Package ‘powerlmm’

August 14, 2018

Type Package

Title Power Analysis for Longitudinal Multilevel Models

Version 0.4.0

Description Calculate power for the ‘time x treatment’ effect in two- and three-level multilevel longitudinal studies with missing data. Both the third-level factor (e.g. therapists, schools, or physicians), and the second-level factor (e.g. subjects), can be assigned random slopes. Studies with partially nested designs, unequal cluster sizes, unequal allocation to treatment arms, and different dropout patterns per treatment are supported. For all designs power can be calculated both analytically and via simulations. The analytical calculations extends the method described in Galbraith et al. (2002) <doi:10.1016/S0197-2456(02)00205-2>, to three-level models. Additionally, the simulation tools provides flexible ways to investigate bias. Type I errors and the consequences of model misspecification.

License GPL (>= 3)

URL https://github.com/rpsychologist/powerlmm

BugReports https://github.com/rpsychologist/powerlmm/issues

Encoding UTF-8

LazyData true

RoxygenNote 6.1.0

Depends R (>= 3.2.0)

Imports stats, methods, parallel, lme4 (>= 1.1), Matrix, MASS, scales, utils

Suggests testthat, dplyr, tidyr, knitr, rmarkdown, pbmcapply (>= 1.1), lmerTest (>= 2.0), ggplot2 (>= 2.2), ggsci, viridis, gridExtra, shiny (>= 1.0), shinydashboard

ByteCompile true

VignetteBuilder knitr

NeedsCompilation no
Author Kristoffer Magnusson [aut, cre]
Maintainer Kristoffer Magnusson <hello@kristoffer.email>
Repository CRAN
Date/Publication 2018-08-14 08:40:03 UTC

R topics documented:

as.data.frame.plcp_multi_sim_summary ... 3
cohend ... 4
create_lmer_formula ... 6
dropout_manual .. 7
dropout_weibull .. 9
get_correlation_matrix .. 10
get_DEFT ... 11
get_dropout ... 12
get_ICC_pre_clusters .. 13
get_ICC_pre_subjects ... 14
get_ICC_slope ... 15
get_monte_carlo_se ... 16
get_power ... 17
get_power_table .. 19
get_sds ... 20
get_slope_diff .. 21
get_var_ratio ... 22
get_VPC ... 22
per_treatment ... 24
plot.plcp ... 25
plot.plcp_ICC2 ... 25
plot.plcp_power_table ... 26
plot.plcp_sds ... 26
plot.plcp_VPC .. 27
powerlmm ... 27
print.plcp_2lvl .. 28
print.plcp_3lvl .. 29
print.plcp_ICC2 ... 29
print.plcp_mc_se .. 30
print.plcp_multi .. 30
print.plcp_multi_power .. 31
print.plcp_multi_sim ... 31
print.plcp_multi_sim_summary ... 32
print.plcp_power_2lvl .. 32
print.plcp_power_3lvl .. 33
print.plcp_sds .. 33
print.plcp_sim ... 34
print.plcp_sim_formula ... 34
print.plcp_sim_summary .. 35
print.plcp_VPC ... 35
as.data.frame.plcp_multi_sim_summary

Convert a multi-sim summary object to a tidy data.frame

Description

Convert a multi-sim summary object to a tidy data.frame

Usage

```r
## S3 method for class 'plcp_multi_sim_summary'
as.data.frame(x, ...)
```

Arguments

- `x`: Object with class `plcp_multi_sim_summary`.
- `...`: Not used

Value

A data.frame with one row for each simulation. Columns include the simulation study parameters and the results.
Use Cohen's d as the effect size in study_parameters

Description

This function is used as input to the effect_size argument in study_parameters, if standardized effect sizes should be used. The choice of the denominator differs between fields, and this function supports the common ones: pre- or posttest SD, or the random slope SD.

Usage

cohend(ES, standardizer = "pretest_SD", treatment = "control")

Arguments

ES numeric; value of the standardized effect size. Can be a vector.
standardizer character; the standardizer (denominator) used to calculate Cohen's d. Allows options are: "pretest_SD", "posttest_SD", or "slope_SD". See Details from more information.
treatment character; indicates if the standardizer should be based on the "treatment" or "control" group—this only matters for 3-level partially nested designs.

Details

Standardizing using the pretest_SD or posttest_SD

For these effect sizes, ES indicates the standardized difference between the treatment groups at posttest (T_end), standardized by using either the implied standard deviation at pretest or posttest. Thus, the actual raw differences in average slopes between the treatments are,
slope_diff = (ES * SD)/T_end.
slope_SD: standardizing using the random slopes

This standardization is quite different from using the pretest or posttest SD. Here the average slope difference is standardized using the total SD of the random slopes. This is done by e.g. Raudenbush and Liu (2001). NB, for this effect size ES indicates the difference in change per unit time, and not at posttest. Thus, the raw difference in average slopes is,
slope_diff = ES * slope_SD.
For a 3-level model, slope_SD = sqrt(sigma_subject_slope^2 + sigma_cluster_slope^2).

Value

A list of the same length as ES. Each element is a named list of class plcp_cohend, with the elements:

• set: A helper function that converts the standardized ES to raw values. Accepts a study_parameters objects, and returns a numeric indicating the raw difference between the treatment at posttest.
• get: contains a list with the original call: "ES", "standardizer", and "treatment".
References

See Also

study_parameters

Examples

Pretest SD
p <- study_parameters(n1 = 11,
 n2 = 20,
 icc_pre_subject = 0.5,
 cor_subject = -0.4,
 var_ratio = 0.03,
 effect_size = cohend(0.4, standardizer = "pretest_SD"))
get_slope_diff(p)

using posttest SD,
due to random slope SD will be larger at posttest
thus ES = 0.4 indicate larger raw slope difference
using posttest SD
p <- update(p, effect_size = cohend(0.4,
 standardizer = "posttest_SD"))
get_slope_diff(p)

Random slope SD
p <- study_parameters(n1 = 11,
 n2 = 20,
 icc_pre_subject = 0.5,
 cor_subject = -0.4,
 var_ratio = 0.03,
 effect_size = cohend(0.4, standardizer = "slope_SD"))

Partially nested ---
p <- study_parameters(n1 = 11,
 n2 = 20,
 n3 = 4,
 icc_pre_subject = 0.5,
 icc_pre_cluster = 0.25,
 cor_subject = -0.4,
 var_ratio = 0.03,
 partially_nested = TRUE,
 effect_size = cohend(0.4, standardizer = "pretest_SD")
)
Default is to use control groups SD
get_slope_diff(p)
Treatment group's SD also include cluster-level intercept variance.
Thus, ES of 0.4 will indicate a larger raw difference
using the treatment group's SD
p <- update(p, effect_size = cohend(0.4,
 standardizer = "pretest_SD",
 treatment = "treatment"))

get_slope_diff(p)

Combine multiple values, and raw and standardized effects
p <- study_parameters(n1 = 11,
 n2 = 20,
 icc_pre_subject = 0.5,
 cor_subject = -0.4,
 var_ratio = 0.03,
 effect_size = c(-5, 9),
 cohend(c(0.5, 0.8), standardizer = "pretest_SD"),
 cohend(c(0.5, 0.8), standardizer = "posttest_SD"))

Recreate results in Raudenbush & Liu 2001
rauden_liu <- function(D, f, n = 238) {
 n1 <- f * D + 1
 p <- study_parameters(n1 = n1,
 n2 = n2/2,
 T_end = D,
 sigma_subject_intercept = sqrt(0.0333),
 sigma_subject_slope = sqrt(0.0030),
 sigma_error = sqrt(0.0262),
 effect_size = cohend(0.4, standardizer = "slope_SD"))
 x <- get_power(p)
 round(x$power, 2)
}

Table 1 in Raudenbush & Liu 2001
NB, it looks like they made an error in column 1.
g <- expand.grid(D = 2:8,
 f = c(0.5, 1:6))
g$power <- mapply(rauden_liu, D = g$D, f = g$f)
tidyr::spread(g, f, power)

Table 3 Table 1 in Raudenbush & Liu 2001
g <- expand.grid(n = seq(100, 800, by = 100),
 D = 4,
 f = c(0.5, 1:6))
g$power <- mapply(rauden_liu, n = g$n, f = g$f, D = g$D)
tidyr::spread(g, n, power)
create_lmer_formula
Create an lmer formula based on a study_parameters-object

Description
Create an lmer formula based on a study_parameters-object

Usage

```r
create_lmer_formula(object, ...)
```

Arguments

- **object**: A study_parameters-object containing one study design
- **...**: Unused, optional arguments.

