Package ‘polypharmacy’

July 12, 2021

Type Package

Version 1.0.0

Title Calculate Several Polypharmacy Indicators

Description Analyse prescription drug deliveries to calculate several indicators of polypharmacy corresponding to the various definitions found in the literature.

Maintainer Guillaume Boucher <guiboucher8@gmail.com>

BugReports https://github.com/guiboucher/polypharmacy/issues

License MIT + file LICENSE

Imports data.table, doParallel, foreach, itertools, lubridate, parallel, stringr

RoxygenNote 7.1.1

Encoding UTF-8

LazyData true

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Depends R (>= 3.5.0)

Config/testthat/edition 3

NeedsCompilation no
Description

This package analyses prescription drug deliveries to calculate several indicators of polypharmacy corresponding to the various definitions found in the literature.

Details

It is essential to understand the underlying concepts used to calculate the various polypharmacy indicators to adequately use this package. The core of the package is the `data_process()` function that creates a `data.table` of drug treatments by restructuring the drug delivery records (usually extracted from a pharmacy or a health insurance information system) into continuous periods of drug availability (called drug treatments) for every individual over the whole period of the study period. This process relies on several user-defined arguments such as the grace periods between renewals or the longest treatment duration that an individual may accumulate through successive early renewals.

Then, each polypharmacy indicator can be computed using the corresponding function (`ind_simult()`), `ind_stdcumul()`, `ind_wcumul()`, `ind_stdcontinuous()`, `ind_ucontinuous()`) or using the wrapper function `indicators()` to select the desired indicator(s) to be calculated at once.
Prior to running `data_process()` the user may need to pre-process the table of original drug delivery records to break down combination drug into their individual components (`drugs_bkdn()`) and/or to overwrite the delivery durations of some specified drugs with constant user-defined durations (`cst_trt_dur()`).

Author(s)

Maintainer: Guillaume Boucher <guiboucher8@gmail.com>

Authors:
- Bernard Candas <bernard.candas.1@gmail.com>
- Houssem Missaoui <missaoui_housse@hotmail.fr>

Other contributors:
- Caroline Sirois <caroline.sirois@pha.ulaval.ca> [scientific advisor]
- Marc Simard <marc.simard@inspq.qc.ca> [scientific advisor]

See Also

Useful links:
- Report bugs at https://github.com/guiboucher/polypharmacy/issues

cst_deliv_duration

Constant delivery duration drugs

Description

Overwrites the recorded delivery durations of specific drugs with constant durations as specified in a user-provided table.

Usage

```r
cst_deliv_duration(
  Rx_deliv,
  Rx_drug_code,
  Rx_deliv_dur,
  Cst_deliv_dur,
  Cst_drug_code,
  Cst_duration
)
```
Arguments

- **Rx_deliv**: Name of the table listing all prescription drugs delivered.
- **Rx_drug_code**: Column name of `Rx_deliv` that contains the drug unique identifier.
- **Rx_deliv_dur**: Column name of the constant treatment duration in the `Rx_deliv` table.
- **Cst_deliv_dur**: Name of the table that contains the constant delivery durations that will overwrite that in the `Rx_deliv` table for the specified drug codes.
- **Cst_drug_code**: Column name of `Cst_deliv_dur` that contains the drug unique identifier (same format as `Rx_drug_code`).
- **Cst_duration**: Column name of the constant treatment duration in the `Cst_deliv_dur` table (same format as `Rx_deliv_dur`).

Value

data.table of the same structure as `Rx_deliv`.

Examples

```r
# With matches
rx1 <- data.frame(id = c(1, 1, 2, 2, 2), code = c("A", "B", "B", "C", "D"),
                  duration = as.integer(c(30, 15, 15, 7, 90)))
cst1 <- data.frame(CODES = c("B", "D"), DURATION = as.integer(c(45, 60)))
cst_deliv_duration(
  Rx_deliv = rx1, Rx_drug_code = "code", Rx_deliv_dur = "duration",
  Cst_deliv_dur = cst1, Cst_drug_code = "CODES", Cst_duration = "DURATION"
)

# No matches
rx2 <- data.frame(id = c(1, 1, 2, 2, 2), code = c("A", "B", "B", "C", "D"),
                  duration = as.integer(c(30, 15, 15, 7, 90)))
cst2 <- data.frame(CODES = c("E", "F"), DURATION = as.integer(c(45, 60)))
cst_deliv_duration(
  Rx_deliv = rx2, Rx_drug_code = "code", Rx_deliv_dur = "duration",
  Cst_deliv_dur = cst2, Cst_drug_code = "CODES", Cst_duration = "DURATION"
)
```

