Package ‘psycho’

January 22, 2020

Type Package
Title Efficient and Publishing-Oriented Workflow for Psychological Science
Version 0.5.0
Maintainer Dominique Makowski <dom.makowski@gmail.com>
BugReports https://github.com/neuropsychology/psycho.R/issues
Description The main goal of the psycho package is to provide tools for psychologists, neuropsychologists, and neuroscientists, to facilitate and speed up the time spent on data analysis. It aims at supporting best practices and tools to format the output of statistical methods to directly paste them into a manuscript, ensuring statistical reporting standardization and conformity.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
Depends R (>= 3.5.0)
Imports methods, stats, scales, utils, dplyr, tidyr, stringr, ggplot2, insight, bayestestR, parameters, performance, effectsize
Suggests knitr, rmarkdown, testthat, covr, plotly, GPArotation
VignetteBuilder knitr
NeedsCompilation no
Author Dominique Makowski [aut, cre, cph]
 (<https://orcid.org/0000-0001-5375-9967>),
 Hugo Najberg [ctb],
 Viliam Simko [ctb],
 Sasha Epskamp [rev] (Sasha reviewed the package for JOSS, see https://github.com/openjournals/joss-reviews/issues/470)
Repository CRAN
Date/Publication 2020-01-22 11:30:02 UTC
R topics documented:

affective .. 2
assess .. 3
crawford.test ... 4
crawford.test.freq 6
crawford_dissociation.test 6
dprime ... 7
emotion .. 9
find_combinations 10
find_combinations.formula 10
find_matching_string 11
find_season ... 12
golden .. 13
is.psychobject ... 13
is.standardized 14
mellenbergh.test 14
percentile ... 15
percentile_to_z 16
plot.psychobject 16
power_analysis 17
print.psychobject 18
remove_empty_cols 18
summary.psychobject 19
values .. 19

Index 20

Data from the Affective Style Questionnaire (ASQ - French Validation)

Description
This is data from the French validation of the Affective Style Questionnaire.

Usage
affective

Format
A data frame with 1277 rows and 8 variables:

Sex Sex (F or M)
Birth_Season Season of birth
Age Current age
Salary Salary in euros
assess

Life Satisfaction General life satisfaction

Concealing Concealing score

Adjusting Adjusting score

Tolerating Tolerating score

assess
Compare a patient’s score to a control group

Description

Compare a patient’s score to a control group.

Usage

```r
assess(
  patient,
  mean = 0,
  sd = 1,
  n = NULL,
  controls = NULL,
  CI = 95,
  treshold = 0.05,
  iter = 10000,
  color_controls = "#2196F3",
  color_CI = "#E91E63",
  color_score = "black",
  color_size = 2,
  alpha_controls = 1,
  alpha_CI = 0.8,
  verbose = TRUE
)
```

Arguments

- **patient** Single value (patient’s score).
- **mean** Mean of the control sample.
- **sd** SD of the control sample.
- **n** Size of the control sample.
- **controls** Vector of values (control’s scores).
- **CI** Credible interval bounds.
- **treshold** Significance threshold.
- **iter** Number of iterations.
- **color_controls** Color of the controls distribution.
Details

Until relatively recently the standard way of testing for a difference between a case and controls was to convert the case's score to a z score using the control sample mean and standard deviation (SD). If z was less than -1.645 (i.e., below 95

Value

output

Author(s)

Dominique Makowski

Examples

```r
result <- assess(patient = 124, mean = 100, sd = 15, n = 100)
print(result)
plot(result)
```


Description

Neuropsychologists often need to compare a single case to a small control group. However, the standard two-sample t-test does not work because the case is only one observation. Crawford and Garthwaite (2007) demonstrate that the Bayesian test is a better approach than other commonly-used alternatives.

Usage

```r
crawford.test(
  patient,
  controls = NULL,
  mean = NULL,
  sd = NULL,
  n = NULL,
  CI = 95,
```

crawford.test

treshold = 0.1,
iter = 10000,
color_controls = "#2196F3",
color_CI = "#E91E63",
color_score = "black",
color_size = 2,
alpha_controls = 1,
alpha_CI = 0.8
)

Arguments

patient Single value (patient’s score).
controls Vector of values (control’s scores).
mean Mean of the control sample.
sd SD of the control sample.
n Size of the control sample.
CI Credible interval bounds.
treshold Significance threshold.
iter Number of iterations.
color_controls Color of the controls distribution.
color_CI Color of CI distribution.
color_score Color of the line representing the patient’s score.
color_size Size of the line representing the patient’s score.
alpha_controls Alpha of the CI distribution.
alpha_CI Alpha of the controls distribution.

