Package ‘rankrate’

August 17, 2023

Title Joint Statistical Models for Preference Learning with Rankings and Ratings

Version 1.2.0

Description Statistical tools for the Mallows-Binomial model, the first joint statistical model for preference learning for rankings and ratings.

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

LazyData TRUE

Imports stats, gtools, isotone

Suggests knitr, rmarkdown, devtools, ggplot2, pander, reshape2

VignetteBuilder knitr

URL https://pearce790.github.io/rankrate/

NeedsCompilation no

Author Michael Pearce [aut, cre, cph]
 (<https://orcid.org/0000-0002-9313-271X>)

Maintainer Michael Pearce <pearce790@gmail.com>

Repository CRAN

Date/Publication 2023-08-17 15:20:09 UTC

R topics documented:

AIBS .. 2
ASTAR .. 3
ci_mb .. 4
dmall .. 5
dmb .. 6
fit_mb .. 7
FV .. 8
getQ .. 8
Real peer review data set from the American Institute of Biological Sciences (AIBS)

Description

This real data set includes 12 judges (reviewers) and 28 objects (proposals), and demonstrates the ability of the Mallows-Binomial model to combine ratings and rankings for the purpose of demarcating real grant proposals for a funding agency.

Usage

AIBS

Format

A list with three elements: (1) rankings, a 12 x 18 matrix of rankings with one row per judge; (2) ratings, a 12 x 18 matrix of ratings, with one row per judge and one column per object; and (3) M, a number indicating the maximum (worst) integer score.

Source

Calculate the exact MLE of a Mallows-Binomial distribution using an A* algorithm

Description

This function estimates the exact MLE of a Mallows-Binomial distribution using an A* tree search algorithm proposed in Pearce and Erosheva (2022). Algorithm may be very slow when number of objects exceeds 15, but is often still tractable for larger J when consensus is strong.

Usage

`ASTAR(rankings, ratings, M, keep_nodes = FALSE)`

Arguments

- **rankings** A matrix of rankings, potentially with attribute "assignments" to signify separate reviewer assignments. One ranking per row.
- **ratings** A matrix of ratings, one row per judge and one column per object.
- **M** Numeric specifying maximum (=worst quality) integer rating.
- **keep_nodes** Boolean specifying if function should retain the list of open nodes traversed during A* tree search. Defaults to `FALSE`.

Value

A list with elements `pi0`, the estimated consensus ranking MLE, `p`, the estimated object quality parameter MLE, `theta`, the estimated scale parameter MLE, and `numnodes`, number of nodes traversed during algorithm and a measure of computational complexity. If `keep_nodes == TRUE`, then the list also contains `nodes`, a matrix of open nodes remaining at the end of search. If multiple MLEs are found, `pi0`, `p`, and `theta` are returned a matrix elements, with one row per MLE.

Examples

```r
data("ToyData1")
ASTAR(ToyData1$rankings, ToyData1$ratings, ToyData1$M, keep_nodes=TRUE)
```
ci_mb

Bootstrap Confidence Intervals for Mallows-Binomial parameters.

Description

This function calculates confidence intervals for parameters in a Mallows-Binomial model using the nonparametric bootstrap.

Usage

ci_mb(
 rankings,
 ratings,
 M,
 interval = 0.9,
 nsamples = 50,
 all = FALSE,
 method = "ASTAR"
)

Arguments

- rankings: A matrix of rankings, potentially with attribute "assignments" to signify separate reviewer assignments. One ranking per row.
- ratings: A matrix of ratings, one row per judge and one column per object.
- M: Numeric specifying maximum (=worst quality) integer rating.
- interval: A numeric entry between 0 and 1 specifying the confidence interval (e.g., .90 indicates a 90% confidence interval). Defaults to 0.90.
- nsamples: A numeric entry indicating desired number of bootstrap samples to be used when calculating confidence intervals. Defaults to 50.
- all: A boolean indicating if estimated parameters from all bootstrap samples should be returned. Defaults to FALSE.
- method: A character string indicating which estimation method to use when estimating parameters. Allowable options are currently "ASTAR", "Greedy", "GreedyLocal", and "FV". Defaults to exact search, "ASTAR".

