Package `predict3d`

April 5, 2024

Type Package

Title Draw Three Dimensional Predict Plot Using Package 'rgl'

Version 0.1.5

URL https://github.com/cardiomoon/predict3d

BugReports https://github.com/cardiomoon/predict3d/issues

Description Draw 2 dimensional and three dimension plot for multiple regression models using package 'ggplot2' and 'rgl'.

Supports linear models (lm), generalized linear models (glm) and local polynomial regression fittings (loess).

Depends R (>= 3.3.0)

License GPL-2

Encoding UTF-8

Imports ggplot2(>= 3.1.0), rgl(>= 1.0.1), dplyr, ggiraphExtra, modelr, purrr, rlang, stringr, magrittr, stats, reshape2, plyr, tidyr

RoxygenNote 7.3.1

Suggests moonBook, TH.data, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Keon-Woong Moon [aut, cre]

Maintainer Keon-Woong Moon <cardiomoon@gmail.com>

Repository CRAN

Date/Publication 2024-04-05 02:40:02 UTC

R topics documented:

- `add_lines` 2
- `beNumeric` 3
- `calEquation` 4
- `expand.grid2` 5
add_lines

Add lines with labels to pre-existing ggplot

Description

Add lines with labels to pre-existing ggplot

Usage

add_lines(
 p,
 df,
 xpos = 0.3,
 add.coord.fixed = TRUE,
 lty = NULL,
 color = NULL,
 size = 0.5,
 add_theme_bw2 = TRUE,
 ...
)
Arguments

- `p`: An object of class ggplot
- `df`: A data.frame. Required columns are slope, intercept and label
- `xpos`: A numeric. Relative horizontal position
- `add.coord.fixed`: Logical. Whether or not add coord_fixed() function
- `lty`: line type
- `color`: line color
- `size`: line size
- `add_theme_bw2`: logical. Whether or not add theme_bw2()
- `...`: Further arguments to be passed to geom_text

Examples

```r
require(ggplot2)
fit=lm(mpg~wt*hp,data=mtcars)
df=calEquation(fit)
p=ggplot(data=mtcars,aes(x=wt,y=mpg))
add_lines(p,df)
add_lines(p,df,lty=1:3,color=1:3,size=1)
fit=lm(mpg~wt*vs,data=mtcars)
df=calEquation(fit)
p=ggplot(data=mtcars)+geom_point(aes(x=wt,y=mpg))
add_lines(p,df)
add_lines(p,df,lty=1:2,color=1:2,size=1)+theme_bw()```

---

beNumeric

Whether a string vector can be converted to numeric

Description

Whether a string vector can be converted to numeric

Usage

```r
beNumeric(x)
```

Arguments

- `x`: A string vector

Examples

```r
x=c("age","22.5","11/2")
beNumeric(x)
```
calEquation

calculated slope and intercept from object of class lm

Description

calculated slope and intercept from object of class lm

Usage

calEquation(
  fit,
  mode = 1,
  pred = NULL,
  modx = NULL,
  modx.values = NULL,
  label = NULL,
  maxylev = 6,
  digits = 2
)

Arguments

fit An object of class lm
mode A numeric
pred name of predictor variable
modx name of modifier variable
modx.values Numeric. Values of modifier variable
label A character string
maxylev maximum length of unique value of variable to be treated as a categorial variable
digits Integer indicating the number of decimal places

Examples

fit = lm(mpg~wt*hp+carb, data=mtcars)
calEquation(fit)
calEquation(fit, pred="hp")
expand.grid2

expand.grid with two data.frames

Description
expand.grid with two data.frames

Usage
expand.grid2(df1, df2)

Arguments
df1 A data.frame
df2 A data.frame

fit2newdata
Make a new data set for prediction

Description
Make a new data set for prediction

Usage
fit2newdata(
  fit,
predictors,
  mode = 1,
pred.values = NULL,
  modx.values = NULL,
  mod2.values = NULL,
  colorn = 3,
  maxylev = 6,
  summarymode = 1
)

Arguments
fit An object of class "lm", "glm" or "loess"
predictors Names of predictor variables in string
mode A numeric. Useful when the variables are numeric. If 1, c(-1,0,1)*sd + mean is used. If 2, the 16th, 50th, 84th percentile values used. If 3 sequence over a the range of a vector used
pred.values  For which values of the predictors should be used? Default is NULL. If NULL, 20 seq_range is used.

modx.values  For which values of the moderator should lines be plotted? Default is NULL. If NULL, then the customary +/- 1 standard deviation from the mean as well as the mean itself are used for continuous moderators. If the moderator is a factor variable and modx.values is NULL, each level of the factor is included.

mod2.values  For which values of the second moderator should lines be plotted? Default is NULL. If NULL, then the customary +/- 1 standard deviation from the mean as well as the mean itself are used for continuous moderators. If the moderator is a factor variable and modx.values is NULL, each level of the factor is included.

colorn         The number of regression lines when the modifier variable(s) are numeric.

maxylev        An integer indicating the maximum number of levels of numeric variable be treated as a categorical variable

summarymode    An integer indicating method of extracting typical value of variables. If 1, typical() is used. If 2, mean() is used.

Examples

