Package ‘ppdiag’

October 14, 2022

Type Package

Title Diagnosis and Visualizations Tools for Temporal Point Processes

Version 0.1.1

Description A suite of diagnostic tools for univariate point processes. This includes tools for simulating and fitting both common and more complex temporal point processes. We also include functions to visualise these point processes and collect existing diagnostic tools of Brown et al. (2002) <doi:10.1162/08997660252741149> and Wu et al. (2021) <doi:10.1002/9781119821588.ch7>, which can be used to assess the fit of a chosen point process model.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

URL https://owenward.github.io/ppdiag/

BugReports https://github.com/OwenWard/ppdiag/issues

Depends R (>= 3.5)

Imports graphics, stats

Suggests testthat (>= 2.1.0), knitr, rmarkdown, covr

VignetteBuilder knitr

NeedsCompilation no

Author Sally Sun [aut],
Owen G. Ward [aut, cre] (<https://orcid.org/0000-0002-9678-3542>),
Jing Wu [aut],
Xiaoxi Zhao [aut],
Li Hao Xiao [ctb],
Tian Zheng [aut]

Maintainer Owen G. Ward <owen.ward@columbia.edu>

Repository CRAN

Date/Publication 2021-08-12 13:50:02 UTC
R topics documented:

drawHPIntensity 2
drawHPPIntensity 3
drawUniMMHPIntensity 4
drawUniMMPPIntensity 5
fithp ... 6
fithpp ... 7
intensityqqplot 7
pp_compensator 8
pp_diag .. 9
pp_hp .. 10
pp_hpp ... 11
pp_ksplot 11
pp_mmhp ... 12
pp_mmpp ... 13
pp_qqexp 13
pp_residual 14
pp_simulate 15

Index

drawHPIntensity Draw the intensity of Hawkes Process

Description

Draw the intensity of a Hawkes Process

Usage

drawHPIntensity(
 hp = NULL,
 events,
 int_title = "Hawkes Intensity",
 start = 0,
 end = max(events),
 history = NULL,
 color = 1,
 i = 1,
 add = FALSE,
 fit = FALSE,
 plot_events = TRUE,
 verbose = FALSE
)

drawHPPIntensity

Arguments

- **hp**: object parameters for Hawkes process.
- **events**: the event times happened in this state
- **int_title**: title of the intensity plot
- **start**: the start time of current state
- **end**: the end time of current state
- **history**: the past event times
- **color**: specify the default plotting color.
- **i**: state number, used only for drawUniMMHPIntensity
- **add**: whether to add the hawkes intensity to an existing plot, used for drawUniMMHPPIntensity
- **fit**: a boolean indicating whether to fit a new HP to events
- **plot_events**: indicate whether events will be plotted
- **verbose**: whether to output informative messages as running

Value

no return value, intensity plot of Hawkes process

Examples

```r
set.seed(100)
hp_obj <- pp_hp(lambda0 = 0.5, alpha = 0.45, beta = 0.5)
events <- pp_simulate(hp_obj, start = 0, end = 20)
drawHPIntensity(hp_obj, events)
```

Description

Draw the intensity for a homogeneous Poisson process

Usage

```r
drawHPPIntensity(
    hpp = NULL,
    events,
    int_title = "Homogeneous Poisson Process",
    start = 0,
    end = max(events),
    color = "red",
    plot_events = TRUE,
    fit = FALSE,
    add = FALSE,
    verbose = FALSE
)
```
Arguments

- **hpp**: object for homogeneous Poisson process
- **events**: event times input
- **int_title**: the plot title
- **start**: start of events
- **end**: end of events
- **color**: a specification for the default plotting color.
- **plot_events**: a boolean indicating whether input events will be plotted
- **fit**: a boolean indicating whether to fit a hpp or use the passed object
- **add**: whether to add the hpp intensity to an existing plot
- **verbose**: whether to output informative messages as running