Value

A list with elements ci, a matrix of confidence intervals for Mallows-Binomial parameters, ci_ranks, a matrix of confidence intervals for object ranks, bootstrap_p1, a matrix of bootstrap consensus rankings (returned only if all==TRUE), and bootstrap_ptheta, a matrix of bootstrap estimates of (p, theta) (returned only if all==TRUE).
Examples

data("ToyData1")
ci_mb(ToyData1$rankings, ToyData1$ratings, ToyData1$M, method="ASTAR", all=TRUE)

dmall

Calculate the density of rankings under a Mallows distribution

Description

This function calculates the density of observation(s) under a Mallows distribution.

Usage

dmall(rankings, pi0, theta, log = FALSE)

Arguments

rankings A matrix of rankings, potentially with attribute "assignments" to signify separate reviewer assignments. One ranking per row.
pi0 A vector specifying the consensus (modal probability) ranking; should be used only for tie-breaking equal values in p.
theta A numeric entry specifying the Mallows scale parameter.
log A boolean indicating if the log likelihood should be returned.

Value

A numeric value indicating the (log) likelihood of rankings under a Mallows distribution.

Examples

rankings1 <- matrix(c(1,2,3,3,1,2),nrow=2,byrow=TRUE)
rankings2 <- matrix(c(1,2,3,4,2,3,NA,NA),nrow=2,byrow=TRUE)
attr(rankings2,"assignments") <- matrix(c(rep(TRUE,4),FALSE,TRUE,TRUE,TRUE),nrow=2,byrow=TRUE)
dmall(rankings=c(1,2,3,NA), pi0=c(1,2,3,4), theta=2)
dmall(rankings=rankings1, pi0=c(1,2,3), theta=2)
dmall(rankings=rankings2, pi0=c(1,2,3,4), theta=3, log=TRUE)
Description

This function calculates the density of observation(s) under a Mallows-Binomial distribution.

Usage

\[
dmb(rankings, ratings, p, theta, M, pi0 = NULL, log = FALSE)
\]

Arguments

- `rankings`: A matrix of rankings, potentially with attribute "assignments" to signify separate reviewer assignments. One ranking per row.
- `ratings`: A matrix of ratings, one row per judge and one column per object.
- `p`: A vector specifying the underlying object qualities. All values between be between 0 and 1, inclusive.
- `theta`: A numeric entry specifying the Mallows scale parameter.
- `M`: Numeric specifying maximum (=worst quality) integer rating.
- `pi0`: A vector specifying the consensus (modal probability) ranking; should be used only for tie-breaking equal values in `p`.
- `log`: A boolean indicating if the log likelihood should be returned.

Value

A numeric value indicating the (log) likelihood of rankings and ratings under a Mallows distribution.

Examples

```r
data(ToyData1)
dmb(rankings=ToyData1$rankings, ratings=ToyData1$ratings, p=c(.2,.5,.7), theta=1, M=ToyData1$M)
dmb(rankings=ToyData1$rankings, ratings=ToyData1$ratings, p=c(.25,.25,.7), theta=1, M=ToyData1$M, pi0=c(1,2,3), log=TRUE)
```
Calculate the exact or approximate MLE of a Mallows-Binomial distribution using various methods

Description

This function calculates the exact or approximate MLE of a Mallows-Binomial distribution using a user-specified method.

Usage

```r
fit_mb(
  rankings,           # A matrix of rankings, potentially with attribute "assignments" to signify separate reviewer assignments. One ranking per row.
  ratings,            # A matrix of ratings, one row per judge and one column per object.
  M,                  # Numeric specifying maximum (=worst quality) integer rating.
  method = c("ASTAR", "Greedy", "GreedyLocal", "FV")  # A character string indicating which estimation method to use when estimating parameters. Allowable options are currently "ASTAR", "Greedy", "GreedyLocal", and "FV". Defaults to exact search, "ASTAR".
)
```

Arguments

- `rankings`:
 A matrix of rankings, potentially with attribute "assignments" to signify separate reviewer assignments. One ranking per row.
- `ratings`:
 A matrix of ratings, one row per judge and one column per object.
- `M`:
 Numeric specifying maximum (=worst quality) integer rating.
- `method`:
 A character string indicating which estimation method to use when estimating parameters. Allowable options are currently "ASTAR", "Greedy", "GreedyLocal", and "FV". Defaults to exact search, "ASTAR".

