Package ‘qtl2pleio’

December 2, 2020

Type Package

Title Testing Pleiotropy in Multiparental Populations

Version 1.4.3

Description We implement an adaptation of Jiang & Zeng's (1995) [https://www.genetics.org/content/140/3/1111] likelihood ratio test for testing the null hypothesis of pleiotropy against the alternative hypothesis, two separate quantitative trait loci. The test differs from that in Jiang & Zeng (1995) [https://www.genetics.org/content/140/3/1111] and that in Tian et al. (2016) [doi:10.1534/genetics.115.183624] in that our test accommodates multiparental populations.

License MIT + file LICENSE

URL https://github.com/fboehm/qtl2pleio

BugReports https://github.com/fboehm/qtl2pleio/issues

Depends R (>= 3.2)

Imports dplyr, gemma2, ggplot2, magrittr, MASS, Rcpp, rlang, tibble, parallel

Suggests covr, mvtnorm, knitr, rmarkdown, testthat, broman, devtools, qtl2, parallelly

LinkingTo Rcpp, RcppEigen

Encoding UTF-8

Language en-US

LazyData true

NeedsCompilation yes

RoxygenNote 7.1.1

VignetteBuilder knitr

Author Frederick J Boehm [aut, cre] (<https://orcid.org/0000-0002-1644-5931>)

Maintainer Frederick J Boehm <frederick.boehm@gmail.com>

Repository CRAN

Date/Publication 2020-12-02 22:50:02 UTC
R topics documented:

add_pmap ... 2
boot_pvl ... 3
calc_Bhat .. 5
calc_covs ... 6
calc_invsqrt_mat ... 6
calc_lrt_tib .. 7
calc_profile_lods ... 7
calc_Sigma .. 8
calc_sqrt_mat ... 8
check_identical ... 9
check_missingness ... 9
convert_to_scan1_output 10
find_pleio_peak_tib .. 11
fit1_pvl ... 11
get_effects ... 12
make_id2keep .. 13
plot_pvl ... 14
prep_mytab .. 14
prep_X_list ... 15
process_inputs ... 16
qtl2pleio .. 16
rcpp_calc_Bhat .. 17
rcpp_calc_Bhat2 ... 17
rcpp_log_dmvnorm2 ... 18
scan_multi_onechr .. 19
scan_multi_oneqtl .. 20
scan_multi_oneqtl_perm 22
scan_pvl ... 23
sim1 .. 23
subset_input .. 25
subset_kinship ... 25

Index ... 27

add_pmap ... 2

Add physical map contents to tibble

Description

Add physical map contents to tibble

Usage

add_pmap(tib, pmap)
boot_pvl

Arguments

- **tib**: a tibble with 3 columns: marker, trace, and profile lod values, typically outputted by calc_profile_lods()
- **pmap**: a physical map for a single chromosome

Value

a tibble with 4 columns: marker, trait, profile_lod, marker_position

Examples

```r
pm <- 1:3
names(pm) <- as.character(paste0("m", 1:3))
expand.grid(paste0("m", 1:3), paste0("m", 1:3)) %>%
tibble::as_tibble() %>%
dplyr::mutate(log10lik = rgamma(9, 5)) %>%
calc_profile_lods() %>%
add_pmap(pm)
```

Description

Create a bootstrap sample, perform multivariate QTL scan, and calculate log10 LRT statistic

Usage

```r
boot_pvl(
  probs,
  pheno,
  addcovar = NULL,
  kinship = NULL,
  start_snp = 1,
  n_snp,
  pleio_peak_index,
  nboot = 1,
  max_iter = 10000,
  max_prec = 1e+08,
  cores = 1
)
```
Arguments

- `probs`: founder allele probabilities three-dimensional array for one chromosome only (not a list)
- `pheno`: n by d matrix of phenotypes
- `addcovar`: n by c matrix of additive numeric covariates
- `kinship`: a kinship matrix, not a list
- `start_snp`: positive integer indicating index within `probs` for start of scan
- `n_snp`: number of (consecutive) markers to use in scan
- `pleio_peak_index`: positive integer index indicating genotype matrix for bootstrap sampling. Typically acquired by using 'find_pleio_peak_tib'.
- `nboot`: number of bootstrap samples to acquire and scan
- `max_iter`: maximum number of iterations for EM algorithm
- `max_prec`: stepwise precision for EM algorithm. EM stops once incremental difference in log likelihood is less than `max_prec`
- `cores`: number of cores to use when calling `mclapply` to parallelize the bootstrap analysis.