Details

The lme4 formula will correspond to the model implied by the specified parameters in the study_parameters-object. Thus, if e.g. `cor_subject` is NA or NULL the corresponding term is removed from the lmer formula. Parameters that are 0 are retained.

Currently only objects with one study design are supported, i.e. objects with class plcp, and not plcp_multi; data.frame with multiple designs are currently not supported.

Value

A character vector with lmer formula syntax.

dropout_manual
Manually specify dropout per time point

Description

Used as input to the dropout-argument in study_parameters.

Usage

```r
dropout_manual(...)```

**Arguments**

- **...**: The proportion of dropout per time point, either as a vector of length n1, or n1 individual numeric arguments, see Details.

**Details**

Specifying dropout manually requires that the dropout is 0 at the first time point. Moreover, dropout can’t decrease over time and can never be 1.
**Value**

A list of class \texttt{plcp_dropout_manual}

**See Also**

\texttt{dropout_weibull, per_treatment}

**Examples**

```r
dropout <- dropout_manual(0, 0, 0, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.45)

p <- study_parameters(n1 = 11,
 n2 = 5,
 n3 = 6,
 T_end = 10,
 icc_pre_subject = 0.5,
 icc_pre_cluster = 0,
 var_ratio = 0.03,
 icc_slope = 0.05,
 dropout = dropout,
 cohend = -0.8)

plot(p, plot = 2)
g��_power(p)

Can also use a vector as input
dropout <- dropout_manual(seq(0, 0.5, length.out = 11))
p <- study_parameters(n1 = 11,
 n2 = 5,
 n3 = 6,
 T_end = 10,
 icc_pre_subject = 0.5,
 icc_pre_cluster = 0,
 var_ratio = 0.03,
 icc_slope = 0.05,
 dropout = dropout,
 cohend = -0.8)

plot(p, plot = 2)
g��_power(p)

Not run:
Decreasing dropout will throw an error
dropout_manual(0, 0.1, 0.1, 0.2, 0.1)

Dropout at the first time point will throw an error
dropout_manual(0.1, 0.1, 0.1, 0.2, 0.2)

End(Not run)
Use the Weibull distribution to specify the dropout process

Description

Used as input to the dropout-argument in study_parameters

Usage
dropout_weibull(proportion, rate)

Arguments

proportion Total proportion of subjects that have dropped out at the last time point. Must be less than 1.
rate Indicates the "shape" of the dropout process, if > 1 then dropout is concentrated at the end of the study, if rate < 1 more dropout occurs at the beginning of the study. If rate == 1 the risk of dropout is constant.

Details

N.B a constant (rate = 1) hazard of dropout does not mean dropout is linear over time. It means that the risk of dropping out at the next time point is constant over the study period.

Value

A plcp_weibull named list, with the first element containing the dropout function.

References

See Also
dropout_manual, per_treatment

Examples

p <- study_parameters(n1 = 11,
 n2 = 5,
 n3 = 6,
 T_end = 10,
 icc_pre_subject = 0.5,
 icc_pre_cluster = 0,
 var_ratio = 0.03,
 icc_slope = 0.05,
 dropout = dropout_weibull(proportion = 0.3, rate = 3),
cohen_d <- -0.8

get_dropout(p)
plot(p, plot = 2)

Different per treatment
tx <- dropout_weibull(proportion = 0.3, rate = 3)
cc <- dropout_weibull(proportion = 0.3, rate = 1/3)
dropout <- per_treatment(control = cc, treatment = tx)

p <- study_parameters(n1 = 11,
n2 = 5,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
dropout = dropout,
cohen_d = -0.8)

plot(p, plot = 2)

Compare power for different dropout amounts
dropout <- c(dropout_weibull(proportion = 0.3, rate = 3),
dropout_weibull(proportion = 0.5, rate = 3),
dropout_weibull(proportion = 0.5, rate = 1/3))

p <- study_parameters(n1 = 11,
n2 = 5,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
dropout = dropout,
cohen_d = -0.8)

get_power(p)

get_correlation_matrix

Calculate the subject-level (ICC) correlations among time points

Description

Calculate the subject-level (ICC) correlations among time points
get_correlation_matrix

Usage

```r
get_correlation_matrix(object)
```

Arguments

- `object` An object created by `study_parameters`

Details

The correlation between time point \(T_i \) and \(T_{i+1} \) within the same subject is also called the intraclass correlation (ICC) at level two. If the random slopes are non-zero this ICC change over time.

Value

A \(n_1 \times n_1 \) matrix with the marginal subject-level correlations between time points.

Examples

```r
paras <- study_parameters(n1 = 11,
                          n2 = 10,
                          n3 = 3,
                          T_end = 10,
                          icc_pre_subject = 0.5,
                          icc_pre_cluster = 0,
                          icc_slope = 0.05,
                          var_ratio = 0.03)

get_correlation_matrix(paras)
```

get_DEFT

Calculate the design effect and Type I errors

Description

This function helps to evaluate the consequences of ignoring a random slope at the cluster level.

Usage

```r
get_DEFT(object)
```

Arguments

- `object` A `plcp_3lvl`-object created by `study_parameters`
Details

The design effect (DEFT) is the ratio of the standard error from the correct three-level model to the standard error from the misspecified model omitting the cluster-level random slope. The standard error for the misspecified model is calculated by assuming that the cluster-level random slope variance is added to the subject-level random slope.

The approximate Type I error under the miss-specified model is also calculated. The effect of wrongly ignoring a third-level random slope on the Type I errors, depends on \(n_1, n_2, n_3, \text{icc_slope}, \text{and, var_ratio} \).

Value

A data.frame with the columns \(n_1, n_2, n_3, \text{icc_slope}, \text{var_ratio}, \text{DEFT}, \text{and, approx_type1} \). The number of rows of the data.frame will be equals to the number of different combination of parameters values specified with \texttt{study_parameters}.

See Also

\texttt{simulate.plcp}

Examples

```r
paras <- study_parameters(n1 = 11,
    n2 = 30,
    n3 = 3,
    T_end = 10,
    icc_pre_subject = 0.5,
    icc_pre_cluster = 0,
    icc_slope = c(0.01, 0.05, 0.1),
    var_ratio = 0.02)

get_DEFT(paras)
```

Description

Get the amount of dropout

Usage

```r
get_dropout(object, ...)
```

```r
## S3 method for class 'plcp_multi'
get_dropout(object, n = 1, ...)
```
get_ICC_pre_clusters

Calculate the amount of baseline variance at the cluster level

Description

Calculate the amount of baseline variance at the cluster level

Usage

```r
get_ICC_pre_clusters(object, ...)```

**Arguments**

- `object`: An object created by `study_parameters`
- `...`: Optional named arguments.

**Details**

The proportion of variance at the cluster level at baseline can be interpreted as the correlation between two subjects belonging to the same cluster.
get_ICC_pre_subjects

Value

Returns the proportion of baseline variance at the cluster level, as a numeric vector.

Examples

```r
paras <- study_parameters(n1 = 11,
 n2 = 10,
 n3 = 3,
 T_end = 10,
 sigma_subject_intercept = 1.2,
 sigma_subject_slope = 0.2,
 sigma_cluster_intercept = 0.5,
 sigma_cluster_slope = 0.2,
 sigma_error = 1.2,
 cohend = -0.8)

get_ICC_pre_clusters(paras)
```

get_ICC_pre_subjects  Calculate the subject-level ICC at pretest

Description

Calculate the subject-level ICC at pretest

Usage

```r
get_ICC_pre_subjects(object, ...)
```

Arguments

- `object`  An object created by `study_parameters`
- `...`  Optional named arguments.

Value

Returns the proportion of baseline variance at the subject level (which also includes cluster-level variance), as a numeric vector.

Examples

```r
paras <- study_parameters(n1 = 11,
 n2 = 10,
 n3 = 3,
 T_end = 10,
 sigma_subject_intercept = 1.2,
 sigma_subject_slope = 0.2,
 sigma_cluster_intercept = 0.5,
 sigma_cluster_slope = 0.2,
 sigma_error = 1.2,
 cohend = -0.8)
```
get_ICC_slope

```
sigma_error = 1.2,
cohend = -0.8
```

get_ICC_pre_subjects(paras)

---

**Description**

Calculate the amount of slope variance at the third level

**Usage**

```
get_ICC_slope(object, ...)
```

**Arguments**

- `object` An object created by `study_parameters`.
- `...` Optional named arguments.

**Value**

Returns the proportion of slope variance at the third level as a numeric vector. `NA` is returned for models with no slope variance as either level two or three.

**Examples**

