Package ‘psyosphere’

May 24, 2020

Type Package
Title Analyse GPS Data
Version 0.1.6
Date 2020-05-24
Maintainer Benjamin Ziepert <feedback-psyosphere@analyse-gps.com>
Description Analyse location data such as latitude, longitude, and elevation. Based on spherical trigonometry, variables such as speed, bearing, and distances can be calculated from moment to moment, depending on the sampling frequency of the equipment used, and independent of scale. Additionally, the package can plot tracks, coordinates, and shapes on maps, and sub-tracks can be selected with point-in-polygon or other techniques. The package is optimized to support behavioural science experiments with multiple tracks. It can detect and clean up errors in the data, and resulting data can be exported to be analysed in statistical software or geographic information systems (GIS).
Depends R (>= 2.10)
License MIT + file LICENSE
Imports rgdal, plyr, geosphere, ggplot2, sp, lubridate, RgoogleMaps, Hmisc, stats
Suggests ggmap
RoxygenNote 7.0.0
NeedsCompilation no
Author Benjamin Ziepert [cre, aut], Elze G Ufkes [ctb], Peter W de Vries [ctb]
Repository CRAN
Date/Publication 2020-05-24 21:20:03 UTC

R topics documented:

about analysing tips .. 3
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>about common mistakes</td>
<td>4</td>
</tr>
<tr>
<td>about demos</td>
<td>6</td>
</tr>
<tr>
<td>about documentation</td>
<td>7</td>
</tr>
<tr>
<td>about functions</td>
<td>8</td>
</tr>
<tr>
<td>apply_shift</td>
<td>11</td>
</tr>
<tr>
<td>apply_tracks</td>
<td>12</td>
</tr>
<tr>
<td>average_coordinates</td>
<td>15</td>
</tr>
<tr>
<td>average_duplicates</td>
<td>16</td>
</tr>
<tr>
<td>des_duplicates</td>
<td>18</td>
</tr>
<tr>
<td>des_first</td>
<td>19</td>
</tr>
<tr>
<td>des_last</td>
<td>20</td>
</tr>
<tr>
<td>des_length</td>
<td>22</td>
</tr>
<tr>
<td>des_max</td>
<td>23</td>
</tr>
<tr>
<td>des_mean</td>
<td>24</td>
</tr>
<tr>
<td>des_min</td>
<td>26</td>
</tr>
<tr>
<td>des_sd</td>
<td>28</td>
</tr>
<tr>
<td>des_sum</td>
<td>29</td>
</tr>
<tr>
<td>des_summary</td>
<td>31</td>
</tr>
<tr>
<td>dir_add_csv</td>
<td>33</td>
</tr>
<tr>
<td>dir_get_gpx</td>
<td>34</td>
</tr>
<tr>
<td>distance_line</td>
<td>35</td>
</tr>
<tr>
<td>distance_peers</td>
<td>37</td>
</tr>
<tr>
<td>distance_point</td>
<td>39</td>
</tr>
<tr>
<td>distance_psyo</td>
<td>40</td>
</tr>
<tr>
<td>distance_to_direct_line</td>
<td>42</td>
</tr>
<tr>
<td>export_gpx</td>
<td>43</td>
</tr>
<tr>
<td>export_kml</td>
<td>44</td>
</tr>
<tr>
<td>mark_gap_segments</td>
<td>45</td>
</tr>
<tr>
<td>mark_inside_polygon</td>
<td>47</td>
</tr>
<tr>
<td>mark_speed_gaps</td>
<td>48</td>
</tr>
<tr>
<td>mark_time_gaps</td>
<td>50</td>
</tr>
<tr>
<td>plot_line</td>
<td>51</td>
</tr>
<tr>
<td>plot_map</td>
<td>52</td>
</tr>
<tr>
<td>plot_polygon</td>
<td>53</td>
</tr>
<tr>
<td>plot_tracks</td>
<td>54</td>
</tr>
<tr>
<td>psyo</td>
<td>55</td>
</tr>
<tr>
<td>psysphere</td>
<td>57</td>
</tr>
<tr>
<td>psyo_geomean</td>
<td>58</td>
</tr>
<tr>
<td>psyo_rounds</td>
<td>59</td>
</tr>
<tr>
<td>psyo_rounds2</td>
<td>60</td>
</tr>
<tr>
<td>psyo_rounds_map</td>
<td>61</td>
</tr>
<tr>
<td>select_between_polygons</td>
<td>61</td>
</tr>
<tr>
<td>select_gaps</td>
<td>63</td>
</tr>
<tr>
<td>select_test_sample</td>
<td>64</td>
</tr>
<tr>
<td>select_without_gaps</td>
<td>65</td>
</tr>
<tr>
<td>t_bearing</td>
<td>66</td>
</tr>
<tr>
<td>t_distance</td>
<td>67</td>
</tr>
<tr>
<td>t_speed</td>
<td>68</td>
</tr>
</tbody>
</table>
Description

Guide how to analyse GPS data

Details

The following guide explains the steps to analyse GPS data.

1. **Save data as psyo data frame.** You should create a psyo data frame by reading GPX files with `dir_get_gpx` and add additional information for each participant with `dir_add_csv`.

2. **Remove not needed data.** By removing data, you can greatly improve calculation speed.
 (1) You can remove data by specifying a begin and end time (See example section below).
 (2) You could create a polygon of the area you want to select with `mark_inside_polygon` and then select only the data you want. To determine a good polygon, you can draw the tracks with `plot_tracks`. (3) You can select data between a start and finish polygon with `select_between_polygons`.

3. **Create a test sample.** If you have a lot of data calculations can take hours. Especially if you use the functions `distance_psyo` and `distance_peers`. To speed things up you can first create a test sample with `average_coordinates` and `select_test_sample`. In most cases, it is better to use `average_coordinates`. When everything works, you can run your script with the original coordinates.

4. **Clean-up the data.** Before the clean-up calculate the descriptive summary with `des_summary` so you know which data is removed. After that you can clean-up the data with the following steps. (1) You should average coordinates that have the same time stamp with `average_duplicates`. You can make gaps with (2) `mark_speed_gaps` and (3) `mark_time_gaps`.

5. **Plot tracks.** You can plot the tracks with `plot_tracks` to check how the tracks look like, if the right data is removed, if the gaps are marked correctly, ...

6. **Calculate your data.** You now can calculate different measures. It is important to do this after removing not needed data and the clean-up. Otherwise unwanted data could be included into the calculations. If you already calculated a measure you can calculate it again and the old column will be overwritten.

7. **Create summary for each participant / tracker.** With `des_summary` and other functions with the prefix "des_" you can calculate a summary for each participant.

You can see these steps implemented with the demo smuggler1. See also about_demos.
About common mistakes

Tips to prevent common mistakes

Description

Tips to prevent common mistakes

Details

For getting to use weighted statistics. Mostly the coordinates don’t have an even time interval. This can be because of the missing data, planned data gaps or deviations in the GPS tracker. To prevent this, you can calculate the time difference between coordinates with `difftime` and used it as weight for weighted descriptive statistics.

Recalculating track data after removing gaps. After removing gaps, you should be careful to recalculate speed, time difference, etc. since this function can’t see that the gaps are removed. To work around this, you can just omit gaps with the descriptive functions that begin with "des_". They can ignore gaps.

Credit

If you use ‘psyosphere’ for commercial use or research, please support us by include one off the following references:

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

about_common_mistakes, about_demos

Examples

```r
## Not run:
# Remove data before begin and after end ---------------------------------------
data(psyo_rounds2)
tracks <- psyo_rounds2
begin <- as.POSIXct("2015-09-03 14:00:00")
end <- as.POSIXct("2015-09-03 14:20:00")
tracks <- tracks[ tracks[,"time"] > begin & tracks[,"time"] < end ,]

## End(Not run)
```

about common mistakes Tips to prevent common mistakes
about common mistakes

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- MIT license: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

about_analysing_tips, about_demos, difftime, wtd.mean

Examples

Not run:
Example forgetting to use weighted statistics --------------------------------
data(psyo)
tracks <- t_speed(psyo)
tracks <- t_time_difference(tracks, units = "secs")

Without weighted statistics
mean(tracks[,c("speed")], na.rm = TRUE)
sd(tracks[,c("speed")], na.rm = TRUE)

With weighted statistics
des_mean(tracks, "speed", "time_difference", t_id = "")

Hmisc::wtd.mean(
 tracks[,c("speed")], as.numeric(tracks[,c("time_difference")])
)
sqrt(Hmisc::wtd.var(
 tracks[,c("speed")], as.numeric(tracks[,c("time_difference")])
))

End(Not run)
Description

The package contains some demonstrations how the different functions can be used. The demonstrations are experiments that are used to develop 'psyosphere', thus it is real experimental data. Be aware the that it can take two hours ore more to complete some of the demos. Therefore, the demos frequently will save the progress. You can access the demo files directly to restore your progress.

You can find more information about the experiments on [analyse-gps.com](https://analyse-gps.com/experiments/ut-smuggle-experiment/).

Details

1. **Move demo file.** The demo file will download a zip file of about 2MB that unpacks into about 200MB. You can move the demo files to an appropriate location. In the example section is explained how you can find the demo files.

2. **Set working directory.** For the demo files to work, the working directory must be set to the directory that contains the demo. You can see in the example section how you can do that.

3. **Step by step execution.** The demos contain sometimes hundreds of thousands of coordinates. Therefore, it is advisable to calculate the demos step by step and to compress the coordinates first with `average_coordinates`.