Details

Performs a parametric bootstrap method to calibrate test statistic values in the test of pleiotropy vs. separate QTL. It begins by inferring parameter values at the `pleio_peak_index` index value in the object `probs`. It then uses these inferred parameter values in sampling from a multivariate normal distribution. For each of the `nboot` sampled phenotype vectors, a two-dimensional QTL scan, starting at the marker indexed by `start_snp` within the object `probs` and extending for a total of `n_snp` consecutive markers. The two-dimensional scan is performed via the function `scan_pvl_clean`. For each two-dimensional scan, a log10 likelihood ratio test statistic is calculated. The outputted object is a vector of `nboot` log10 likelihood ratio test statistics from `nboot` distinct bootstrap samples.

Value

numeric vector of (log) likelihood ratio test statistics from `nboot_per_job` bootstrap samples

References

Examples

```r
n <- 50
pheno <- matrix(rnorm(2 * n), ncol = 2)
rownames(pheno) <- paste0("s", 1:n)
colnames(pheno) <- paste0("tr", 1:2)
probs <- array(dim = c(n, 2, 5))
probs[, 1, ] <- rbinom(n * 5, size = 1, prob = 0.2)
probs[, 2, ] <- 1 - probs[, 1, ]
rownames(probs) <- paste0("s", 1:n)
colnames(probs) <- LETTERS[1:2]
dimnames(probs)[[3]] <- paste0("m", 1:5)
boot_pvl(probs = probs, pheno = pheno,
         start_snp = 1, n_snp = 5, pleio_peak_index = 3, nboot = 1, cores = 1)
```

calc_Bhat

Calculate estimated allele effects, B matrix

Description

Calculate estimated allele effects, B matrix

Usage

```r
calc_Bhat(X, Sigma_inv, Y)
```

Arguments

- **X**: dn by df block-diagonal design matrix that incorporates genetic info for d markers. Note that we can use the same marker data twice.
- **Sigma_inv**: dn by dn inverse covariance matrix, often composed as the inverse of $K \otimes V_g + I_n \otimes V_e$
- **Y**: dn by 1 matrix, ie, a column vector, of d phenotypes' measurements

Value

a df by 1 matrix of GLS-estimated allele effects

Examples

```r
X1 <- as.matrix(rbinom(n = 100, size = 1, prob = 1 / 2))
X <- gemma2::stagger_mats(X1, X1)
Sigma_inv <- diag(200)
Y <- runif(200)
calc_Bhat(X, Sigma_inv, Y)
```
calc_c covs
Calculate Vg and Ve from d-variate phenotype and kinship

Description

Calculate Vg and Ve from d-variate phenotype and kinship

Usage

```r
calc_c covs(
   pheno,
   kinship,
   X1pre = rep(1, nrow(kinship)),
   max_iter = 1e+06,
   max_prec = 1/1e+08,
   covariates = NULL
)
```

Arguments

- `pheno`: n by d matrix of phenotypes
- `kinship`: a kinship matrix, n by n
- `X1pre`: n by c design matrix. c = 1 to ignore genotypes
- `max_iter`: maximum number of EM iterations
- `max_prec`: maximum precision for stepwise increments in EM algorithm
- `covariates`: a n by n.cov matrix of numeric covariates

Value

a list with 2 named components, Vg and Ve. Each is a d by d covariance matrix.

Examples

```r
calc_c covs(pheno = matrix(data = rnorm(100), nrow = 50, ncol = 2), kinship = diag(50))
```

calc_invsqrt_mat
Calculate matrix inverse square root for a covariance matrix

Description

Calculate matrix inverse square root for a covariance matrix

Usage

```r
calc_invsqrt_mat(A)
```
Arguments

A covariance matrix

Usage

calc_lrt_tib(calc_lrt_tib)

Arguments

scan_pvl_out outputted tibble from scan_pvl

Value

a number, the (log) likelihood ratio test statistic

Examples

rep(paste0("/quotesingle.Var"Marker", 1:3), times = 3) -> marker1
rep(paste0("/quotesingle.Var"Marker", 1:3), each = 3) -> marker2
runif(9, -1, 0) -> ll
tibble::tibble(marker1, marker2, ll) -> scan_out
calc_lrt_tib(scan_out)

calc_profile_lods

Usage

calc_profile_lods(calc_profile_lods)