Value

no return value, intensity plot of homogeneous Poisson process

Examples

```r
pois_y <- pp_hpp(lambda = 1)
drawHPPIntensity(pois_y, events = pp_simulate(pois_y, end = 10))
```

drawUniMMHPIntensity
Draw the intensity of the Markov-modulated Hawkes Process (MMHP)

Description

Take a mmhp object and draw its intensity accordingly

Usage

```r
drawUniMMHPIntensity(
  mmhp,
  simulation,
  int_title = "Intensity of MMHP",
  leg_location = "topright",
  color = 1,
  add = FALSE
)
```
drawUniMMPPIntensity

Arguments

mmhp
a mmhp object including its state, state_time, events, lambda0, lambda1, beta and alpha.

simulation
the simulated Markov-modulated Hawkes Process(MMHP)

int_title
title of the plot.

leg_location
location of legend, if moving needed

color
A specification for the default plotting color.

add
logical; if TRUE add to an already existing plot; if NA start a new plot taking the defaults for the limits and log-scaling of the x-axis from the previous plot. Taken as FALSE (with a warning if a different value is supplied) if no graphics device is open.

Value

no return value, intensity plot of Markov-modulated Hawkes process

Examples

```r
Q <- matrix(c(-0.4, 0.4, 0.2, -0.2), ncol = 2, byrow = TRUE)
x <- pp_mmhp(Q,  
  delta = c(1 / 3, 2 / 3), lambda0 = 0.9, lambda1 = 1.1,  
  alpha = 0.8, beta = 1.2)
y <- pp_simulate(x, n = 25)  
drawUniMMPPIntensity(x, y)
```

Description

Take a mmpp object and draw its intensity accordingly

Usage

```r
drawUniMMPPIntensity(  
  mmhp,  
  simulation,  
  add = FALSE,  
  color = 1,  
  fit = FALSE,  
  int_title = "Intensity Plot of MMPP"
)
```

drawUniMMPPIntensity
Draw the intensity of the Markov-modulated Poisson Process (MMPP)

Description

Take a mmpp object and draw its intensity accordingly

Usage

```r
drawUniMMPPIntensity(  
  mmpp,  
  simulation,  
  add = FALSE,  
  color = 1,  
  fit = FALSE,  
  int_title = "Intensity Plot of MMPP"
)```
Arguments

mmpp  a mmpp object including its transition probability matrix, lambda0, delta, and c.
simulation  the simulated Markov-modulated Poisson Process (MMPP)
add  logical; if TRUE add to an already existing plot; if NA start a new plot taking the defaults for the limits and log-scaling of the x-axis from the previous plot. Taken as FALSE (with a warning if a different value is supplied) if no graphics device is open.
color  A specification for the default plotting color.
fit  a boolean indicating whether to fit the events provided
int_title  title of the plot.

Value

no return value, intensity plot of Markov-modulated Poisson process

Examples

Q <- matrix(c(-0.4, 0.4, 0.2, -0.2), ncol = 2, byrow = TRUE)
x <- pp_mmpp(Q, delta = c(1 / 3, 2 / 3), lambda0 = 0.9, c = 1.2)
y <- pp_simulate(x, n = 10)
drawUniMMPPIntensity(x, y)

fithp

Determine the MLE of Hawkes process numerically

Description

Determine the MLE of Hawkes process numerically

Usage

fithp(events, end = max(events), vec = c(0.1, 0.2, 0.3))

Arguments

events  event times
end  end of observation period starting from 0 (default last event)
vec  vector of initial parameter values

Value

a hp object indicating the maximum likelihood parameter values (lambda0, alpha, beta) for Hawkes process. This is a non-convex problem and a (unique) solution is not guaranteed.
Examples

```r
hp_obj <- pp_hp(lambda0 = 0.1, alpha = 0.45, beta = 0.5)
sims <- pp_simulate(hp_obj, start = 0, n = 10)
fithp(sims)
```

---

**fithpp**

*Fit a homogeneous poisson process to event data*

---

**Description**

Compute maximum likelihood estimator of the rate of a homogeneous Poisson process for the given events.

**Usage**