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **Creative Commons:** "" by B. Ziepert, E. G. Ufkes & P. W. de Vries from analyse-gps.com / CC-BY-SA-4.0

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

Examples

```r
## Not run: 
dontrun{
# Get a list of the demo's
demo(package = "psyosphere")

# Find the location of a demo file
system.file("demo", "smuggler1.R", package = "psyosphere")
```
Run demo
demo("smuggler1", package = "psyosphere")

How to restore progress --

Set directory (see top of the file)

demo_dir <- tempdir()
dir <- paste0(demo_dir,"/leadership1/"

Clean environment and load data (see top of each section)
rm(list=setdiff(ls(), "dir"))
load(paste0(dir,"rdata/01.RData"))
}
End(Not run)

Description

Guideline for creating 'psyosphere' documentation.

Details

File names

1. The file names of documentation about 'psyosphere' in general begin with "about ". Exception is the package documentation file.
2. The file names cannot begin with "aa" or "ab" to prevent that they are listed before the "about" files.
3. The file names for functions documentations are identical to the function names. Exception are private functions. See also about functions.
4. The file name for data always begin with "psyo".

Files

For each documentation 2 files will be created.

1. A documentation file. A file that contains the documentation for the function and has the same file name as the function file. See also: about functions.
2. A documentation example file. A file that contains the example code for the documentation. This file has the same file name as the function file with the prefix "man_" and is stored in the directory "code_examples/man".
Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

Description

Guideline for creating 'psyosphere' functions.

Details

Function patterns

The different function categories follow different structures. The functions are alphabetically grouped by a prefix. The prefixes are:

- **apply** meta tasks for data frames
- **average** average location of multiple coordinates to one coordinate
- **des** descriptive about the tracks
- **dir** getting data from directories
- **distance** calculate distance to something else for each coordinate
- **mark** logical lists
- **plot** create Google map plots
- **select** select coordinates within tracks
- **t** calculations per coordinate.
- **val** validate variables

t group

The calculation information of the t group will be stored at the arriving coordinate. For example, the bearing from point 1 to point 2 will be stored with point 2 and the first point 1 of a track has a NA. Storing with point 1 or point 2 has both advantages and disadvantages. The data is stored with point 2 because of the compatibility with select_gaps and select_without_gaps When all
coordinates with gaps get removed the data of the t group like speed, bearing, etc. gets also removed and for instance an average without the gaps can be calculated.

In the example section, you can find the basic structure of the t group. All groups follow a similar basic structure.

Function guidelines

The following list is a guide how a function should look like.

Function format:

1. Function name is it short.
2. Function name is it alphabetical logical sorted. For instance, start stored variables with "data" or directory operation with "dir".
3. Function name cannot begin with "aa" or "ab" to prevent that they are listed before the "about" documentation files.
4. Check each input variable. With `val_var` or `val_psyo`
5. Every function can handle the `psyo` format.
6. No longer than 30 lines.
7. Child function are private. Functions that only support a main function and don't need to be accessed by the package user end with ".private" and are stored in the same file as the main function. Private functions can be accessed with "psyosphere:::

File format:

1. Each function has its own file. Exception are private functions that end on ".private" and support the main function.
2. The file name is identical with the function name

Files

For each function 4 different files will be created.

2. A documentation file. A file that contains the documentation for the function and has the same file name as the function file. See also: about documentation.
3. A documentation example file. A file that contains the example code for the documentation. This file has the same file name as the function file with the prefix "man_" and is stored in the directory "code_examples/man".
4. A test file. A file that contains the test code for the package test. This file has the same file name as the function file with the prefix "test_" and is stored in the directory "tests/testthat".

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license:** "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere
about functions

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

Examples

```r
## Not run:
# ------------------------------------------------------------------------------
# Example calculation R file ---------------------------------------------------
# ------------------------------------------------------------------------------

t_distance <- function(
  tracks, bind = TRUE, drop = TRUE, cname = "distances_in_m", t_id = "id"
) {
  # Check variables
  e <- val_psyo(tracks, 0, 0, 0, 2, 2); if (e != "") {stop(e)}
  e <- val_var(bind, "logical"); if (e != "") {stop(e)}
  e <- val_var(drop, "logical"); if (e != "") {stop(e)}
  e <- val_var(cname, "character"); if (e != "") {stop(e)}
  e <- val_cname(tracks, t_id); if (e != "") {stop(e)}

  # Add bearings per track
  result <- apply_tracks(
    tracks,
    "distance_exec_private(eval_track)",
    t_id = t_id
  )

  # Reformat result
  result <- data.frame(result)
  result <- plyr::rename(result, c("result" = cname))

  # Return result
  result <- bind_drop_private(tracks, result, bind, drop)
  return(result)
}

distance_exec_private <- function(tracks) {
  # Get lat and lon from next observation
  current <- subset(tracks, select = c("lon","lat"))
  previous <- apply_shift(
    tracks, "-1", FALSE, c("lon","lat"), t_id = ""
  )
```

apply_shift

Get distances
distances_in_m <- geosphere::distHaversine(previous, current)

return(distances_in_m)

Template for test file

Print title
cat("\nTesting <function_name>()\n")

Get data
data("psyo_rounds2")
tracks <- psyo_rounds2

Calculations

Check results
if (NROW(________) != ________) { stop("Wrong number of observations") }
if (NCOL(________) != ________) { stop("Wrong number of variables") }
val_psyo(________)
test_sum <- sum(____)
if (round(test_sum,3) != round(____,3)) {stop("Wrong test_sum")}

End(Not run)

apply_shift
Copy columns and offset the index of the copied column

Description
Copy columns and offset the index of the copied column

Usage
apply_shift(tracks, factor = 1, bind = TRUE, csubset = "", t_id = "id")

Arguments

- **tracks**
 psyo. Data frame with tracks.

- **factor**
 Character or numeric. Number of shifted copied to be created. With - or + a direction can be indicated. For instance, +1 copies the value of the following coordinate. -1 copies the value of the previous coordinate.

- **bind**
 Logical. Whether to bind the row to tracks or to return it as separate column.

- **csubset**
 List. A list of column names in tracks that will be copied.
apply_tracks

```
apply_tracks
```

t_id

character or numeric. Column name in tracks that identifies the separate tracks.

Value

psyo

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Note

This function drops sometimes attributes.

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

psyo, apply_tracks

Examples

```r
## Not run:
data(psyo)
apply_shift(psyo, csubset = c("lon", "lat"))

## End(Not run)
```

Description

Run function on each track in a psyo data frame. The function is in form of a character expression.
apply_tracks

Usage

apply_tracks(tracks, exp,
 arg1 = "", arg2 = "", arg3 = "", arg4 = "", arg5 = "", arg6 = "", arg7 = "",
 arg8 = "", arg9 = "", t_id = "id", info = FALSE)
)

Arguments

tracks

psyo. Data frame containing tracks in psyo format.

exp

character. The function and arguments that will be evaluated.

arg1

multiple. Arguments that will be sent to the target function.

arg2

multiple. Arguments that will be sent to the target function.

arg3

multiple. Arguments that will be sent to the target function.

arg4

multiple. Arguments that will be sent to the target function.

arg5

multiple. Arguments that will be sent to the target function.

arg6

multiple. Arguments that will be sent to the target function.

arg7

multiple. Arguments that will be sent to the target function.

arg8

multiple. Arguments that will be sent to the target function.

arg9

multiple. Arguments that will be sent to the target function.

t_id

Unique by time sorted ID for every coordinate within a track. Use t_id = "" to make no selection but take all data.

info

logical. Measures the time consumption for each track calculation.

Value

psyo

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Warning

Don’t use this function for 'psyosphere' main functions. Most of the 'psyosphere' functions have apply_tracks() already included. By adding it again you can get strange results or break the function.

Only return the changed "eval_track" as result. The function is splitting a psyo data frame in sub tracks. After changes are applied that sub tracks or merged together again. Therefore, it is important to only work in the sub track. If for instance every time the psyo data frame is returned by the evaluated function than the data frame gets stacked again and again on top of itself. See the examples below for how this can look like.

Author(s)

Benjamin Ziepert

See Also

psyo, apply_shift

Examples

Not run:
Working examples ---

Test function for examples
test_sum <- function(track, more = 0) {
 track$lon_sum <- sum(track$lon) + more
 return(track)
}

Simple example
data(psyo)
psyo <- apply_tracks(
 psyo,"test_sum(eval_track)"
)

See all data as one track
data(psyo)
psyo <- apply_tracks(
 psyo,"test_sum(eval_track)", t_id=""
)

Use of arguments
data(psyo)
psyo <- apply_tracks(
 psyo,"test_sum(eval_track, arg1)", arg1 = 5
)

What not to do ---

Only return the changed "eval_track" as result. The following examples show
what can go wrong otherwise.
average_coordinates

Calculates the mean position of coordinates within a time interval.

Description

Calculates the mean position of coordinates within a time interval.

Usage

average_coordinates(tracks, num, units = "minutes", t_id = "id")

Arguments

tracks

psyo. Data frame with tracks.

num

num The amount of time.

units

char Unit for time measurement. For example: "seconds", "minutes" or "days". See duration for more details.

t_id

character or numeric. Column name in tracks that identifies the separate tracks.

Details

This function can be used to compress huge amounts of data to speed up the calculations.

The average for the columns time, lon and lat is calculated. See geomean for details. Other columns will be preserved but only the first row of every interval is considered.
average_duplicates

Value

data frame

lon num averaged longitude
lat num averaged latitude
time POSIXct averaged time
other Preserved columns from input

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

gemean, average_duplicates, select_test_sample

Examples

```r
## Not run:
data(psyo_geomean)
average_coordinates(psyo_geomean,30,"seconds")
```

End(Not run)

average_duplicates Correct coordinates with the same time

Description

Correct coordinates with the same time by replacing with one coordinate with a geomean position.

Usage

```r
average_duplicates(tracks, t_id = "id")
```

average_duplicates

Arguments

tracks
psyo. Data frame with tracks.
t_id
character or numeric. Column name in tracks that identifies the separate tracks.