Value

A list with elements `pi0`, the estimated consensus ranking MLE, `p`, the estimated object quality parameter MLE, `theta`, the estimated scale parameter MLE, and `numnodes`, number of nodes traversed during algorithm and a measure of computational complexity. If multiple MLEs are found, `pi0`, `p`, and `theta` are returned as a matrix elements, with one row per MLE.

Examples

```r
data("ToyData1")
fit_mb(ToyData1$rankings,ToyData1$ratings,ToyData1$M,method="ASTAR")
fit_mb(ToyData1$rankings,ToyData1$ratings,ToyData1$M,method="Greedy")
fit_mb(ToyData1$rankings,ToyData1$ratings,ToyData1$M,method="GreedyLocal")
fit_mb(ToyData1$rankings,ToyData1$ratings,ToyData1$M,method="FV")
```
FV

Estimate the MLE of a Mallows-Binomial distribution using the FV method

Description

This function estimates the MLE of a Mallows-Binomial distribution using the FV method.

Usage

FV(rankings, ratings, M)

Arguments

rankings A matrix of rankings, potentially with attribute "assignments" to signify separate reviewer assignments. One ranking per row.
ratings A matrix of ratings, one row per judge and one column per object.
M Numeric specifying maximum (=worst quality) integer rating.

Value

A list with elements pi0, the estimated consensus ranking MLE, p, the estimated object quality parameter MLE, theta, the estimated scale parameter MLE, and numnodes, number of nodes traversed during algorithm and a measure of computational complexity. If multiple MLEs are found, pi0, p, and theta are returned a matrix elements, with one row per MLE.

Examples

data("ToyData1")
FV(ToyData1$rankings,ToyData1$ratings,ToyData1$M)

getQ

Calculate Q Matrix

Description

This function calculates the Q matrix given a collection of (partial) rankings.

Usage

getQ(rankings, I, J)
Greedy

Arguments

rankings A matrix of rankings, potentially with attribute "assignments" to signify separate reviewer assignments. One ranking per row.

I A numeric entry indicating the total number of judges providing rankings and ratings.

J A numeric entry or vector of positive integers indicating total number of objects.

Value

A matrix with dimension J x J.

Examples

rankings <- matrix(c(1,2,3,4,2,1,NA,NA),byrow=TRUE,nrow=2)
getQ(rankings=rankings,I=2,J=4)
attr(rankings,"assignments") <- matrix(c(rep(TRUE,7),FALSE),byrow=TRUE,nrow=2,ncol=4)
getQ(rankings=rankings,I=2,J=4)

Greedy

Estimate the MLE of a Mallows-Binomial distribution using the Greedy method

Description

This function estimates the MLE of a Mallows-Binomial distribution using the Greedy method.

Usage

Greedy(rankings, ratings, M)

Arguments

rankings A matrix of rankings, potentially with attribute "assignments" to signify separate reviewer assignments. One ranking per row.

ratings A matrix of ratings, one row per judge and one column per object.

M Numeric specifying maximum (=worst quality) integer rating.

Value

A list with elements \(\hat{\pi} \), the estimated consensus ranking MLE, \(\hat{p} \), the estimated object quality parameter MLE, \(\hat{\theta} \), the estimated scale parameter MLE, and \(\text{numnodes} \), number of nodes traversed during algorithm and a measure of computational complexity. If multiple MLEs are found, \(\hat{\pi} \), \(\hat{p} \), and \(\hat{\theta} \) are returned a matrix elements, with one row per MLE.
Examples

```r
data("ToyData1")
GreedyLocal(ToyData1$rankings,ToyData1$ratings,ToyData1$M)
```

GreedyLocal

Estimate the MLE of a Mallows-Binomial distribution using the "Greedy Local" method

Description

This function estimates the MLE of a Mallows-Binomial distribution using the GreedyLocal method, which is identical to the Greedy method but includes an automatic and targeted post-hoc local search.

