Package ‘primefactr’

May 19, 2018

- **Encoding** UTF-8
- **Type** Package
- **Title** Use Prime Factorization for Computations
- **Version** 0.1.1
- **Date** 2018-05-17
- **Description** Use Prime Factorization for simplifying computations, for instance for ratios of large factorials.
- **License** GPL-3
- **LazyData** TRUE
- **Depends** R (>= 3.2.3)
- **RoxygenNote** 6.0.1
- **Suggests** testthat, covr
- **URL** https://github.com/privefl/primefactr
- **BugReports** https://github.com/privefl/primefactr/issues
- **NeedsCompilation** no
- **Author** Florian Privé [aut, cre]
- **Maintainer** Florian Privé <florian.prive.21@gmail.com>
- **Repository** CRAN
- **Date/Publication** 2018-05-19 09:19:16 UTC

R topics documented:

- primefactr-package .. 2
- AllPrimesUpTo .. 2
- ComputeDivFact ... 3
- IsPrime ... 4
- ReducePrime ... 4

Index 6
AllPrimesUpTo

Description

Get all prime numbers.

Usage

AllPrimesUpTo(n)

Arguments

n A positive integer.

Value

A integer vector of all prime numbers up to n.

Examples

AllPrimesUpTo(10)
AllPrimesUpTo(100)
AllPrimesUpTo(1e6)
ComputeDivFact

Compute the ratio of factorials.

Description
Compute the ratio of factorials using Prime Factorization. For example, ComputeDivFact(c(a, b), c(d, e, f)) computes \(\frac{a!b!}{d!e!f!} \).

Usage
ComputeDivFact(num, deno = NULL, out.log = FALSE)

Arguments
- num: The vector of all numbers which have their factorials in the numerator.
- deno: The vector of all numbers which have their factorials in the denominator. Default is NULL, there is only a numerator.
- out.log: Is the logarithm of the result returned instead? Default is FALSE.

Value
The result of the ratio or its logarithm if out.log = TRUE.

See Also
choose

Examples
choose(100, 20)
ComputeDivFact(100, c(20, 80))
lchoose(100, 20)
ComputeDivFact(100, c(20, 80), out.log = TRUE)

factorial(100)
ComputeDivFact(100)
lfactorial(100)
ComputeDivFact(100, out.log = TRUE)
IsPrime is a prime number?

Description
Is n a prime number? You can see what is a prime number there.

Usage
IsPrime(n)

Arguments
n A positive integer.

Value
A boolean.

Examples
IsPrime(1) # FALSE
IsPrime(5) # TRUE
IsPrime(5999999) # TRUE

ReducePrime Get the Prime Factorization.

Description
Get the Prime Factorization for a number with a particular coding.

Usage
ReducePrime(code, out.summary = FALSE, primes.div = NULL)

Arguments
code A vector representing a number. See details.
out.summary Is the result to be summarized? For example, (2, 3, 0, 0, 1) can be summarized as (2; 5; 3, 1). Default is FALSE.
primes.div The vector of all prime numbers up to sqrt(length(code)). Default get them for you.
Details

A code is the coding of a number as follows,

\[\text{number} = \prod_{i}^{\text{code}[i]} \]

or, which is equivalent,

\[\log(\text{number}) = \sum_{i} \text{code}[i] \times \log(i). \]

For example,

- 5 is coded as (0, 0, 0, 0, 1),
- 5! is coded as (1, 1, 1, 1, 1),
- 8! is coded as (1, 1, 1, 1, 1, 1, 1, 1),
- 8! / 5! is therefore coded as (0, 0, 0, 0, 0, 1, 1, 1),
- 5! = 5 \times 3 \times 2^3 can be reduced to (0, 3, 1, 0, 1).

Note that the first element of a code has no effect.

Value

Two rows representing prime numbers

Examples

code100 <- c(rep(0, 99), 1)
ReducePrime(c(rep(0, 99), 1), out.summary = TRUE)
primes.div <- allPrimesUpTo(floor(sqrt(length(code100))))
ReducePrime(c(rep(0, 99), 1), primes.div = primes.div)
Index

*Topic package
 primefactr-package, 2

AllPrimesUpTo, 2

ComputeDivFact, 3

IsPrime, 4

primefactr (primefactr-package), 2
primefactr-package, 2

ReducePrime, 4