```r
fithpp(events, end = max(events))
```

**Arguments**

- `events` : vector containing the event times.
- `end` : end of observation period, starting from 0 (default is last event)

**Value**

a `hpp` object containing the events and the estimated parameter

**Examples**

```r
pois_y <- pp_hpp(lambda = 1)
events <- pp_simulate(pois_y, end = 10)
fithpp(events)
```

---

**intensityqqplot**

*Draw intensity of fitted point process and QQ-Plot of rescaled events*

---

**Description**

Draw the intensity and q-q plot for models
Usage

intensityqqplot(object, events, markov_states)

## Default S3 method:
intensityqqplot(object, events, markov_states)

## S3 method for class 'hp'
intensityqqplot(object, events, markov_states = NULL)

## S3 method for class 'hpp'
intensityqqplot(object, events, markov_states = NULL)

## S3 method for class 'mmpp'
intensityqqplot(object, events = markov_states$events, markov_states)

## S3 method for class 'mmhp'
intensityqqplot(object, events = markov_states$events, markov_states)

Arguments

- **object**: parameters for the models: hp, hpp, and mmhp
- **events**: event times
- **markov_states**: only for mmhp and mmpp, markov states simulation output

Value

- no return value, intensity and qq-plot in a single plot

---

**pp_compensator**

Compensators for point processes

Description

Computes the compensator for included point processes

Usage

pp_compensator(object, events)

## Default S3 method:
pp_compensator(object, events)

## S3 method for class 'mmpp'
pp_compensator(object, events)

## S3 method for class 'hp'

### S3 method for class 'mmhp'

```r
pp_compensator(object, events)
```

### S3 method for class 'hpp'

```r
pp_compensator(object, events)
```
Arguments

object  
a point process model

events  
event times

Value

Invisibly returns NULL. Outputs plots and summary of diagnostics to console

Examples

```
hpp_obj <- pp_hpp(lambda = 1)
events <- pp_simulate(hpp_obj, end = 50)
pp_diag(hpp_obj, events)
```

`pp_hp`

Create a Hawkes process object

Description

Create a Hawkes Process with an exponential kernel according to the given parameters: lambda0, alpha, beta and events. If events are missing, then it means that data will be added later (simulated from this process)

Usage

`pp_hp(lambda0, alpha, beta, events = NULL)`

Arguments

lambda0  
initial intensity at the start time

alpha  
jump size in increase of intensity

beta  
exponential decay of intensity

events  
vector containing the event times. Note that the first event is at time zero. Alternatively, events could be specified as NULL, meaning that the data will be added later (e.g. simulated).

Value

hp object

Examples

```
pp_hp(lambda0 = 0.1, alpha = 0.45, beta = 0.5)
```
**pp_hpp**

*Create a homogeneous Poisson process object*

**Description**

Create a homogeneous Poisson object according to given parameters: lambda, and events. If events are missing, then it means that data will be added later (simulated from this process).

**Usage**

```r
pp_hpp(lambda, events = NULL)
```

**Arguments**

- `lambda`  
  rate of the Poisson process
- `events`  
  event times, optional

**Value**

hpp object

**Examples**

```r
pp_hpp(lambda = 1)
```

**pp_ksplot**

*KS plot of empirical and theoretical cdf curve of fitted point process*

**Description**

Plot empirical cdf plot for rescaled-inter-event-times and exponential cdf as a reference curve.

**Usage**

```r
pp_ksplot(r, ...)
```

**Arguments**

- `r`  
  rescaled-inter-event-times
- `...`  
  other arguments for plots

**Value**

no return value, KS plot for rescaled-inter-event-times and exponential cdf curve
Create a Markov-modulated Hawkes Process (MMHP) object

Description

Create a Markov-modulated Hawkes Process (MMHP) model according to the given parameters: lambda0, lambda1, alpha, beta, event times and transition probability matrix. If event time events is missing, then it means that data will be added later (e.g. simulated).

Usage

`pp_mmhp(lambda0, lambda1, alpha, beta, Q = NULL, delta = NULL, events = NULL)`

Arguments

- `lambda0`: intensity for homogeneous Poisson process.
- `lambda1`: base intensity for Hawkes process.
- `alpha`: jump size of the increase in intensity in the hawkes process.
- `beta`: exponential decrease of intensity in the hawkes process.
- `Q`: transition probability matrix.
- `delta`: initial state probability.
- `events`: vector containing the event times. Note that the first event is at time zero. Alternatively, events could be specified as NULL, meaning that the data will be added later (e.g. simulated).

Value

`mmhp` object

Examples