```r
fit=lm(mpg~hp*wt*cyl+carb+am,data=mtcars)
f2newdata(fit,predictors=c("hp","wt","am"))
f2newdata(fit,predictors=c("hp","wt","cyl"))
f2newdata(fit,predictors=c("hp"))
f2newdata(fit,predictors=c("hp","wt"))
fit=loess(mpg~hp*wt*am,data=mtcars)
f2newdata(fit,predictors=c("hp"))
Not run:
mtcars$engine=ifelse(mtcars$vs==0,"V-shaped","straight")
f2newdata(fit,predictors=c("wt","engine"))
fit=lm(mpg~wt*factor(vs),data=mtcars)
f2newdata(lm(mpg~hp*wt,data=mtcars),predictors=c("hp","wt"),mode=3,colorn=30)
fit=lm(mpg~hp*log(wt),data=mtcars)
f2newdata(fit,predictors=c("hp","log(wt)"))
fit=lm(mpg~hp*wt*factor(vs),data=mtcars)
f2newdata(fit,predictors=c("hp"))
End(Not run)
require(moonBook)
fit=lm(log(NTAV)~I(age^2)*sex,data=radial)
f2newdata(fit,predictors=c("I(age^2)","sex"))
```

getAspectRatio  Get aspect information of a ggplot

Description

Get aspect information of a ggplot
getMeans

Usage

getAddressRatio(p)

Arguments

p A ggplot object

description

calculate mean values of two consecutive number

Usage

getMeans(x)

Arguments

x A numeric vector

Examples

x=c(50,60,70)
getMeans(x)

description

Make new formula

Usage

getNewFormula(fit, predictors = NULL)

Arguments

fit An object of class lm or glm
predictors Names of variables to exclude
Examples

```r
fit=lm(mpg~factor(cyl)*factor(am)+wt+carb, data=mtcars)
ggPredict(fit, predictors=c("cyl","wt"))
fit=lm(Sepal.Length~Sepal.Width*Petal.Length+Species, data=iris)
ggPredict(fit, predictors=c("Petal.Length"))
fit=lm(mpg~hp*wt*factor(cyl), data=mtcars)
ggPredict(fit, predictors=c("hp","cyl"))
fit=loess(mpg~hp*wt, data=mtcars)
ggPredict(fit, predictors=c("hp","wt"))
```
Arguments

fit            An object of class "lm" or "glm"
pred           The name of predictor variable
modx           Optional. The name of moderator variable
mod2           Optional. The name of second moderator variable
modx.values    For which values of the moderator should lines be plotted? Default is NULL. If NULL, then the customary +/- 1 standard deviation from the mean as well as the mean itself are used for continuous moderators. If the moderator is a factor variable and modx.values is NULL, each level of the factor is included.
mod2.values    For which values of the second moderator should lines be plotted? Default is NULL. If NULL, then the customary +/- 1 standard deviation from the mean as well as the mean itself are used for continuous moderators. If the moderator is a factor variable and modx.values is NULL, each level of the factor is included.
dep            Optional. The name of dependent variable
mode           A numeric. Useful when the variables are numeric. If 1, c(-1,0,1)*sd + mean is used. If 2, the 14th, 50th, 86th percentile values used. If 3 sequence over a the range of a vector used
colorn         The number of regression lines when the modifier variable(s) are numeric.
maxylev        An integer indicating the maximum number of levels of numeric variable be treated as a categorical variable
show.point     Logical. Whether or not add points
show.error     Logical. Whether or not show error
error.color    color of error. default value is "red"
jitter         logical Whether or not use geom_jitter
se              Logical. Whether or not add confidence interval
alpha          A numeric. Transparency
show.text      Logical. Whether or not add regression equation as label
add.modx.values Logical. Whether or not add moderator values to regression equation
add.loess      Logical. Whether or not add loess line
labels         labels on regression lines
angle          angle of text
xpos           x axis position of label
vjust          vertical alignment of labels
digits         integer indicating the number of decimal places
facet.modx     Create separate panels for each level of the moderator? Default is FALSE

summarymode = 1,
facetsbycol Logical.

plot Logical. Should a plot of the results be printed? Default is TRUE.

summarymode An integer indicating method of extracting typical value of variables. If 1, typical() is used. If 2, mean() is used.

... additional arguments to be passed to geom_text

Examples