Value

psyo

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

geomean, average_coordinates

Examples

```r
## Not run: 
dontrun{
# Get data
data(psyo)
psyo <- psyo[,c(1,15),]
psyo[2, c("time","id")]<- psyo[1, c("time","id")]

# Plot coordinates
map <- plot_map(psyo)
plot <- map + ggplot2::geom_point(data = psyo, size = 5)
plot <- plot_line(psyo[,c("lon","lat")], plot = plot)
plot

# Calculate mean position
psyo <- average_duplicates(psyo)

# Plot mean position
plot + ggplot2::geom_point(data = psyo, size = 5)
}
## End(Not run)
```
des_duplicates

Count duplicates within each track

Description

Count duplicates within each track

Usage

```r
des_duplicates(
  tracks, cduplicated, cgaps = "", cname = "duplicates", drop = TRUE,
  t_id = "id", des_df = "")
```

Arguments

- **tracks** *psyo*. Data frame with tracks.
- **cduplicated** character. Column name of tracks that contains the variable for the calculation.
- **cgaps** character. Column name of tracks that marks gaps with TRUE.
- **cname** character. Column name of the returned calculation result.
- **drop** logical. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
- **t_id** *character or numeric*. Column name in tracks that identifies the separate tracks.
- **des_df** data frame. Function results will be merge with this data frame.

Value

Data frame

- **t_id** unique id of the track
- **cname** calculated result of the track

Credit

If you use ‘psyosphere’ for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere
Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

des_summary, des_first, des_last, des_length, des_max, des_min, des_mean, des_sd, des_sum

Examples

```r
## Not run:
# Get data
data(psyo_rounds2)
tracks <- psyo_rounds2

# Calculations
descriptive <- des_duplicates(tracks, "time")
```

des_first

Get first value within each track

Usage

```r
des_first(
  tracks, ctarget, cgaps = "", cname = "first", drop = TRUE, t_id = "id",
  des_df = ""
)
```

Arguments

- **tracks**: `psyo`. Data frame with tracks.
- **ctarget**: character. Column name of tracks that contains the variable for the calculation.
- **cgaps**: character. Column name of tracks that marks gaps with TRUE.
- **cname**: character. Column name of the returned calculation result.
- **drop**: logical. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
- **t_id**: `character` or `numeric`. Column name in tracks that identifies the separate tracks.
- **des_df**: data frame. Function results will be merge with this data frame.
Value

Data frame

<table>
<thead>
<tr>
<th>t_id</th>
<th>unique id of the track</th>
</tr>
</thead>
<tbody>
<tr>
<td>cname</td>
<td>calculated result of the track</td>
</tr>
</tbody>
</table>

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

des_summary, des_duplicates, des_last, des_length, des_max, des_min, des_mean, des_sd, des_sum

Examples

```r
## Not run:
# Print title
cat("\nTesting des_first()\n")

# Calculations
data(psyo_rounds2)
first <- des_first(psyo_rounds2, "p_id")

## End(Not run)
```

des_last

Get last value within each track

Description

Get last value within each track
Usage

des_last(
 tracks, ctarget, cgaps = "", cname = "last", drop = TRUE, t_id = "id",
 des_df = ""
)

Arguments

tracks \textit{psyo.} Data frame with tracks.
ctarget character. Column name of tracks that contains the variable for the calculation.
cgaps character. Column name of tracks that marks gaps with TRUE.
cname character. Column name of the returned calculation result.
drop logical. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
t_id \textit{character or numeric.} Column name in tracks that identifies the separate tracks.
des_df \textit{data frame.} Function results will be merge with this data frame.

Value

Data frame

t_id unique id of the track
cname calculated result of the track

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- \textbf{MIT license}: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

des_summary, des_duplicates, des_first, des_length, des_max, des_min, des_mean, des_sd, des_sum
Examples

```r
## Not run:
data(psyo_rounds2)
last <- des_last(psyo_rounds2, "p_id")
## End(Not run)
```

des_length

Get the number of coordinates within each track

Description

Get the number of coordinates within each track

Usage

```r
des_length(
  tracks, cgaps = "", cname = "length", drop = TRUE, t_id = "id", des_df = ""
)
```

Arguments

- `tracks`: *psyo* Data frame with tracks.
- `cgaps`: character. Column name of tracks that marks gaps with TRUE.
- `cname`: character. Column name of the returned calculation result.
- `drop`: logical. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
- `t_id`: character or numeric. Column name in tracks that identifies the separate tracks.
- `des_df`: data frame. Function results will be merge with this data frame.

Value

Data frame

- `t_id`: unique id of the track
- `cname`: calculated result of the track

Credit

If you use ‘psyosphere’ for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere
des_max

Author(s)
Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also
des_summary, des_duplicates, des_first, des_last, des_max, des_min, des_mean, des_sd, des_sum

Examples
Not run:
Get data
data(psyo_rounds2)
tracks <- psyo_rounds2

Calculations
descriptive <- des_length(tracks)

End(Not run)

des_max

Get the highest value within each track

Description
Get the highest value within each track

Usage

des_max(
 tracks, ctarget, cgaps = "", cname = "max", drop = TRUE, t_id = "id",
 des_df = ""
)

Arguments

- **tracks** `psyo`. Data frame with tracks.
- **ctarget** character. Column name of tracks that contains the variable for the calculation.
- **cgaps** character. Column name of tracks that marks gaps with TRUE.
- **cname** character. Column name of the returned calculation result.
- **drop** logical. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
- **t_id** `character` or `numeric`. Column name in tracks that identifies the separate tracks.
- **des_df** data frame. Function results will be merge with this data frame.
Value

Data frame
t_id unique id of the track
cname calculated result of the track

Credit

If you use ‘psyosphere’ for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

des_summary, des_duplicates, des_first, des_last, des_length, des_min, des_mean, des_sd, des_sum

Examples

```r
## Not run:
data(psyo_rounds2)
last_time <- des_max(psyo_rounds2,"time")

## End(Not run)
```

des_mean

Calculate normal and weighted means while excluding gaps in data

Description

Calculate normal and weighted means while excluding gaps in data

Usage

```r
des_mean(
  tracks, ctarget, cweight = "", cgaps = "", cname = "mean", drop = TRUE,
  t_id = "id", des_df = ""
)
```
des_mean

Arguments

- tracks: \texttt{psyo}. Data frame with tracks.
- ctarget: character. Column name of tracks that contains the variable for the calculation.
- cweight: character. Column name of tracks that contains the weight for the calculation.
- cgaps: character. Column name of tracks that marks gaps with \texttt{TRUE}.
- cname: character. Column name of the returned calculation result.
- drop: logical. If \texttt{TRUE} and only one observation is returned drop the data frame and collapse the return value to a vector.
- t_id: \texttt{character or numeric}. Column name in tracks that identifies the separate tracks.
- des_df: data frame. Function results will be merge with this data frame.

Value

Data frame

- id: id of the track
- mean: calculated mean of the track

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- MIT license: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

des_summary, des_duplicates, des_first, des_last, des_length, des_max, des_min, des_sd, des_sum
Examples

```r
## Not run:
# Get example data
data(psyo_rounds2)
psyo_rounds2 <- psyo_rounds2[ c(1:5,11:15) ,]

# clean-up data
psyo_rounds2 <- average_duplicates(psyo_rounds2)

# Add gap segments
psyo_rounds2 <- t_time_difference(psyo_rounds2)
psyo_rounds2 <- mark_time_gaps(psyo_rounds2)

# Add speed
psyo_rounds2 <- t_speed(psyo_rounds2)

# Calculate different means
normal <- des_mean(psyo_rounds2, "speed", cname = "normal")
weighted <- des_mean(
  psyo_rounds2, "speed", cweight = "time_difference", cname = "weighted"
)
segmented <- des_mean(
  psyo_rounds2, "speed", cgaps = "time_gap", cname = "segmented"
)
segmented_weighted <- des_mean(
  psyo_rounds2,
  "speed",
  cweight = "time_difference",
  cgaps = "time_gap",
  cname = "segmented_weighted"
)

## End(Not run)
```

des_min

Get the lowest value within each track

Description

Get the lowest value within each track

Usage

```r
des_min(
  tracks, ctarget, cgaps = "", cname = "min", drop = TRUE, t_id = "id",
  des_df = ""
)
```
Arguments

- **tracks**: DataFrame with tracks.
- **ctarget**: Character. Column name of `tracks` that contains the variable for the calculation.
- **cgaps**: Character. Column name of `tracks` that marks gaps with TRUE.
- **cname**: Character. Column name of the returned calculation result.
- **drop**: Logical. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
- **t_id**: Character or numeric. Column name in `tracks` that identifies the separate tracks.
- **des_df**: DataFrame. Function results will be merge with this data frame.

Value

Data frame

- `t_id`: unique id of the track
- `cname`: calculated result of the track

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

- `des_summary`, `des_duplicates`, `des_first`, `des_last`, `des_length`, `des_max`, `des_mean`, `des_sd`, `des_sum`

Examples

```r
## Not run:
data(psyo_rounds2)
first_time <- des_min(psyo_rounds2,"time")

## End(Not run)
```
Calculate normal and weighted sds while excluding gaps in data

Arguments

- **tracks**: `psyo` Data frame with tracks.
- **ctarget**: character. Column name of tracks that contains the variable for the calculation.
- **cweight**: character. Column name of tracks that contains the weight for the calculation.
- **cgaps**: character. Column name of tracks that marks gaps with TRUE.
- **cname**: character. Column name of the returned calculation result.
- **drop**: logical. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
- **t_id**: `character` or `numeric`. Column name in tracks that identifies the separate tracks.
- **des_df**: data frame. Function results will be merge with this data frame.