Arguments

scan_pvl_out tibble outputted from scan_pvl

Value

a tibble with 3 columns, indicating 'marker identity, trace (pleiotropy or profile1, profile2, etc.), and value of the profile lod (base 10) for that trace at that marker.
calc_Sigma

Calculate the phenotypes covariance matrix Sigma

Description

Calculate the phenotypes covariance matrix Sigma

Usage

`calc_Sigma(Vg, Ve, kinship = NULL, n_mouse = nrow(kinship))`

Arguments

- `Vg`: d by d genetic covariance matrix for the d phenotypes
- `Ve`: d by d error covariance matrix for the d phenotypes
- `kinship`: optional n by n kinship matrix. if NULL, Vg is not used.
- `n_mouse`: number of subjects

Value

dn by dn covariance matrix

calc_sqrt_mat

Calculate matrix square root for a covariance matrix

Description

Calculate matrix square root for a covariance matrix

Usage

`calc_sqrt_mat(A)`

Arguments

- `A`: covariance matrix
check_identical

Check whether a vector, x, has all its entries equal to its first entry

Description

Check whether a vector, x, has all its entries equal to its first entry

Usage

check_identical(x)

Arguments

- x a vector

Value

a logical indicating whether all vector entries are the same

Examples

```r
x <- 1:5
check_identical(x)

y <- rep(1, 5)
check_identical(y)
```

check_missingness

Check for missingness in phenotypes or covariates

Description

We use `is.finite` from base R to identify those subjects that have one or more missing values in `input_matrix`. We then return a character vector of subjects that have no missingness in `input_matrix`.

Usage

check_missingness(input_matrix)

Arguments

- `input_matrix` phenotypes or covariates matrix

Value

character vector of subjects that have no missingness
convert_to_scan1_output

Convert 'scan_multi_oneqtl' output of 'qtl2::scan1' output

Description

We convert output of 'scan_multi_oneqtl' into format outputted by 'qtl2::scan1'.

Usage

convert_to_scan1_output(sm_output, trait_name)

Arguments

sm_output tibble output from scan_multi_oneqtl for one chromosome only
trait_name character vector (of length one) specifying the trait names

Value

object of class 'scan1'

Examples

read data
iron <- qtl2::read_cross2(system.file("extdata", "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- qtl2::insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- qtl2::calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno
covar <- match(iron$covar$sex, c("f", "m")) # make numeric
names(covar) <- rownames(iron$covar)
Xcovar <- qtl2::get_x_covar(iron)

aprobs <- qtl2::genoprob_to_alleleprob(probs)
sm_out <- scan_multi_oneqtl(probs = aprobs, pheno = pheno)
sm_to_s1 <- convert_to_scan1_output(sm_out[[1]], trait_name = "tr1and2")

95% Bayes credible interval for QTL on chr 7, first phenotype
qtl2::bayes_int(sm_to_s1, map)
find_pleio_peak_tib

Find the marker index corresponding to the peak of the pleiotropy trace in a tibble where the last column contains log likelihood values and the first d columns contain marker ids.

Description

Find the marker index corresponding to the peak of the pleiotropy trace in a tibble where the last column contains log likelihood values and the first d columns contain marker ids.

Usage

```r
find_pleio_peak_tib(tib, start_snp)
```

Arguments

- `tib`: a (d+1) column tibble with first d columns containing marker ids and the last containing log likelihood values. Typically this is the output from `scan_pvl`.
- `start_snp`: positive integer, from the two-dimensional scan, that indicates where the scan started on the chromosome

Value

positive integer indicating marker index for maximum value of log lik under pleiotropy

Examples

```r
marker1 <- rep(paste0("SNP", 1:3), times = 3)
marker2 <- rep(paste0("SNP", 1:3), each = 3)
loglik <- runif(9, -5, 0)
tibble::tibble(marker1, marker2, loglik) -> tib
find_pleio_peak_tib(tib, start_snp = 1)
```

fit1_pvl

Fit a model for a specified d-tuple of markers

Description

`fit1_pvl` uses several functions in the package qtl2pleio to fit the linear mixed effects model for a single d-tuple of markers. Creation of `fit1_pvl` - from code that originally resided in `scan_pvl`, enabled parallelization via the `parallel` R package.

