The poweRlaw package: a general overview

Colin S. Gillespie

Last updated: April 24, 2020

The poweRlaw package provides code to fit heavy tailed distributions, including discrete and continuous power-law distributions. Each model is fitted using a maximum likelihood procedure and cut-off value, x_{min}, is estimated by minimising the Kolmogorov-Smirnov statistic.

1 Installation

The package is hosted on CRAN and can be installed in the standard way

```
install.packages("poweRlaw")
```

The developmental version is hosted on github and can be installed using the devtools package\(^1\)

```
install.packages("devtools")
devtools::install_github("csgillespie/poweRlaw")
```

Once installed, the package can be loaded ready for use with the standard library command

```
library("poweRlaw")
```

2 Accessing documentation

Each function and dataset in the package is documented. The command

```
help(package = "poweRlaw")
```

will give a brief overview of the package and a complete list of all functions. The list of vignettes associated with the package can be obtained with

```
vignette(package = "poweRlaw")
```

or

\(^1\)If you are using Windows, then you will need to install the Rtools package first.
An overview of the poweRlaw package

```r
browseVignettes("poweRlaw")
```

Help on functions can be obtained using the usual R mechanisms. For example, help on the method `displ` can be obtained with

```r
?displ
```

and the associated examples can be run with

```r
example(displ)
```

A list of demos and data sets associated with the package can be obtained with

```r
demo(package = "poweRlaw")
data(package = "poweRlaw")
```

If you use this package, please cite it. The appropriate citation is

The bibtex version can be obtained via

```r
citation("poweRlaw")
```

For a different way of handling powerlaw type distributions, see

3 Example: Word frequency in Moby Dick

This example investigates the frequency of occurrence of unique words in the novel Moby Dick by Herman Melville (see Clauset et al. (2009); Newman (2005)). The data can be downloaded from http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm or loaded directly

```r
data("moby")
```

3.1 Fitting a discrete power-law

To fit a discrete power-law,\(^2\) we create a discrete power-law object using the `displ` method\(^3\)

\(^2\)The examples vignette contains a more thorough analysis of this particular data set.

\(^3\)`displ`: discrete power-law.
An overview of the **poweRlaw** package

```r
m_m = displ$new(moby)

Initially the lower cut-off \( x_{\text{min}} \) is set to the smallest \( x \) value and the scaling parameter \( \alpha \) is set to NULL

```r
m_m$getXmin()
```  
```r  ## [1] 1
```  
```r
m_m$getPars()
```  
```r  ## NULL
```  
This object also has standard setters

```r
m_m$setXmin(5)
m_m$setPars(2)
```  
For a given \( x_{\text{min}} \) value, we can estimate the corresponding \( \alpha \) value by numerically maximising the likelihood