Details

The p value obtained when this test is used to test significance also simultaneously provides a point estimate of the abnormality of the patient’s score; for example if the one-tailed probability is .013 then we know that the patient’s score is significantly (p < .05) below the control mean and that it is estimated that 1.3

Author(s)
Dominique Makowski

Examples

library(psycho)
crawford.test(patient = 125, mean = 100, sd = 15, n = 100)
plot(crawford.test(patient = 80, mean = 100, sd = 15, n = 100))
crawford.test(patient = 10, controls = c(0, -2, 5, 2, 1, 3, -4, -2))
test <- crawford.test(patient = 7, controls = c(0, -2, 5, -6, 0, 3, -4, -2))
plot(test)
Description

Neuropsychologists often need to compare a single case to a small control group. However, the standard two-sample t-test does not work because the case is only one observation. Crawford and Garthwaite (2012) demonstrate that the Crawford-Howell (1998) t-test is a better approach (in terms of controlling Type I error rate) than other commonly-used alternatives.

Usage

crawford.test.freq(patient, controls)

Arguments

patient Single value (patient’s score).
controls Vector of values (control’s scores).

Value

Returns a data frame containing the t-value, degrees of freedom, and p-value. If significant, the patient is different from the control group.

Author(s)

Dan Mirman, Dominique Makowski

Examples

library(psycho)
crawford.test.freq(patient = 10, controls = c(0, -2, 5, 2, 1, 3, -4, -2))
crawford.test.freq(patient = 7, controls = c(0, -2, 5, 2, 1, 3, -4, -2))

describe

crawford_dissociation.test

Description

Assessing dissociation between processes is a fundamental part of clinical neuropsychology. However, while the detection of suspected impairments is a fundamental feature of single-case studies, evidence of an impairment on a given task usually becomes of theoretical interest only if it is observed in the context of less impaired or normal performance on other tasks. Crawford and Garthwaite (2012) demonstrate that the Crawford-Howell (1998) t-test for dissociation is a better approach (in terms of controlling Type I error rate) than other commonly-used alternatives.
Usage

crawford_dissociation.test(
 case_X,
 case_Y,
 controls_X,
 controls_Y,
 verbose = TRUE
)

Arguments

case_X Single value (patient’s score on test X).
case_Y Single value (patient’s score on test Y).
controls_X Vector of values (control’s scores of X).
controls_Y Vector of values (control’s scores of Y).
verbose True or False. Prints the interpretation text.

Value

Returns a data frame containing the t-value, degrees of freedom, and p-value. If significant, the
dissociation between test X and test Y is significant.

Author(s)

Dominique Makowski

Examples

library(psycho)

case_X <- 142
case_Y <- 7
controls_X <- c(100, 125, 89, 105, 109, 99)
controls_Y <- c(7, 8, 9, 6, 7, 10)

crawford_dissociation.test(case_X, case_Y, controls_X, controls_Y)

dprime

Dprime (d’) and Other Signal Detection Theory indices.

Description

Computes Signal Detection Theory indices, including d’, beta, A’, B”D and c.
Usage

dprime(
 n_hit,
 n_fa,
 n_miss = NULL,
 n_cr = NULL,
 n_targets = NULL,
 n_distractors = NULL,
 adjusted = TRUE
)

Arguments

n_hit Number of hits.
n_fa Number of false alarms.
n_miss Number of misses.
n_cr Number of correct rejections.
n_targets Number of targets (n_hit + n_miss).
n_distractors Number of distractors (n_fa + n_cr).
adjusted Should it use the Hautus (1995) adjustments for extreme values.

Value

Calculates the d’, the beta, the A’ and the B”D based on the signal detection theory (SRT). See Pallier (2002) for the algorithms.

Returns a list containing the following indices:

- **dprime (d’)**: The sensitivity. Reflects the distance between the two distributions: signal, and signal+noise and corresponds to the Z value of the hit-rate minus that of the false-alarm rate.
- **beta**: The bias (criterion). The value for beta is the ratio of the normal density functions at the criterion of the Z values used in the computation of d’. This reflects an observer’s bias to say ‘yes’ or ‘no’ with the unbiased observer having a value around 1.0. As the bias to say ‘yes’ increases (liberal), resulting in a higher hit-rate and false-alarm-rate, beta approaches 0.0. As the bias to say ‘no’ increases (conservative), resulting in a lower hit-rate and false-alarm rate, beta increases over 1.0 on an open-ended scale.
- **c**: Another index of bias. the number of standard deviations from the midpoint between these two distributions, i.e., a measure on a continuum from "conservative" to "liberal".
- **aprine (A’)**: Non-parametric estimate of discriminability. An A’ near 1.0 indicates good discriminability, while a value near 0.5 means chance performance.
- **bppd (B”D)**: Non-parametric estimate of bias. A B”D equal to 0.0 indicates no bias, positive numbers represent conservative bias (i.e., a tendency to answer ‘no’), negative numbers represent liberal bias (i.e. a tendency to answer ‘yes’). The maximum absolute value is 1.0.