```
paras <- study_parameters(n1 = 11,
n2 = 10,
n3 = 3,
T_end = 10,
sigma_subject_intercept = 1.2,
sigma_subject_slope = 0.2,
sigma_cluster_intercept = 0,
sigma_cluster_slope = 0.2,
sigma_error = 1.2,
cohend = -0.8)

get_ICC_slope(paras)
```
**get_monte_carlo_se**

Calculate the Monte Carlo standard error of the empirical power estimates

### Description

Returns the expected simulation error for a study design. Indicates how many simulation that are needed for a desired precision in the empirical power estimates.

### Usage

```
get_monte_carlo_se(object, nsim, power, ...)
```

```
S3 method for class 'plcp_power_3lvl'
generate_monte_carlo_var(object, nsim, ...)
```

```
S3 method for class 'plcp_power_2lvl'
generate_monte_carlo_var(object, nsim, ...)
```

### Arguments

- **object**
  - An object created by `get_power`

- **nsim**
  - A numeric indicating the number of simulations

- **power**
  - Optional. A numeric indicating the empirical power.

- **...**
  - Currently not used. Used when object is NULL.

### Value

A data.frame with the estimated power, expected standard error of the simulated power estimate, and the 95% CI of the estimate.

### Examples

```r
paras <- study_parameters(n1 = 11,
 n2 = 10,
 n3 = 6,
 T_end = 10,
 icc_pre_subject = 0.5,
 icc_pre_cluster = 0,
 var_ratio = 0.03,
 icc_slope = 0.05,
 cohend = -0.8)

x <- get_power(paras)
generate_monte_carlo_se(x, nsim = 1000)
```

```
Without an object
get_monte_carlo_se(power = 0.8, nsim = 1000)
```
get_power

\hspace{1cm} Calculate power for two- and three-level models with missing data.

Description

Calculate power for two- and three-level models with missing data.

Usage

get_power(object, df = "between", alpha = 0.05, progress = TRUE,
R = 1L, cores = 1L, ...)

Arguments

- **object**: An object created by `study_parameters`
- **df**: Either "between" or "satterth" for Satterthwaite’s DF approximation. Also accepts a numeric value which will be used as DF.
- **alpha**: The alpha level, defaults to 0.05.
- **progress**: logical; displays a progress bar when > 1 power analysis is performed.
- **R**: An integer indicating how many realizations to base power on. Useful when dropout or cluster sizes are sampled (i.e. are random variables).
- **cores**: An integer indicating how many CPU cores to use.
- **...**: Other potential arguments; currently used to pass progress bar from Shiny

Details

**Calculation of the standard errors**

Designs with equal cluster sizes, and with no missing data, uses standard closed form equations to calculate standard errors. Designs with missing data or unequal cluster sizes uses more computationally intensive linear algebra solutions.

To see a more detailed explanation of the calculations, type `vignette("technical", package = "powerlmm").`

**Degrees of freedom**

Power is calculated using the \( t \) distribution with non-centrality parameter \( b/se \), and \( dfs \) are either based on a the between-subjects or between-cluster \( dfs \), or using Satterthwaite’s approximation. For the "between" method, \( N_3 - 2 \) is used for three-level models, and \( N_2 - 2 \) for two-level models, where \( N_3 \) and \( N_2 \) is the total number of clusters and subjects in both arms.

**N.B** Satterthwaite’s method will be RAM and CPU intensive for large sample sizes. The computation time will depend mostly on \( n1 \) and \( n2 \). For instance, for a fully nested model with \( n1 = 10 \), \( n2 = 100 \), \( n3 = 4 \), computations will likely take 30-60 seconds.

**Cluster sizes or dropout pattern that are random (sampled)**

If `deterministic_dropout = FALSE` the proportion that dropout at each time point will be sampled from a multinomial distribution. However, if it is `TRUE`, the proportion of subjects that
dropout will be non-random, but which subjects dropout will still be random. Both scenarios often lead to small variations in the estimated power. Moreover, using cluster sizes that are random, unequal_clusters(func = ...), can lead to large variations in power for a single realization of cluster sizes. In both scenarios the expected power can be calculated by repeatedly recalculating power for different new realizations of the random variables. This is done by using the argument R – power, sample size, and DFs, is then reported by averaging over the R realizations.

If power varies over the R realization then the Monte Carlo SE is also reported. The SE is based on the normal approximation, i.e. sd(power_i)/sqrt(R).

Value

a list or data.frame depending if power is calculated for a single set of parameters or a combination of multiple values. Has class plcp_power_3lv1 for fully- and partially nested three-level designs, and class plcp_power_2lv1 for two-level designs.

See Also

study_parameters, simulate.plcp, get_power_table

Examples

# Two-level model
paras <- study_parameters(n1 = 11, n2 = 40, T_end = 10, icc_pre_subject = 0.5, var_ratio = 0.02, cohend = -0.8)
get_power(paras)

# With missing data
paras <- study_parameters(n1 = 11, n2 = 40, T_end = 10, icc_pre_subject = 0.5, var_ratio = 0.02, dropout = dropout_weibull(0.3, 2), cohend = -0.8)
get_power(paras)

# Three-level model
paras <- study_parameters(n1 = 11, n2 = 10, n3 = 5, T_end = 10, icc_pre_subject = 0.5, icc_pre_cluster = 0, etc. etc.)
get_power_table

icc_slope = 0.05,
var_ratio = 0.02,
cohend = -0.8)

get_power(paras)

# With missing data
paras <- study_parameters(n1 = 11,
n2 = 10,
n3 = 5,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.02,
dropout = dropout_weibull(0.3, 2),
cohend = -0.8)

get_power(paras)

# Satterthwaite DFs
get_power(paras, df = "satterthwaite")

get_power_table

Create a power table for a combination of parameter values

Description

Create a power table for a combination of parameter values

Usage

get_power_table(object, n2, ..., df = "between", alpha = 0.05,
R = 1L, cores = 1L)

Arguments

object       An object created by study_parameters
n2           A vector of n2 values
...          Optional named arguments. Up to two extra arguments can be compared. When
             used together with the plot method, the first argument will be grouped by color
             and the second by facets.
R            Either "between" or "satterth" for Satterthwaite’s DF approximation. Also
             accepts a numeric value which will be used as DF. See get_power
alpha        The alpha level, defaults to 0.05.
cores        An integer indicating how many CPU cores to use.
get_sds

Value

A data.frame with class plcp_power_table.

Examples

```r
paras <- study_parameters(n1 = 11,
 n2 = 10,
 n3 = 6,
 T_end = 10,
 icc_pre_subject = 0.5,
 icc_pre_cluster = 0,
 var_ratio = 0.03,
 icc_slope = 0.05,
 cohend = -0.8)

increase only n2
x <- get_power_table(paras, n2 = 10:15)
plot(x)

Compare two parameters
x <- get_power_table(paras, n2 = 10:15, n3 = 6:8)
plot(x)

Compare impact of three parameters
x <- get_power_table(paras, n2 = seq(3, 25, by = 3),
 n3 = c(3, 6, 9),
 icc_slope = c(0, 0.05, 0.1))
plot(x)
```

get_sds Calculate the model implied standard deviations per time point

Description

Calculate the model implied standard deviations per time point

Usage

get_sds(object, treatment = "treatment", n = 1)

Arguments

- object: An object created by `study_parameters`
- treatment: character; either "treatment" or "control". Indicates for which group SDs should be calculated for. This only makes a difference for 3-level partially nested designs.
- n: Optional; selects row n if object is a data.frame of parameters
**get_slope_diff**

**Value**

data.frame with class plcp_sds containing the model implied standard deviations per time point.

**See Also**

get_VPC, get_correlation_matrix

**Examples**

```r
paras <- study_parameters(
n1 = 11,
n2 = 10,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.03)

get_sds(paras)
plot
plot(get_sds(paras))
```

---

**get_slope_diff**  
*Return the raw difference between the groups at posttest*

**Description**

Used internally to calculate the difference in change over time between the two treatment groups.

**Usage**