Usage

```r
fit1_pvl(indices, start_snp, probs, addcovar, inv_S, S, pheno)
```
get_effects

Arguments

indices a vector of indices for extracting elements of 'probs' array
start_snp an integer to specify the index of the marker where the scan-in call to scan_pvl - starts. This argument is needed because 'mytab' has only relative indices (relative to the 'start_snp' marker)
probs founder allele probabilities array
addcovar additive covariates matrix
inv_S inverse covariance matrix for the vectorized phenotype
S covariance matrix for the vectorized phenotype, ie, the inverse of inv_S. By making this a function input, we avoid inverting the matrix many many times.
pheno a n by d phenotypes matrix

Value

a number, the log-likelihood for the specified model

Examples

n <- 50
pheno <- matrix(rnorm(2 * n), ncol = 2)
Vg <- diag(2)
Ve <- diag(2)
Sigma <- calc_Sigma(Vg, Ve, diag(n))
Sigma_inv <- solve(Sigma)
probs <- array(dim = c(n, 2, 5))
probs[, 1,] <- rbinom(n * 5, size = 1, prob = 0.2)
probs[, 2,] <- 1 - probs[, 1,]
mytab <- prep_mytab(d_size = 2, n_snp = 5)
fit1_pvl(mytab[,], start_snp = 1,
probs = probs, addcovar = NULL, inv_S = Sigma_inv,
S = Sigma,
pheno = pheno
)

get_effects Extract founder allele effects at a single marker from output of qtl2::scan1coef

Description

Extract founder allele effects at a single marker from output of qtl2::scan1coef

Usage

generateffects(marker_index, allele_effects_matrix, map, columns = 1:8)
Arguments

- **marker_index**: an integer indicating where in the ‘map’ object the peak position (or position of interest) is located.
- **allele_effects_matrix**: output of ‘qtl2::scan1coef’ for a single chromosome.
- **map**: a map object for the chromosome of interest.
- **columns**: which columns to choose within the ‘allele_effects_matrix’. Default is 1:8 to reflect 8 founder alleles of Diversity Outbred mice.

Value

- a vector of 8 founder allele effects at a single marker
- a vector of founder allele effects at a single marker

Examples

```r
# set up allele effects matrix
ae <- matrix(dat = rnorm(100 * 8), ncol = 8, nrow = 100)
ae[, 8] <- - rowSums(ae[, 1:7])
colnames(ae) <- LETTERS[1:8]
rownames(ae) <- paste0(1, "_", 1:100)
# set up map
map <- 1:100
names(map) <- rownames(ae)
# call get_effects
get_effects(marker_index = 15, allele_effects_matrix = ae, map = map)
```

Description

We consider only those inputs that are not NULL. We then use ‘intersect’ on pairs of inputs’ rownames to identify those subjects are shared among all non-NULL inputs.

Usage

```r
make_id2keep(probs, pheno, addcovar = NULL, kinship = NULL)
```

Arguments

- **probs**: an allele probabilities array
- **pheno**: a phenotypes matrix
- **addcovar**: a covariates matrix
- **kinship**: a kinship matrix
Value

a character vector of subject IDs common to all (non-null) inputs

plot_pvl

Plot tidied results of a pvl scan

Description

Plot tidied results of a pvl scan

Usage

plot_pvl(
 dat,
 units = "Mb",
 palette = c("#999999", "#E69F00", "#56B4E9"),
 linetype = c("solid", "longdash", "dotted")
)

Arguments

dat a profile lod tibble
units a character vector of length one to indicate units for physical or genetic map
palette a character vector of length 3 containing strings for colors
linetype a character vector of length 3 specifying the linetype values for the 3 traces

Value

a ggplot object with profile LODs

prep_mytab

Prepare mytab object for use within scan_pvl R code

Description

Prepare mytab object for use within scan_pvl R code

Usage

prep_mytab(d_size, n_snp, pvl = TRUE)
prep_X_list

Arguments

- `d_size`: an integer, the number of traits
- `n_snp`: an integer, the number of markers
- `pvl`: logical indicating whether to output dataframe with all d-tuples for a d-QTL scan, or only those models that examine one marker at a time.

Value

a data.frame with `d_size + 1` columns and `(n_snp)^d_size` rows. Last column is NA and named `loglik`.

