
Package ‘rEDM’
December 10, 2018

Type Package

Title Applications of Empirical Dynamic Modeling from Time Series

Version 0.7.2

Maintainer Sugihara Lab Maintainer <sugihara.lab.manager@gmail.com>

Author Hao Ye [aut, cre],
Adam Clark [aut],
Ethan Deyle [aut],
Steve Munch [aut],
Oliver Keyes [ctb],
Jun Cai [ctb],
Ethan White [ctb],
Jane Cowles [ctb],
James Stagge [ctb],
Yair Daon [ctb],
George Sugihara [ctb, ccp]

Description A new implementation of EDM algorithms based on research software previously devel-
oped for internal use in the Sugihara Lab (UCSD/SIO). Contains C++ compiled ob-
jects that use time delay embedding to perform state-space reconstruction and nonlinear forecast-
ing and an R interface to those objects using 'Rcpp'. It supports both the simplex projec-
tion method from Sugihara & May (1990) <DOI:10.1038/344734a0> and the S-map algo-
rithm in Sugihara (1994) <DOI:10.1098/rsta.1994.0106>. In addition, this package imple-
ments convergent cross mapping as described in Sugi-
hara et al. (2012) <DOI:10.1126/science.1227079> and multiview embedding as de-
scribed in Ye & Sugihara (2016) <DOI:10.1126/science.aag0863>.

License file LICENSE

NeedsCompilation yes

Imports Rcpp (>= 0.11.5), methods

LinkingTo Rcpp, RcppEigen

RcppModules lnlp_module, block_lnlp_module, ccm_module

Suggests knitr, rmarkdown, R.rsp, ggplot2

VignetteBuilder knitr, R.rsp

RoxygenNote 6.1.0

1

2 block_3sp

Repository CRAN

Date/Publication 2018-12-10 14:40:03 UTC

R topics documented:

block_3sp . 2
block_gp . 3
block_lnlp . 5
ccm . 8
ccm_means . 10
compute_stats . 11
e054_succession . 11
e120_biodiversity . 12
make_block . 12
make_surrogate_data . 13
multiview . 14
paramecium_didinium . 16
rEDM . 16
sardine_anchovy_sst . 17
simplex . 17
sockeye_returns . 20
tde_gp . 20
tentmap_del . 22
test_nonlinearity . 22
thrips_block . 23
two_species_model . 23

Index 24

block_3sp Time series for a three-species coupled model.

Description

Time series generated from a discrete-time coupled Lotka-Volterra model exhibiting chaotic dy-
namics.

Author(s)

Hao Ye

block_gp 3

block_gp Perform generalized forecasting using Gaussian processes

Description

block_gp uses multiple time series given as input to generate an attractor reconstruction, and then
applies Gaussian process regression to approximate the dynamics and make forecasts. This method
is the generalized version of tde_gp, which constructs the block from lags of a time series to pass
into this function.

Usage

block_gp(block, lib = c(1, NROW(block)), pred = lib, tp = 1,
phi = 0, v_e = 0, eta = 0, fit_params = TRUE, columns = NULL,
target_column = 1, stats_only = TRUE,
save_covariance_matrix = FALSE, first_column_time = FALSE,
silent = FALSE, ...)

Arguments

block either a vector to be used as the time series, or a data.frame or matrix where each
column is a time series

lib a 2-column matrix (or 2-element vector) where each row specifes the first and
last *rows* of the time series to use for attractor reconstruction

pred (same format as lib), but specifying the sections of the time series to forecast.

tp the prediction horizon (how far ahead to forecast)

phi length-scale parameter. see ’Details’

v_e noise-variance parameter. see ’Details’

eta signal-variance parameter. see ’Details’

fit_params specify whether to use MLE to estimate params over the lib

columns either a vector with the columns to use (indices or names), or a list of such
columns

target_column the index (or name) of the column to forecast

stats_only specify whether to output just the forecast statistics or the raw predictions for
each run

save_covariance_matrix

specifies whether to include the full covariance matrix with the output (and
forces the full output as if stats_only were set to FALSE)

first_column_time

indicates whether the first column of the given block is a time column (and
therefore excluded when indexing)

silent prevents warning messages from being printed to the R console

... other parameters. see ’Details’

4 block_gp

Details

The default parameters are set so that passing a vector as the only argument will use that vector
to predict itself one time step ahead. If a matrix or data.frame is given as the only argument, the
first column will be predicted (one time step ahead), using the remaining columns as the embedding.
Rownames will be converted to numeric if possible to be used as the time index, otherwise 1:NROW
will be used instead. The default lib and pred are to perform maximum likelihood estimation of the
phi, v_e, and eta parameters over the whole time series, and return just the forecast statistics.