```r
get_slope_diff(object)
```

```r
S3 method for class 'plcp'
get_slope_diff(object)
```

```r
S3 method for class 'plcp_multi'
get_slope_diff(object)
```

**Arguments**

- `object`  
  A study_parameters-object.

**Value**

A numeric indicating the mean difference between the treatment and control group at posttest.
get_var_ratio

Calculates the ratio of the slope variance to the within-subjects error variance

Description
Calculates the ratio of the slope variance to the within-subjects error variance

Usage
get_var_ratio(object, ...)

Arguments
object An object created by study_parameters
... Optional arguments.

Value
Returns the ratio of the total slope variance to the within-subject error as a numeric vector.

Examples
paras <- study_parameters(n1 = 11,
  n2 = 10,
  n3 = 3,
  T_end = 10,
  sigma_subject_intercept = 1.2,
  sigma_subject_slope = 0.2,
  sigma_cluster_intercept = 0,
  sigma_cluster_slope = 0.2,
  sigma_error = 1.2,
  cohend = -0.8)

get_var_ratio(paras)

get_VPC

Calculate the variance partitioning coefficient

Description
Calculate the variance partitioning coefficient
get_VPC

Usage

get_VPC(object)

## S3 method for class 'plcp'
get_VPC(object)

Arguments

object An object created by study_parameters

Details

For partially nested studies, the VPC is calculated for the treatment group.

Value

a data.frame with class plcp_VPC containing the percentage of variance per level and time point. The column between_clusters is also the intraclass correlation for level three, i.e. the correlation between two subjects belonging to the same cluster at a specific time point. With random slopes in the model the variances per time point will be a quadratic function of time. tot_var is the percentage increase or decrease in total variance relative to baseline variance.

The plot method returns a ggplot2::ggplot object.

References


See Also

plot.plcp_VPC

Examples

paras <- study_parameters(n1 = 11,
    n2 = 10,
    n3 = 3,
    T_end = 10,
    icc_pre_subject = 0.5,
    icc_pre_cluster = 0,
    icc_slope = 0.05,
    var_ratio = 0.03)

res <- get_VPC(paras)
res

# Plot
plot(res)
per_treatment

Setup parameters that differ per treatment group

Description

Helps specifying unequal cluster sizes with `study_parameters`, e.g. different number of clusters in the treatment and control arm, or different dropout patterns.

Usage

```r
per_treatment(control, treatment)
```

Arguments

- `control` Value used for control group
- `treatment` Value used for treatment group

Details

The type of object passed to `control` and `treatment` will depend on the parameters in `study_parameters` that should have different values per treatment group.

Value

An object of class "plcp_per_treatment"

See Also

`unequal_clusters`, `study_parameters`, `dropout_weibull`

Examples

```r
n2 <- per_treatment(control = 10,
 treatment = 20)
p <- study_parameters(n1 = 11,
 n2 = n2,
 n3 = 6,
 t_end = 10,
 icc_pre_subject = 0.5,
 icc_pre_cluster = 0,
 var_ratio = 0.03,
 icc_slope = 0.05,
 cohend = -0.8)
```
plot.plcp

Plot method for study_parameters-objects

Description

Plot method for study_parameters-objects

Usage

```r
S3 method for class 'plcp'
plot(x, n = 1, type = "both", ...)
```

Arguments

- **x**: An object of class plcp.
- **n**: specifies which row n should be used if object is a data.frame containing multiple setups.
- **type**: indicated what plot to show. If effect the plot showing the treatment groups change over time will be shown, if dropout the missing data pattern will be shown, if both both plots will be shown.
- **...**: Optional arguments.

plot.plcp_ICC2

Plot method for get_correlation_matrix-objects

Description

Plot method for get_correlation_matrix-objects

Usage

```r
S3 method for class 'plcp_ICC2'
plot(x, ...)
```

Arguments

- **x**: An object created with `get_correlation_matrix`
- **...**: Optional arguments, currently ignored.
plot.plcp_power_table  
Plot method for get_power_table-objects

Description

Plot method for get_power_table-objects

Usage

```r
S3 method for class 'plcp_power_table'
plot(x, ...)
```

Arguments

- `x`  
  An object of class plcp_power_table.

- `...`  
  Optional arguments.

plot.plcp_sds  
Plot method for get_sds-objects

Description

Plot method for get_sds-objects

Usage

```r
S3 method for class 'plcp_sds'
plot(x, ...)
```

Arguments

- `x`  
  An object of class plcp_sds.

- `...`  
  Optional arguments.
plot.plcp_VPC  

Plot method for get_VPC-objects

Description
Plot method for get_VPC-objects

Usage
```r
S3 method for class 'plcp_VPC'
plot(x, ...)
```

Arguments
- `x`: An object created with `get_VPC`
- `...`: Optional arguments, currently ignored.

powerlmm  

Power Analysis for Longitudinal Multilevel Models

Description
The `powerlmm` package provides a fast and flexible way to calculate power for two- and three-level multilevel models with missing data. The focus is on power analysis for the test of the treatment effect in longitudinally clustered designs, i.e. where the first level is measurements, and the second level is subjects nested within a (optional) higher level-three unit, e.g. therapists.

Details
All study designs are specified using the function `study_parameters`, which lets you define your model using familiar notation, either by specifying the model parameters directly, or by using relative standardized inputs (e.g. % variance at each level). Several functions are provided to help you visualize and understand the implied model, type `methods(class="plcp")` to see available methods. The basic features of the package are also available via an interactive (Shiny) web application, which you can launch by typing `shiny_powerlmm()`.

Supported models
The purpose of `powerlmm` is to help design longitudinal treatment studies, with or without higher-level clustering (e.g. by therapists, groups, or physicians), and missing data. The main features of the package are:
- Longitudinal Two- and three-level (nested) linear mixed models, and partially nested designs
- Random slopes at the subject- and cluster-level.
- Account for missing data/dropout.
• Unbalanced designs (both unequal cluster sizes, and treatment groups).
• Calculate the design effect, and estimated type I error when the third-level is ignored.
• Fast analytical power calculations for all supported designs.
• Explore bias, Type I error and model misspecification using convenient simulation methods.
• Few clusters; accurate power analysis even with very few clusters, by using Satterthwaite’s degrees of freedom approximation.
• Create power curves to guide power analysis and help with optimal design of sample sizes at each level.

Tutorials

Type vignette("two-level", package = "powerlmm"), or vignette("three-level", package = "powerlmm") to see a tutorial on using powerlmm to calculate power. See all available vignettes by typing vignette(package = "powerlmm").

Author(s)

Kristoffer Magnusson
Maintainer: Kristoffer Magnusson <hello@kristoffer.email>

See Also

study_parameters, get_power

print.plcp_2lvl  

Description

Print method for two-level study_parameters-objects

Usage

## S3 method for class 'plcp_2lvl'
print(x, ...)

Arguments

x
An object of class plcp_2lvl.

...  
Optional arguments.
**print.plcp_3lvl**  
*Print method for three-level study_parameters-objects*

---

### Description
Print method for three-level study_parameters-objects

### Usage
```r
S3 method for class 'plcp_3lvl'
print(x, ...)
```

### Arguments
- **x**: An object of class plcp_3lvl.
- **...**: Optional arguments.

---

**print.plcp_ICC2**  
*Print method for get_correlation_matrix-objects*

---

### Description
Print method for get_correlation_matrix-objects

### Usage
```r
S3 method for class 'plcp_ICC2'
print(x, ...)
```

### Arguments
- **x**: An object created by `get_correlation_matrix`
- **...**: Optional arguments
print.plcp_mc_se  
*Print method for* get_monte_carlo_se-objects

**Description**

Print method for get_monte_carlo_se-objects

**Usage**

```r
S3 method for class 'plcp_mc_se'
print(x, digits = 2, ...)
```

**Arguments**

- `x` An object created with `get_monte_carlo_se`.
- `digits` The number of digits to print.
- `...` Optional arguments.

print.plcp_multi  
*Print method for* study_parameters-multiobjects

**Description**

Print method for study_parameters-multiobjects

**Usage**

```r
S3 method for class 'plcp_multi'
print(x, print_max = 10, empty = ",.",
 digits = 2, ...)
```

**Arguments**

- `x` An object of class `plcp_multi`.
- `print_max` The number of rows to show
- `empty` Symbol used to replace repeating non-unique parameters
- `digits` Digits to show
- `...` Optional arguments.
Description

Print method for `get_power-multi`

Usage

```r
S3 method for class 'plcp_multi_power'
print(x, ...)
```

Arguments

- `x` An object of class `plcp_multi_power`
- `...` Optional arguments

Description

Print method for `simulate.plcp_multi-objects`

Usage

```r
S3 method for class 'plcp_multi_sim'
print(x, ...)
```

Arguments

- `x` An object created with `simulate.plcp_multi`
- `...` Optional arguments.
print.plcp_multi_sim_summary

*Print method for summary.plcp_multi_sim-objects*

**Description**

Print method for summary.plcp_multi_sim-objects

**Usage**

```r
S3 method for class 'plcp_multi_sim_summary'
print(x, add_cols = NULL, bias = TRUE,
 power = TRUE, estimates = TRUE, digits = 2, ...)
```

**Arguments**

- **x**: An object of class plcp_multi_sim_summary.
- **add_cols**: character vector; indicates the names of the additional columns that should be added to the output. Intended use case is when you want to add some of the setup parameters, this print method is not smart enough to figure out which parameters you are investigating.
- **bias**: logical; indicates if parameter bias should be printed.
- **power**: logical; indicates if empirical power should be printed.
- **estimates**: logical; indicates if the parameter estimates should be printed.
- **digits**: number of significant digits.
- **...**: Optional arguments.

print.plcp_power_2lvl

*Print method for two-level get_power*

**Description**

Print method for two-level get_power

**Usage**

```r
S3 method for class 'plcp_power_2lvl'
print(x, ...)
```

**Arguments**

- **x**: An object of class plcp_power_2lvl.
- **...**: Optional arguments
Print method for three-level get_power

Description
Print method for three-level get_power

Usage
```r
S3 method for class 'plcp_power_3lvl'
print(x, ...)
```

Arguments
- `x`: An object of class `plcp_power_3lvl`.
- `...`: Optional arguments.

Print method for get_sds-objects

Description
Print method for get_sds-objects

Usage
```r
S3 method for class 'plcp_sds'
print(x, ...)
```

Arguments
- `x`: An object of class `plcp_sds`.
- `...`: Optional arguments.
### print.plcp_sim
**Print method for simulate.plcp-objects**

**Description**
Print method for simulate.plcp-objects

**Usage**
```r
S3 method for class 'plcp_sim'
print(x, ...)