Value

Data frame

- **id**: id of the track
- **sd**: calculated sd of the track

Credit

If you use `psyosphere` for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere
des_sum

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

des_summary, des_duplicates, des_first, des_last, des_length, des_max, des_min, des_mean, des_sum

Examples

Not run:
Get example data
data(psyo_rounds2)
psyo_rounds2 <- psyo_rounds2[c(1:5,11:15) ,]

clean-up data
psyo_rounds2 <- average_duplicates(psyo_rounds2)

Add gap segments
psyo_rounds2 <- t_time_difference(psyo_rounds2)
psyo_rounds2 <- mark_time_gaps(psyo_rounds2)

Add speed
psyo_rounds2 <- t_speed(psyo_rounds2)

Calculate different sds
normal <- des_sd(psyo_rounds2, "speed", cname = "normal")

weighted <- des_sd(
 psyo_rounds2, "speed", cweight = "time_difference", cname = "weighted"
)

segmented <- des_sd(
 psyo_rounds2, "speed", cgaps="time_gap", cname = "segmented"
)

segmented_weighted <- des_sd(
 psyo_rounds2, "speed",
 cweight = "time_difference",
 cgaps = "time_gap",
 cname = "segmented_weighted"
)

End(Not run)
Description

Calculates sum for each track

Usage

```r
des_sum(
  tracks, ctarget, cgaps = "", cname = "sum", drop = TRUE, t_id = "id",
  des_df = ""
)
```

Arguments

- **tracks**: `psyo`. Data frame with tracks.
- **ctarget**: character. Column name of tracks that contains the variable for the calculation.
- **cgaps**: character. Column name of tracks that marks gaps with TRUE.
- **cname**: character. Column name of the returned calculation result.
- **drop**: logical. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
- **t_id**: `character` or `numeric`. Column name in tracks that identifies the separate tracks.
- **des_df**: data frame. Function results will be merge with this data frame.

Value

Data frame

- **t_id**: unique id of the track
- **cname**: calculated result of the track

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.
des_summary

See Also

des_summary, des_duplicates, des_first, des_last, des_length, des_max, des_min, des_mean, des_sd

Examples

```r
## Not run:
# Get data
data(psyo_rounds2)
tracks <- psyo_rounds2

# Calculations
tracks <- t_distance(tracks)
summary <- des_sum(tracks, "distances_in_m")
```

des_summary

Creates a data frame with a summary of descriptive information for each track

Description

Creates a data frame with a summary of descriptive information for each track

Usage

```r
des_summary(tracks, cweight = "auto", cgaps = "", t_id = "id", des_df = "")
```

Arguments

- **tracks**: `psyo`. Data frame with tracks.
- **cweight**: character. Column name of tracks that contains the weight for the calculation.
- **cgaps**: character. Column name of tracks that marks gaps with TRUE.
- **t_id**: `character or numeric`. Column name in tracks that identifies the separate tracks.
- **des_df**: data frame. Function results will be merge with this data frame.

Value

- **id**: id of the track
- **begin_time**: begin time of the track
- **end_time**: end time of the track
duration_in_mins
duration in minutes
tracker_interval_in_seconds
tracker interval in seconds
coordinates
number of coordinates without gaps
coordinates_gapped
number of coordinates with gaps
coordinates_all
number of all coordinates
time_duplicates
coordinates with the same time
time_gap
coordinates that are marked as gaps because they differ too much from the tracker interval
speed_gap
coordinates that are marked as gaps because they have a higher speed than expected
sum_km
total number of kilometres
mean_kmh
average speed in kmh
mean_kmh_no_stop
average speed in kmh without coordinates with 0 speed
movement_time_sum
total time without speed higher than 0
no_movement_time_sum
total time with speed equal to 0
move_by_no_move_ratio
ratio between movement and no movement time
time_good_sum
data with good data
time_missing_sum
data that is missing
time_gap_sum
data that is excluded by gaps

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one of the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.
dir_add_csv

See Also

`des_duplicates`, `des_first`, `des_last`, `des_length`, `des_max`, `des_min`, `des_mean`, `des_sd`, `des_sum`

Examples

```r
## Not run:
data(psyo_rounds2)
tracks <- psyo_rounds2
descriptive <- des_summary(tracks)

## End(Not run)
```

Bind CSV data to data frame

Description

Read CSV file in directory and bind data to a data frame.

Usage

```r
dir_add_csv(
  tracks, dir, merge_by = "id"
)
```

Arguments

- **tracks**: `psyo`. Data frame with tracks.
- **dir**: The path to the CSV file.
- **merge_by**: The column in the `data_frame` and the CSV file that is used to merge the data.

Value

`Data frame`

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere
Note
The function ignores multiple segments in the GPX file. If you want to find the gaps between the segments you could use the functions `t_time_difference` and `mark_time_gaps`. Further does the function sort the data by time.

Author(s)
Benjamin Ziepert

See Also
`dir_get_gpx`

Examples
```r
## Not run:
data(psyo)
csv_dir <- system.file("extdata", "ids.csv", package = "psyosphere")
psyo <- dir_add_csv(psyo, csv_dir)
## End(Not run)
```

```

dir_get_gpx (Read GPX files from directory into data frame.)

Description
Read GPX files from directory into data frame.

Usage
`dir_get_gpx(dir, tz = "")`

Arguments
- `dir` character. The directory of the GPX files relative to the working directory.
- `tz` character. The time zone for the time stamp of the coordinates.

Details
To avoid problems with the time zone it is advisable to set it. Otherwise the system time is used and this can result in different times on different computers. See `timezones`.

Value
Data frame as `psyo`.
distance_line

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert Dr. Elze Ufkes

See Also

dir_add_csv, timezones

Examples

```r
Not run:

Not run:
dontrun{
 gpx_dir <- system.file("extdata", package="psyosphere")
 psyo_rounds <- dir_get_gpx(gpx_dir, tz="MET")
}
End(Not run)
```

### distance_line

Add shortest distance to a line

**Description**

Add shortest distance to a line

**Usage**

```r
distance_line(
 tracks, line, bind = TRUE, drop = TRUE, cname = "distances_to_line"
)
```

**Arguments**

- **tracks**: `psyo`. Data frame with tracks.
- **line**: `list`. A list with the column lon (numeric) and lat (numeric).
- **bind**: `logical`. Return the distance as list (FALSE) or add it to tracks (TRUE).
- **drop**: `logical`. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
- **cname**: character. Column name of the returned calculation result.
Value

`psyo` or `list`. Distance in meter.

Credit

If you use ‘psyosphere’ for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

distance_peers, distance_point, distance_psyo

Examples

```r
Not run:
dontrun{
 # Get data
data(psyo_rounds)

 # Set start and finish
 lon <- c(6.849975, 6.849627, 6.850001, 6.850350, 6.849975)
 lat <- c(52.241745, 52.241100, 52.241004, 52.241649, 52.241745)
 polygon_start <- data.frame(lon, lat)
 remove(lon, lat)

 lon <- c(6.851810, 6.851000, 6.851489, 6.852296, 6.851810)
 lat <- c(52.241800, 52.240300, 52.240163, 52.241657, 52.241794)
 polygon_finish <- data.frame(lon, lat)
 remove(lon, lat)

 # Select between start and finish
 psyo_rounds <- select_between_polygons(psyo_rounds, polygon_start, polygon_finish)

 # Finish line
 finish <- data.frame(lon = c(6.851810, 6.851000), lat = c(52.241800, 52.240300))

 # Plot tracks, selection polygons and finish line
 plot <- plot_tracks(psyo_rounds, t_id = "")
 plot <- plot_polygon(polygon_start, plot = plot)
```
distance_peers

Add distance to peers

Description
Add distance in meters to peers within the same selection

Usage
distance_peers(
  tracks, cpeer = "", single = FALSE, average = TRUE, cname = "average_dis",
  bind = TRUE, drop = TRUE, t_id = "id"
)

Arguments

tracks  psyo. Data frame with tracks.
cpeer   character. Column that identifies peers.
single   logical. Append distances to each participant independently.
averagenoise logical. Append average distances to peers.
cname   character. Column name for the average distance.
bind    logical. Return the distance as list (FALSE) or add it to tracks (TRUE).
drop    logical. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
t_id    character or numeric. Column name in tracks that identifies the peers that get compared with each other.

Details
The function also determines the distance if the time stamps of the coordinates don’t match. Please look at the example section for the details.

Only the distance to peers is determined. Therefore, distance to one-self is NA.

Value

psyo
Credit

If you use `psyosphere` for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Note

Be aware: this function can take a lot time. You can use average_coordinates first to test your script with a small sample.

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

distance_line, distance_point, distance_psyo

Examples

```r
Not run: \dontrun{
Simple example ----------------------------------
data(psyo_rounds2)
time <- as.POSIXct("2015-09-03 13:51:07")
tracks <- psyo_rounds2[psyo_rounds2[,"time"] == time,]
tracks <- distance_peers(tracks)

Example with intersect position

p1 --------x-------> p2
|
|
p3

We have two tracks. From track 1 we have p1 and p2 at a certain time. From
tracks 2 we have point 3. Point 3 has a time between p1 and p2. We want to
know what the distance from point 3 is to track 1 at the time of point 3. For
this we need determine point x.