If phi, v_e, and eta parameters are given, all combinations of their values will be tried. If fit_params
is also set to TRUE, these values will be the initial values for subsequent optimization of likelihood.

The basic model is:
y = f(x) + noise

in which the function f(x) is modeled using a Gaussian process prior:

f GP (0, C)

with mean = 0, and covariance function, C, which is given by the squared-exponential kernel:

Cij = eta ∗ exp(−phi2 ∗ ||xi − xj ||2)

y is a realization from process f with normally-distributed i.i.d. process noise,

noise N(0, ve)

such that the covariance of observations y_i and y_j is

Kij = Cij + ve ∗ δij

where δij is the kronecker delta (i.e. it is 1 if i = j and 0 otherwise)

From the model definition, the variance in y, after marginalizing over f, is given by eta + v_e. Thus
to simplify specification of priors for the hyperparameters eta and v_e, the outputs y are normalized
to zero mean and unit variance prior to fitting. This allows us to set (0, 1) bounds on eta and v_e
which facilitates parameter estimation. We set Beta(2, 2) priors for both eta and v_e to partition
prior uncertainty equally across structural and process uncertainty.

For a scalar input, the length-scale parameter phi controls the expected number of zero crossings on
the unit interval as

E(crossings) =

√
(2)

π
φ ≈ 0.45φ

Thus to facilitate interpretation and prior specification, the distances in C are scaled by the max
distance so that a model with φ = 2 would have roughly one zero crossing over the range of the
data. We assign phi a half-Normal prior with variance π/2 so that the prior mean phi is 1 which
tends to avoid overfitting. To fit the GP we estimate eta, v_e, and phi by maximizing the posterior
after marginalizing over f(x). This is given by the multivariate normal likelihood

logL = −1/2 log |Kd|−1/2
yTd [Kd]

−1yd

where Kd is the matrix obtained by evaluating the covariance function at all pairs of inputs and yd
is the column vector of outputs. Predictions for new values of x are obtained by setting eta, v_e, and

block_lnlp 5

phi to the Maximum a Posteriori (MAP) estimates and using the GP conditional on the observed
data. Specifically, given xd and yd, the mean and variance for y evaluated at a new value of x are

E(y) = C(x, xd)[Kd]
(− 1)yd

V (y) = eta+ ve − C(x, xd)[Kd]
−1C(xd, x)

where the vector C(x, xd) is obtained by evaluating C at x and each of the observed inputs while
holding eta, phi, and v_e at the MAP estimates.

Value

If stats_only, then a data.frame with components for the parameters and forecast statistics:

embedding embedding
tp prediction horizon
phi length-scale parameter
v_e noise-variance parameter
eta signal-variance parameter
fit_params whether params were fitted or not
num_pred number of predictions
rho correlation coefficient between observations and predictions
mae mean absolute error
rmse root mean square error
perc percent correct sign
p_val p-value that rho is significantly greater than 0 using Fisher’s z-transformation

If stats_only is FALSE or save_covariance_matrix is TRUE, then there is an additional list-column
variable:

model_output data.frame with columns for the time index, observations, and mean-value for predictions

If save_covariance_matrix is TRUE, then there is an additional list-column variable:

covariance_matrix covariance matrix for predictions

Examples

data("two_species_model")
block <- two_species_model[1:200,]
block_gp(block, columns = c("x", "y"), first_column_time = TRUE)

block_lnlp Perform generalized forecasting using simplex projection or s-map

6 block_lnlp

Description

block_lnlp uses multiple time series given as input to generate an attractor reconstruction, and
then applies the simplex projection or s-map algorithm to make forecasts. This method generalizes
the simplex and s-map routines, and allows for "mixed" embeddings, where multiple time series
can be used as different dimensions of an attractor reconstruction.

