Package ‘regrrr’

August 13, 2021

Type Package

Title Toolkit for Compiling, (Post-Hoc) Testing, and Plotting Regression Results

Version 0.1.3

Description Compiling regression results into a publishable format, conducting post-hoc hypothesis testing, and plotting moderating effects (the effect of X on Y becomes stronger/weaker as Z increases).

Depends R (>= 3.5.0)

Maintainer Rui K. Yang <rkzyang@gmail.com>

License GPL-3

Encoding UTF-8

Suggests testthat

RoxygenNote 7.0.2

Imports stats, purrr, dplyr, magrittr, tidyr, usdm, scales, robustbase, stringr, MuMIn, ggplot2, lspline

BugReports https://github.com/RkzYang/regrrr/issues

NeedsCompilation no

Author Rui K. Yang [aut, cre], Luyao Peng [aut]

Repository CRAN

Date/Publication 2021-08-13 14:00:05 UTC

R topics documented:

 add.n.r 2
 add.pr 2
 add.sig 3
 check_cor 3
 check_na_in 4
 check_vif 4
add.pr

Add approximate p-value based on t score or z score, when sample size is large

Description

Add approximate p-value based on t score or z score, when sample size is large

Usage

```r
add.pr(df, z.col = 3, p.already = FALSE)
```

Arguments

- `df`: a data.frame of regression result
- `z.col`: the column number of t score or z score
- `p.already`: whether the regression result already contains p.value
add.sig

Add significance level marks to the regression result

Description
Add significance level marks to the regression result

Usage
add.sig(df, Pr.col = 5)

Arguments
df a data.frame of regression result, e.g. summary(a_lm_model)$coefficients
Pr.col the column number of p.value

check_cor
quickly check correlation matrix, or the correlation between a particular X and all other vars could be useful for looking for relevant instrument

Description
quickly check correlation matrix, or the correlation between a particular X and all other vars could be useful for looking for relevant instrument

Usage
check_cor(data, var_name_select = NULL, d = 3)

Arguments
data a data.frame used in regression model
var_name_select to specify the variable names to be included in the table, default is NULL—all variables are included
d number of digits retained after the decimal point

Examples
data(mtcars)
check_cor(mtcars)
check_na_in

quickly check the proportion of NAs in each columns of a dataframe

Description
quickly check the proportion of NAs in each columns of a dataframe

Usage
check_na_in(data, true_total = FALSE)

Arguments
data a data.frame
ture_total FALSE to show the percentage, TRUE to show the true number of missing values

Examples
data(mtcars)
check_na_in(mtcars)

check_vif
quickly check the vifs in a regression model; for checking multicollinearity

Description
quickly check the vifs in a regression model; for checking multi-collinearity

Usage
check_vif(data)

Arguments
data a data.frame used in regression model

Examples
data(mtcars)
model <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
check_vif(data = model$model)
combine_long_tab

Combine regression results from different models by columns

Description

Combine regression results from different models by columns

Usage

```r
combine_long_tab(
  tbl_1, 
  tbl_2, 
  tbl_3 = NULL, 
  tbl_4 = NULL, 
  tbl_5 = NULL, 
  tbl_6 = NULL, 
  tbl_7 = NULL, 
  tbl_8 = NULL, 
  tbl_9 = NULL, 
  tbl_10 = NULL, 
  tbl_11 = NULL, 
  tbl_12 = NULL, 
  tbl_13 = NULL, 
  tbl_14 = NULL, 
  tbl_15 = NULL, 
  tbl_16 = NULL, 
  tbl_17 = NULL, 
  tbl_18 = NULL, 
  tbl_19 = NULL, 
  tbl_20 = NULL
)
```

Arguments

- `tbl_1`: the 1st data.frame of regression result
- `tbl_2`: the 2nd data.frame of regression result
- `tbl_3`: the 3rd data.frame of regression result
- `tbl_4`: the 4th data.frame of regression result
- `tbl_5`: the 5th data.frame of regression result
- `tbl_6`: the 6th data.frame of regression result
- `tbl_7`: the 7th data.frame of regression result
- `tbl_8`: the 8th data.frame of regression result
- `tbl_9`: the 9th data.frame of regression result
- `tbl_10`: the 10th data.frame of regression result
Examples

```r
data(mtcars)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
m2 <- update(m1, . ~ . + wt * vs)
summary(m1)
summary(m2)
combine_long_tab(to_long_tab(summary(m1)$coef),
                 to_long_tab(summary(m2)$coef))
```

Description

Compare regression models, which is compatible with the reg.table output # updated 9/13/2018 #