Create the points
p1 <- data.frame(time = "2016-01-01 01:00:00", lon = 0, lat = 0, id = "1")
p2 <- data.frame(time = "2016-01-01 03:00:00", lon = 2, lat = 0, id = "1")
p3 <- data.frame(time = "2016-01-01 02:00:00", lon = 1, lat = 1, id = "2")
p1$time <- as.POSIXct(p1$time)
```
p2$time <- as.POSIXct(p2$time)
p3$time <- as.POSIXct(p3$time)

# Combine into a track
tracks <- rbind(p1, p2, p3)

# Get point x for illustration
x <- psyosphere:::timed_destination_point_private(p1, p2, p3, "id")

# Plot points as track for illustration
plot <- plot_tracks(tracks)

# Add x to plot for illustration
plot_tracks(x, plot = plot)

# Get distances
tracks <- distance_peers(tracks)
}
## End(Not run)

distance_point

---

**Add the distances to a point from each coordinate**

**Description**

Add the distances to a point from each coordinate

**Usage**

```r
distance_point(
 tracks, point, bind = TRUE, drop = TRUE, cname = "dis_to_point_in_m"
)
```

**Arguments**

- `tracks` *psyo*. Data frame with tracks.
- `point` *list*. A list, matrix or data.frame with the columns lon (`numeric`) and lat (`numeric`) and one row.
- `bind` *logical*. Return the distance as list (FALSE) or add it to tracks (TRUE).
- `drop` *logical*. If TRUE drop the data frame and return value as vector or list.
- `cname` *character*. Column name of the returned calculation result.

**Value**

*psyo*
distance_psyo

Credit

If you use ‘psyosphere’ for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

distance_line, distance_peers, distance_psyo

Examples

```r
Not run:
data(psyo)

Un-named list
point <- c(4.936197, 52.314701)
distance_point(psyo[1,], point, bind = FALSE)

Named list
point <- c(lat = 52.314701, lon = 4.936197)
distance_point(psyo[1,], point, bind = FALSE)

Multiple distance to point
coordinates <- distance_point(psyo, point)

End(Not run)
```

distance_psyo Add distance to another track in psyo format

Description

Add distance to another track in psyo format.

Usage

distance_psyo(
  tracks1, tracks2, t_id1 = "id", t_id2 = "id", bind = TRUE, drop = TRUE
)
Arguments

- **tracks1**: `psyo`. Data frame with tracks.
- **tracks2**: `psyo`. Data frame with tracks.
- **t_id1**: `character` or `numeric`. Column name in `tracks` that identifies the separate tracks.
- **t_id2**: `character` or `numeric`. Column name in `tracks` that identifies the separate tracks.
- **bind**: `logical`. Return the distance as list (FALSE) or add it to tracks (TRUE).
- **drop**: `logical`. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.

Value

- `psyo`

Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Note

Be aware: this function can take a lot time. You can use `average_coordinates` first to test your script with a small sample.

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

- `distance_line`, `distance_peers`, `distance_point`

Examples

```r
Not run:
\dontrun{
data(psyo_rounds2)
psyo_distance <- select_test_sample(psyo_rounds2, 5)
psyo_distance <- distance_psyo(psyo_rounds2, psyo_rounds2)
}
End(Not run)
```
distance_to_direct_line

Add deviation from shortest route from begin of track to a line

Description

Add deviation from shortest route from begin of track to a line

Usage

distance_to_direct_line(
  tracks, line, bind = TRUE, drop = TRUE, cname = "distance_to_direct_line",
  t_id = "id"
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tracks</td>
<td><em>psyo</em>. Data frame with tracks.</td>
</tr>
<tr>
<td>line</td>
<td><em>list</em>. A list with the column lon (<em>numeric</em>) and lat (<em>numeric</em>).</td>
</tr>
<tr>
<td>t_id</td>
<td><em>character</em> or <em>numeric</em>.* Column name in tracks that identifies the separate tracks.</td>
</tr>
<tr>
<td>bind</td>
<td><em>logical</em>. Return the distance as list (FALSE) or add it to tracks (TRUE).</td>
</tr>
<tr>
<td>drop</td>
<td><em>logical</em>. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.</td>
</tr>
<tr>
<td>cname</td>
<td><em>character</em>. Column name of the returned calculation result.</td>
</tr>
</tbody>
</table>

Value

*psyo*. Distance in meter.

Credit

If you use ‘psyosphere’ for commercial use or research, please support us by include one off the following references:

- **MIT license**: “psyosphere” by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.
### export_gpx

**Export tracks as gpx files**

**Description**

Export tracks as gpx files.

**Usage**

```r
export_gpx(tracks, t_id = "id")
```

**Arguments**

- `tracks`: *psyo*. Data frame with tracks. The columns `track_name` and `file_name` have to be defined.
- `t_id`: *character or numeric*. Column name in `tracks` that identifies the separate tracks.

**Details**

- `track_name` is the name of the track.
- `file_name` is the file name of the gpx file.

**Author(s)**

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.
Export tracks as kml files

Usage

export_kml(tracks, t_id = "id")

Arguments

- **tracks**: `psy`. Data frame with tracks. The columns `track_name`, `file_name`, `track_color` have to be defined.
- **t_id**: `character` or `numeric`. Column name in tracks that identifies the separate tracks.

Details

- `track_name` is the name of the track.
- `file_name` is the file name of the kml file.
- `color` is the color of the track. For instance "ffaa00bb" sets the transparency to bb in exdecimal or 73%, sets blue to 00, sets green to aa, and sets red to ff. See also `aes_colour_fill_alpha`. 

See Also

code export_kml

Examples

```R
Not run:
\dontrun{
 # Get tracks
 data(psy)
 # Add columns
 dir <- tempdir()
 psy[, "track_name"] <- psy[, "id"]
 psy[, "file_name"] <- file.path(dir, psy[, "track_name"])
 # Export files
 export_gpx(tracks = psy)
}
End(Not run)
```
**mark_gap_segments**

**Author(s)**

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

**See Also**

codeexport_gpx

**Examples**

```r
Not run:
\dontrun{

Get tracks
data(psyo)

Add columns
dir <- tempdir()
psyo[, "track_color"] <- "bb00aaff"
psyo[, "track_name"] <- psyo[, "id"]
psyo[, "file_name"] <- file.path(dir, paste0(psyo[, "track_name"], ".kml"))

Export files
export_kml(psyo)
}
End(Not run)
```

---

**Description**

Adding column with segment names between gaps

**Usage**

```r
mark_gap_segments(
 tracks, cgaps, bind = TRUE, drop = TRUE, cname = "gap_segments", t_id = "id"
)
```

**Arguments**

- **tracks** 
  `psyo`. Data frame with tracks.

- **cgaps** 
  `character`. Column name of tracks that marks gaps with TRUE.

- **bind** 
  `logical`. Return the distance as list (FALSE) or add it to tracks (TRUE).
mark_gap_segments

**drop** logical. If `TRUE` and only one observation is returned drop the data frame and collapse the return value to a vector.

**cname** character. Column name of new column in `tracks` that contains the segment names.

**t_id** *character or numeric*. Column name in `tracks` that identifies the separate tracks.

**Value**

`psyo`

**Credit**

If you use `psyosphere` for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

**Author(s)**

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

**See Also**

`mark_speed_gaps, mark_time_gaps`

**Examples**

```r
Not run:
data(psyo_rounds2)
psyo_rounds2 <- average_duplicates(psyo_rounds2)
psyo_rounds2 <- t_time_difference(psyo_rounds2)

psyo_rounds2 <- mark_time_gaps(psyo_rounds2)
psyo_rounds2 <- mark_gap_segments(psyo_rounds2,"time_gap")

End(Not run)
```
mark_inside_polygon  

*Mark coordinates within a polygon*

**Description**

A column will be created that indicates whether a coordinate lies within a polygon or not. See also `point.in.polygon`.

**Usage**

```r
mark_inside_polygon(
 tracks, polygon, bind = TRUE, drop = TRUE, cname = "in_polygon"
)
```

**Arguments**

- `tracks`  
  *psyo*. Data frame with tracks.
- `polygon`  
  *list*. A list with the column `lon` (*numeric*) and `lat` (*numeric*).
- `bind`  
  *logical*. Return the distance as list (FALSE) or add it to `tracks` (TRUE).
- `drop`  
  *logical*. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
- `cname`  
  *character*. The name of the new column.

**Value**

*psyo*

**Credit**

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

**Author(s)**

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

**See Also**

- `point.in.polygon`
### Examples

```r
Not run:
Create polygon
lon <- c(4.92, 4.93, 4.93, 4.92, 4.92)
lat <- c(52.311, 52.311, 52.308, 52.308, 52.311)
poly <- data.frame(lon, lat)
remove(lon, lat)

Get data
data(psyo)

Plot polygon and data
plot <- plot_tracks(psyo, t_id ="")
plot <- plot_polygon(poly, plot = plot)
plot

Mark coordinates within polygon
psyo <- mark_inside_polygon(psyo, poly)

Plot inside polygon in different color
in_poly <- psyo[psyo[,"in_polygon"] != 0,]
in_poly[,"dot_color"] <- "red"
plot_tracks(in_poly, plot = plot)
}
End(Not run)
```

---

**mark_speed_gaps**

Mark speeds that exceed a certain speed limit as gaps

### Description

Mark speeds that exceed a certain speed limit as gaps

### Usage

```r
mark_speed_gaps(
 tracks, speed_limit, cspeed = "speed", bind = TRUE, drop = TRUE,
 cname = "speed_gap", t_id = "id"
)
```

### Arguments

- **tracks** - `psyo`. Data frame with tracks.
- **speed_limit** - numeric. Values in column `cspeed` that are equal or higher than this value will be marked as gaps in column `cgaps` as `TRUE`.
- **cspeed** - character. Column name of tracks that contains the speed as numeric values.
- **bind** - logical. Return the distance as list (FALSE) or add it to `tracks` (TRUE).
mark_speed_gaps

- **drop** logical. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
- **cname** character. Column name of tracks that marks gaps with TRUE. If the column does not exist it will be created.
- **t_id** character or numeric. Column name in tracks that identifies the separate tracks.

**Value**

- **psyo**

**Credit**

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

**Author(s)**

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

**See Also**

- mark_gap_segments, mark_time_gaps, select_gaps

**Examples**

```r
Not run:
Get example data
data(psyo_rounds2)
speedt <- psyo_rounds2[c(1:5,11:15) ,]
remove(psyo_rounds2)

clean-up data
speedt <- average_duplicates(speedt)
speedt <- t_time_difference(speedt)
speedt <- mark_time_gaps(speedt)