```r
(est = estimate_pars(m_m))
```  
```r
$pars
[1] 1.925882
##
$value
[1] 14872.57
##
$counts
function gradient
5 5
##
$convergence
[1] 0
##
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
##
```  
For the Moby Dick data set, when \( x_{\text{min}} = 5 \), we estimate \( \alpha \) to be 1.926.

The default method for estimating the lower bound \( x_{\text{min}} \), is to minimise the distance between the data and the fitted model CDF, that is

\[
D(x) = \max_{x \geq x_{\text{min}}} |S(x) - P(x)|
\]

Instead of calculating the MLE, we could use a parameter scan: `estimate_pars(m_m, pars=seq(2, 3, 0.1))`

---

*Instead of calculating the MLE, we could use a parameter scan: `estimate_pars(m_m, pars=seq(2, 3, 0.1))`*
where $S(x)$ is the data CDF and $P(x)$ is the theoretical CDF (equation 3.9 in Clauset et al. (2009)). The value $D(x)$ is known as the Kolmogorov-Smirnov statistic. Our estimate of $x_{\text{min}}$ is then the value of $x$ that minimises $D(x)$:

\begin{verbatim}
(est = estimate_xmin(m_m))
## $gof
## [1] 0.008252634
##
## $xmin
## [1] 7
##
## $pars
## [1] 1.952728
##
## $ntail
## [1] 2958
##
## $distance
## [1] "ks"
##
## attr(,"class")
## [1] "estimate_xmin"
\end{verbatim}

For the Moby-Dick data set, the minimum is achieved when $x_{\text{min}} = 7$ and $D(7) = 0.00825$. We can then set parameters of power-law distribution to these “optimal” values

\begin{verbatim}
m_m$setXmin(est)
\end{verbatim}

All distribution objects have generic plot methods.

\begin{verbatim}
## Plot the data (from xmin)
plot(m_m)
## Add in the fitted distribution
lines(m_m, col = 2)
\end{verbatim}

which gives figure 1. When calling the `plot` and `lines` functions, the data plotted is actually invisibly returned, i.e.

\begin{verbatim}
dd = plot(m_m)
head(dd, 3)
## x    y
## 1 1 1.000000
## 2 2 0.514134
## 3 3 0.350517
\end{verbatim}

This makes it straight forward to create graphics using other R packages, such as `ggplot2`.

---

5Using the `distance` argument we can use other distances for estimating $x_{\text{min}}$. See `help(estimate_xmin)`

6These estimates match the values in the Clauset et al. paper.

7Generic `lines` and `points` functions are also available.
3.2 Uncertainty in $x_{\text{min}}$

Cluset et al. recommend a bootstrap\(^8\) procedure to get a handle on parameter uncertainty. Essentially, we sample with replacement from the data set and then re-infer the parameters (algorithm 1).

To run the bootstrapping procedure, we use the \texttt{bootstrap} function

\begin{verbatim}
bs = bootstrap(m_m, no_of_sims = 1000, threads = 1)
\end{verbatim}

this function runs in parallel, with the number of threads used determined by the \texttt{threads} argument. To detect the number of cores on your machine, you can run:

\begin{verbatim}
parallel::detectCores()
\end{verbatim}

\# [1] 8

\(^8\)The distance measure used can be altered. See the associated help page for details.
An overview of the \textit{powerLaw} package

Algorithm 1: Uncertainty in $x_{\text{min}}$

1: Set $N$ equal to the number of values in the original data set
2: \textbf{for} i in 1:B:
3: \hspace{1em}Sample $N$ values from the original data set
4: \hspace{1em}Estimate $x_{\text{min}}$ and $\alpha$
5: \textbf{end for}