Usage

```r
compare_models(
  model1,
  model2,
  model3 = NULL,
  model4 = NULL,
  model5 = NULL,
  model6 = NULL,
  model7 = NULL,
  model8 = NULL,
  model9 = NULL,
  model10 = NULL,
  model11 = NULL,
  model12 = NULL,
  model13 = NULL,
  model14 = NULL,
  model15 = NULL,
  model16 = NULL,
  model17 = NULL,
  model18 = NULL,
  model19 = NULL,
  model20 = NULL,
  model21 = NULL,
  model22 = NULL,
  model23 = NULL,
  model24 = NULL,
  model25 = NULL,
  model26 = NULL,
  model27 = NULL,
  model28 = NULL,
  model29 = NULL,
  model30 = NULL)
```
compare_models

 model13 = NULL,
 model14 = NULL,
 model15 = NULL,
 model16 = NULL,
 model17 = NULL,
 model18 = NULL,
 model19 = NULL,
 model20 = NULL,
 likelihood.only = FALSE,
 round.digit = 3,
 main.effect.only = NULL,
 intn.effect.only = NULL
)

Arguments

 model1 the 1st regression model
 model2 the 2nd regression model
 model3 the 3rd regression model
 model4 the 4th regression model
 model5 the 5th regression model
 model6 the 6th regression model
 model7 the 7th regression model
 model8 the 8th regression model
 model9 the 9th regression model
 model10 the 10th regression model
 model11 the 11th regression model
 model12 the 12th regression model
 model13 the 13th regression model
 model14 the 14th regression model
 model15 the 15th regression model
 model16 the 16th regression model
 model17 the 17th regression model
 model18 the 18th regression model
 model19 the 19th regression model
 model20 the 20th regression model

 likelihood.only whether or not to output the likelihood
 round.digit number of decimal places to retain
 main.effect.only specify col number of alternative main-effect models, if any
 intn.effect.only specify col number of alternative moderator models, if any
Examples

data(mtcars)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp , data = mtcars)
m2 <- update(m1, . ~ . + wt * vs)
compare_models(m1, m2)

cor.table

make the correlation matrix from the data.frame used in regression

Description

make the correlation matrix from the data.frame used in regression

Usage

cor.table(
 data,
 data_to_combine = NULL,
 var_name_select = NULL,
 all.var.names = NULL,
 d = 2
)

Arguments

data a data.frame used in regression model, e.g. model$mod

data_to_combine another data.frame used for regression model, e.g. when you have similar set of X’s but different Y’s

var_name_select optional: to specify the variable names used in regression to be included in the correlation matrix

all.var.names optional: to rename all variable names, a string vector

d number of decimal places to retain

Examples

data(mtcars)
model <- lm(mpg ~ vs + carb + hp + wt + wt * hp , data = mtcars)
cor.table(data = model$mod)
load.pkgs

Description
load multiple packages

Usage
load.pkgs(pkg_name_vec)

Arguments
pkg_name_vec a string vector of package names

Examples
Not run:
load.pkgs(c("dplyr", "car", "purrr"))
End(Not run)

plot_effect

plotting the marginal effect of X on Y, with or without one or multiple interaction terms

Description
plotting the marginal effect of X on Y, with or without one or multiple interaction terms

Usage
plot_effect(
 reg.coef,
 data,
 model,
 by_color = FALSE,
 x_var.name = NULL,
 y_var.name = NULL,
 moderator.name = NULL,
 min_x = 0.001,
 max_x = 0.999,
 mdrt_quantile_05 = NULL,
 mdrt_quantile_50 = NULL,
 mdrt_quantile_95 = NULL,
mod.n.sd = 1,
confidence_interval = FALSE,
v = NULL,
CI_Ribbon = FALSE,
title = NULL,
xlab = "X_Var.name",
ylab = "Y_Var.name",
moderator.lab = "Moderator_name",
mdrt.low.name = "Low",
mdrt.mid.name = NULL,
mdrt.high.name = "High",
y.high.lim = NULL,
y.low.lim = NULL,
spline_labels = c("LHS", "RHS")

Arguments

reg.coef a coefficient matrix of regression result, e.g. summary(lm_model)$coef
data the data used in regression, a data frame
model the model object, such as a "lm" object
by_color plot interactions by colors, otherwise by line types
x_var.name x name in the regression model, a string
y_var.name y name in the regression model, a string
moderator.name moderating variable name in the regression model, a string
min_x the min of x scale, in percentile of x
max_x the max of x scale, in percentile of x
mdrt_quantile_05 set the low level of moderator, in percentile
mdrt_quantile_50 set the middle level of moderator, in percentile
mdrt_quantile_95 set the high level of moderator, in percentile
mod.n.sd set the moderating strength, in the number of s.d. units, which can take negative values
confidence_interval if TRUE, plot confidence intervals
v a customized variance-covariance matrix
CI_Ribbon if TRUE, plot confidence interval ribbons, if FALSE, plot error bars
title the title of the plot
xlab label of X
ylab label of Y
moderator.lab label of moderator
plot_effect

mdrt.low.name the label of low-level moderator
mdrt.mid.name the label of mid-level moderator
mdrt.high.name the label of high-level moderator
y.high.lim specify the upper limit of y
y.low.lim specify the lower limit of y
spline_labels label of the spline variable; when the main variable is a linear spline and spline labels are supplied, the moderation effect will be presented by facets.