Add speed
speedt <- t_speed(speedt)

Advanced mean speed without speed gap
des_mean(speedt, "speed", "time_difference", "time_gap")
```
# Mark speed gap
speedt <- mark_speed_gaps(speedt, 8)

# Advanced mean speed with speed gap
des_mean(speedt, "speed", "time_difference", c("time_gap","speed_gap"))

## End(Not run)

mark_time_gaps

Mark segments between data gaps

Description

Mark segments between data gaps

Usage

mark_time_gaps(
  tracks, interval = 0, factor = 3, ctime_difference = "time_difference",
  bind = TRUE, drop = TRUE, cname = "time_gap", t_id = "id"
)

Arguments

tracks     psyo. Data frame with tracks.
interval    numeric. Recording interval of the GPS tracker in seconds. Use 0 to automatically determine the interval. For this the most frequent interval is used.
factor      numeric. Multiplier to determine gaps. If a time difference between coordinates is bigger than tracker_interval * factor it is marked as gap.
ctime_difference character. Column name of tracks that contains the time difference as numeric values.
bind        logical. Return the distance as list (FALSE) or add it to tracks (TRUE).
drop        logical. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
cname       character. Column name of tracks that marks gaps with TRUE. If the column does not exist it will be created.
t_id        character or numeric. Column name in tracks that identifies the separate tracks.

Value

psyo
Credit

If you use 'psyosphere' for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

mark_gap_segments, mark_speed_gaps, select_gaps

Examples

```r
Not run:
Get example data
data(psyo_rounds2)

clean-up data
psyo_rounds2 <- average_duplicates(psyo_rounds2)

Add gap segments
psyo_rounds2 <- t_time_difference(psyo_rounds2)
psyo_rounds2 <- mark_time_gaps(psyo_rounds2)

Check result
psyo_rounds2 <- psyo_rounds2[which(psyo_rounds2[,"time_gap"]) ,]

End(Not run)
```

plot_line

*Plot line on map*

Description

Adds a line to an existing ggmap object.

Usage

```r
plot_line(
 line, colour = "", size = 1, plot = "", zoom = -1
)
```
Arguments

- `line` *list*. A list with the column `lon` (*numeric*) and `lat` (*numeric*).
- `colour` *character*. Colour of the line.
- `size` *numeric*. Thickness of the line.
- `plot` *ggmap*. An existing map / plot where the tracks are added. If no plot is provided a Google map will be downloaded.
- `zoom` *numeric*. Zoom factor of the map. See `ggmap::get_googlemap`.

Value

A `ggmap` object.

Author(s)

Benjamin Ziepert. Please send feedback to: `<feedback-psyosphere@analyse-gps.com>`.

See Also

- `plot_map`, `plot_tracks`, `plot_polygon`

Examples

```r
Not run:
Packages

library(data.table)

Not run:
finish <- data.frame(lon = c(6.851810,6.851000), lat = c(52.241800,52.240300))
plot_line(finish)
End(Not run)
```

---

### plot_map

**Get a Google map**

Get a Google map that fits to the tracks that are provided in *psyo* format.

#### Usage

```r
plot_map(
 tracks, zoom = -1, maptype = "terrain", extent = "panel"
)
```

#### Arguments

- `tracks` *psyo*. Data frame with tracks.
- `zoom` *numeric*. Zoom level. -1 for auto zoom or from 3 (continent) to 21 (building). See also `ggmap::get_map`.
- `maptype` *character*. See `ggmap::get_googlemap`.
- `extent` *character*. See `ggmap::ggmap`.
plot_polygon

Value

A ggmap object.

Author(s)

Benjamin Ziepert Dr. Elze Ufkes

See Also

plot_line, plot_tracks, plot_polygon

Examples

## Not run: \dontrun{
  data(psyo)
  plot_map(psyo)
}
## End(Not run)

---

plot_polygon

Plot polygon on map

Description

Add a polygon to an existing ggmap object.

Usage

plot_polygon(polygon, colour = "blue", plot = "", zoom = -1)

Arguments

- **polygon**: list. A list with the column lon (numeric) and lat (numeric).
- **colour**: character. Colour of the line.
- **plot**: ggmap. An existing map / plot where the tracks are added. If no plot is provided a Google map will be downloaded.
- **zoom**: numeric. Zoom factor of the map. See ggmap::get_googlemap.

Value

A ggmap object.

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.
See Also

`plot_map`, `plot_line`, `plot_tracks`

Examples

```r
Not run: \dontrun{
lon <- c(6.849975, 6.849627, 6.850001, 6.850350, 6.849975)
lat <- c(52.241745, 52.241100, 52.241004, 52.241649, 52.241745)
polygon <- data.frame(lon, lat)
remove(lon, lat)

plot <- plot_polygon(polygon)
plot
}
End(Not run)
```

plot_tracks

Plot tracks on a map

Description

Plot tracks in the `psylo` format on map.

Usage

```r
plot_tracks(
 tracks, single = FALSE, line = TRUE, dots = TRUE, plot = "", zoom = -1,
 save_dir = "", cgaps = "", t_id = "id"
)
```

Arguments

- **tracks** `psylo`. Tracks that will be plotted.
- **single** `logical`. Display the plotted maps. Between each plot the script will wait for user confirmation until the next plot will be displayed.
- **line** `logical`. Whether to draw a line between the coordinates.
- **dots** `logical`. Whether to display the coordinates.
- **plot** `ggmap`. An existing map / plot where the tracks are added. If no plot is provided a Google map will be downloaded.
- **zoom** `numeric`. Zoom factor of the map. See `ggmap::get_googlemap`.
- **save_dir** `character`. Save the plots in a directory. If empty no plots will be saved.
- **cgaps** `character`. Column name of tracks that marks gaps with TRUE.
- **t_id** `character or integer`. The column name that identifies the different tracks. Use `t_id = ""` to process all tracks.
Value

A ggmap object.

Author(s)

Benjamin Ziepert

See Also

plot_map, plot_line, plot_polygon

Examples

## Not run:
dontrun{
# Plot tracks
data(psyo_rounds2)
plot <- plot_tracks(psyo_rounds2)
plot

# Get zoom level
plot$zoom
}
## End(Not run)

---

psyo Example how data should be formatted.

Description

Example how data in psyosphere should be formatted.

Usage

data(psyo)

Format

A data frame with 15 observations on the following 5 variables.

id  A character or numeric vector. Id for each unique track.
p_id  A character or numeric vector. Unique by time sorted ID for every coordinate within a track.
time  A POSIXct. Date and time of the coordinate.
lon  A numeric vector. Longitude of a coordinate in degree.
lat  A numeric vector. Latitude of a coordinate in degree.
Details

The example data contain three different tracks ("01.gpx", "02.gpx", "03.gpx") and 5 observations / coordinates for each track.

The data frame should at least contain the variables mentioned above. Additional columns can be added. Where possible the package will preserve these columns.

See Also

val_psyo

Examples

```r
Not run:
Simple example ---

data(psyo)
print(psyo)

Result:
#
id p_id time lon lat
01.gpx 0 2016-06-19 12:37:53 4.93078 52.31003
01.gpx 1 2016-06-19 12:37:58 4.93038 52.30985
01.gpx 2 2016-06-19 12:38:08 4.92958 52.30953
01.gpx 3 2016-06-19 12:38:18 4.92803 52.30883
01.gpx 4 2016-06-19 12:38:28 4.92652 52.30800
02.gpx 0 2016-06-19 11:28:25 4.93580 52.31450
02.gpx 1 2016-06-19 11:28:38 4.93580 52.31450
02.gpx 2 2016-06-19 11:32:03 4.93580 52.31450
02.gpx 3 2016-06-19 11:32:13 4.93580 52.31450
02.gpx 4 2016-06-19 11:32:28 4.93580 52.31450
03.gpx 0 2016-06-20 10:17:08 5.00828 52.35005
03.gpx 1 2016-06-20 10:17:18 5.00843 52.35010
03.gpx 2 2016-06-20 10:17:28 5.00847 52.35028
03.gpx 3 2016-06-20 10:17:43 5.00847 52.35028
03.gpx 4 2016-06-20 10:17:53 5.00847 52.35028

How to create a geodata data frame from scratch -------------------------------------