Examples

```r
prep_mytab(2, 10)
```

Description

Create a list of component X matrices for input to stagger_mats, to ultimately create design matrix

Usage

```r
prep_X_list(indices, start_snp, probs, covariates)
```

Arguments

- `indices`: a vector of integers
- `start_snp`: an integer denoting the index (within genotype probabilities array) where the scan should start
- `probs`: a three-dimensional array of genotype probabilities for a single chromosome
- `covariates`: a matrix of covariates

Value

a list of design matrices, ultimately useful when constructing the (multi-locus) design matrix

Examples

```r
pp <- array(rbinom(n = 200, size = 1, prob = 0.5), dim = c(10, 2, 10))
prep_X_list(1:3, 1, probs = pp, covariates = NULL)
```
process_inputs

Description

Process inputs to scan functions

Usage

process_inputs(
 probs,
 pheno,
 addcovar,
 kinship,
 n_snp = dim(probs)[3],
 start_snp = 1,
 max_iter = 10^4,
 max_prec = 1/10^8
)

Arguments

probs a three-dimensional array of founder allele probabilities
pheno a matrix of trait values
addcovar a matrix of covariates
kinship a kinship matrix
n_snp number of markers
start_snp index number of start position in the probs object.
max_iter max number of iterations for EM
max_prec max precision for stopping EM

qtt2pleio

Description

Testing pleiotropy vs. separate QTL in multiparental populations
rcpp_calc_Bhat
Estimate allele effects matrix, B hat, with Rcpp functions

Description

Estimate allele effects matrix, B hat, with Rcpp functions

Usage

rcpp_calc_Bhat(X, Sigma_inv, Y)

Arguments

- **X**: dn by df block-diagonal design matrix that incorporates genetic info for two markers. Note that we can use the same marker data twice.
- **Sigma_inv**: dn by dn inverse covariance matrix, where its inverse, ie, Sigma, is often composed as $K \otimes V_g + I_n \otimes V_e$
- **Y**: dn by 1 matrix, ie, a column vector, of d phenotypes’ measurements

Value

a df by 1 matrix of GLS-estimated allele effects

Examples

X1 <- as.matrix(rbinom(n = 100, size = 1, prob = 1 / 2))
X <- gemma2::stagger_mats(X1, X1)
Sigma_inv <- diag(200)
Y <- runif(200)
rcpp_calc_Bhat(X = X, Sigma_inv = Sigma_inv, Y = Y)

rcpp_calc_Bhat2
Estimate allele effects matrix, B hat, with Rcpp functions

Description

Estimate allele effects matrix, B hat, with Rcpp functions

Usage

rcpp_calc_Bhat2(X, Y, Sigma_inv)
Arguments

\(X\)
\[
\text{dn by df block-diagonal design matrix that incorporates genetic info for two markers. Note that we can use the same marker data twice.}
\]

\(Y\)
\[
\text{dn by 1 matrix, ie, a column vector, of d phenotypes' measurements}
\]

\(\Sigma_{\text{inv}}\)
\[
\text{dn by dn inverse covariance matrix, often composed as inverse of } K \otimes V_g + I_n \otimes V_g
\]

Value

\[
a \text{ df by 1 matrix of GLS-estimated allele effects}
\]

Examples

\[
X1 \leftarrow \text{as.matrix(rbinom(n = 100, size = 1, prob = 1 / 2))}
\]

\[
X \leftarrow \text{gemma2::stagger.mats(X1, X1)}
\]

\[
\Sigma_{\text{inv}} \leftarrow \text{diag(200)}
\]

\[
Y \leftarrow \text{runif(200)}
\]

\[
\text{rcpp_calc_Bhat2(X = X, Y = Y, Sigma_inv = Sigma_inv)}
\]

cpp_log_dmvnorm2
\[\text{Calculate log likelihood for a multivariate normal}\]

Description

Calculate log likelihood for a multivariate normal

Usage

\[
\text{rcpp_log_dmvnorm2(inv_S, mu, x, S)}
\]

Arguments

\(\text{inv}_S\)
\[
\text{inverse covariance matrix}
\]

\(\text{mu}\)
\[
\text{mean vector}
\]

\(\text{x}\)
\[
\text{data vector}
\]

\(\text{S}\)
\[
\text{covariance matrix, ie, the inverse of inv}_S
\]
`scan_multi_onechr`

Perform multivariate, one-QTL model fitting for markers on one chromosome

Description

`scan_multi_onechr` calculates log likelihood for d-variate phenotype model fits. Inputted parameter `start_snp` indicates where in the `probs` object to start the scan.