Usage

```r
GreedyLocal(rankings, ratings, M)
```

Arguments

- `rankings` A matrix of rankings, potentially with attribute "assignments" to signify separate reviewer assignments. One ranking per row.
- `ratings` A matrix of ratings, one row per judge and one column per object.
- `M` Numeric specifying maximum (=worst quality) integer rating.

Value

A list with elements `pi0`, the estimated consensus ranking MLE, `p`, the estimated object quality parameter MLE, `theta`, the estimated scale parameter MLE, and `numnodes`, number of nodes traversed during algorithm and a measure of computational complexity. If multiple MLEs are found, `pi0`, `p`, and `theta` are returned a matrix elements, with one row per MLE.

Examples

```r
data("ToyData1")
GreedyLocal(ToyData1$rankings,ToyData1$ratings,ToyData1$M)
```
Calculate the Kendall’s tau between rankings

Description

This function calculates Kendall’s tau distance between ranking(s) and a central permutation, π₀.

Usage

```r
kendall(rankings, π₀)
```

Arguments

- `rankings`: A matrix of rankings, potentially with attribute "assignments" to signify separate reviewer assignments. One ranking per row.
- `π₀`: A vector specifying the consensus (modal probability) ranking.

Value

A vector of the Kendall’s tau distance between each ranking in `rankings` and `π₀`.

Examples

```r
ranking1 <- c(2,1,3)
ranking2 <- matrix(c(2,1,3,1,2,3), byrow=TRUE, nrow=2)
ranking3 <- matrix(c(1,2,3,4,2,4,NA,NA), byrow=TRUE, nrow=2)
attr(ranking3,"assignments") <- matrix(c(TRUE,TRUE,TRUE,TRUE,
FALSE,TRUE,TRUE,TRUE), byrow=TRUE, nrow=2)
kendall(ranking1,c(1,2,3))
kendall(ranking2,c(1,2,3))
kendall(ranking3,c(1,2,3,4))
```

psi

Normalizing constant function of a Mallows distribution, psi

Description

This function calculates the normalizing constant of a Mallows distribution under the Kendall distance.

Usage

```r
psi(theta, J, R, log = FALSE)
```
Arguments

theta A numeric entry specifying the Mallows scale parameter.

J A numeric entry or vector of positive integers indicating total number of objects each judge has access to. If \(\text{length}(J)>1 \), \(R \) must be of same length or a single value.

R A numeric entry or vector of positive integers indicating the length of the ranking provided by each judge. If \(\text{length}(R)>1 \), \(J \) must be of same length or a single value.

log A boolean indicating if \(\log(\psi) \) should be returned.

Value

A numeric value or vector representing normalizing constant of a Mallows distribution.

Examples

\[
\psi(\theta=1, J=10, R=8) \\
\psi(\theta=2, J=c(4,4,3), R=c(2,2,1), \log=\text{TRUE})
\]

\[\text{rmall} \]

\textit{Random Mallows generation.}

Description

This function randomly generates rankings from a Mallows distribution.

Usage

\[
\text{rmall}(I, \pi0, \theta, R = \text{NULL})
\]

Arguments

I A numeric entry indicating the number of observations to be drawn, i.e., the number of judges providing rankings and ratings.

\pi0 A vector specifying the consensus (modal probability) ranking; should be used only for tie-breaking equal values in \(p \).

theta A numeric entry specifying the Mallows scale parameter.

R A numeric entry specifying the length of the rankings to be drawn. When \(R<=\text{length}(p) \), partial rankings are drawn by definition.