Examples

Not run:
data(mtcars)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp , data = mtcars)
plot_effect(reg.coef = summary(m1)$coefficients,
data = mtcars, model = m1,
x_var.name = "wt", y_var.name = "mpg", moderator.name = "hp",
confidence_interval = TRUE, CI_Ribbon = TRUE,
 xlab = "Weight", ylab = "MPG", moderator.lab = "Horsepower")
End(Not run)

' @examples
Not run:
data(mtcars)
m2 <- lm(mpg ~ vs + carb + hp + wt + wt * hp + wt * vs, data = mtcars)
plot_effect(reg.coef = summary(m2)$coefficients,
data = mtcars, model = m2,
 x_var.name = "wt", y_var.name = "mpg", moderator.name = "hp",
confidence_interval = TRUE, CI_Ribbon = FALSE,
 xlab = "Weight", ylab = "MPG", moderator.lab = "Horsepower")
End(Not run)

' @examples
Not run:
data(mtcars)
m3 <- lm(mpg ~ vs + carb + hp + lspline(wt, knots = 4, marginal = FALSE) * hp, data = mtcars)
plot_effect(reg.coef=summary(m3)$coefficients,
data = mtcars, model = m3, x_var.name = "wt", y_var.name = "mpg", moderator.name = "hp",
 xlab="Weight", ylab="MPG", moderator.lab="Horsepower")
End(Not run)

Not run:
this shows the function is compatible with ggplot2 customization
library(extrafont)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp , data = mtcars)
plot_effect(reg.coef = summary(m1)$coefficients,
data = mtcars, model = m1,
 x_var.name = "wt", y_var.name = "mpg", moderator.name = "hp",
confidence_interval = TRUE, CI_Ribbon = TRUE,
regrrr

regrr: a toolkit for compiling regression results

Description

Compiling, Testing, Plotting Regression Results

Author(s)

Rui K. Yang <rkzyang@gmail.com>
Luyao Peng <luyaopeng.cn@gmail.com>

See Also

Useful links:

- Report bugs at https://github.com/RkzYang/regrrr/issues

scale_01

Scale a vector into the 0-1 scale

Description

Scale a vector into the 0-1 scale

Usage

```r
scale_01(x)
```

Arguments

- `x` a vector
test_coef_equality

Description

testing equality of two coefficients (difference between coefficients of regressors), a Wald test note: if v is not alternatively specified, use car::linearHypothesis(lm_model, "X1 = X2")

Usage

test_coef_equality(model, var1.name, var2.name, v = NULL)

Arguments

- **model**: the model object, such as a "lm" object
- **var1.name**: X1 name in model, a string
- **var2.name**: X2 name in model, a string
- **v**: a customized variance-covariance matrix

```r
data(mtcars) m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars) summary(m1) test_coef_equality(model = m1, var1.name = "carb", var2.name = "hp")
```

test_tilted_slopes

Description

significance of regression slope (the marginal effect) under moderation testing restriction: the sig. of beta_x under the moderation of z1, with or without additional interaction terms (z2, z3, etc.)

Usage

test_tilted_slopes(
 reg.coef,
 v = NULL,
 model,
 x_var.name,
 moderator.name,
 mod.n.sd = 1,
 data,
 t.value.col = 3,
 Pr.col = 4
)
```r
data(mtcars) m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars) summary(m1) test_coef_equality(model = m1, var1.name = "carb", var2.name = "hp")
```
Arguments

reg.coef a data.frame (or matrix) of regression result or a coeftest object, e.g. summary(lm_model)$coef, coeftest(lm_model, cluster.vcov(lm_model, cbind(data$group1, data$group2)))
v a customized variance-covariance matrix
model the model object, such as a "lm" object
x_var.name main independent variable name in model, a string
moderator.name moderator name in model, a string
mod.n.sd specify the strength of the moderating effects, in the unit of s.d.s of the moderator, which can take negative values
data data used for regression
t.value.col col number of the t-score in reg.coef
Pr.col col number of the Prob.(>|t|)) in reg.coef

Examples

data(mtcars)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp , data = mtcars)
test_tilted_slopes(reg.coef = summary(m1)$coef, model = m1,
 x_var.name = "wt", moderator.name = "hp", data = mtcars)

Description

Convert the regression result to the long format: the standard errors are in parentheses and beneath the betas

Usage

to_long_tab(reg.coef, d = 3, t.value.col = 3, Pr.col = 4)

Arguments

reg.coef a data.frame (or matrix) of regression result or a coeftest object, e.g. summary(lm_model)$coef, coeftest(lm_model, cluster.vcov(lm_model, cbind(data$group1, data$group2)))
d number of decimal places to retain
t.value.col col number of the t-score in the reg.coef data.frame
Pr.col col number of the Prob.(>|t|)) in the reg.coef data.frame
Examples

data(mtcars)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
to_long_tab(reg.coef = summary(m1)$coef)
Index

add.n.r, 2
add.pr, 2
add.sig, 3

check.cor, 3
check_na_in, 4
check_vif, 4
combine_long_tab, 5
compare_models, 6
cor.table, 8

load.pkgs, 9

plot_effect, 9

regrrr, 12
regrrr-package (regrrr), 12

scale_01, 12

test_coef_equality, 13
test_tilted_slopes, 13
to_long_tab, 14