S3 method for class 'plcp_sim_formula_compare'
print(x, ...)
```

**Arguments**
- `x`: An object created with `simulate.plcp`
- `...`: Optional arguments.

### print.plcp_sim_formula
**Print method for simulation formulas**

**Description**
Print method for simulation formulas

**Usage**
```r
S3 method for class 'plcp_sim_formula'
print(x, ...)

S3 method for class 'plcp_compare_sim_formula'
print(x, ...)
```

**Arguments**
- `x`: A formula object.
- `...`: Not used
print.plcp_sim_summary

Print method for summary.plcp_sim-objects

Description
Print method for summary.plcp_sim-objects

Usage

## S3 method for class 'plcp_sim_summary'
print(x, verbose = TRUE, digits = 2, ...)

Arguments

x An object of class plcp_sim_summary
verbose logical; indicates if additional information should be printed (default is TRUE).
digits number of significant digits.
... Optional arguments.

print.plcp_vpc

Print method for get_vpc-objects

Description
Print method for get_vpc-objects

Usage

## S3 method for class 'plcp_VPC'
print(x, digits = 2, ...)

Arguments

x Object created with link{get_VPC}
digits Number of digits to print
... Optional arguments
**shiny_powerlmm**

Launch `powerlmm`'s Shiny web application

**Description**

This Shiny application provides the basic functionality of the `powerlmm`-package in a user friendly web application.

**Usage**

`shiny_powerlmm()`

**Examples**

```r
Not run:
library(shiny)
shiny_powerlmm()

End(Not run)
```

**simulate.plcp**

Perform a simulation study using a `study_parameters`-object

**Description**

Perform a simulation study using a `study_parameters`-object

**Usage**

```r
S3 method for class 'plcp'
simulate(object, nsim, seed = NULL, formula = NULL,
 satterthwaite = FALSE, CI = FALSE, cores = 1, progress = FALSE,
 batch_progress = TRUE, ...)

S3 method for class 'plcp_multi'
simulate(object, nsim, seed = NULL,
 formula = NULL, satterthwaite = FALSE, CI = FALSE, cores = 1,
 progress = FALSE, batch_progress = TRUE, ...)
```
**Arguments**

- **object**  
  An object created by `study_parameters`.

- **nsim**  
  The number of simulations to run.

- **seed**  
  Currently ignored.

- **formula**  
  Model formula(s) used to analyze the data, see *Details*. Should be created using `sim_formula`. It is also possible to compare multiple models, e.g. a correct and a misspecified model, by combining the formulas using `sim_formula_compare`. See *Examples*. If NULL the formula is made automatically, using `create_lmer_formula`, which does not support objects with multiple simulation setups.

- **satterthwaite**  
  Logical; if TRUE Satterthwaite’s degrees of freedom approximation will be used when computing \( p \)-values. This is implemented using the `lmerTest`-package. See *Details*.

- **ci**  
  Logical; if TRUE coverage rates for 95 % confidence intervals will be calculated. See *Details*.

- **cores**  
  Number of CPU cores to use. If called from a GUI environment (e.g. RStudio) or a computer running Microsoft Windows, PSOCK clusters will be used. If called from a non-interactive Unix environment forking is utilized.

- **progress**  
  Logical; will display progress if TRUE. Currently ignored on Windows. Package `pbmcapply` is used to display progress, which relies on forking. **N.B** using a progress bar will noticeably increase the simulation time, due to the added overhead.

- **batch_progress**  
  Logical; if TRUE progress will be shown for simulations with multiple setups.

- **...**  
  Optional arguments, see *Saving in Details* section.

**Details**

See also `vignette("simulations", package = "powerlmm")` for a tutorial.

**Model formula**

If no data transformation is used, the available model terms are:

- \( y \) the outcome vector, with potential missing data.
- \( y_c \) the complete version of \( y \), before dropout was simulated.
- time the time vector.
- treatment treatment indicator (0 = "control", 1 = "treatment").
- subject subject-level id variable, from 1 to total number of subjects.
- cluster for three-level models; the cluster-level id variable, from 1 to the total number of clusters.

See *Examples* and the simulation-vignette for formula examples. For objects that contain a single study setup, then the lmer formula can be created automatically using `create_lmer_formula`.

**Satterthwaite’s approximation, and CI coverage**

To decrease the simulation time the default is to only calculate Satterthwaite’s \( df_s \) and the CIs’ coverage rates for the test of ‘time:treatment’-interaction. This can be changed using the argument `test` in `sim_formula`.
Confidence intervals are both calculated using profile likelihood and by the Wald approximation, using a 95% confidence level.

**Saving intermediate results for multi-sims**

Objects with multi-sims can be saved after each batch is finished. This is highly recommended when many designs are simulated. The following additional arguments control saving behavior:

- `save`, logical, if TRUE each batch is saved as a RDS-file. Results are saved in your working directory, in the directory specified by `save_folder`.
- `save_folder` a character indicating the folder name. Default is 'save'.
- `save_folder_create`, logical, if TRUE then `save_folder` will be created if it does not exist in your working directory.

See Also

- `sim_formula`, `sim_formula_compare`, `summary.plcp_sim`, `simulate_data`

Examples

```r
Not run:
Two-level
p <- study_parameters(n1 = 11,
 n2 = 25,
 sigma_subject_intercept = 1.44,
 sigma_subject_slope = 0.2,
 sigma_error = 1.44,
 effect_size = cohen(0.5))

f <- sim_formula("y ~ treatment * time + (1 + time | subject)")

res <- simulate(object = p,
 nsim = 1000,
 formula = f,
 satterthwaite = TRUE,
 progress = FALSE,
 cores = 1,
 save = FALSE)

summary(res)

Three-level (nested)

p <- study_parameters(n1 = 10,
 n2 = 20,
 n3 = 4,
 sigma_subject_intercept = 1.44,
 icc_pre_cluster = 0,
 sigma_subject_slope = 0.2,
 icc_slope = 0.05,
 sigma_error = 1.44,
 effect_size = 0)
```
## simulate.plcp

```r
compare correct and miss-specified model
f0 <- "y ~ treatment * time + (1 + time | subject)"
f1 <- "y ~ treatment * time + (1 + time | subject) + (0 + time | cluster)"
f <- sim_formula_compare("correct" = f1, "wrong" = f0)

res <- simulate(object = p,
 nsim = 1000,
 formula = f,
 satterthwaite = TRUE,
 progress = FALSE,
 cores = 1,
 save = FALSE)

summary(res)

Compare random effects using LRT,
summarise based on best model from each sim
summary(res,
 model_selection = "FW",
 LRT_alpha = 0.1,
 para = "treatment:time")

Partially nested design ---
p <- study_parameters(n1 = 11,
 n2 = 10,
 n3 = 4,
 sigma_subject_intercept = 1.44,
 icc_pre_cluster = 0,
 sigma_subject_slope = 0.2,
 cor_subject = -0.5,
 icc_slope = 0.05,
 sigma_error = 1.44,
 partially_nested = TRUE,
 effect_size = cohend(-0.5))

f <- sim_formula("y ~ treatment * time + (1 + time | subject) +
 (0 + treatment:time | cluster)")

res <- simulate(object = p,
 nsim = 1000,
 formula = f,
 satterthwaite = TRUE,
 progress = FALSE,
 cores = 4,
 save = FALSE)

summary(res)

