Package ‘randomForestExplainer’

September 18, 2019

Title Explaining and Visualizing Random Forests in Terms of Variable Importance

Version 0.10.0

Description A set of tools to help explain which variables are most important in a random forests. Various variable importance measures are calculated and visualized in different settings in order to get an idea on how their importance changes depending on our criteria (Hemant Ishwaran and Udaya B. Kogalur and Eiran Z. Gorodeski and Andy J. Minn and Michael S. Lauer (2010) <doi:10.1198/jasa.2009.tm08622>, Leo Breiman (2001) <doi:10.1023/A:1010933404324>.

Depends R (>= 3.0)

License GPL

Encoding UTF-8

LazyData true

Imports data.table (>= 1.10.4), dplyr (>= 0.7.1), DT (>= 0.2), GGally (>= 1.3.0), ggplot2 (>= 2.2.1), ggrepel (>= 0.6.5), randomForest (>= 4.6.12), ranger(>= 0.9.0), reshape2 (>= 1.4.2), rmarkdown (>= 1.5)

Suggests knitr, MASS (>= 7.3.47), testthat

VignetteBuilder knitr

RoxygenNote 6.1.1

URL https://github.com/ModelOriented/randomForestExplainer

NeedsCompilation no

Author Aleksandra Paluszynska [aut], Przemyslaw Biecek [aut, ths], Yue Jiang [aut, cre] (<https://orcid.org/0000-0002-9798-5517>)

Maintainer Yue Jiang <rivehill@gmail.com>

Repository CRAN

Date/Publication 2019-09-18 18:20:02 UTC
R topics documented:

- `explain_forest` .. 2
- `important_variables` ... 3
- `measure_importance` ... 4
- `min_depth_distribution` ... 4
- `min_depth_interactions` .. 5
- `plot_importance_ggpairs` ... 6
- `plot_importance_rankings` .. 6
- `plot_min_depth_distribution` 7
- `plot_min_depth_interactions` 8
- `plot_multi_way_importance` 9
- `plot_predict_interaction` ... 10

Index

| explain_forest | Explain a random forest |

Description

Explains a random forest in a html document using plots created by randomForestExplainer

Usage

```r
explain_forest(forest, interactions = FALSE, data = NULL, vars = NULL, no_of_pred_plots = 3, pred_grid = 100, measures = NULL)
```

Arguments

- **forest** A randomForest object created with the option localImp = TRUE
- **interactions** Logical value: should variable interactions be considered (this may be time-consuming)
- **data** The data frame on which forest was trained - necessary if interactions = TRUE
- **vars** A character vector with variables with respect to which interactions will be considered if NULL then they will be selected using the important_variables() function
- **no_of_pred_plots** The number of most frequent interactions of numeric variables to plot predictions for
- **pred_grid** The number of points on the grid of plot_predict_interaction (decrease in case memory problems)
- **measures** A character vector specifying the importance measures to be used for plotting ggpairs
important_variables

Value

A html document in your working directory

Examples

```r
## Not run:
forest <- randomForest::randomForest(Species ~ ., data = iris, localImp = TRUE)
explain_forest(forest, interactions = TRUE)

## End(Not run)
```

important_variables

Extract k most important variables in a random forest

Description

Get the names of k variables with highest sum of rankings based on the specified importance measures

Usage

```r
important_variables(importance_frame, k = 15,
measures = names(importance_frame)[2:min(5, ncol(importance_frame))],
ties_action = "all")
```

Arguments

- `importance_frame` A result of using the function `measure_importance()` to a random forest or a randomForest object
- `k` The number of variables to extract
- `measures` A character vector specifying the measures of importance to be used
- `ties_action` One of three: c("none", "all", "draw"); specifies which variables to pick when ties occur. When set to "none" we may get less than k variables, when "all" we may get more and "draw" makes us get exactly k.

Value

A character vector with names of k variables with highest sum of rankings

Examples

```r
forest <- randomForest::randomForest(Species ~ ., data = iris, localImp = TRUE, ntree = 300)
important_variables(measure_importance(forest), k = 2)
```
measure_importance

Importance of variables in a random forest

Description

Get a data frame with various measures of importance of variables in a random forest

Usage

```r
measure_importance(forest, mean_sample = "top_trees", measures = NULL)
```

Arguments

- **forest**
 A random forest produced by the function randomForest with option localImp = TRUE
- **mean_sample**
 The sample of trees on which mean minimal depth is calculated, possible values are "all_trees", "top_trees", "relevant_trees"
- **measures**
 A vector of names of importance measures to be calculated - if equal to NULL then all are calculated; if "p_value" is to be calculated then "no_of_nodes" will be too. Suitable measures for classification forests are: mean_min_depth, accuracy_decrease, gini_decrease, no_of_nodes, times_a_root. For regression forests choose from: mean_min_depth, mse_increase, node_purity_increase, no_of_nodes, times_a_root.