```r
fit = loess(mpg ~ hp * wt * am, data = mtcars)
ggPredict(fit)
ggPredict(fit, hp)
Not run:
ggPredict(fit, hp, wt)
fit = lm(mpg ~ wt + hp - 1, data = mtcars)
ggPredict(fit, xpos = 0.7)
fit = lm(mpg ~ hp * wt, data = mtcars)
ggPredict(fit)
ggPredict(fit, labels = paste0("label", 1:3), xpos = c(0.3, 0.6, 0.4))
ggPredict(fit, se = TRUE)
ggPredict(fit, mode = 3, colorn = 40, show.text = FALSE)
fit = lm(log(mpg) ~ hp * wt, data = mtcars)
ggPredict(fit, dep = mpg)
fit = lm(mpg ~ wt * cyl, data = mtcars)
ggPredict(fit,modx = wt,modx.values = c(2, 3, 4, 5), mod2 = cyl, show.text = FALSE)
ggPredict(fit, hp, wt, show.point = FALSE, se = TRUE, xpos = 0.5)
ggPredict(fit, hxpos = 0.3)
mtcars$engine = ifelse(mtcars$vs == 0, "V-shaped", "straight")
fit = lm(mpg ~ wt * engine, data = mtcars)
ggPredict(fit)
require(TH.data)
fit = glm(cens ~ pnodes * horTh, data = GBSG2, family = binomial)
ggPredict(fit, pnodes, horTh, se = TRUE, xpos = c(0.6, 0.3), angle = c(40, 60), vjust = c(2, -0.5))
fit = glm(pnodes ~ data = GBSG2, family = binomial)
ggPredict(fit, vjust = 1.5, angle = 45)
fit3 = glm(pnodes ~ age, data = GBSG2, family = binomial)
ggPredict(fit3, pred = pnodes, modx = age, mode = 3, colorn = 10, show.text = FALSE)
fit2 = glm(pnodes ~ horTh, data = GBSG2, family = binomial)
ggPredict(fit2, pred = pnodes, modx = age, mod2 = horTh, mode = 3, colorn = 10, show.text = FALSE)
fit = lm(mpg ~ log(hp) * wt, data = mtcars)
ggPredict(fit, hp, wt)
fit = lm(mpg ~ wt + disp + gear + carb + am, data = mtcars)
ggPredict(fit, disp, gear, am)
library(moonBook)
fit = lm(weight ~ I(height^3) + I(height^2) + height + sex, data = radial)
ggPredict(fit)
predict3d(fit)
```

## End(Not run)
**gg_color_hue**

*Pick default color*

---

**Description**

Pick default color

**Usage**

`gg_color_hue(n)`

**Arguments**

- `n` An integer

---

**is.mynumeric**

*Decide whether a vector can be treated as a numeric variable*

---

**Description**

Decide whether a vector can be treated as a numeric variable

**Usage**

`is.mynumeric(x, maxylev = 6)`

**Arguments**

- `x` A vector
- `maxylev` An integer indicating the maximum number of levels of numeric variable be treated as a categorical variable
myseq

*Generate regular sequences of desired length between minimum and maximal values*

**Description**

Generate regular sequences of desired length between minimum and maximal values

**Usage**

```r
myseq(x, length = 20)
```

**Arguments**

- `x`: a numeric vector
- `length`: desired length of the sequence

---

text2number

*Convert a numeric vector into groups*

**Description**

Convert a numeric vector into groups

**Usage**

```r
number2group(
 x,
 mode = 1,
 values = NULL,
 silent = FALSE,
 label = "label",
 digits = 2,
 colorn = 3
)
```

**Arguments**

- `x`: A numeric vector
- `mode`: A numeric. If 1, mean(x)+(-1,0,1)*sd(x) are used. If 2, quantile(x,probs=c(0.14,0.5,0.86),type=6) are used. If 3, values are used
- `values`: A numeric vector
- `silent`: A logical. Whether table of result will be shown
- `label`: A character string
- `digits`: integer indicating the number of decimal places
- `colorn`: The number of regression lines when the modifier variable(s) are numeric
Examples

```r
class2group(iris$Sepal.Length,label="Sepal.Length")
x=class2group(mtcars$wt, label="wt")
x
```

Description

Draw 3d predict plot using package 'rgl'

Usage