Note that for d’ and beta, adjustment for extreme values are made following the recommendations of Hautus (1995).
Author(s)
Dominique Makowski

Examples

```r
library(psycho)

n_hit <- 9
n_fa <- 2
n_miss <- 1
n_cr <- 7

indices <- psycho::dprime(n_hit, n_fa, n_miss, n_cr)

df <- data.frame(
  Participant = c("A", "B", "C"),
  n_hit = c(1, 2, 5),
  n_fa = c(6, 8, 1)
)

indices <- psycho::dprime(
  n_hit = df$n_hit,
  n_fa = df$n_fa,
  n_targets = 10,
  n_distractors = 10,
  adjusted = FALSE
)
```

emotion

Emotional Ratings of Pictures

Description
Emotional ratings of neutral and negative pictures by healthy participants.

Usage

emotion

Format
A data frame with 912 rows and 11 variables:

- **Participant_ID** Subject’s number
- **Participant_Age** Subject’s age
- **Participant_Sex** Subject’s sex
- **Item_Category** Picture’s category
find_combinations.formula

<table>
<thead>
<tr>
<th>Description</th>
<th>Generate all combinations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td><code>find_combinations(object, ...)</code></td>
</tr>
<tr>
<td>Arguments</td>
<td><code>object Object</code></td>
</tr>
<tr>
<td></td>
<td><code>... Arguments passed to or from other methods.</code></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Dominique Makowski</td>
</tr>
</tbody>
</table>

find_combinations.formula

Generate all combinations of predictors of a formula.

<table>
<thead>
<tr>
<th>Description</th>
<th>Generate all combinations of predictors of a formula.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td><code>## S3 method for class 'formula'</code></td>
</tr>
<tr>
<td></td>
<td><code>find_combinations(object, interaction = TRUE, fixed = NULL, ...)</code></td>
</tr>
</tbody>
</table>
find_matching_string

Arguments

- **object**
 Formula.

- **interaction**
 Include interaction term.

- **fixed**
 Additional formula part to add at the beginning of each combination.

- **...**
 Arguments passed to or from other methods.

Value

- list containing all combinations.

Author(s)

Dominique Makowski

Examples

```r
library(psycho)

f <- as.formula("Y ~ A + B + C + D")
f <- as.formula("Y ~ A + B + C + D + (1|E)")
f <- as.formula("Y ~ A + B + C + D + (1|E) + (1|F)")

find_combinations(f)
```

Description

Fuzzy string matching.

Usage

```r
find_matching_string(x, y, value = TRUE, step = 0.1, ignore.case = TRUE)
```

Arguments

- **x**
 Strings.

- **y**
 List of strings to be matched.

- **value**
 Return value or the index of the closest string.

- **step**
 Step by which decrease the distance.

- **ignore.case**
 if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored during matching.

Author(s)

Dominique Makowski
find_season

Find season of dates.

Description

Returns the season of an array of dates.

Usage

find_season(
 dates,
 winter = "12-21",
 spring = "3-20",
 summer = "6-21",
 fall = "9-22"
)

Arguments

dates Array of dates.
winter month-day of winter solstice.
spring month-day of spring equinox.
summer month-day of summer solstice.
fall month-day of fall equinox.

Value

season

Author(s)

Josh O'Brien

See Also

https://stackoverflow.com/questions/9500114/find-which-season-a-particular-date-belongs-to

Examples

library(psycho)
find_matching_string("Hwo rea ouy", c("How are you", "Not this word", "Nice to meet you"))

find_season(dates)
golden

Golden Ratio.

Description
Returns the golden ratio (1.618034...).

Usage
golden(x = 1)

Arguments
x A number to be multiplied by the golden ratio. The default (x=1) returns the value of the golden ratio.

Author(s)
Dominique Makowski

Examples
library(psycho)
golden()
golden(8)

is.psychobject

Creates or tests for objects of mode "psychobject".

Description
Creates or tests for objects of mode "psychobject".

Usage
is.psychobject(x)

Arguments
x an arbitrary R object.
is.standardized

Check if a dataframe is standardized.

Description

Check if a dataframe is standardized.