```r
Q <- matrix(c(-0.4, 0.4, 0.2, -0.2), ncol = 2, byrow = TRUE)
pp_mmhp(Q,
 delta = c(1 / 3, 2 / 3), lambda0 = 0.9, lambda1 = 1.1,
 alpha = 0.8, beta = 1.2
)`
pp_mmpp

Create a Markov-modulated Poisson Process (MMPP) object

Description
Create a Markov-modulated Poisson Process (MMPP) model according to the given parameters:
lambda0, c, q1, q2 and event times. If event time tau is missing, then it means that data will be
added later (e.g. simulated)

Usage
pp_mmpp(lambda0, c, Q, events = NULL, delta = NULL)

Arguments
lambda0 parameters for Poisson process.
c the proportion of intensity 1 over intensity 2
Q transition probability matrix
events vector containing the event times. Note that the first event is often specified as
zero. Alternatively, events could be specified as NULL, meaning that the data
will be added later (e.g. simulated).
delta initial state probability.

Value
mmpp object

Examples
Q <- matrix(c(-0.4, 0.4, 0.2, -0.2), ncol = 2, byrow = TRUE)
pp_mmpp(Q = Q, lambda0 = 1, c = 1.5, delta = c(1 / 3, 2 / 3))

pp_qqexp

Plot QQ-plot for rescaled-inter-event-times of fitted point process

Description
Generate Quantile-quantile plot for rescaled-inter-event-times, which are independently and identi-
cally distributed as exponential random variables with rate 1 under the true point process.

Usage
pp_qqexp(r, ...)

Arguments

- `r`: rescaled-inter-event-times
- `...`: other arguments for plots

Value

- no return value, quantile-quantile plot for rescaled-inter-event-times

Description

Compute raw and pearson residuals for point process models

Usage

```r
pp_residual(object, events, start = 0, end = max(events), steps = 1000)
```

Arguments

- `object`: point process model containing the parameters
- `events`: vector of event times
- `start`: start of observation period (default 0)
- `end`: end of observation period (default final event)
- `steps`: number of steps for numeric integration (if needed)

Value

the raw and pearson residuals

Examples

```r
Q <- matrix(c(-0.4, 0.4, 0.2, -0.2), ncol = 2, byrow = TRUE)
x <- pp_mmhp(Q,
  delta = c(1 / 3, 2 / 3), lambda0 = 0.9,
  lambda1 = 1.1, alpha = 0.8, beta = 1.2
)
y <- pp_simulate(x, n = 10)
pp_residual(x, events = y$events)
```
pp_simulate

Simulate events from a temporal point process

Description

Currently available point processes are homogeneous Poisson, Hawkes with exponential kernel, MMHP and MMPP

Usage

```r
pp_simulate(object, start = 0, end = 1, n = NULL, verbose = FALSE)
```

Examples

```r
hpp_obj <- pp_hpp(lambda = 1)
s <- pp_simulate(hpp_obj, n = 50)
```
Index

drawHPIntensity, 2
drawHPPIntensity, 3
drawUniMMHPIntensity, 4
drawUniMMPPIntensity, 5

fithp, 6
fithpp, 7

intensityqqplot, 7

pp_compensator, 8
pp_diag, 9
pp_hp, 10
pp_hpp, 11
pp_kspplot, 11
pp_mmhp, 12
pp_mmpp, 13
pp_qqexp, 13
pp_residual, 14
pp_simulate, 15