Usage

```r
can_multi_onechr(
  probs,
  pheno,
  kinship = NULL,
  addcovar = NULL,
  start_snp = 1,
  n_snp = dim(probs)[3],
  max_iter = 10000,
  max_prec = 1/1e+08,
  cores = 1
)
```

Arguments

- **probs**: an array of founder allele probabilities for a single chromosome
- **pheno**: a matrix of phenotypes
- **kinship**: a kinship matrix for one chromosome
- **addcovar**: a matrix, n subjects by c additive covariates
- **start_snp**: index of where to start the scan within probs
- **n_snp**: the number of (consecutive) markers to include in the scan
- **max_iter**: maximum number of iterations for EM algorithm
- **max_prec**: stepwise precision for EM algorithm. EM stops once incremental difference in log likelihood is less than `max_prec`
- **cores**: number of cores for parallelization

Value

A tibble with `d + 1` columns. First `d` columns indicate the genetic data (by listing the marker ids) used in the design matrix; last is log10 likelihood
References

Examples

```r
# read data
n <- 50
pheno <- matrix(rnorm(2 * n), ncol = 2)
rownames(pheno) <- paste0("s", 1:n)
colnames(pheno) <- paste0("tr", 1:2)
probs <- array(dim = c(n, 2, 5))
probs[, 1, ] <- rbinom(n * 5, size = 1, prob = 0.2)
probs[, 2, ] <- 1 - probs[, 1, ]
rownames(probs) <- paste0("s", 1:n)
colnames(probs) <- LETTERS[1:2]
dimnames(probs)[[3]] <- paste0("m", 1:5)
scan_multi_onechr(probs = probs, pheno = pheno, kinship = NULL, cores = 1)
```

scan_multi_oneqtl Perform multivariate, one-QTL model fitting for markers on all chromosomes

Description

The function first discards individuals with one or more missing phenotypes or missing covariates. It then infers variance components, \(\hat{V_g} \) and \(\hat{V_e} \). Both \(\hat{V_g} \) and \(\hat{V_e} \) are \(d \times d \) covariance matrices. It uses an expectation maximization algorithm, as implemented in the ‘gemma2’ R package. ‘gemma2’ R package is an R implementation of the GEMMA algorithm for multivariate variance component estimation (Zhou & Stephens 2014 Nature methods). Note that variance components are fitted on a model that uses the \(d \)-variate phenotype but contains no genetic information. This model does, however, use the specified covariates (after dropping dependent columns in the covariates matrix). These inferred covariance matrices, \(\hat{V_g} \) and \(\hat{V_e} \), are then used in subsequent model fitting via generalized least squares. Generalized least squares model fitting is applied to every marker on every chromosome. For a single marker, we fit the model:

\[
vec(Y) = Xvec(B) + vec(G) + vec(E)
\]

where

\[
G \sim MN(0, K, \hat{V_g})
\]
and

\[E \sim MN(0, I, \hat{V}e) \]

where \(MN \) denotes the matrix-variate normal distribution with three parameters: mean matrix, covariance among rows, and covariance among columns. \(vec \) denotes the vectorization operation, ie, stacking by columns. \(K \) is a kinship matrix, typically calculated by leave-one-chromosome-out methods. \(Y \) is the n by d phenotypes matrix. \(X \) is a block-diagonal nd by fd matrix consisting of d blocks each of dimension n by f. Each n by f block (on the diagonal) contains a matrix of founder allele probabilities for the n subjects at a single marker. The off-diagonal blocks have only zero entries. The log-likelihood is returned for each model. The outputted object is a tibble with d + 1 columns. The first d columns specify the markers used in the corresponding model fit, while the last column specifies the log-likelihood value at that d-tuple of markers.