The object returned by \texttt{bootstrap} is a list with six elements.

- The original gof statistic.
- The results of the bootstrapping procedure.
- The average time (in seconds) for a single bootstrap.
- The random number seed.
- The package version.
- The distance measure used.

The results of the bootstrap procedure can be investigated with histograms

\begin{verbatim}
hist(bs$bootstraps[, 2], breaks = "fd")
hist(bs$bootstraps[, 3], breaks = "fd")
\end{verbatim}

and a bivariate scatter plot

\begin{verbatim}
plot(jitter(bs$bootstraps[, 2], factor = 1.2), bs$bootstraps[, 3])
\end{verbatim}

These commands give figure 1b–d.

3.3 Do we have a power-law?

Since it is possible to fit a power-law distribution to \textit{any} data set, it is appropriate to test whether it the observed data set actually follows a power-law.\(^9\) Clauset \textit{et al}, suggest that this hypothesis is tested using a goodness-of-fit test, via a bootstrapping procedure. Essentially, we perform a hypothesis test by generating multiple data sets (with parameters $x_{\text{min}}$ and $\alpha$) and then "re-inferring" the model parameters. The algorithm is detailed in Algorithm 2.

When $\alpha$ is close to one, this algorithm can be particularly time consuming to run, for two reasons.

1. When generating random numbers from the discrete power-law distribution, large values are probable, i.e. values greater than $10^8$. To overcome this bottleneck, when generating the random numbers all numbers larger than $10^5$ are generated using a continuous approximation.

2. To calculate the Kolmogorov-Smirnov statistic, we need explore the state space. It is computationally infeasible to explore the entire state space when $\max(x) \gg 10^5$. To make this algorithm computational feasible, we split the state space into two sections. The first section is all values from

\[ x_{\text{min}}, x_{\text{min}} + 1, x_{\text{min}} + 2, \ldots, 10^5 \]

\(^9\)Algorithm 2 can be easily extended for other distributions.
Algorithm 2: Do we have a power-law?
1: Calculate point estimates of \( x_{\text{min}} \) and the scaling parameter \( \alpha \).
2: Calculate the KS statistic, \( KS_d \), for the original data set.
3: Set \( n_{\text{tail}} \) equal to the number of values above or equal to \( x_{\text{min}} \).
4: \textbf{for} i in 1:B:
5: \quad Simulate a value \( n_1 \) from a binomial distribution with parameters \( n \) and \( n_{\text{tail}}/n \).
6: \quad Sample, with replacement, \( n - n_1 \) values from the data set that is less than \( x_{\text{min}} \).
7: \quad Sample \( n_1 \) values from a discrete power-law distribution (with parameter \( \alpha \)).
8: \quad Calculate the associated KS statistic, \( KS_{\text{sim}} \).
9: \quad If \( KS_d > KS_{\text{sim}} \), then \( P = P + 1 \).
10: \textbf{end for}
11: \( p = P/B \).

Figure 2: Histograms of the bootstrap results and bivariate scatter plot of the bootstrap results.

The values of \( x_{\text{min}} \) and \( \alpha \) are obviously strongly correlated.

this set is combined with an additional \( 10^5 \) values from \( 10^5, \ldots, \max(x) \)

To determine whether the underlying distribution is a power-law we use the \texttt{bootstrap.p} function

