} |x_i - \text{center}(x)|$$

where C is the consistency constant and center defaults to median.

Author(s)

Avraham Adler <Avraham.Adler@gmail.com>
References

See Also

mad for the median absolute deviation from the *median*

Examples

```r
adm(c(1:9))
x <- c(1, 2, 3, 5, 7, 8)
c(adm(x), adm(x, constant = 1))
```

robLoc

Robust Estimate of Location

Description

Compute the robust estimate of location for very small samples.

Usage

```r
robLoc(x, scale = NULL, na.rm = FALSE, maxit = 80, tol = sqrt(.Machine$double.eps))
```

Arguments

- `x`: A numeric vector.
- `scale`: The scale, if known, can be used to enhance the estimate for the location; defaults to unknown.
- `na.rm`: If `TRUE` then `NA` values are stripped from `x` before computation takes place. If this is not done then an `NA` value in `x` will cause `mad` to return `NA`.
- `maxit`: The maximum number of iterations; defaults to 80.
- `tol`: The desired accuracy.

Details

Computes the M-estimator for location using the logistic ψ function of Rousseeuw & Verboven (2002, 4.1). If there are three or fewer entries, the function defaults to the median.

If the scale is known and passed through `scale`, the algorithm uses the suggestion in Rousseeuw & Verboven section 5 (2002), substituting the known scale for the `mad`.

If `na.rm` is `TRUE` then `NA` values are stripped from `x` before computation takes place. If this is not done then an `NA` value in `x` will cause `mad` to return `NA`.

The tolerance and number of iterations are similar to those in existing base R functions.
robScale

Value

Solves for the robust estimate of location, T_n, which is the solution to

$$\frac{1}{n} \sum_{i=1}^{n} \psi \left(\frac{x_i - T_n}{S_n} \right) = 0$$

where S_n is fixed at $\text{mad}(x)$. The ψ-function selected by Rousseeuw & Verboven is:

$$\psi_{\log}(x) = \frac{e^x - 1}{e^x + 1}$$

This is equivalent to $2 \times \text{plogis}(x) - 1$.

Author(s)

Avraham Adler <Avraham.Adler@gmail.com>

References

See Also

`median`

Examples

```r
robLoc(c(1:9))
x <- c(1,2,3,5,7,8)
robLoc(x)
```

robScale Robust Estimate of Scale

Description

Compute the robust estimate of scale for very small samples.

Usage

```r
robScale(x, loc = NULL, implbound = 1e-4, na.rm = FALSE, maxit = 80,
         tol = sqrt(.Machine$double.eps))
```
Arguments

- **x** A numeric vector.
- **loc** The location, if known, can be used to enhance the estimate for the scale; defaults to unknown.
- **implbound** The smallest value that mad is allowed before being considered too close to 0.
- **na.rm** If TRUE then NA values are stripped from x before computation takes place.
- **maxit** The maximum number of iterations; defaults to 80.
- **tol** The desired accuracy.

Details
Computes the M-estimator for scale using a smooth \(\rho \)-function defined as the square of the logistic \(\psi \) function used in location estimation (Rousseeuw & Verboven, 2002, 4.2). When the sequence of observations is too short for a robust estimate, the scale estimate will default to mad so long as mad has not “imploded”, i.e. it is greater than implbound which defaults to 0.0001. When mad has imploded, adm is used instead.

If the location is known and passed through loc, the algorithm uses the suggestion in Rousseeuw & Verboven section 5 (2002) converting the observations to distances from 0 and iterating on the adjusted sequence.

If na.rm is TRUE then NA values are stripped from x before computation takes place. If this is not done then an NA value in x will cause mad to return NA.

The tolerance and number of iterations are similar to those in existing base R functions.

Value
Solves for the robust estimate of scale, \(S_n \), which is the solution to

\[
\frac{1}{n} \sum_{i=1}^{n} \rho \left(\frac{x_i - T_n}{S_n} \right) = \beta
\]

where \(T_n \) is fixed at median(x) and \(\beta \) is fixed at 0.5. The \(\rho \)-function selected by Rousseeuw & Verboven is based on the square of the \(\psi \)-function used in robLoc. Specifically

\[
\rho_{log}(x) = \psi_{log}^2 \left(\frac{x}{0.3739} \right)
\]

The 0.3739 is needed for \(\beta \) to be 0.5.

Author(s)
Avraham Adler <Avraham.Adler@gmail.com>

References
See Also

adj and mad as basic robust estimators of scale.

Qn and Sn in the robustbase package which are specialized robust scale estimators for larger samples. The latter two are based on code written by Peter Rousseeuw.

Examples

robScale(c(1:9))
x <- c(1,2,3,5,7,8)
c(robScale(x), robScale(x, loc = 5))
Index

* package
 revss-package, 2

* robust
 adm, 3
 revss-package, 2
 robLoc, 4
 robScale, 5

* univar
 adm, 3
 robLoc, 4
 robScale, 5

adm, 3, 7
mad, 4, 7
median, 4, 5
Qn, 7

revss (revss-package), 2
revss-package, 2
robLoc, 4, 6
robScale, 5
Sn, 7