Value

A data frame with rows corresponding to variables and columns to various measures of importance of variables

Examples

```r
forest <- randomForest::randomForest(Species ~ ., data = iris, localImp = TRUE, ntree = 300)
measure_importance(forest)
```

min_depth_distribution

Calculate minimal depth distribution of a random forest

Description

Get minimal depth values for all trees in a random forest

Usage

```r
min_depth_distribution(forest)
```
min_depth_interactions

Arguments

- **forest**: A randomForest or ranger object

Value

A data frame with the value of minimal depth for every variable in every tree

Examples

```r
min_depth_distribution(randomForest::randomForest(Species ~ ., data = iris, ntree = 100))
min_depth_distribution(ranger::ranger(Species ~ ., data = iris, num.trees = 100))
```

min_depth_interactions

Calculate mean conditional minimal depth

Description

Calculate mean conditional minimal depth with respect to a vector of variables

Usage

```r
min_depth_interactions(forest, 
  vars = important_variables(measure_importance(forest)), 
  mean_sample = "top_trees", uncond_mean_sample = mean_sample)
```

Arguments

- **forest**: A randomForest object
- **vars**: A character vector with variables with respect to which conditional minimal depth will be calculated; by default it is extracted by the important_variables function but this may be time consuming
- **mean_sample**: The sample of trees on which conditional mean minimal depth is calculated, possible values are "all_trees", "top_trees", "relevant_trees"
- **uncond_mean_sample**: The sample of trees on which unconditional mean minimal depth is calculated, possible values are "all_trees", "top_trees", "relevant_trees"

Value

A data frame with each observation giving the means of conditional minimal depth and the size of sample for a given interaction

Examples

```r
forest <- randomForest::randomForest(Species ~ ., data = iris, ntree = 100)
min_depth_interactions(forest, c("Petal.Width", "Petal.Length"))
```
plot_importance_ggpairs

Plot importance measures with ggpairs

Description
Plot selected measures of importance of variables in a forest using ggpairs

Usage
plot_importance_ggpairs(importance_frame, measures = NULL, main = "Relations between measures of importance")

Arguments
importance_frame
A result of using the function measure_importance() to a random forest or a randomForest object

measures
A character vector specifying the measures of importance to be used

main
A string to be used as title of the plot

Value
A ggplot object

Examples
forest <- randomForest::randomForest(Species ~ ., data = iris, localImp = TRUE, ntree = 200)
frame <- measure_importance(forest, measures = c("mean_min_depth", "times_a_root"))
plot_importance_ggpairs(frame, measures = c("mean_min_depth", "times_a_root"))

plot_importance_rankings

Plot importance measures rankings with ggpairs

Description
Plot against each other rankings of variables according to various measures of importance

Usage
plot_importance_rankings(importance_frame, measures = NULL, main = "Relations between rankings according to different measures")
plot_min_depth_distribution

Arguments

importance_frame
A result of using the function measure_importance() to a random forest or a randomForest object

measures
A character vector specifying the measures of importance to be used.

main
A string to be used as title of the plot

Value
A ggplot object

Examples

```r
forest <- randomForest::randomForest(Species ~ ., data = iris, localImp = TRUE, ntree = 300)
frame <- measure_importance(forest, measures = c("mean_min_depth", "times_a_root"))
plot_importance_ggpairs(frame, measures = c("mean_min_depth", "times_a_root"))
```

plot_min_depth_distribution

Plot the distribution of minimal depth in a random forest

Description
Plot the distribution of minimal depth in a random forest

Usage

```r
plot_min_depth_distribution(min_depth_frame, k = 10,
min_no_of_trees = 0, mean_sample = "top_trees", mean_scale = FALSE,
mean_round = 2, main = "Distribution of minimal depth and its mean")
```