Usage

block_lnlp(block, lib = c(1, NROW(block)), pred = lib,
norm_type = c("L2 norm", "L1 norm", "P norm"), P = 0.5,
method = c("simplex", "s-map"), tp = 1,
num_neighbors = switch(match.arg(method), simplex = "e+1", `s-map` =
0), columns = NULL, target_column = 1, stats_only = TRUE,
first_column_time = FALSE, exclusion_radius = NULL, epsilon = NULL,
theta = NULL, silent = FALSE, save_smap_coefficients = FALSE,
short_output = FALSE)

Arguments

block either a vector to be used as the time series, or a data.frame or matrix where each
column is a time series

lib a 2-column matrix (or 2-element vector) where each row specifes the first and
last *rows* of the time series to use for attractor reconstruction

pred (same format as lib), but specifying the sections of the time series to forecast.

norm_type the distance function to use. see ’Details’

P the exponent for the P norm

method the prediction method to use. see ’Details’

tp the prediction horizon (how far ahead to forecast)

num_neighbors the number of nearest neighbors to use. Note that the default value will change
depending on the method selected. (any of "e+1", "E+1", "e + 1", "E + 1"
will peg this parameter to E+1 for each run, any value < 1 will use all possible
neighbors.)

columns either a vector with the columns to use (indices or names), or a list of such
columns

target_column the index (or name) of the column to forecast

stats_only specify whether to output just the forecast statistics or the raw predictions for
each run

first_column_time

indicates whether the first column of the given block is a time column (and
therefore excluded when indexing)

exclusion_radius

excludes vectors from the search space of nearest neighbors if their *time index*
is within exclusion_radius (NULL turns this option off)

epsilon excludes vectors from the search space of nearest neighbors if their *distance*
is farther away than epsilon (NULL turns this option off)

block_lnlp 7

theta the nonlinear tuning parameter (theta is only relevant if method == "s-map")

silent prevents warning messages from being printed to the R console
save_smap_coefficients

specifies whether to include the s_map coefficients with the output (and forces
the full output as if stats_only were set to FALSE)

short_output specifies whether to return a truncated output data.frame whose rows only in-
clude the predictions made and not the whole input block

Details

The default parameters are set so that passing a vector as the only argument will use that vector
to predict itself one time step ahead. If a matrix or data.frame is given as the only argument, the
first column will be predicted (one time step ahead), using the remaining columns as the embedding.
Rownames will be converted to numeric if possible to be used as the time index, otherwise 1:NROW
will be used instead. The default lib and pred are for leave-one-out cross-validation over the whole
time series, and returning just the forecast statistics.

norm_type "L2 norm" (default) uses the typical Euclidean distance:

distance(a, b) :=

√∑
i

(ai − bi)2

norm_type "L1 norm" uses the Manhattan distance:

distance(a, b) :=
∑
i

|ai − bi|

norm type "P norm" uses the P norm, generalizing the L1 and L2 norm to use p as the exponent:

distance(a, b) :=
∑
i

(ai − bi)p1/p

method "simplex" (default) uses the simplex projection forecasting algorithm

method "s-map" uses the s-map forecasting algorithm

Value

If stats_only, then a data.frame with components for the parameters and forecast statistics:

cols embedding
tp prediction horizon
nn number of neighbors
num_pred number of predictions
rho correlation coefficient between observations and predictions
mae mean absolute error
rmse root mean square error
perc percent correct sign
p_val p-value that rho is significantly greater than 0 using Fisher’s z-transformation
const_rho same as rho, but for the constant predictor
const_mae same as mae, but for the constant predictor
const_rmse same as rmse, but for the constant predictor
const_perc same as perc, but for the constant predictor
const_p_val same as p_val, but for the constant predictor

8 ccm

Otherwise, a list where the number of elements is equal to the number of runs (unique parameter
combinations). Each element is a list with the following components:

params data.frame of parameters (embedding, tp, nn)
model_output data.frame with columns for the time index, observations, and predictions
stats data.frame of forecast statistics

Examples

data("two_species_model")
block <- two_species_model[1:200,]
block_lnlp(block, columns = c("x", "y"), first_column_time = TRUE)

ccm Perform convergent cross mapping using simplex projection

Description

ccm uses time delay embedding on one time series to generate an attractor reconstruction, and then
applies the simplex projection algorithm to estimate concurrent values of another time series. This
method is typically applied, varying the library sizes, to determine if one time series contains the
necessary dynamic information to recover the influence of another, causal variable.