Run multiple designs ---
p <- study_parameters(n1 = 10,
 n2 = 20,
 n3 = 4)
```
n3 = c(2, 4, 6),
sigma_subject_intercept = 1.44,
icc_pre_cluster = 0,
sigma_subject_slope = 0.2,
icc_slope = 0.05,
sigma_error = 1.44,
effect_size = cohend(0.5))

f0 <- "y ~ treatment * time + (1 + time | subject)"
f1 <- "y ~ treatment * time + (1 + time | subject) + (0 + time | cluster)"
f <- sim_formula_compare("correct" = f1,
"wrong" = f0)

res <- simulate(object = p,
nsim = 10000,
formula = f,
satterthwaite = TRUE,
progress = FALSE,
cores = 1,
save = FALSE)

# Summarize 'time:treatment' results for n3 = c(2, 4, 6) for 'correct' model
summary(res, para = "time:treatment", model = "correct")

# Summarize cluster-level random slope for n3 = c(2, 4, 6) for 'correct' model
summary(res, para = "cluster_slope", model = "correct")

## End(Not run)

---

**simulate_data**

Generate a data set using a study_parameters-object

**Description**

Generate a data set using a study_parameters-object

**Usage**

simulate_data(paras, n = 1)

## S3 method for class 'plcp'
simulate_data(paras, n = NULL)

## S3 method for class 'plcp_multi'simulate_data(paras, n = 1)

**Arguments**

paras An object created by study_parameters
**sim_formula**

Optional; specifies which row \( n \) should be used if `object` is a `data.frame` containing multiple setups.

**Value**

A `data.frame` with the simulated data in long form. With the following columns:

- \( y \) the outcome vector, with missing values as NA
- \( y_c \) the outcome vector, without missing values removed.
- `time` the time vector
- `treatment` treatment indicator (0 = "control", 1 = "treatment")
- `subject` subject-level id variable, from 1 to total number of subjects.
- `cluster` for three-level models; the cluster-level id variable, from 1 to the total number of clusters.

**Examples**

```r
p <- study_parameters(n1 = 11,
 n2 = 10,
 n3 = 4,
 T_end = 10,
 fixed_intercept = 37,
 fixed_slope = -0.65,
 sigma_subject_intercept = 2.89,
 sigma_cluster_intercept = 0.6,
 icc_slope = 0.1,
 var_ratio = 0.03,
 sigma_error = 1.5,
 cor_subject = -0.5,
 cor_cluster = 0,
 cohend = 0.5)

d <- simulate_data(p)
```

---

**Description**

Create a simulation formula

**Usage**

```r
sim_formula(formula, data_transform = NULL, test = "time:treatment")
```
**Arguments**

- `formula`: A character containing a `lme4` formula.
- `data_transform`: Optional; a function that applies a transformation to the data during each simulation.
- `test`: A character vector indicating which parameters should be tested. Only applies to tests using Satterthwaite dfs, or when calculating confidence intervals.

**Details**

It is possible to fit model without any random effects. If no random effects is specified the model is fit using `lm()`.

**Value**

Object with class `plcp_sim_formula`

**See Also**

`sim_formula_compare`, `transform_to_posttest`

**Examples**

```r
2-lvl model
f <- sim_formula("y ~ treatment * time + (1 + time | subject)"

ANCOVA using 'data_transform'
f <- sim_formula("y ~ treatment + pretest",
 data_transform = transform_to_posttest,
 test = "treatment")
```

---

**Description**

This functions allows comparing multiple models fit to the same data set during simulation.

**Usage**

`sim_formula_compare(...)`

**Arguments**

... Named formulas that should be compared, see *Examples*. 
study_parameters

Value

Object with class plcp_compare_sim_formula

See Also

sim_formula

Examples

# Formulas can be a named character
# uses the defaults 'sim_formula()

f <- sim_formula_compare("m0" = "y ~ time * treatment + (1 | subject)",
"m1" = "y ~ time * treatment + (1 + time | subject)"

# Can also use sim_formula()

f0 <- sim_formula("y ~ time * treatment + (1 | subject)"

f1 <- sim_formula("y ~ time * treatment + (1 + time | subject)"

f <- sim_formula_compare("m0" = f0, "m1" = f1)

study_parameters

Setup study parameters

Description

Setup the parameters for calculating power for longitudinal multilevel studies comparing two groups. Ordinary two-level models (subjects with repeated measures), and longitudinal three-level models with clustering due to therapists, schools, provider etc, are supported. Random slopes at the subject level and cluster level are possible. Cluster sizes can be unbalanced, and vary by treatment. Partially nested designs are supported. Missing data can also be accounted for.

Usage

study_parameters(n1, n2, n3 = 1, T_end = NULL, fixed_intercept = 0L,
fixed_slope = 0L, sigma_subject_intercept = NULL,
sigma_subject_slope = NULL, sigma_cluster_intercept = NULL,
sigma_cluster_slope = NULL, sigma_error = 1L, cor_subject = 0L,
cor_cluster = 0L, cor_within = 0L, var_ratio = NULL,
icc_slope = NULL, icc_pre_subject = NULL, icc_pre_cluster = NULL,
effect_size = 0L, cohend = NULL, partially_nested = FALSE,
dropout = 0L, deterministic_dropout = TRUE)
Arguments

n1  Number of level 1 units, e.g. measurements per subject.
n2  Number of level 2 units per level 3 unit, e.g. subjects per cluster. Unbalanced cluster sizes are supported, see unequal_clusters.
n3  Number of level 3 units per treatment, can be different in each treatment arm, see per_treatment.
T_end  Time point of the last measurement. If NULL it will be set to n1 - 1.
fixed_intercept  Average baseline value, assumed to be equal for both groups.
fixed_slope  Overall change per unit time, in the control group.
sigma_subject_intercept  Subject-level random intercept.
sigma_subject_slope  Subject-level random slope.
sigma_cluster_intercept  Cluster-level random intercept.
sigma_cluster_slope  Cluster-level random slope.
sigma_error  Within-subjects (residual) variation.
cor_subject  Correlation between the subject-level random intercept and slopes.
cor_cluster  Correlation between the cluster-level random intercept and slopes.
cor_within  Correlation of the level 1 residual. Currently ignored in the analytical power calculations.
var_ratio  Ratio of the random slope variance to the within-subject variance.
icc_slope  Proportion of slope variance at the cluster level.
icc_pre_subject  Amount of baseline variance at the subject level. N.B. the variance at the subject-level also included the cluster-level variance. If there’s no random slopes, this would be the subject-level ICC, i.e. correlation between time points.
icc_pre_cluster  Amount of baseline variance at the cluster level.
effect_size  The treatment effect. Either a numeric indicating the mean difference (unstandardized) between the treatments at posttest, or a standardized effect using the cohend helper function.
cohend  Deprecated; now act as a shortcut to cohend helper function. Equivalent to using effect_size = cohend(cohend, standardizer = "pretest_SD", treatment = "control")
partially_nested  logical; indicates if there’s clustering in both arms or only in the treatment arm.
dropout  Dropout process, see dropout_weibull or dropout_manual. Assumed to be 0 if NULL.
deterministic_dropout  logical; if FALSE the input to dropout will be treated as random and dropout will be sampled from a multinomial distribution. N.B.: the random dropout will be sampled independently in both treatment arms.
Details

Comparing a combination of parameter values
It is possible to setup a grid of parameter combinations by entering the values as vectors. All unique combinations of the inputs will be returned. This is useful if you want see how different values of the parameters affect power. See also the convenience function `get_power_table`.

Standardized and unstandardized inputs
All parameters of the models can be specified. However, many of the raw parameter values in a multilevel/LMM do no directly affect the power of the test of the treatment:time-coefficient. Power will depend greatly on the relative size of the parameters, therefore, it is possible to setup your calculations using only standardized inputs, or by a combination of raw inputs and standardized inputs. For instance, if `sigma_subject_slope` and `icc_slope` is specified, the `sigma_cluster_slope` will be solved for. Only the cluster-level parameters can be solved when standardized and raw values are mixed. `sigma_error` is 10 by default. More information regarding the standardized inputs are available in the two-level and three-level vignettes.

Difference between 0 and NA
For the variance components \( \theta \) and NA/NULL have different meanings. A parameter that is 0 is still kept in the model, e.g. if `icc_pre_cluster = 0` a random intercept is estimated at the cluster level, but the true value is 0. If the argument is either NULL or NA it is excluded from the model. This choice will matter when running simulations, or if Satterthwaite dfs are used.

The default behavior if a parameters is not specified is that `cor_subject` and `cor_cluster` is 0, and the other variance components are NULL.

Effect size and Cohen’s d
The argument `effect_size` let’s you specify the average difference in change between the treatment groups. You can either pass a numeric value to define the raw difference in means at posttest, or use a standardized effect size, see `cohend` for more details on the standardized effects.

The argument `cohend` is kept for legacy reasons, and is equivalent to using `effect_size = cohend(cohendL standardizer = Bpretest_sdBL treatment = BcontrolBI`.

Two- or three-level models
If either `sigma_cluster_slope` or `icc_slope` and `sigma_cluster_intercept` or `icc_pre_cluster` is NULL it will be assumed a two-level design is wanted.

Unequal cluster sizes and unbalanced allocation
It is possible to specify different cluster sizes using `unequal_clusters`. Cluster sizes can vary between treatment arms by also using `per_treatment`. The number of clusters per treatment can also be set by using `per_treatment`. Moreover, cluster sizes can be sampled from a distribution, and treated as a random variable. See `per_treatment` and `unequal_clusters` for examples of their use.

Missing data and dropout
Accounting for missing data in the power calculations is possible. Currently, dropout can be specified using either `dropout_weibull` or `dropout_manual`. It is possible to have different dropout patterns per treatment group using `per_treatment`. See their respective help pages for examples of their use.

If `deterministic_dropout = TRUE` then the proportion of dropout is treated is fixed. However, exactly which subjects dropout is randomly sampled within treatments. Thus, clusters can become slightly unbalanced, but generally power varies little over realizations.
For *random dropout*, `deterministic_dropout = FALSE`, the proportion of dropout is converted to the probability of having exactly \( i \) measurements, and the actual dropout is sampled from a multinomial distribution. In this case, the proportion of dropout varies over the realizations from the multinomial distribution, but will match the dropout proportions in expectation. The random dropout in each treatment group is sampled from independent multinomial distributions.

Generally, power based on fixed dropout is a good approximation of random dropout.

**Value**

A list or data.frame of parameters values, either of class `plcp` or `plcp_multi` if multiple parameters are compared.

**See Also**

`cohend`, `get_power`, `simulate_plcp`

**Examples**