Description

Reads a table of successive drug delivery records (usually extracted from a pharmacy or a health insurance information system) and creates the table required for the calculation of the polypharmacy indicators by applying various user-defined arguments, incorporating hospital stays into the treatment periods and reconstruct continuous treatment periods by merging quasi continuous and/or overlapping drugs deliveries.
Usage

data_process(
 Rx_deliv,
 Rx_id,
 Rx_drug_code,
 Rx_drug_deliv,
 Rx_deliv_dur,
 Cohort = NULL,
 Cohort_id = NULL,
 Hosp_stays = NULL,
 Hosp_id = NULL,
 Hosp_admis = NULL,
 Hosp_discharge = NULL,
 study_start = NULL,
 study_end = NULL,
 grace_fctr = 0.5,
 grace_cst = 0,
 max_reserve = NULL,
 cores = parallel::detectCores(logical = FALSE),
 ...
)

Arguments

Rx_deliv Name of the table listing all prescription drugs deliveries including the run-in period. See Details.
Rx_id Column name of Rx_deliv containing individual unique identifier (any format).
Rx_drug_code Column name of Rx_deliv that contains the drug unique identifier (any format).
Rx_drug_deliv Column name of Rx_deliv that contains the dates of the drug delivery (Date format, see Details).
Rx_deliv_dur Column name of Rx_deliv that contains the duration of the delivery (integer number).
Cohort Name of the table providing the unique identifiers of the study cohort. Only the ids listed in both the Cohort and the Rx_deliv tables will be returned. If Cohort = NULL, all ids of the Rx_deliv table will be returned.
Cohort_id Column name of Cohort containing individual’s unique identifiers (same format as Rx_id). If Cohort is not NULL and Cohort_id is NULL, Cohort_id will take the same value as Rx_id.
Hosp_stays Name of the table listing all hospital stays. (see Details for possible format).
Hosp_id Column name of Hosp_stays containing individual’s unique identifier (same format as Rx_id). If Hosp_stays is not NULL and Hosp_id is NULL, Hosp_id will take the same value as Rx_id.
Hosp_admis Column name of Hosp_stays that contains the date of admission in hospital (Date format, see Details).
Hosp_discharge Column name of Hosp_stays that contains the date of discharge from hospital (Date format, see Details).
study_start, study_end
Defines the first and last day of the study period for which the polypharmacy indicator(s) need to be calculated. All treatment periods prior to study_start and past study_end are not transcribed into the result table (Date format, see Details).

grace_fctr, grace_cst
Numbers ≥ 0. Two types of grace periods can be applied. One is proportional to the treatment duration of the latest delivery (grace_fctr) and the other is a constant number of days (grace_cst).

max_reserve
An integer number ≥ 0 or NULL. Longest treatment duration, in days, that can be stored from successive overlapping deliveries. When max_reserve = NULL no limit is applied. When max_reserve = 0 no accumulation of extra treatment duration is accounted for.

cores
The number of cores to use when executing data_process(). See detectCores.

... Additional arguments. See Details. Should not be used.

Details

Variables:
- Rx_id, Cohort_id and Hosp_id columns must be of the same class (integer, numeric, character, ...).
- Rx_drug_deliv, Hosp_admis and Hosp_discharge can be 1) as.Date('yyyy-mm-dd'), 2) as.character('yyyy-mm-dd') or 3) as.integer() where 0 is January 1st, 1970.

Arguments:
- study_start and study_end can be 1) as.Date('yyyy-mm-dd'), 2) as.character('yyyy-mm-dd') or 3) as.integer() where 0 is January 1st, 1970.

Hospital stays:
Drug availability is assumed to continue during the hospital stay as it is on the day prior admission. The patient is assumed to resume the consumption of the drugs delivered by community pharmacists (as recorded in Rx_deliv) the day after hosp_discharge. Grace period is always zero (0) for hospital stays.