Usage

ccm(block, lib = c(1, NROW(block)), pred = lib,
norm_type = c("L2 norm", "L1 norm", "LP norm"), P = 0.5, E = 1,
tau = 1, tp = 0, num_neighbors = "e+1", lib_sizes = seq(10, 100,
by = 10), random_libs = TRUE, num_samples = 100, replace = TRUE,
lib_column = 1, target_column = 2, first_column_time = FALSE,
RNGseed = NULL, exclusion_radius = NULL, epsilon = NULL,
silent = FALSE)

Arguments

block either a vector to be used as the time series, or a data.frame or matrix where each
column is a time series

lib a 2-column matrix (or 2-element vector) where each row specifes the first and
last *rows* of the time series to use for attractor reconstruction

pred (same format as lib), but specifying the sections of the time series to forecast.

norm_type the distance function to use. see ’Details’

P the exponent for the P norm

E the embedding dimensions to use for time delay embedding

tau the lag to use for time delay embedding

ccm 9

tp the prediction horizon (how far ahead to forecast)
num_neighbors the number of nearest neighbors to use (any of "e+1", "E+1", "e + 1", "E + 1"

will peg this parameter to E+1 for each run, any value < 1 will use all possible
neighbors.)

lib_sizes the vector of library sizes to try
random_libs indicates whether to use randomly sampled libs
num_samples is the number of random samples at each lib size (this parameter is ignored if

random_libs is FALSE)
replace indicates whether to sample vectors with replacement
lib_column the index (or name) of the column to cross map from
target_column the index (or name) of the column to cross map to
first_column_time

indicates whether the first column of the given block is a time column (and
therefore excluded when indexing)

RNGseed will set a seed for the random number generator, enabling reproducible runs of
ccm with randomly generated libraries

exclusion_radius

excludes vectors from the search space of nearest neighbors if their *time index*
is within exclusion_radius (NULL turns this option off)

epsilon excludes vectors from the search space of nearest neighbors if their *distance*
is farther away than epsilon (NULL turns this option off)

silent prevents warning messages from being printed to the R console

Details

The default parameters are set so that passing a matrix as the only argument will use E = 1 (embed-
ding dimension), and leave-one-out cross-validation over the whole time series to compute cross-
mapping from the first column to the second column, letting the library size vary from 10 to 100 in
increments of 10.

norm_type "L2 norm" (default) uses the typical Euclidean distance:

distance(a, b) :=

√∑
i

(ai − bi)2

norm_type "L1 norm" uses the Manhattan distance:

distance(a, b) :=
∑
i

|ai − bi|

norm type "P norm" uses the LP norm, generalizing the L1 and L2 norm to use p as the exponent:

distance(a, b) :=
∑
i

(ai − bi)p1/p

Value

A data.frame with forecast statistics for the different parameter settings:

10 ccm_means

L library length (number of vectors)
num_pred number of predictions
rho correlation coefficient between observations and predictions
mae mean absolute error
rmse root mean square error

Examples

data("sardine_anchovy_sst")
anchovy_xmap_sst <- ccm(sardine_anchovy_sst, E = 3,

lib_column = "anchovy", target_column = "np_sst",
lib_sizes = seq(10, 80, by = 10), num_samples = 100)

ccm_means Take output from ccm and compute means as a function of library size.

Description

ccm_means is a utility function to summarize output from the ccm function

Usage

ccm_means(ccm_df, FUN = mean, ...)

Arguments

ccm_df a data.frame, usually output from the ccm function

FUN a function that aggregates the numerical statistics (by default, uses the mean)

... optional arguments to FUN

Value

A data.frame with forecast statistics aggregated at each unique library size

Examples

data("sardine_anchovy_sst")
anchovy_xmap_sst <- ccm(sardine_anchovy_sst, E = 3,

lib_column = "anchovy", target_column = "np_sst",
lib_sizes = seq(10, 80, by = 10), num_samples = 100)

a_xmap_t_means <- ccm_means(anchovy_xmap_sst)

e054_succession 11

compute_stats Compute performance metrics for predictions

Description

Computes the rho, MAE, RMSE, perc, and p-val performance metrics using the compiled C++
function

Arguments

observed a vector of the observed values

predicted a vector of the corresponding predicted values

Value

A data.frame with components for the various performance metrics:

num_pred number of predictions
rho correlation coefficient between observations and predictions
mae mean absolute error
rmse root mean square error
perc percent correct sign
p_val p-value that rho is significantly greater than 0 using Fisher’s

Examples

compute_stats(rnorm(100), rnorm(100))

e054_succession Succession data at the Cedar Creek LTER

Description

Experiment 054 is a subset of the long-term observational study of old field succession at the Cedar
Creek LTER.