```r
predict3d(
 fit,
 pred = NULL,
 modx = NULL,
 mod2 = NULL,
 dep = NULL,
 xlab = NULL,
 ylab = NULL,
 zlab = NULL,
 width = 640,
 colorn = 20,
 maxylev = 6,
 se = FALSE,
 show.summary = FALSE,
 overlay = NULL,
 show.error = FALSE,
 show.legend = FALSE,
 bg = NULL,
 type = "s",
 radius = NULL,
 palette = NULL,
 palette.reverse = TRUE,
 color = "red",
 show.subtitle = TRUE,
 show.plane = TRUE,
 plane.color = "steelblue",
 plane.alpha = 0.5,
 summarymode = 1,
 ...
)
```
Arguments

- **fit**: A model object for which prediction is desired.
- **pred**: The name of predictor variable.
- **modx**: Optional. The name of moderator variable.
- **mod2**: Optional. The name of second moderator variable.
- **dep**: Optional. The name of dependent variable.
- **xlab**: x-axis label.
- **ylab**: y-axis label.
- **zlab**: z-axis label.
- **width**: the width of device.
- **colorn**: An integer giving the desired number of intervals. Non-integer values are rounded down.
- **maxylev**: Maximal length of unique values of y axis variable to be treated as a categorical variable.
- **se**: Logical. Whether or not show se. Only effective when the y-axis variable is a categorical one.
- **show.summary**: Logical. Whether or not show statistical summary.
- **overlay**: Logical. Whether or not overlay plots.
- **show.error**: Logical. Whether or not show error.
- **show.legend**: Logical. Whether or not show legend.
- **bg**: Character. Background color of plot.
- **type**: For the default method, a single character indicating the type of item to plot. Supported types are: ‘p’ for points, ‘s’ for spheres, ‘l’ for lines, ‘h’ for line segments from z = 0, and ‘n’ for nothing. For the mesh3d method, one of ‘shade’, ‘wire’, or ‘dots’. Partial matching is used.
- **radius**: The size of sphere.
- **palette**: Name of color palette.
- **palette.reverse**: Logical. Whether or not reverse the palette order.
- **color**: Default color. Color is used when the palette is NULL.
- **show.subtitle**: Logical. If true, show regression call as subtitle.
- **show.plane**: Logical. If true, show regression plane.
- **plane.color**: Name of color of regression plane.
- **plane.alpha**: Transparency scale of regression plane.
- **summary.mode**: An integer indicating method of extracting typical value of variables. If 1, typical() is used. If 2, mean() is used.
- **...**: additional parameters which will be passed to plot3d.
Examples

```r
fit = lm(mpg ~ hp*wt, data = mtcars)
predict3d(fit, show.error = TRUE)
fit = lm(log(mpg) ~ hp*wt, data = mtcars)
predict3d(fit, dep = mpg)
Not run:
fit = lm(Sepal.Length ~ Sepal.Width*Species, data = iris)
predict3d(fit)
require(TH.data)
fit = glm(cens ~ pnodes*age*horTh, data = GBSG2, family = binomial)
predict3d(fit)
mtcars$engine = ifelse(mtcars$vs == 0, "V-shaped", "straight")
fit = lm(mpg ~ wt*engine, data = mtcars)
predict3d(fit)
fit = loess(mpg ~ hp*wt, data = mtcars)
predict3d(fit, radius = 4)
states <- as.data.frame(state.x77[, c("Murder", "Population", "Illiteracy", "Income", "Frost")])
fit = lm(Murder ~ Population + Illiteracy, data = states)
predict3d(fit)
predict3d(fit, radius = 200)
fit = lm(mpg ~ cyl + hp + am, data = mtcars)
predict3d(fit)
End(Not run)
```

---

**rank2colors**

*Rank a numeric vector using proportional table and returns character vector of names of color using palette*

**Description**

Rank a numeric vector using proportional table and returns character vector of names of color using palette

**Usage**

```r
rank2colors(x, palette = "Blues", reverse = TRUE, color = "red")
```

**Arguments**

- `x` A numeric vector
- `palette` Name of the color palette
- `reverse` Logical. Whether or not reverse the order of the color palette
- `color` Default color when palette is NULL

**Examples**

```r
rank2colors(mtcars$wt, palette = "Blues")
```
### rank2group2

*Rank a numeric vector using proportional table and returns a new ordinal vector*

#### Description

Rank a numeric vector using proportional table and returns a new ordinal vector

#### Usage