id <- c("01.gpx", "01.gpx", "01.gpx", "01.gpx", "01.gpx",
 "02.gpx", "02.gpx", "02.gpx", "02.gpx", "02.gpx",
 "03.gpx", "03.gpx", "03.gpx", "03.gpx", "03.gpx")
p_id <- c(0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4)

```

lat <- c(52.31003, 52.30985, 52.30953, 52.30883, 52.30800, 52.31450, 52.31450, 52.31450, 52.31450, 52.31450, 52.35005, 52.35010, 52.35028, 52.35028, 52.35028)

psyo <- data.frame(id, p_id, time, lon, lat)
psyo <- as.POSIXct(psyo$time)
remove(id, p_id, time, lon, lat)
print(psyo)

## End(Not run)

### psyosphere

#### psyosphere details

**Description**

'psyosphere' can be used to analyse location data (latitude, longitude, elevation). Based on spherical trigonometry, variables such as speed, bearing, and distances can be calculated from moment to moment, depending on the sampling frequency of the equipment used, and independent of scale. Additionally, the package can plot tracks, coordinates, and shapes on maps, and sub-tracks can be selected with point-in-polygon or other techniques. The package is optimized to support behavioural science experiments with multiple tracks. It can detect and clean up errors in the data, and resulting data can be exported to be analysed in statistical software or geographic information systems (GIS).

**Details**

'psyosphere' uses geodata data frames to store tracks. For the format, you can read `psyo`. The package handles latitude and longitude and mostly ignores elevation.

For the first steps please read [about_analysing_tips](#).

**Credit**

If you use ‘psyosphere’ for commercial use or research, please support us by include one off the following references:

- **MIT license**: "psyosphere" by B. Ziepert, E. G. Ufkes & P. W. de Vries from https://CRAN.R-project.org/package=psyosphere
Credits

For 'psyosphere' we made use of the following software:

- "R" by The R foundation from r-project.org / GNU-2
- "RStudio" by RStudio from rstudio.com / AGPL v3
- "ggmap" by D. Kahle & H. Wickham from cran.rstudio.com / GPL-2
- "rgdal" by R. Bivand, T. Keitt, B. Rowlingson, E. Pebesma, M. Sumner, R. Hijmans & E. Rouault from cran.rstudio.com / GPL-2
- "plyr" by H. Wickham from cran.rstudio.com / MIT
- "geosphere" by R. Hijmans, E. Williams & C. Vennes from cran.rstudio.com / GPL-3
- "ggplot2" by H. Wickham, W. Chang & RStudio from cran.rstudio.com / GPL-2
- "sp" by E. Pebesma, R. Bivand, B. Rowlingson, V. Gomez-Rubio, R. Hijmans, M. Sumner, D. MacQueen, J. Lemon & J. O’Brien from cran.rstudio.com / GPL-2
- "RGoogleMaps" by M. Loecher from cran.rstudio.com / GPL
- "Hmisc" by Frank E Harrell Jr, with contributions from Charles Dupont and many others from cran.rstudio.com / GPL-3

Author(s)

Benjamin Ziepert. <feedback-psyosphere@analyse-gps.com>.
Dr. Elze G. Ufkes <elze.ufkes@utwente.nl>.
Dr. Ir. Peter W. de Vries <p.w.devries@utwente.nl>.

psyosphere

Example data to demonstrate the geomean function

Description

Data set in the psycho format.

Usage

data(psyosphere)

Format

A data frame with 4 observations on the following 6 variables.

- id A character vector. With 1 level: "01.gpx"
- p_id A numeric vector. Unique by time sorted ID for every coordinate within a track.
- time A POSIXct. Date and time of the coordinate.
- lon A numeric vector. Longitude of a coordinate in degree.
- lat A numeric vector. Latitude of a coordinate in degree.
- other A character vector. With 4 levels "L", "e", "t", and "o"
## Not run:

```r
Simple example ---

Get data frame and compress 4 coordinates
data("psyo_geomean")
compressed_tracks <- average_coordinates(psyo_geomean, 30, "seconds")

End(Not run)
```

### psyo_rounds

GPS example of walking in circles in `psyo` format.

#### Usage

```r
data(psyo_rounds)
```

#### Format

A data frame with 2896 observations on the following 6 variables.

- `id`  
  A character or numeric vector. Id for each unique track.

- `p_id`  
  A character or numeric vector. Unique by time sorted ID for every coordinate within a track.

- `time`  
  A POSIXct. Date and time of the coordinate.

- `lon`  
  A numeric vector. Longitude of a coordinate in degree.

- `lat`  
  A numeric vector. Latitude of a coordinate in degree.

- `ele`  
  A numeric vector. Elevation of a coordinate in degree.

- `tracker`  
  A numeric vector.

- `team`  
  A factor with levels 1 11 12 13 14 15 16 17 18 2 3 4 5 6 7 8 D1 D2 D3

- `ppn`  
  A numeric vector.

### See Also

`val_psyo`
Examples

```r
Not run: \dontrun{
data(psyo_rounds2)
plot_tracks(psyo_rounds2, t_id = "")
}
End(Not run)
```

---

**psyo_rounds2**

*GPS example with 3 selected rounds*

---

### Description

GPS example with 3 selected rounds in *psyo* format.

### Usage

```r
data(psyo_rounds2)
```

### Format

A data frame with 258 observations on the following 6 variables.

- **track**: A numeric vector
- **id**: A character or numeric vector. Id for each unique track.
- **p_id**: A character or numeric vector. Unique by time sorted ID for every coordinate within a track.
- **time**: A `POSIXct`. Date and time of the coordinate.
- **lon**: A numeric vector. Longitude of a coordinate in degree.
- **lat**: A numeric vector. Latitude of a coordinate in degree.
- **ele**: A numeric vector. Elevation of a coordinate in degree.
- **tracker**: A numeric vector
- **team**: A factor with levels `1 11 12 13 14 15 16 17 18 2 3 4 5 6 7 8 D1 D2 D3`
- **ppn**: A numeric vector

### See Also

`val_psyo`

### Examples

```r
Not run: \dontrun{
data(psyo_rounds2)
plot_tracks(psyo_rounds2, t_id = "")
}
End(Not run)
```
**psyo_rounds_map**

*Map for data psyo_rounds and psyo_rounds2*

---

**Description**

Google map as ggplot object

**Usage**

```r
data(psyo_rounds_map)
```

**Format**

See [ggplot](https://ggplot2.rstudio.com)

**Examples**

```r
Not run: \dontrun{
data(psyo_rounds_map)
plot(psyo_rounds_map)
}
End(Not run)
```

---

**select_between_polygons**

*Select tracks between two polygons.*

---

**Description**

Select tracks between a start and a finish polygon. Only the data between the polygons will remain. Data that is not between the start and finish polygon will be disregarded. If a track passes multiple times first the start and then the finish will be split up in rounds and new track id’s will be created for each round.

**Usage**

```r
select_between_polygons(
 tracks, poly1, poly2, t_id = "id", merge_id = TRUE
)
```
Arguments

- **tracks**
  - `psyo`. Data frame with tracks.

- **poly1**
  - `data frame`. A data frame with the columns `lon (numeric)` and `lat (numeric)`. All coordinates will be selected that start after leaving this polygon and enter `polygon_finish`. The polygon should be closed, therefore the first and last coordinate must be the same. See also `point.in.polygon`.

- **poly2**
  - `data frame`. A data frame with the columns `lon (numeric)` and `lat (numeric)`. All coordinates will be selected that start after leaving `polygon_start` and enter this polygon. The polygon should be closed, therefore the first and last coordinate must be the same. See also `point.in.polygon`.

- **t_id**
  - `character or numeric`. Column name in `tracks` that identifies the separate tracks.

- **merge_id**
  - `logical`. If TRUE append the round to the current `track id` column `t_id`. If FALSE create a separate column with the round number.

Details

The following image shows a track before selection.

The following image shows a track after selection with 3 rounds.

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

Examples

```r
Not run: \
dontrun{}
Create polygons
lon <- c(6.849975, 6.849627, 6.850001, 6.850350, 6.849975)
lat <- c(52.241745, 52.241100, 52.241004, 52.241649, 52.241745)
polygon_start <- data.frame(lon, lat)
remove(lon, lat)

lon <- c(6.851810, 6.851000, 6.851489, 6.852296, 6.851810)
lat <- c(52.241800, 52.240300, 52.240163, 52.241657, 52.241794)
polygon_finish <- data.frame(lon, lat)
remove(lon, lat)

Get a track
data(psyo_rounds)

Plot tracks
plot <- plot_tracks(psyo_rounds, zoom = 17, t_id = "")
plot
```
collections

select_gaps

Select all coordinates with a gap

Description

Select all coordinates with a gap

Usage

select_gaps(tracks, cgaps)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tracks</td>
<td>psyo. Data frame with tracks.</td>
</tr>
<tr>
<td>cgaps</td>
<td>character. Column name of tracks that marks gaps with TRUE.</td>
</tr>
</tbody>
</table>

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

mark_time_gaps, mark_speed_gaps, select_without_gaps

Examples

## Not run:
# Get data
data(psyo_rounds2)
tracks <- psyo_rounds2

# Calculations
select_test_sample

Description
Select a sample from each track to test functions quicker.

Usage
select_test_sample(tracks, size = 3, t_id = "id")

Arguments
- tracks: psyo. Data frame with tracks.
- size: numeric. Remaining number of coordinates of each track in tracks
- t_id: character or numeric. Column name in tracks that identifies the separate tracks.

Author(s)
Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also
- average_coordinates

Examples
```r
Not run:
data(psyo)
test_tracks <- select_test_sample(psyo)
End(Not run)
```
select_without_gaps  

Select all coordinates without gap

Description
Select all coordinates without gap

Usage
select_without_gaps(tracks, cgaps)

Arguments

- tracks  
 psyo. Data frame with tracks.
- cgaps  
  character. Column name of tracks that marks gaps with TRUE.

Author(s)
Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also
mark_time_gaps, mark_speed_gaps, select_gaps

Examples

```r
Not run:
Get data
data(psyo_rounds2)
tracks <- psyo_rounds2

Calculations
tracks <- average_duplicates(tracks)
tracks <- t_time_difference(tracks)
tracks <- mark_time_gaps(tracks)
tracks <- select_without_gaps(tracks,"time_gap")
End(Not run)
```
Description

Bearing towards the next coordinate in the tracks.

Usage

t_bearing(
    tracks, t_id = "id", bind = TRUE, drop = TRUE, cname = "bearings"
)

Arguments

tracks psyo. Data frame with tracks.
t_id character or numeric. Column name in tracks that identifies the separate tracks.
binding logical. Return the distance as list (FALSE) or add it to tracks (TRUE).
drop logical. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
cname character. Column name of the returned calculation result.

Details

For the last coordinate within a track the function returns empty because there are no bearings towards a following coordinate possible.

If the succeeding coordinate is the same like the current coordinate, the function return empty for the current coordinate.

Value

psyo

Note

Please be aware that this function calculates the initial bearing from the first to the second point and that this bearing is saved with the second point. This seems counter intuitive for an initial bearing but is done for better compatibility with the gap functions.

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

bearing, t_distance, t_speed, t_time_difference
**t_distance**

**Examples**

```r
Not run:
data(psyo)
psyo <- t_bearing(psyo)
End(Not run)
```

---

**t_distance**  
*Add distance to next coordinate*

**Description**

Distance towards the next coordinate in the tracks.

**Usage**