Arguments

min_depth_frame
A data frame output of min_depth_distribution function or a randomForest object

k
The maximal number of variables with lowest mean minimal depth to be used for plotting

min_no_of_trees
The minimal number of trees in which a variable has to be used for splitting to be used for plotting

mean_sample
The sample of trees on which mean minimal depth is calculated, possible values are "all_trees", "top_trees", "relevant_trees"

mean_scale
Logical: should the values of mean minimal depth be rescaled to the interval [0,1]

mean_round
The number of digits used for displaying mean minimal depth

main
A string to be used as title of the plot
plot_min_depth_interactions

Value

A ggplot object

Examples

```r
forest <- randomForest::randomForest(Species ~ ., data = iris, ntree = 300)
plot_min_depth_distribution(min_depth_distribution(forest))

plot_min_depth_interactions

Plot the top mean conditional minimal depth

Description

Plot the top mean conditional minimal depth

Usage

```r
plot_min_depth_interactions(interactions_frame, k = 30,
main = paste0("Mean minimal depth for ", paste0(k,
" most frequent interactions"))
```r

Arguments

- `interactions_frame`: A data frame produced by the \texttt{min_depth_interactions()} function or a random-Forest object
- `k`: The number of best interactions to plot, if set to NULL then all plotted
- `main`: A string to be used as title of the plot

Value

A ggplot2 object

Examples

```r
forest <- randomForest::randomForest(Species ~ ., data = iris, ntree = 100)
plot_min_depth_interactions(min_depth_interactions(forest, c("Petal.Width", "Petal.Length")))
```
Description
Plot two or three measures of importance of variables in a random forest. Choose importance measures from the colnames(importance_frame).

Usage
plot_multi_way_importance(importance_frame, x_measure = "mean_min_depth", y_measure = "times_a_root", size_measure = NULL, min_no_of_trees = 0, no_of_labels = 10, main = "Multi-way importance plot")

Arguments
importance_frame A result of using the function measure_importance() to a random forest or a randomForest object
x_measure The measure of importance to be shown on the X axis
y_measure The measure of importance to be shown on the Y axis
size_measure The measure of importance to be shown as size of points (optional)
min_no_of_trees The minimal number of trees in which a variable has to be used for splitting to be used for plotting
no_of_labels The approximate number of best variables (according to all measures plotted) to be labeled (more will be labeled in case of ties)
main A string to be used as title of the plot

Value
A ggplot object

Examples
forest <- randomForest::randomForest(Species ~ ., data = iris, localImp = TRUE)
plot_multi_way_importance(measure_importance(forest))
plot_predict_interaction

Plot the prediction of the forest for a grid of values of two numerical variables

Description

Plot the prediction of the forest for a grid of values of two numerical variables

Usage

plot_predict_interaction(forest, data, variable1, variable2, grid = 100,
main = paste0("Prediction of the forest for different values of ",
paste0(variable1, paste0(" and ", variable2))), time = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>forest</td>
<td>A randomForest or ranger object</td>
</tr>
<tr>
<td>data</td>
<td>The data frame on which forest was trained</td>
</tr>
<tr>
<td>variable1</td>
<td>A character string with the name a numerical predictor that will on X-axis</td>
</tr>
<tr>
<td>variable2</td>
<td>A character string with the name a numerical predictor that will on Y-axis</td>
</tr>
<tr>
<td>grid</td>
<td>The number of points on the one-dimensional grid on x and y-axis</td>
</tr>
<tr>
<td>main</td>
<td>A string to be used as title of the plot</td>
</tr>
<tr>
<td>time</td>
<td>A numeric value specifying the time at which to predict survival probability, only applies to survival forests. If not specified, the time closest to predicted median survival time is used</td>
</tr>
</tbody>
</table>

Value

A ggplot2 object

Examples

```r
forest <- randomForest::randomForest(Species ~., data = iris)
plot_predict_interaction(forest, iris, "Petal.Width", "Sepal.Width")
forest_ranger <- ranger::ranger(Species ~., data = iris)
plot_predict_interaction(forest, iris, "Petal.Width", "Sepal.Width")
```
Index

explain_forest, 2
important_variables, 3
measure_importance, 4
min_depth_distribution, 4
min_depth_interactions, 5
plot_importance_ggpairs, 6
plot_importance_rankings, 6
plot_min_depth_distribution, 7
plot_min_depth_interactions, 8
plot_multi_way_importance, 9
plot_predict_interaction, 10