Author(s)

12 make_block

e120_biodiversity Biodiversity data at the Cedar Creek LTER

Description

Experiment 120, the "Big Biodiversity" experiment at Cedar Creek LTER. This experiment is the
longest running randomized test for the effects of plant diversity on ecosystem functions.

Author(s)

make_block Make a lagged block for multiview

Description

make_block generates a lagged block with the appropriate max_lag and tau, while respecting lib
(by inserting NANs, when trying to lag past lib regions)

Usage

make_block(block, max_lag = 3, t = NULL, lib = NULL, tau = 1)

Arguments

block a data.frame or matrix where each column is a time series

max_lag the total number of lags to include for each variable

t the time index for the block

lib a 2-column matrix (or 2-element vector) where each row specifes the first and
last *rows* of the time series to use for attractor reconstruction

tau the lag to use for time delay embedding

Value

A data.frame with the lagged columns and a time column

make_surrogate_data 13

make_surrogate_data Generate surrogate data for permutation/randomization tests

Description

make_surrogate_data generates surrogate data under several different null models.

Usage

make_surrogate_data(ts, method = c("random_shuffle", "ebisuzaki",
"seasonal"), num_surr = 100, T_period = 1)

Arguments

ts the original time series

method which algorithm to use to generate surrogate data

num_surr the number of null surrogates to generate

T_period the period of seasonality for seasonal surrogates (ignored for other methods)

Details

Method "random_shuffle" creates surrogates by randomly permuting the values of the original time
series.

Method "Ebisuzaki" creates surrogates by randomizing the phases of a Fourier transform, preserv-
ing the power spectra of the null surrogates.

Method "seasonal" creates surrogates by computing a mean seasonal trend of the specified period
and shuffling the residuals.

See test_nonlinearity for context.

Value

A matrix where each column is a separate surrogate with the same length as ts.

Examples

data("two_species_model")
ts <- two_species_model$x[1:200]
make_surrogate_data(ts, method = "ebisuzaki")

14 multiview

multiview Perform forecasting using multiview embedding

Description

multiview applies the method described in Ye & Sugihara (2016) for forecasting, wherein multiple
attractor reconstructions are tested, and a single nearest neighbor is selected from each of the top
"k" reconstructions to produce final forecasts.

Usage

multiview(block, lib = c(1, floor(NROW(block)/2)),
pred = c(floor(NROW(block)/2), NROW(block)), norm_type = c("L2 norm",
"L1 norm", "P norm"), P = 0.5, E = 3, tau = 1, tp = 1,
max_lag = 3, num_neighbors = "e+1", k = "sqrt", na.rm = FALSE,
target_column = 1, stats_only = TRUE, first_column_time = FALSE,
exclusion_radius = NULL, silent = FALSE, short_output = FALSE)

Arguments

block either a vector to be used as the time series, or a data.frame or matrix where each
column is a time series

lib a 2-column matrix (or 2-element vector) where each row specifes the first and
last *rows* of the time series to use for attractor reconstruction

pred (same format as lib), but specifying the sections of the time series to forecast.

norm_type the distance function to use. see ’Details’

P the exponent for the P norm

E the embedding dimensions to use for time delay embedding

tau the lag to use for time delay embedding

tp the prediction horizon (how far ahead to forecast)

max_lag the maximum number of lags to use for variable combinations

num_neighbors the number of nearest neighbors to use for the in-sample prediction (any of
"e+1", "E+1", "e + 1", "E + 1" will peg this parameter to E+1 for each run,
any value < 1 will use all possible neighbors.)

k the number of embeddings to use (any of "sqrt", "SQRT" will use k = floor(sqrt(m)))

na.rm logical. Should missing values (including NaN be omitted from the calculations?)

target_column the index (or name) of the column to forecast

stats_only specify whether to output just the forecast statistics or the raw predictions for
each run

first_column_time

indicates whether the first column of the given block is a time column (and
therefore excluded when indexing)

multiview 15

exclusion_radius

excludes vectors from the search space of nearest neighbors if their *time index*
is within exclusion_radius (NULL turns this option off)

silent prevents warning messages from being printed to the R console

short_output specifies whether to return a truncated output data.frame whose rows only in-
clude the predictions made and not the whole input block

Details

uses multiple time series given as input to generate an attractor reconstruction, and then applies the
simplex projection or s-map algorithm to make forecasts. This method generalizes the simplex
and s-map routines, and allows for "mixed" embeddings, where multiple time series can be used as
different dimensions of an attractor reconstruction.