Run-in period:
A run-in period is necessary to account for the medications that are available to the individuals on the day of study_start. It is recommended to include a run-in period of about 6 months (e.g. 7 months to account for possible delays) as some drugs are delivered for up to 6 months at once.

Grace period:
The grace period is used to determine if two successive deliveries can be considered as a continuous treatment even if there is a gap of several days for which no treatment is apparently available. Two successive deliveries of an identical drug are considered part of a single continuous treatment if the next delivery doesn’t occur more than grace_cst + (grace_fctr \times Rx_deliv_dur) days after the end of the latest drug delivery. The availability of extra drugs accumulated over the successive deliveries is accounted for prior to evaluating the duration of the gap between deliveries.

Performance
For better performance, date columns are converted to integer numbers.
...

`verif_cols=FALSE`: For better performance, you can avoid columns class checking with `verif_cols=FALSE`. **Not recommended.**

Value

data.table with four (4) variables:

- The individual unique identifier which name is defined by `Rx_id`.
- The drug unique identifier which name is defined by `Rx_drug_code`.
- `tx_start`: The date of initiation of the reconstructed continued treatment (format as date).
- `tx_end`: The date of the last day of the reconstructed continued treatment (format as date).

Examples

Standard evaluation

```r
data_process(
  Rx_deliv = sample_Rx_unprocessed, Rx_id = "id", Rx_drug_code = "code",
  Rx_drug_deliv = "start", Rx_deliv_dur = "duration",
  cores = 1L
)
```

Hospitalisation stays

```r
rx1 <- data.frame(
  id = c(1L, 3:8),
  code = LETTERS[c(1, 3:8)],
  duration = 10L
)
```

```r
hosp1 <- data.frame(
  ID = 3:8,
  ADM = as.Date(c("2003-03-10", "2004-04-25", "2005-05-12",
  DEP = as.Date(c("2003-03-14", "2004-04-30", "2005-05-17",
)
```

```r
data_process(
  Rx_deliv = rx1, Rx_id = "id", Rx_drug_code = "code",
  Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
  Hosp_stays = hosp1, Hosp_id = "ID", Hosp_admis = "ADM", Hosp_discharge = "DEP",
  study_start = "2001-01-01", study_end = "2008-12-31",
  cores = 1L
)
```

Many drug codes

```r
rx2 <- data.frame(
  id = 1L,
  code = c(111L, 222L, 222L, 333L, 444L),
  duration = as.integer(c(10, 10, 10, 30, 10))
)
```r
data_process

hosp2 <- data.frame(id = 1L,

data_process(
 Rx_deliv = rx2, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 Hosp_stays = hosp2, Hosp_id = "id", Hosp_admis = "adm", Hosp_discharge = "dep",
 study_start = "2001-01-01", study_end = "2008-12-31",
 cores = 1L)

Study dates - start and end

rx3 <- data.frame(id = 1:3,
 code = "A",
 date = as.Date(c("2020-01-01", "2020-06-06", "2020-12-22")),
 duration = 10L)

NULLs

data_process(Rx_deliv = rx3, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 study_start = NULL, study_end = NULL,
 cores = 1)

Not NULLs

data_process(Rx_deliv = rx3, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 study_start = "2020-06-10", study_end = NULL,
 cores = 1)

data_process(Rx_deliv = rx3, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 study_start = NULL, study_end = "2020-06-10",
 cores = 1)

data_process(Rx_deliv = rx3, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 study_start = "2020-01-05", study_end = "2020-12-25",
 cores = 1)

Grace factor

rx4 <- data.frame(id = c(rep(1, 3), rep(2, 3)),
 code = "A",
 date = as.Date(c("2000-01-01", "2000-01-17", "2000-01-31",
 duration = as.integer(c(10, 10, 10, 15, 15, 15)))

50% of duration

data_process(Rx_deliv = rx4, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 grace_fctr = 0.5,
 cores = 1)

0% of duration

data_process(Rx_deliv = rx4, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 grace_fctr = 0,
 cores = 1)
```

### Grace constant

```r
tax5 <- data.frame(id = 1,
 code = "A",
 date = as.Date(c("2000-01-01", "2000-01-14", "2000-01-25")),
 duration = as.integer(c(10, 10, 6)))
```

# 2 days
```
data_process(Rx_deliv = tax5, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 grace_fctr = 0, grace_cst = 2,
 cores = 1)
```

# 3 days
```
data_process(Rx_deliv = tax5, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 grace_fctr = 0, grace_cst = 3,
 cores = 1)
```

### Max reserve