```r
Three level model with both subject- and cluster-level random slope
Power calculation using standardized inputs
p <- study_parameters(n1 = 11,
n2 = 5,
n3 = 4,
 icc_pre_subject = 0.5,
 icc.pre_cluster = 0,
 var_ratio = 0.03,
 icc_slope = 0.05,
 effect_size = cohend(-0.8))

get_power(p)

The same calculation with all parameters specified directly
p <- study_parameters(n1 = 11,
n2 = 5,
n3 = 4,
 T_end = 10,
 fixed_intercept = 37,
 fixed_slope = -0.65,
 sigma_subject_intercept = 2.8,
 sigma_subject_slope = 0.4726944,
 sigma_cluster_intercept = 0,
 sigma_cluster_slope = 0.1084435,
 sigma_error = 2.8,
 cor_subject = -0.5,
 cor_cluster = 0,
 effect_size = cohend(-0.8))

get_power(p)

Standardized and unstandardized inputs
p <- study_parameters(n1 = 11,
n2 = 5,
n3 = 4,
 effect_size = cohend(-0.8))

get_power(p)
```
sigma_subject_intercept = 2.8,
icc_pre_cluster = 0.07,
sigma_subject_slope = 0.47,
icc_slope = 0.05,
sigma_error = 2.8,
effect_size = cohend(-0.8))

def get_power(p):
    ## Two-level model with subject-level random slope
    p <- study_parameters(n1 = 11,
        n2 = 40,
        icc_pre_subject = 0.5,
        var_ratio = 0.03,
        effect_size = cohend(-0.8))

def get_power(p):
    ## Comparing a combination of values
    p <- study_parameters(n1 = 11,
        n2 = c(5, 10),
        n3 = c(2, 4),
        icc_pre_subject = 0.5,
        icc_pre_cluster = 0,
        var_ratio = 0.03,
        icc_slope = c(0, 0.05),
        effect_size = cohend(c(-0.5, -0.8))
    )

summary.plcp_multi_sim

Summarize simulations based on a combination of multiple parameter values

Description

Summarize simulations based on a combination of multiple parameter values

Usage

## S3 method for class 'plcp_multi_sim'
summary(object, para = "time:treatment",
    model = NULL, alpha = 0.05, model_selection = NULL,
    LRT_alpha = 0.1, ...)
summary.plcp_sim

Arguments

object    A multiple simulation object created with `simulate.plcp_multi`
para      The name of the fixed or random effect that should be summarized.
model     Specifies which model that should be summarized. Accepts either a character with
           the name used in `sim_formula_compare`, or an integer value.
alpha     Indicates the significance level. Default is 0.05 (two-tailed), one-tailed tests
           are not yet implemented.
model_selection
           Indicates if model selection should be performed. If NULL (default), all models
           are returned, if FW or BW model selection is performed using LRT, and the result
           is based on the selected model from each simulation. See `summary.plcp_sim`
           for more information.
LRT_alpha
           Indicates the alpha level used when comparing models during model selection.
...       Optional arguments.

Value

A list with class `plcp_multi_sim_summary`. It can be coerced to a `data.frame`, using `as.data.frame`.
Each row summarizes one of the parameter combinations used in the simulation. In addition to the
setup parameter values, it contains the following columns:

- parameter is the name of the coefficient
- M_est is the mean of the estimates taken over all the simulations.
- theta is the population parameter values specified with `study_parameters`
- M_se is the mean estimated standard error taken over all the simulations.
- SD_est is the empirical standard error; i.e. the standard deviation of the distribution of the
generated estimates
- power is the empirical power of the Wald Z test, i.e. the proportion of simulated p-values <
  alpha
- power_satt is the empirical power of the Wald t test using Satterthwaite’s degree of freedom
  approximation.
- satt_NA is the proportion of Satterthwaite’s approximations that failed.
- prop_zero is the proportion of the simulated estimates that are zero; only shown for random
  effects.

---

**summary.plcp_sim**  
*Summarize the results from a simulation of a single study design-object*

**Description**
Summarize the results from a simulation of a single study design-object
Usage

```r
S3 method for class 'plcp_sim'
summary(objectL model = NULL, alpha = 0.05,
 para = NULL, ...)
```