The default parameters are set so that, given a matrix of time series, forecasts will be produced
for the first column. By default, all possible combinations of the columns are used for the attractor
construction, the k = sqrt(m) heuristic will be used, forecasts will be one time step ahead. Rownames
will be converted to numeric if possible to be used as the time index, otherwise 1:NROW will be
used instead. The default lib and pred are to use the first half of the data for the "library" and to
predict over the second half of the data. Unless otherwise set, the output will be just the forecast
statistics.

norm_type "L2 norm" (default) uses the typical Euclidean distance:

distance(a, b) :=

√∑
i

(ai − bi)2

norm_type "L1 norm" uses the Manhattan distance:

distance(a, b) :=
∑
i

|ai − bi|

norm type "P norm" uses the P norm, generalizing the L1 and L2 norm to use p as the exponent:

distance(a, b) :=
∑
i

(ai − bi)p1/p

Value

If stats_only, then a data.frame with components for the parameters and forecast statistics:

E embedding dimension
tau time lag
tp prediction horizon
nn number of neighbors
k number of embeddings used
num_pred number of predictions
rho correlation coefficient between observations and predictions
mae mean absolute error
rmse root mean square error
perc percent correct sign

16 rEDM

p_val p-value that rho is significantly greater than 0 using Fisher’s z-transformation
const_rho same as rho, but for the constant predictor
const_mae same as mae, but for the constant predictor
const_rmse same as rmse, but for the constant predictor
const_perc same as perc, but for the constant predictor
const_p_val same as p_val, but for the constant predictor

Otherwise, a list where the number of elements is equal to the number of runs (unique parameter
combinations). Each element is a list with the following components:

params data.frame of parameters (E, tau, tp, nn, k)
lib_stats data.frame of in-sample forecast statistics
model_output data.frame with columns for the time index, observations, and predictions
pred_stats data.frame of forecast statistics

Examples

data("block_3sp")
block <- block_3sp[, c(2, 5, 8)]
multiview(block, k = c(1, 3, "sqrt"))

paramecium_didinium Time series for the Paramecium-Didinium laboratory experiment

Description

Time series of Paramecium and Didinium abundances (#/mL) from an experiment by Veilleux
(1979)

Author(s)

Veilleux

rEDM Applications of empirical dynamic modeling from time series.

Description

The rEDM package provides an interface from R to C++ compiled objects that use time delay
embedding to perform state-space reconstruction and nonlinear forecasting.

Author(s)

Hao Ye

sardine_anchovy_sst 17

sardine_anchovy_sst Time series for the California Current Anchovy-Sardine-SST system

Description

Time series of Pacific sardine landings (CA), Northern anchovy landings (CA), and sea-surface
temperature (3-year average) at the SIO pier and Newport pier

Author(s)

simplex Perform univariate forecasting

Description

simplex uses time delay embedding on a single time series to generate an attractor reconstruction,
and then applies the simplex projection algorithm to make forecasts.

s_map is similar to simplex, but uses the S-map algorithm to make forecasts.

Usage

simplex(time_series, lib = c(1, NROW(time_series)), pred = lib,
norm_type = c("L2 norm", "L1 norm", "P norm"), P = 0.5, E = 1:10,
tau = 1, tp = 1, num_neighbors = "e+1", stats_only = TRUE,
exclusion_radius = NULL, epsilon = NULL, silent = FALSE)

s_map(time_series, lib = c(1, NROW(time_series)), pred = lib,
norm_type = c("L2 norm", "L1 norm", "P norm"), P = 0.5, E = 1,
tau = 1, tp = 1, num_neighbors = 0, theta = c(0, 1e-04, 3e-04,
0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8),
stats_only = TRUE, exclusion_radius = NULL, epsilon = NULL,
silent = FALSE, save_smap_coefficients = FALSE)

Arguments

time_series either a vector to be used as the time series, or a data.frame or matrix with at
least 2 columns (in which case the first column will be used as the time index,
and the second column as the time series)

lib a 2-column matrix (or 2-element vector) where each row specifes the first and
last *rows* of the time series to use for attractor reconstruction

pred (same format as lib), but specifying the sections of the time series to forecast.

norm_type the distance function to use. see ’Details’