```
This may take a while
Use the mle to estimate the parameters
bs_p = bootstrap_p(m_m, no_of_sims = 1000, threads = 2)
```

The object returned from the bootstrap procedure contains seven elements

- A \( p \)-value - \texttt{bs.p$p$}. For this example, \( p = 0.6738 \) which indicates that we can not rule out the power law model. See section 4.2 of the Clauset paper for further details.

- The original goodness of fit statistic - \texttt{bs.p$gof$}.
An overview of the poweRlaw package

- The result of the bootstrap procedure (a data frame).
- The average time (in seconds) for a single bootstrap realisation.
- The simulator seed.
- The package version.
- The distance measure used.

The results of this procedure are shown in figure 2.

4 Distribution objects

For the Moby Dick example, we created a displ object

```r
m_m = displ$new(moby)
```

The object m_m has class displ and inherits the discrete_distribution class. A list of available distributions are given in table 1.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Object name</th>
<th># Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Power-law</td>
<td>displ</td>
<td>1</td>
</tr>
<tr>
<td>Discrete Log-normal</td>
<td>dislnorm</td>
<td>2</td>
</tr>
<tr>
<td>Discrete Exponential</td>
<td>disexp</td>
<td>1</td>
</tr>
<tr>
<td>Poisson</td>
<td>dispois</td>
<td>1</td>
</tr>
<tr>
<td>CTN Power-law</td>
<td>conpl</td>
<td>1</td>
</tr>
<tr>
<td>CTN Log-normal</td>
<td>conlnorm</td>
<td>2</td>
</tr>
<tr>
<td>CTN Exponential</td>
<td>conexp</td>
<td>1</td>
</tr>
<tr>
<td>CTN Weibull</td>
<td>conweibull</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1: Available distributions in the poweRlaw package. These objects are all reference classes.

All distribution objects listed in table 1 are reference classes. Each distribution object has four fields:

- **dat**: a copy of the data set.
- **xmin**: the lower cut-off \( x_{\text{min}} \).
- **pars**: a vector of parameter values.
- **internal**: a list of values use in different numerical procedures. This will differ between distribution objects.

By using the mutable states of reference objects, we are able to create efficient caching. For example, the mle of discrete power-laws uses the statistic:

\[
\sum_{i=x_{\text{min}}}^{n} \log(x_i)
\]

This value is calculated once for all values of \( x_{\text{min}} \), then iterated over when estimating \( x_{\text{min}} \).

All distribution objects have a number of methods available. A list of methods is given in table 2. See the associated help files for further details.

\[^{10}\text{See ?setRefClass for further details on references classes.}\]
An overview of the poweRlaw package

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist_cdf</td>
<td>Cumulative density/mass function (CDF)</td>
</tr>
<tr>
<td>dist_pdf</td>
<td>Probability density/mass function (PDF)</td>
</tr>
<tr>
<td>dist_rand</td>
<td>Random number generator</td>
</tr>
<tr>
<td>dist_data_cdf</td>
<td>Data CDF</td>
</tr>
<tr>
<td>dist_ll</td>
<td>Log-likelihood</td>
</tr>
<tr>
<td>estimate_xmin</td>
<td>Point estimates of the cut-off point and parameter values</td>
</tr>
<tr>
<td>estimate_pars</td>
<td>Point estimates of the parameters (conditional on the current $x_{\text{min}}$ value)</td>
</tr>
<tr>
<td>bootstrap</td>
<td>Bootstrap procedure (uncertainty in $x_{\text{min}}$)</td>
</tr>
<tr>
<td>bootstrap_p</td>
<td>Bootstrap procedure to test whether we have a power-law</td>
</tr>
<tr>
<td>get_n</td>
<td>The sample size</td>
</tr>
<tr>
<td>get_ntail</td>
<td>The number of values greater than or equal to $x_{\text{min}}$</td>
</tr>
</tbody>
</table>

Table 2: A list of functions for distribution functions. These objects do not change the object states. However, they may not be thread safe.

5 Loading data

Typically data is stored in a csv or text file. To use this data, we load it in the usual way\textsuperscript{11}

```r
blackouts = read.table("blackouts.txt")$V1
```

Distribution objects take vectors as inputs, so

```r
m_bl = conpl$new(blackouts)
```

will create a continuous power law object.

6 Comparison with the plfit script

6.1 The discrete case

Other implementations of estimating the lower bound can be found at

http://tuvalu.santafe.edu/~aaronc/powerlaws/

However, this depends on the VGAM package, which is no longer available.

The script for estimating $x_{\text{min}}$ can be loaded using

```
source("http://tuvalu.santafe.edu/~aaronc/powerlaws/plfit.r")
```

The results are directly comparable to the poweRlaw package. For example, consider the Moby Dick data set again. Running

\textsuperscript{11}The blackouts data set can be obtained from Clauset’s website: http://goo.gl/BsqnP
An overview of the powerlaw package

## xmin search space truncated at 1e+05

You have three options

1. Increase xmax in estimate.xmins
2. Specify xmins explicitly
3. Ignore and hope for the best (which may be OK)

Figure 3: CDF plot of the blackout dataset with line of best fit. Since the minimum value of $x$ is large, we fit a continuous power-law as this is more efficient.

```r
plfit_res = plfit(moby)
```

gives slightly different than those obtained by the powerlaw package. This is because the `plfit` by default does a parameter scan over the range

$$1.50, 1.51, 1.52, \ldots, 2.49, 2.50$$

To exactly replicate the results, we could use

```r
estimate_xmin(m_m, pars = seq(1.5, 2.5, 0.01))
```

Currently, there is a bug with the `plfit` script when $x_{\text{min}} = 1$. This is easily demonstrated via a simulation

```r
x = rpldis(1000, 1, 2)
plfit(x)
```

### 6.2 The continuous case

The `plfit` script also fits continuous power-laws. Again the results are comparable. For example, suppose we have one thousand random numbers from a continuous power-law distributions with parameters $\alpha = 2.5$ and $x_{\text{min}} = 10.0$

```r
r = rplcon(1000, 10, 2.5)
```

The `plfit` automatically detects if the data is continuous
An overview of the `powerlaw` package

```r
plfit(r)
```

Fitting with the `powerlaw` package gives approximately the same values

```r
m_r = conpl$new(r)
(est = estimate_xmin(m_r))
m_r$setXmin(est)
```

References