Value

A matrix of rankings (orderings) with one row per judge.
Examples

rmb(I=5,p=c(1,.3,.4,.7,.9),theta=1,M=10)
rmb(I=10,p=c(.1,.3,.3,.7,.9),pi0=c(1,3,2,4,5),theta=5,M=40,R=3)
ToyData1
Toy data set of rankings and ratings demonstrating tie-breaking

Description
This toy data set includes 16 judges and 3 objects, and demonstrates the ability of the Mallows-Binomial model to break ties in ratings via rankings.

Usage
ToyData1

Format
list with three elements: (1) rankings, a 16 x 3 matrix of rankings with one row per judge; (2) ratings, a 16 x 3 matrix of ratings, with one row per judge and one column per object; and (3) M, a number indicating the maximum (worst) integer score.

Source

ToyData2
Toy data set of rankings and ratings demonstrating decision-making with partial rankings

Description
This toy data set includes 16 judges and 8 objects, and demonstrates the ability of the Mallows-Binomial model to estimate overall object orderings under partial rankings.

Usage
ToyData2

Format
list with three elements: (1) rankings, a 16 x 8 matrix of rankings with one row per judge; (2) ratings, a 16 x 8 matrix of ratings, with one row per judge and one column per object; and (3) M, a number indicating the maximum (worst) integer score.

Source
ToyData3

Toy data set of rankings and ratings when judges express internally inconsistent preferences

Description

This toy data set includes 16 judges and 3 objects, and demonstrates the ability of the Mallows-Binomial model to estimate overall object orderings even when judges provide sets of rankings and ratings which are internally inconsistent.

Usage

ToyData3

Format

list with three elements: (1) rankings, a 16 x 3 matrix of rankings with one row per judge; (2) ratings, a 16 x 3 matrix of ratings, with one row per judge and one column per object; and (3) M, a number indicating the maximum (worst) integer score.

Source

to_rankings

Convert ranks into rankings (orderings)

Description

This function converts a matrix of ranks into a matrix of rankings (i.e., orderings), potentially including reviewer assignments as an attribute of the ranking matrix. Additionally, it can be used to add an assignments matrix to an existing matrix of rankings.

Usage

to_rankings(ranks, assignments = NULL, rankings = NULL)
Arguments

- **ranks**: A matrix or vector of ranks, such that the (i,j) entry includes the rank given by judge i to proposal j. NA is used to indicate that no rank was assigned to a proposal, which may occur for two reasons: (1) If the assignments matrix is not specified or the (i,j) entry of assignments is TRUE, then an NA indicates that a proposal was considered worse than all ranked proposals. (2) If the (i,j) entry of assignments is FALSE, then NA indicates that a proposal was not considered by the judge and no information can be gleaned from the missing rank.

- **assignments**: A matrix of booleans, such that the (i,j) entry is TRUE if judge i was assigned to review proposal j, and FALSE otherwise. If assignments is NULL, we assume all judges considered all proposals.

- **rankings**: A matrix or vector of rankings. If a matrix, there should be one ranking per row.

Value

A matrix of rankings, with one row per ranking. If assignments argument is specified, then the rankings matrix will have the attribute “assignments”.

Examples

```r
ranks <- matrix(data=c(4,2,3,1,NA,1,2,3,NA,NA,1,NA),byrow=TRUE,nrow=3)
assignments=matrix(TRUE,byrow=TRUE,nrow=3,ncol=4)
to_rankings(ranks=ranks)
to_rankings(ranks=ranks,assignments=assignments)
to_rankings(assignments=matrix(TRUE,nrow=1,ncol=3),rankings=c(3,2,1))```
Index

* datasets
  AIBS, 2
  ToyData1, 14
  ToyData2, 14
  ToyData3, 15

AIBS, 2
ASTAR, 3
ci_mb, 4
dmall, 5
dmb, 6
fit_mb, 7
FV, 8
getQ, 8
Greedy, 9
GreedyLocal, 10
kendall, 11
psi, 11
rmall, 12
rmb, 13
to_rankings, 15
ToyData1, 14
ToyData2, 14
ToyData3, 15