Usage

is.standardized(df, tol = 0.1)

Arguments

df A dataframe.

tol The error threshold.

Value

bool.

Author(s)

Dominique Makowski

Examples

library(psych)
library(effectsize)

df <- psycho::affective
is.standardized(df)

dfZ <- effectsize::standardize(df)
is.standardized(dfZ)

mellenbergh.test

Mellenbergh & van den Brink (1998) test for pre-post comparison.

Description

Test for comparing post-test to baseline for a single participant.

Usage

mellenbergh.test(t0, t1, controls)
Arguments

- `t0` Single value (pretest or baseline score).
- `t1` Single value (posttest score).
- `controls` Vector of scores of the control group OR single value corresponding to the control SD of the score.

Value

Returns a data frame containing the z-value and p-value. If significant, the difference between pre and post tests is significant.

Author(s)

Dominique Makowski

Examples

```r
library(psycho)
mellenbergh.test(t0 = 4, t1 = 12, controls = c(0, -2, 5, 2, 1, 3, -4, -2))
mellenbergh.test(t0 = 8, t1 = 2, controls = 2.6)
```

percentile

Transform z score to percentile.

Description

Transform z score to percentile.

Usage

```r
percentile(z_score)
```

Arguments

- `z_score` Z score.

Author(s)

Dominique Makowski

Examples

```r
library(psycho)
percentile(-1.96)
```
percentile_to_z

Transform a percentile to a z score.

Description

Transform a percentile to a z score.

Usage

```r
percentile_to_z(percentile)
```

Arguments

- `percentile`
 Percentile

Author(s)

Dominique Makowski

Examples

```r
library(psycho)
percentile_to_z(95)
```

plot.psychobject

Plot the results.

Description

Plot the results.

Usage

```r
## S3 method for class 'psychobject'
plot(x, ...)
```

Arguments

- `x`
 A psychobject class object.
- `...`
 Arguments passed to or from other methods.

Author(s)

Dominique Makowski
Description

Compute the n models based on n sampling of data.

Usage

power_analysis(
 fit,
 n_max,
 n_min = NULL,
 step = 1,
 n_batch = 1,
 groups = NULL,
 verbose = TRUE,
 CI = 90
)

Arguments

fit A lm or stanreg model.
n_max Max sample size.
n_min Min sample size. If null, take current nrow.
step Increment of the sequence.
n_batch Number of iterations at each sample size.
groups Grouping variable name (string) to preserve proportions. Can be a list of strings.
verbose Print progress.
CI Confidence level.

Value

A dataframe containing the summary of all models for all iterations.

Author(s)

Dominique Makowski

Examples

Not run:
library(dplyr)
library(psycho)

fit <- lm(Sepal.Length ~ Sepal.Width, data = iris)
results <- power_analysis(fit, n_max = 300, n_min = 100, step = 5, n_batch = 20)

results %>%
 filter(Variable == "Sepal.Width") %>%
 select(n, p) %>%
 group_by(n) %>%
 summarise(
 p_median = median(p),
 p_mad = mad(p)
)

End(Not run)

print.psychobject
Print the results.

Description
Print the results.

Usage

```r
## S3 method for class 'psychobject'
print(x, ...)
```

Arguments

- **x**
 A psychobject class object.

- **...**
 Further arguments passed to or from other methods.

Author(s)

Dominique Makowski

remove_empty_cols
Remove empty columns.

Description
Removes all columns containing only NaNs.

Usage

```r
remove_empty_cols(df)
```
Arguments

- `df` : Dataframe.

Author(s)

Dominique Makowski

summary.psychobject

Print the results.

Description

Print the results.

Usage

```r
## S3 method for class 'psychobject'
summary(object, round = NULL, ...)
```

Arguments

- `object` : A psychobject class object.
- `round` : Round the output.
- `...` : Further arguments passed to or from other methods.

Author(s)

Dominique Makowski

values

Extract values as list.

Description

Extract values as list.

Usage

```r
values(x)
```

Arguments

- `x` : A psychobject class object.

Author(s)

Dominique Makowski
Index

+Topic **datasets**
 - affective, 2
 - emotion, 9

affective, 2
assess, 3
crawford.test, 4
crawford.test.freq, 6
crawford_dissociation.test, 6
dprime, 7

emotion, 9

find_combinations, 10
find_combinations.formula, 10
find_matching_string, 11
find_season, 12

golden, 13

is.psychobject, 13
is.standardized, 14

mellenbergh.test, 14

percentile, 15
percentile_to_z, 16
plot.psychobject, 16
power_analysis, 17
print.psychobject, 18

remove_empty_cols, 18

summary.psychobject, 19

values, 19