Usage

```r
scan_multi_oneqtl(
  probs_list,  
  pheno,  
  kinship_list = NULL,  
  addcovar = NULL,  
  cores = 1  
)
```

Arguments

- `probs_list` : an list of arrays of founder allele probabilities
- `pheno` : a matrix of phenotypes
- `kinship_list` : a list of kinship matrices, one for each chromosome
- `addcovar` : a matrix, n subjects by c additive covariates
- `cores` : number of cores for parallelization via parallel::mclapply()

Value

a tibble with d + 1 columns. First d columns indicate the genetic data (by listing the marker ids) used in the design matrix; last is log10 likelihood

References

Examples

```r
# read data
n <- 50
pheno <- matrix(rnorm(2 * n), ncol = 2)
rownames(pheno) <- paste0("s", 1:n)
colnames(pheno) <- paste0("tr", 1:2)
probs <- array(dim = c(n, 2, 5))
probs[, 1, ] <- rbinom(n * 5, size = 1, prob = 0.2)
probs[, 2, ] <- 1 - probs[, 1, ]
rownames(probs) <- paste0("s", 1:n)
colnames(probs) <- LETTERS[1:2]
dimnames(probs)[[3]] <- paste0("m", 1:5)
scan_multi_oneqtl(probs_list = list(probs, probs), pheno = pheno, cores = 1)
```

Description

Permute the phenotypes matrix and then scan the genome. Record the genomewide greatest LOD score for each permuted data set.

Usage

```r
scan_multi_oneqtl_perm(
  probs_list,
  pheno,
  kinship_list = NULL,
  addcovar = NULL,
  n_perm = 1,
  cores = 1
)
```

Arguments

- `probs_list`: a list of founder allele probabilities, one array per chromosome
- `pheno`: a matrix of trait values
- `kinship_list`: a list of kinship matrices, one per chromosome
- `addcovar`: a matrix of covariate values
- `n_perm`: positive integer for the number of permuted data sets to scan.
- `cores`: number of cores for parallelization

Value

- a vector of ‘n_perm’ max lod statistics
Description

‘scan_pvl’ calculates log likelihood for d-variate phenotype model fits. Inputted parameter ‘start_snp’ indicates where in the ‘probs’ object to start the scan.

Usage

```r
scan_pvl(
  probs,
  pheno,
  kinship = NULL,
  addcovar = NULL,
  start_snp = 1,
  n_snp,
  max_iter = 10000,
  max_prec = 1/1e+08,
  cores = 1
)
```

Arguments

- `probs`: an array of founder allele probabilities for a single chromosome
- `pheno`: a matrix of phenotypes
- `kinship`: a kinship matrix for one chromosome
- `addcovar`: a matrix, n subjects by c additive covariates
- `start_snp`: index of where to start the scan within probs
- `n_snp`: the number of (consecutive) markers to include in the scan
- `max_iter`: maximum number of iterations for EM algorithm
- `max_prec`: stepwise precision for EM algorithm. EM stops once incremental difference in log likelihood is less than max_prec
- `cores`: number of cores to use when parallelizing via parallel::mclapply. Set to 1 for no parallelization.

Details

The function first discards individuals with one or more missing phenotypes or missing covariates. It then infers variance components, Vg and Ve. Both Vg and Ve are d by d covariance matrices. It uses an expectation maximization algorithm, as implemented in the ‘gemma2’ R package. ‘gemma2’ R package is an R implementation of the GEMMA algorithm for multivariate variance component estimation (Zhou & Stephens 2014 Nature methods). Note that variance components are fitted on a model that uses the d-variate phenotype but contains no genetic information. This model does,
however, use the specified covariates (after dropping dependent columns in the covariates matrix). These inferred covariance matrices, \hat{V}_g and \hat{V}_e, are then used in subsequent model fitting via generalized least squares. Generalized least squares model fitting is applied to every d-tuple of markers within the specified genomic region for `scan_pvl'. For a single d-tuple of markers, we fit the model:

$$vec(Y) = Xvec(B) + vec(G) + vec(E)$$

where

$$G \sim MN(0, K, \hat{V}_g)$$

and

$$E \sim MN(0, I, \hat{V}_e)$$

where MN denotes the matrix-variate normal distribution with three parameters: mean matrix, covariance among rows, and covariance among columns. vec denotes the vectorization operation, ie, stacking by columns. K is a kinship matrix, typically calculated by leave-one-chromosome-out methods. Y is the n by d phenotypes matrix. X is a block-diagonal nd by fd matrix consisting of d blocks each of dimension n by f. Each n by f block (on the diagonal) contains a matrix of founder allele probabilities for the n subjects at a single marker. The off-diagonal blocks have only zero entries. The log-likelihood is returned for each model. The outputted object is a tibble with d + 1 columns. The first d columns specify the markers used in the corresponding model fit, while the last column specifies the log-likelihood value at that d-tuple of markers.