18 simplex

P the exponent for the P norm

E the embedding dimensions to use for time delay embedding

tau the lag to use for time delay embedding

tp the prediction horizon (how far ahead to forecast)

num_neighbors the number of nearest neighbors to use (any of "e+1", "E+1", "e + 1", "E + 1"
will peg this parameter to E+1 for each run, any value < 1 will use all possible
neighbors.)

stats_only specify whether to output just the forecast statistics or the raw predictions for
each run

exclusion_radius

excludes vectors from the search space of nearest neighbors if their *time index*
is within exclusion_radius (NULL turns this option off)

epsilon excludes vectors from the search space of nearest neighbors if their *distance*
is farther away than epsilon (NULL turns this option off)

silent prevents warning messages from being printed to the R console

theta the nonlinear tuning parameter (note that theta = 0 is equivalent to an autore-
gressive model of order E.)

save_smap_coefficients

specifies whether to include the s_map coefficients with the output (and forces
the full output as if stats_only were set to FALSE)

Details

simplex is typically applied, and the embedding dimension varied, to find an optimal embedding
dimension for the data. Thus, the default parameters are set so that passing a time series as the only
argument will run over E = 1:10 (embedding dimension), using leave-one-out cross-validation over
the whole time series, and returning just the forecast statistics.

s_map is typically applied, with fixed embedding dimension, and theta varied, to test for nonlinear
dynamics in the data. Thus, the default parameters are set so that passing a time series as the only
argument will run over a default list of thetas (0, 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3,
0.5, 0.75, 1.0, 1.5, 2, 3, 4, 6, and 8), using E = 1, leave-one-out cross-validation over the whole time
series, and returning just the forecast statistics.

norm_type "L2 norm" (default) uses the typical Euclidean distance:

distance(a, b) :=

√∑
i

(ai − bi)2

norm_type "L1 norm" uses the Manhattan distance:

distance(a, b) :=
∑
i

|ai − bi|

norm type "P norm" uses the LP norm, generalizing the L1 and L2 norm to use p as the exponent:

distance(a, b) :=
∑
i

(ai − bi)p1/p

simplex 19

Value

For simplex, if stats_only = TRUE, then a data.frame with components for the parameters and
forecast statistics:

E embedding dimension
tau time lag
tp prediction horizon
nn number of neighbors
num_pred number of predictions
rho correlation coefficient between observations and predictions
mae mean absolute error
rmse root mean square error
perc percent correct sign
p_val p-value that rho is significantly greater than 0 using Fisher’s z-transformation
const_rho same as rho, but for the constant predictor
const_mae same as mae, but for the constant predictor
const_rmse same as rmse, but for the constant predictor
const_perc same as perc, but for the constant predictor
const_p_val same as p_val, but for the constant predictor

Otherwise, a list where the number of elements is equal to the number of runs (unique parameter
combinations). Each element is a list with the following components:

params data.frame of parameters (E, tau, tp, nn)
model_output data.frame with columns for the time index, observations, and predictions
stats data.frame of forecast statistics

For s_map, the same as for simplex, but with an additional column for the value of theta. If
stats_only = FALSE and save_smap_coefficients = TRUE, then a matrix of S-map coefficients
will appear in the full output.

Examples

data("two_species_model")
ts <- two_species_model$x[1:200]
simplex(ts, lib = c(1, 100), pred = c(101, 200))

data("two_species_model")
ts <- two_species_model$x[1:200]
#' simplex(ts, stats_only = FALSE)
data("two_species_model")
ts <- two_species_model$x[1:200]
s_map(ts, E = 2)

data("two_species_model")
ts <- two_species_model$x[1:200]
s_map(ts, E = 2, theta = 1, save_smap_coefficients = TRUE)

20 tde_gp

sockeye_returns Time series for sockeye salmon returns.

Description

Time series of sockeye salmon returns from the Fraser River in British Columbia, Canada.

Author(s)

tde_gp Perform univariate forecasting using Gaussian processes

Description

tde_gp is used in the same vein as simplex or s-map to do time series forecasting using Gaussian
processes. Here, the default parameters are set so that passing a time series as the only argument
will run over E = 1:10 (embedding dimension) to created a lagged block, and passing in that block
and all remaining arguments into block_gp.

Usage

tde_gp(time_series, lib = c(1, NROW(time_series)), pred = lib,
E = 1:10, tau = 1, tp = 1, phi = 0, v_e = 0, eta = 0,
fit_params = TRUE, stats_only = TRUE,
save_covariance_matrix = FALSE, silent = FALSE, ...)