```r
t_distance(
 tracks, bind = TRUE, drop = TRUE, cname = "distances_in_m", t_id = "id"
)
```

**Arguments**

- `tracks`: *psyo*. Data frame with tracks.
- `bind`: *logical*. Return the distance as list (FALSE) or add it to tracks (TRUE).
- `drop`: *logical*. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
- `cname`: *character*. Column name of the returned calculation result.
- `t_id`: *character or numeric*. Column name in `tracks` that identifies the separate tracks.

**Details**

For the last coordinate within a track the function returns empty because there is no distance towards a following coordinate possible. Using 0 instead of NA may be an unwanted bias within the data.

**Value**

*psyo*

**Note**

The distance between the first and the second point is stored with the second point. This is done for higher compatibility with the gap functions.

**Author(s)**

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.
t_speed

See Also
distHaversine, t_bearing, t_speed, t_time_difference

Examples
```r
Not run:
data(psyo)
psyo <- t_distance(psyo)
End(Not run)
```

---

**t_speed**

*Add speed*

**Description**

Speed towards the next coordinate in the track in kmh.

**Usage**

```r
t_speed(
 tracks, bind = TRUE, drop = TRUE, cname = "speed", t_id = "id"
)
```

**Arguments**

- `tracks` *psyo*. Data frame with tracks.
- `bind` *logical*. Return the distance as list (FALSE) or add it to `tracks` (TRUE).
- `drop` *logical*. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
- `cname` *character*. Column name of the returned calculation result.
- `t_id` *character or numeric*. Column name in `tracks` that identifies the separate tracks.

**Details**

For the last coordinate within a track the function returns NA because there is no speed towards a following coordinate possible.

**Value**

`psyo`

**Note**

The speed between the first and the second point is stored with the second point. This is done for higher compatibility with the gap functions.
Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

t_bearing, t_distance, t_time_difference

Examples

## Not run:
data(psyo)
psyo <- t_speed(psyo)

## End(Not run)

---

**t_time_difference**

Add time difference column for weighted statistics

Description

This function generates a column with the time difference to the next coordinate. This is important since the GPS variables seldom have the same time difference and means and standard deviations should be weighted. The generated column can be used as "weight" variable.

Usage

```r
t_time_difference(
 tracks, units = "secs", bind = TRUE, drop = TRUE, cname = "time_difference",
 t_id = "id"
)
```

Arguments

- **tracks**: `psyo`. Data frame with tracks.
- **units**: character. Same as for `link[base]{difftime}` but avoid using "auto". Auto could generate different units for the different tracks.
- **bind**: `logical`. Return the distance as list (FALSE) or add it to `tracks` (TRUE).
- **drop**: `logical`. If TRUE and only one observation is returned drop the data frame and collapse the return value to a vector.
- **cname**: character. Column name of the returned calculation result.
- **t_id**: `character or numeric`. Column name in `tracks` that identifies the separate tracks.

Value

- `psyo`
Note

The time difference between the first and the second point is stored with the second point. This is done for higher compatibility with the gap functions.

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

difftime, t_bearing, t_distance, t_speed

Examples

```r
Not run:
data(psyo)
t_time_difference(psyo, units = "secs")
End(Not run)
```

---

val_cname

Validate the column name of a data frame

Description

Validate the column name of a data frame

Usage

```r
val_cname(tracks, cname, type = "", size = 0, force = 2, def = TRUE)
```

Arguments

- `tracks` (psyo. Data frame with tracks.
- `cname` character. Column name of column in `tracks` that is to be validated.
- `type` character. Type of column in `tracks` determined by `mode`.
- `size` size. Observation count of column in `tracks` determined by `length`.
- `force` numeric. An error with force_id will be reported as `stop` when 2, `warning` when 1 or nothing when 0.
- `def` `logical`. Ignore this check if `cname = ""`. 

Value

character
## val_psyo

**Validate psyo format**

### Description

Checks if the provided data frame is conforming to the format that is used by `psyosphere` and returns a *warning* or *stop* if necessary.

### Usage

```r
val_psyo(tracks, id = 1, p_id = 1, time = 1, lon = 2, lat = 2)
```
Arguments

- **tracks**: *psyo*. The data frame that is to be check if it confirms to the *psyo* format.
- **id**: *numeric*. An error with *force_id* will be reported as stop when 2, warning when 1 or nothing when 0.
- **p_id**: *numeric*. An error with *force_p_id* will be reported as stop when 2, warning when 1 or nothing when 0.
- **time**: *numeric*. An error with *force_time* will be reported as stop when 2, warning when 1 or nothing when 0.
- **lon**: *numeric*. An error with *force_lon* will be reported as stop when 2, warning when 1 or nothing when 0.
- **lat**: *numeric*. An error with *force_lat* will be reported as stop when 2, warning when 1 or nothing when 0.

Author(s)

Benjamin Ziepert. Please send feedback to: <feedback-psyosphere@analyse-gps.com>.

See Also

- `val_cname`
- `val_psyo`
- `val_var`

Examples

```r
Not run: \dontrun{
Produce a warning ---
data(psyo)
 psyo$lon <- NULL # remove time column
e <- val_psyo(psyo); if (e != "") {stop(e)}

Produce a stop ---
data(psyo)
 psyo$time <- NULL # remove time column
e <- val_psyo(psyo, time = 2); if (e != "") {stop(e)}

Produce a stop without setting "force" --------------------------
data(psyo)
 psyo$lon <- NULL # remove time column
 e <- val_psyo(psyo); if (e != "") {stop(e)}
}## End(Not run)
```
Description

Validates variables before further procedure execution.

Usage

val_var(test_var, type, force = 2, size = 0, def = FALSE)

Arguments

test_var $Multiple$. The variable that is to be tested.
type $Character$. The variable type determined by mode or lubridate::is.POSIXct. For example numeric, character, logical, list, POSIXct or ggplot.
force $numeric$. Error message is sent as warning (1) or stop (2).
size $numeric$. If size is not 0 the length of test_var will be checked with size.
def $logical$. Ignore this check if cname = ""

Author(s)

Benjamin Ziepert

See Also

val_cname, val_psyo, val_var

Examples

## Not run:
# Create variables
id <- 10
name <- "test"
time <- as.POSIXct("1986-08-31 02:15:00")

# Check variables
# e <- val_var(id, "character"); if (e != "") {stop(e)} # error and stop
# e <- val_var(name, "logical", FALSE); if (e != "") {stop(e)} # error and warning
e <- val_var(time, "POSIXct"); if (e != "") {stop(e)} # no error

## End(Not run)
Index

*Topic compress
  average_coordinates, 15

*Topic datasets
  psyo, 55
  psyo_geomean, 58
  psyo_rounds, 59
  psyo_rounds2, 60
  psyo_rounds_map, 61

*Topic geomean
  average_coordinates, 15

about analysing tips, 3
about common mistakes, 4
about documentation, 7, 9
about functions, 7, 8
about analysing tips, 5, 57
about_analysing_tips (about analysing tips), 3
about common mistakes, 4
about_common_mistakes (about common mistakes), 4
about_demos, 3–5
about_demos (about demos), 6
aes_colour_fill_alpha, 44
apply_shift, 11, 14
apply_tracks, 12, 12
average_coordinates, 3, 6, 15, 17, 38, 41, 64
average_duplicates, 3, 16, 16

bearing, 66

des_duplicates, 18, 20, 21, 23–25, 27, 29, 31, 33
des_first, 19, 19, 21, 23–25, 27, 29, 31, 33
des_last, 19, 20, 20, 23–25, 27, 29, 31, 33
des_length, 19–21, 22, 24, 25, 27, 29, 31, 33
des_max, 19–21, 23, 23, 25, 27, 29, 31, 33
des_mean, 19–21, 23, 24, 24, 27, 29, 31, 33
des_min, 19–21, 23–25, 26, 29, 31, 33
des_sd, 19–21, 23–25, 27, 28, 31, 33
des_sum, 19–21, 23–25, 27, 29, 39, 33
des_summary, 3, 19–21, 23–25, 27, 29, 31, 31
dftime, 4, 5, 70
dir_add_csv, 3, 33, 35
dir_get_gpx, 3, 34, 34
distance_line, 35, 38, 40, 41, 43
distance_peers, 3, 36, 37, 40, 41
distance_point, 36, 38, 39, 41
distance_psyo, 3, 36, 38, 40, 40
distance_to_direct_line, 42
distHaversine, 68
duration, 15
export_gpx, 43, 45
export_kml, 44, 44
geomean, 15–17
ggplot, 61

length, 70
list, 36

mark_gap_segments, 45, 49, 51
mark_inside_polygon, 3, 47
mark_speed_gaps, 3, 46, 48, 51, 63, 65
mark_time_gaps, 3, 34, 46, 49, 50, 63, 65
mode, 70, 73

plot_line, 51, 53–55
plot_map, 52, 52, 54, 55
plot_polygon, 52, 53, 53, 55
plot_tracks, 3, 52–54, 54
point.in.polygon, 47, 62
psyo_geomean, 58
psyo_rounds, 59
psyo_rounds2, 60
psyo_rounds_map, 61
psyosphere, 57
psyosphere-package (psyosphere), 57

select_between_polygons, 3, 61
select_gaps, 8, 49, 51, 63, 65
select_test_sample, 3, 16, 64
select_without_gaps, 8, 63, 65
stop, 70–72

t_bearing, 66, 68–70
t_distance, 66, 67, 69, 70
t_speed, 66, 68, 70
t_time_difference, 34, 66, 68, 69, 69
timezones, 34, 35

val_cname, 70, 71–73
val_psyo, 9, 56, 59, 60, 71, 71, 72, 73
val_var, 9, 71–73, 73

warning, 70–72
wtd.mean, 5