Value

a tibble with d + 1 columns. First d columns indicate the genetic data (by listing the marker ids) used in the design matrix; last is log10 likelihood

References

Examples

```r
# read data
n <- 50
pheno <- matrix(rnorm(2 * n), ncol = 2)
rownames(pheno) <- paste0("s", 1:n)
colnames(pheno) <- paste0("tr", 1:2)
probs <- array(dim = c(n, 2, 5))
probs[, , 1] <- rbinom(n * 5, size = 1, prob = 0.2)
probs[, , 2] <- 1 - probs[, , 1]
rownames(probs) <- paste0("s", 1:n)
```
sim1 <- LETTERS[1:2]
dimnames(probs)[[3]] <- paste0("m", 1:5)
scan_pvl(probs = probs, pheno = pheno, kinship = NULL, start_snp = 1, n_snp = 5, cores = 1)

sim1

Simulate a single multivariate data set consisting of n subjects and d phenotypes for each

Description

Simulate a single multivariate data set consisting of n subjects and d phenotypes for each

Usage

```r
sim1(X, B, Sigma)
```

Arguments

- `X`: design matrix (incorporating genotype probabilities from two loci), dn by df
- `B`: a matrix of allele effects, f rows by d columns
- `Sigma`: dn by dn covariance matrix

Value

A vector of length dn. The first n entries are for trait 1, the second n for trait 2, etc.

Examples

```r
n_mouse <- 20
genom <- rbinom(n = n_mouse, size = 1, prob = 1 / 2)
X <- gemma2::stagger_mats(geno, geno)
B <- matrix(c(1, 2), ncol = 2, nrow = 1)
sim1(X, B, Sigma = diag(2 * n_mouse))
```

subset_input

Subset an input object - allele probabilities array or phenotypes matrix or covariates matrix. Kinship has its own subset function

Description

An inputted matrix or 3-dimensional array is first subsetted - by rownames - to remove those subjects who are not in ‘id2keep’. After that, the object’s rows are ordered to match the ordering of subject ids in the vector ‘id2keep’. This (possibly reordered) object is returned.
Usage

subset_input(input, id2keep)

Arguments

input a matrix of either phenotypes or covariates or array of allele probabilities
id2keep a character vector of subject ids to identify those subjects that are shared by all inputs

Value

an object resulting from subsetting of ‘input’. Its rows are ordered per ‘id2keep’

Examples

define s_id
s_id <- paste0("s", 1:10)
set up input matrix
foo <- matrix(data = rnorm(10 * 3), nrow = 10, ncol = 3)
rownames(foo) <- s_id
subset_input(input = foo, id2keep = s_id)

subset_kinship Subset a kinship matrix to include only those subjects present in all inputs

Description

Since a kinship matrix has subject ids in both rownames and colnames, so we need to remove rows and columns according to names in ‘id2keep’. We first remove rows and columns of subjects that are not in ‘id2keep’. We then order rows and columns of the resulting matrix by the ordering in ‘id2keep’.

Usage

subset_kinship(kinship, id2keep)

Arguments

kinship a kinship matrix
id2keep a character vector of subject ids to identify those subjects that are shared by all inputs
Index

* profile lod tibble functions
 add_pmap, 2

add_pmap, 2

boot_pvl, 3

calc_Bhat, 5
calc_covs, 6
calc_invsqrt_mat, 6
calc_lrt_tib, 7
calc_profile_lods, 7
calc_Sigma, 8
calc_sqrt_mat, 8
check_identical, 9
check_missingness, 9
check_to_scan1_output, 10

find_pleio_peak_tib, 11
fit1_pvl, 11

generate_effects, 12

make_id2keep, 13

plot_pvl, 14
prep_mymtab, 14
prep_X_list, 15
process_inputs, 16

qtl2pleio, 16

rcpp_calc_Bhat, 17
rcpp_calc_Bhat2, 17
rcpp_log_dmvnorm2, 18

scan_multi_onechr, 19
scan_multi_oneqtl, 20
scan_multi_oneqtl_perm, 22
scan_pvl, 23
sim1, 25
subset_input, 25
subset_kinship, 26