Arguments

time_series either a vector to be used as the time series, or a data.frame or matrix with at
least 2 columns (in which case the first column will be used as the time index,
and the second column as the time series)

lib a 2-column matrix (or 2-element vector) where each row specifes the first and
last *rows* of the time series to use for attractor reconstruction

pred (same format as lib), but specifying the sections of the time series to forecast.

E the embedding dimensions to use for time delay embedding

tau the lag to use for time delay embedding

tp the prediction horizon (how far ahead to forecast)

phi length-scale parameter. see ’Details’

v_e noise-variance parameter. see ’Details’

eta signal-variance parameter. see ’Details’

fit_params specify whether to use MLE to estimate params over the lib

tde_gp 21

stats_only specify whether to output just the forecast statistics or the raw predictions for
each run

save_covariance_matrix

specifies whether to include the full covariance matrix with the output (and
forces the full output as if stats_only were set to FALSE)

silent prevents warning messages from being printed to the R console

... other parameters. see ’Details’

Details

See block_gp for implementation details of the Gaussian process regression.

Value

If stats_only, then a data.frame with components for the parameters and forecast statistics:

E embedding dimension
tp prediction horizon
phi length-scale parameter
v_e noise-variance parameter
eta signal-variance parameter
fit_params whether params were fitted or not
num_pred number of predictions
rho correlation coefficient between observations and predictions
mae mean absolute error
rmse root mean square error
perc percent correct sign
p_val p-value that rho is significantly greater than 0 using Fisher’s z-transformation

If stats_only is FALSE or save_covariance_matrix is TRUE, then there is an additional list-column
variable:

model_output data.frame with columns for the time index, observations, and mean-value for predictions

If save_covariance_matrix is TRUE, then there is an additional list-column variable:

covariance_matrix covariance matrix for predictions

Examples

data("two_species_model")
ts <- two_species_model$x[1:200]
tde_gp(ts, lib = c(1, 100), pred = c(101, 200), E = 5)

22 test_nonlinearity

tentmap_del Time series for a tent map with mu = 2.

Description

First-differenced time series generated from the tent map recurrence relation with mu = 2.

Author(s)

Hao Ye

test_nonlinearity Randomization test for nonlinearity using S-maps and surrogate data

Description

test_nonlinearity tests for nonlinearity using S-maps by comparing improvements in forecast
skill (delta rho and delta mae) between linear and nonlinear models with a null distribution from
surrogate data.

Usage

test_nonlinearity(ts, method = "ebisuzaki", num_surr = 200,
T_period = 1, E = 1, ...)

Arguments

ts the original time series

method which algorithm to use to generate surrogate data

num_surr the number of null surrogates to generate

T_period the period of seasonality for seasonal surrogates (ignored for other methods)

E the embedding dimension for s_map

... optional arguments to s_map

Value

A data.frame containing the following components:

delta_rho the value of the delta rho statistic
delta_mae the value of the delat mae statistic
num_surr the size of the null distribution
delta_rho_p_value the p-value for delta rho
delta_mae_p_value the p-value for delta mae

thrips_block 23

thrips_block Apple-blossom Thrips time series

Description

Seasonal outbreaks of Thrips imaginis.

Author(s)

two_species_model Time series for a two-species coupled model.

Description

Time series generated from a discrete-time coupled Lotka-Volterra model exhibiting chaotic dy-
namics.

Author(s)

Hao Ye

Index

∗Topic package
rEDM, 16

block_3sp, 2
block_gp, 3
block_lnlp, 5

ccm, 8, 10
ccm_means, 10
compute_stats, 11

e054_succession, 11
e120_biodiversity, 12

make_block, 12
make_surrogate_data, 13
multiview, 14

paramecium_didinium, 16

rEDM, 16
rEDM-package (rEDM), 16

s_map (simplex), 17
sardine_anchovy_sst, 17
simplex, 17
sockeye_returns, 20

tde_gp, 20
tentmap_del, 22
test_nonlinearity, 22
thrips_block, 23
two_species_model, 23

24

	block_3sp
	block_gp
	block_lnlp
	ccm
	ccm_means
	compute_stats
	e054_succession
	e120_biodiversity
	make_block
	make_surrogate_data
	multiview
	paramecium_didinium
	rEDM
	sardine_anchovy_sst
	simplex
	sockeye_returns
	tde_gp
	tentmap_del
	test_nonlinearity
	thrips_block
	two_species_model
	Index