```r
rank2group2(x, k = 4)
```

#### Arguments

- `x`: a numeric vector
- `k`: a integer specifies how many groups you want to classify. default value is 4

### restoreData

*Restore factors in data.frame as numeric*

#### Description

Restore factors in data.frame as numeric

#### Usage

```r
restoreData(data)
```

#### Arguments

- `data`: A data.frame

#### Examples

```r
fit = lm(mpg ~ factor(cyl) * factor(am), data = mtcars)
fit = lm(mpg ~ wt * factor(am), data = mtcars)
fit = lm(mpg ~ wt * hp, data = mtcars)
restoreData(fit$model)
```
restoreData2

**Description**

restore data column with I() function

**Usage**

```r
restoreData2(df)
```

**Arguments**

- `df`: A data.frame

**Examples**

```r
fit=lm(mpg~I(cyl^(1/2))*am,data=mtcars)
restoreData2(fit$model)
fit=lm(mpg~sqrt(hp)*log(wt)*am,data=mtcars)
restoreData2(fit$model)
```

---

restoreData3

**Description**

Restore data from arithmetic operator

**Usage**

```r
restoreData3(df, changeLabel = FALSE)
```

**Arguments**

- `df`: A data.frame
- `changeLabel`: logical

**Examples**

```r
fit=lm(2^mpg~hp*wt,data=mtcars)
summary(fit)
restoreData3(fit$model)
```
**restoredNames**

*Restore factors in variable name as numeric*

**Description**

Restore factors in variable name as numeric

**Usage**

```
restoreNames(x)
```

**Arguments**

- `x` character vector

**Examples**

```
restoreNames(c("factor(cyl)","am"))
restoreNames(c("I(age^2)","am","100/mpg","cyl^1/2","mpg^2","sex + 0.5"))
```

---

**revOperator**

*get opposite arithmetic operator*

**Description**

get opposite arithmetic operator

**Usage**

```
revOperator(operator)
```

**Arguments**

- `operator` A character
seekNamesDf

Description
Find variable names in data.frame

Usage
seekNamesDf(vars, df)

Arguments

vars variable names to find
df A data.frame

Value
A character vector

seq_range

Create a sequence over the range of a vector

Description
Create a sequence over the range of a vector

Usage
seq_range(x, n = 2)

Arguments

x A numeric vector
n An integer specifying the length of sequence (i.e., number of points across the range of x)

Examples
seq_range(1:5,n=3)
**slope2angle**  
*Make angle data with slope data*

### Description

Make angle data with slope data

### Usage

```r
slope2angle(
 df,
 fit,
 ytransform = 0,
 predc,
 temppredc,
 modxc,
 yvar,
 p,
 method = "lm",
 xpos = NULL,
 vjust = NULL,
 digits = 3,
 facetno = NULL,
 add.modx.values = TRUE
)
```

### Arguments

- **df**: A data.frame
- **fit**: An object of class "lm" or "glm"
- **ytransform**: Numeric. If 1, log transformation of dependent variable. If -1, exponential transformation
- **predc**: Name of predictor variable
- **temppredc**: Name of predictor variable in regression equation
- **modxc**: Name of moderator variable
- **yvar**: Name of dependent variable
- **p**: An object of class ggplot
- **method**: String. Choices are one of "lm" and "glm".
- **xpos**: The relative x-axis position of labels. Should be within 0 to 1
- **vjust**: vjust
- **digits**: integer indicating the number of decimal places
- **facetno**: The number of facets
- **add.modx.values**: Whether add name of moderator variable
string2pattern

\begin{description}
\item[Description] change string to pattern
\item[Usage] \texttt{string2pattern(string)}
\item[Arguments] \begin{description}
\item[string] A character vector
\end{description}
\item[Examples] \begin{verbatim}
string=c("I(age^2)","factor(cyl)","log(mpg)")
string2pattern(string)
\end{verbatim}
\end{description}

theme_bw2

\begin{description}
\item[Description] theme_bw with no grid
\item[Usage] \texttt{theme_bw2()}
\end{description}
Index

add_lines, 2
beNumeric, 3
calEquation, 4
expand.grid2, 5
fit2newdata, 5
getAspectRatio, 6
getMeans, 7
getNewFormula, 7
gg_color_hue, 11
ggPredict, 8
is.mynumeric, 11
myseq, 12
number2group, 12
predict3d, 13
rank2colors, 15
rank2group2, 16
restoreData, 16
restoreData2, 17
restoreData3, 17
restoreNames, 18
revOperator, 18
seekNamesDf, 19
seq_range, 19
slope2angle, 20
string2pattern, 21

theme_bw2, 21