```r
S3 method for class 'plcp_sim_formula_compare'
summary(object, model = NULL,
 alpha = 0.05, model_selection = NULL, LRT_alpha = 0.1,
 para = NULL, ...)
```

Arguments

- `object`: A simulate.plcp-object
- `model`: Indicates which model that should be returned. Default is `NULL` which return results from all model formulas. Can also be a character matching the names used in `sim_formula_compare`.
- `alpha`: Indicates the significance level. Default is 0.05 (two-tailed), one-tailed tests are not yet implemented.
- `para`: Selects a parameter to return. Default is `NULL`, which returns all parameters. If multiple model formulas are compared a named list can be used to specify different parameters per model.
- `...`: Currently not used
- `model_selection`: indicates if the summary should be based on a LRT model selection strategy. Default is `NULL`, which returns all models, if `fw` or `bw` a forward or backward model selection strategy is used, see `Details`.
- `LRT_alpha`: Indicates the alpha level used if doing LRT model comparisons.

Details

**Model selection**

It is possible to summarize the performance of a data driven model selection strategy based on the formulas used in the simulation (see `sim_formula_compare`). The two model selection strategies are:

- **FW**: Forward selection of the models. Starts with the first model formula and compares it with the next formula. Continues until the test of M_i vs M_i + 1 is non-significant, and then picks M_i. Thus if three models are compared, and the comparison of M_1 vs M_2 is non-significant, M_3 will not be tested and M_1 is the winning model.

- **BW**: Backward selection of the models. Starts with the last model formula and compares it with the previous formula. Continues until the test of M_i vs M_i - 1 is significant or until all adjacent formulas have been compared. Thus if three models are compared, and the comparison of M_3 vs M_2 is non-significant, M2 vs M1 will be tested and M2 will be picked if significant, and M1 if not.

The model comparison is performed using a likelihood ratio test based the REML criterion. Hence, it assumed you are comparing models with the same fixed effects, and that one of the models is a
reduced version of the other (nested models). The LRT test is done as a post-processing step, so 
model_selection option will not re-run the simulation. This also means that different alpha levels 
for the LRTs can be investigated without re-running the simulation.

Data transformation
If the data has been transformed sim_formula(data_transform = ...), then true parameter val-
ues (thetas shown in the summary will most likely no longer apply. Hence, relative bias and CI 
coverage will be in relation to the original model. However, the empirical estimates will be summa-
rized correctly, enabling investigation of power and Type I errors using arbitrary transformations.

Value
Object with class plcp_sim_summary. It contains the following output:

- parameter is the name of the coefficient
- M_est is the mean of the estimates taken over all the simulations.
- M_se is the mean estimated standard error taken over all the simulations.
- SD_est is the empirical standard error; i.e. the standard deviation of the distribution of the 
generated estimates.
- power is the empirical power of the Wald Z test, i.e. the proportion of simulated p-values < 
alpha.
- power_satt is the empirical power of the Wald t test using Satterthwaite’s degree of freedom 
approximation.
- satt NA is the proportion of Satterthwaite’s approximations that failed.
- prop_zero is the proportion of the simulated estimates that are zero; only shown for random 
effects.

transform_to_posttest  Helper to transform the simulated longitudinal data.frame

Description
This is en example of a data transformation applied during simulation. It takes the longitudinal data 
and transforms it into a pretest-posttest model in wide format. Useful if you want to compare the 
longitudinal LMM with e.g. AN(C)OVA models.

Usage
transform_to_posttest(data)

Arguments

data a data.frame created using simulate_data
Value

a data.frame with y now only includes the posttest values. Also includes three new columns:

- pre subject-level pretest scores.
- pre_cluster cluster-level pretest scores.
- pre_subject_c subject-level pretest scores center around the cluster-level pretest.

See Also

simulate.plcp, study_parameters

Examples

# Compare longitudinal 3-level model to 2-level model
# fit to just the posttest data
#
# Both models are fit to the same dataset during simulation.
p <- study_parameters(n1 = 11,
n2 = 20,
n3 = 3,
icc.pre_subject = 0.5,
icc.pre_cluster = 0.1,
icc_slope = 0.05,
var_ratio = 0.03)

# simulation formulas
# analyze as a posttest only 2-level model
f_pt <- sim_formula("y ~ treatment + (1 | cluster)",
                   test = "treatment",
data_transform = transform_to_posttest)

# analyze as 3-level longitudinal
f_lt <- sim_formula("y ~ time*treatment +
                     (1 + time | subject) +
                     (1 + time | cluster)"

f <- sim_formula_compare("posttest" = f_pt,
                        "longitudinal" = f_lt)

## Not run:
res <- simulate(p,
                formula = f,
                nsim = 2000,
cores = parallel::detectCores(),
satterthwaite = TRUE)

summary(res)

## End(Not run)
unequal_clusters  

Setup unbalanced cluster sizes

Description

Helps specifying unequal cluster sizes with study_parameters

Usage

unequal_clusters(..., func = NULL, trunc = 1, replace = 1)

Arguments

...  
Any number of separate numeric arguments specifying each cluster’s size

func  
A function that generates cluster sizes, used instead of ... See Details.

trunc  
Cutoff for values generated by func, x < trunc are replaced, used to avoid negative or 0 values.

replace  
Indicates what value to replace cluster sizes less than trunc with.

Details

If func is used together with a function that generates random draws, e.g. rnorm or rpois, then cluster sizes (and possibly the number of clusters), will be treated as a random variable. The expected power is then reported by averaging over multiple realizations of the random variables.

Unless per_treatment is used, then the same realization of random cluster sizes will be used in both groups. To use independent realizations from the same distribution for each treatment group, simply combine the unequal_clusters with per_treatment.

Value

An object of type 'plcp_unequal_clusters'

See Also

per_treatment

Examples

library(dplyr)
n2 <- unequal_clusters(5, 10, 15, 40)
p <- study_parameters(n1 = 11,  
n2 = n2,  
n3 = 6,  
T_end = 10,  
icc_pre_subject = 0.5,  
icc_pre_cluster = 0,  
sigma_error = 1,
unequal_clusters

```r
var_ratio = 0.03,
icc_slope = 0.05,
cohend = -0.8)

verify cluster sizes
d <- simulate_data(p)
d %>%
 filter(time == 0) %>%
 group_by(treatment, cluster) %>%
 summarise(n = n())

Poisson distributed cluster sizes, same in both groups
n2 <- unequal_clusters(func = rpois(n = 5, lambda = 5))
p <- study_parameters(n1 = 11,
n2 = n2,
 T_end = 10,
 icc_pre_subject = 0.5,
 icc_pre_cluster = 0,
 sigma_error = 1,
 var_ratio = 0.03,
 icc_slope = 0.05,
 cohend = -0.8)

Independent draws from same dist
n2 <- unequal_clusters(func = rpois(n = 5, lambda = 5))
p <- study_parameters(n1 = 11,
n2 = per_treatment(n2, n2),
 T_end = 10,
 icc_pre_subject = 0.5,
 icc_pre_cluster = 0,
 sigma_error = 1,
 var_ratio = 0.03,
 icc_slope = 0.05,
 cohend = -0.8)

Use per_treatment() to specify per treatment

n2 <- per_treatment(unequal_clusters(2, 2, 2, 2, 3, 4, 5),
 unequal_clusters(10, 15))
p <- study_parameters(n1 = 11,
n2 = n2,
n3 = 3,
 T_end = 10,
 icc_pre_subject = 0.5,
 icc_pre_cluster = 0,
 var_ratio = 0.03,
 icc_slope = 0.05,
 cohend = -0.8)

verify cluster sizes
d <- simulate_data(p)
d %>%
 filter(time == 0) %>%
 group_by(treatment, cluster) %>%
```

```
update.plcp

\texttt{summarise(n = n())}

update.plcp

\textit{Update a study_parameters\-object with new settings}

Description

Update a study_parameters\-object with new settings

Usage

\texttt{## S3 method for class 'plcp'
update(object, ...)}

Arguments

- \texttt{object}:
 An object created by \texttt{study_parameters}

- \texttt{...}:
 Any number of named arguments that should be updated

Details

Currently only the arguments used to construct the original object can be updated.

Examples

```r
p <- study\_parameters(n1 = 11,
    n2 = 10,
    n3 = 3,
    T\_end = 10,
    icc\_pre\_subject = 0.5,
    icc\_pre\_cluster = 0,
    var\_ratio = 0.03,
    icc\_slope = 0.05,
    cohend = -0.8)

p <- update(p, icc\_slope = 0.1)
g\_ICC\_slope(p)
```

```r
## Not run:
# Using a "new" argument does not work (yet)
update(p, sigma\_cluster\_slope = 2)
```

\texttt{## End(Not run)}
Description

Custom subset function for `plcp_multi_power`-object to make it compatible with its print method.

Usage

```r
## S3 method for class 'plcp_multi_power'
x[i, ...]
```

Arguments

- `x` A `plcp_multi_power`-object.
- `i` Indicates which rows to subset.
- `...` Ignored.
Index

[.plcp_multi_power, 55
as.data.frame.plcp_multi_sim_summary, 3
cohend, 4, 44–46
create_lmer_formula, 6, 37
dropout_manual, 7, 9, 13, 44, 45
dropout_weibull, 8, 9, 13, 24, 44, 45
get_correlation_matrix, 10, 21, 25, 29
get_dropout, 12
get_ICC_pre_clusters, 13
get_ICC_pre_subjects, 14
get_ICC_slope, 15
get_monte_carlo_se, 16, 30
get_power, 16, 17, 19, 28, 46
get_power_table, 18, 19, 43
get_sds, 20
get_slope_diff, 21
get_var_ratio, 22
get_VPC, 21, 22, 27
per_treatment, 8, 9, 24, 44, 45, 52
plot.plcp, 25
plot.plcp_ICC2, 25
plot.plcp_power_table, 26
plot.plcp_sds, 26
plot.plcp_VPC, 23, 27
powerlmm, 27
powerlmm-package (powerlmm), 27
print.plcp_2lvl, 28
print.plcp_3lvl, 29
print.plcp_compare_sim_formula
 (print.plcp_sim_formula), 34
print.plcp_ICC2, 29
print.plcp_mc_se, 30
print.plcp_multi, 30
print.plcp_multi_power, 31
print.plcp_multi_sim, 31
print.plcp_multi_sim_summary, 32
print.plcp_power_2lvl, 32
print.plcp_power_3lvl, 33
print.plcp_sds, 33
print.plcp_sim, 34
print.plcp_sim_formula, 34
print.plcp_sim_formula_compare
 (print.plcp_sim), 34
print.plcp_sim_summary, 35
print.plcp_VPC, 35
shiny_powerlmm, 36
sim_formula, 37, 38, 41, 43
sim_formula_compare, 37, 38, 42, 43, 48, 49
simulate.plcp, 12, 18, 34, 36, 46, 51
simulate.plcp_multi, 31, 48
simulate.plcp_multi (simulate.plcp), 36
simulate_data, 38, 40, 50
study_parameters, 5, 7, 9, 11–15, 17–24, 27, 28, 37, 40, 43, 51, 52, 54
summary.plcp_multi_sim, 47
summary.plcp_sim, 38, 48, 49
summary.plcp_sim_formula_compare
 (summary.plcp_sim), 48
transform_to_posttest, 42, 50
unequal_clusters, 24, 44, 45, 52
update.plcp, 54