```r
tax6 <- data.frame(id = as.integer(c(1, 1, 3, 3, 3, 5, 5)),
 code = "A",
 date = as.Date(c("2000-01-01", "2000-01-31",
 "2000-03-03", "2000-03-15", "2000-03-30",
 "2000-05-05", "2000-05-05")),
 duration = as.integer(c(30, 30,
 30, 30, 30,
 90, 90)))
```

# 0 days
```
data_process(Rx_deliv = tax6, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 study_start = NULL, study_end = "2000-12-31",
 grace_fctr = 0, grace_cst = 0,
 max_reserve = 0,
 cores = 1)
```

# 60 days
```
data_process(Rx_deliv = tax6, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 study_start = NULL, study_end = "2000-12-31",
 grace_fctr = 0, grace_cst = 0,
 max_reserve = 60,
 cores = 1)
```

# Inf days
```
data_process(Rx_deliv = tax6, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 study_start = NULL, study_end = "2000-12-31",
 grace_fctr = 0, grace_cst = 0,
 max_reserve = NULL,
 cores = 1)
```

### Combine Hospital stays and Grace factor

```r
tax7 <- data.frame(id = c(1L, 1L, 1L, 2L),
 code = "A",
```
drug_bkdn

Translate combination drug deliveries into several single active ingredients

Description

Replaces each combination drug into several deliveries of elementary active ingredients according to a user-provided correspondence table.

Usage

drug_bkdn(Rx_deliv, Rx_drug_code, Combn_drugs, Combn_drug_code, Combn_act_code)

Arguments

- **Rx_deliv**: Name of the table listing all prescription drugs deliveries.
- **Rx_drug_code**: Column name of Rx_deliv that contains the combination drug unique identifiers (any format).
- **Combn_drugs**: Name of the correspondence table listing all elementary active ingredients that make up each combination drug.
- **Combn_drug_code**: Column name of Combn_drugs that contains the combination drug unique identifiers (same format as Rx_drug_code).
- **Combn_act_code**: Column name of elementary active ingredients that is present in Combn_drugs (same format as Rx_drug_code).

Value

data.table of the same structure as Rx_deliv.
Examples

### With matches
```
rx1 <- data.frame(id = c(1L, 1L, 2L, 2L, 2L),
 code = c(159L, 753L, 123L, 456L, 789L))
split1 <- data.frame(code = c(159L, 159L, 456L, 456L, 456L),
 splitcode = c(1591L, 1592L, 4567L, 4568L, 4569L))
drug_bkdn(Rx_deliv = rx1, Rx_drug_code = "code",
 Combn_drugs = split1, Combn_drug_code = "code", Combn_act_code = "splitcode")
```

### No matches
```
rx2 <- data.frame(id = c(1L, 1L, 2L, 2L, 2L),
 code = c(159L, 753L, 123L, 456L, 789L))
split2 <- data.frame(CODE = c(147L, 147L, 963L, 963L, 963L),
 SPLITCODE = c(1471L, 1472L, 9637L, 9638L, 9639L))
drug_bkdn(Rx_deliv = rx2, Rx_drug_code = "code",
 Combn_drugs = split2, Combn_drug_code = "CODE", Combn_act_code = "SPLITCODE")
```

---

indicators

**Provide several polypharmacy indicators at once**

Description

Wrapper function to run sequentially various polypharmacy functions on a single set of data. Each function corresponds to a different definition of polypharmacy.

Usage

```
indicators(
 processed_tab,
 "max"),
 method = c("ind_simult", "ind_stdcumul", "ind_wcumul", "ind_stdcontinuous",
 "ind_ucontinuous"),
 stdconti_pdays = 90,
 simult_ind_stats = c("mean", "min", "median", "max"),
 simult_calendar = FALSE,
 stdcumul_nPeriod = c(1, 3),
 cores = parallel::detectCores()
)
```

Arguments

- **processed_tab** Name of the table of individual drug treatments to analyze. Created by the `data_process` function.
- **stats** Polypharmacy cohort descriptive statistics to calculate on every polypharmacy indicator requested. See Details for possible values.
- **method** Names of the functions corresponding to each of the polypharmacy indicators to be calculated. See Details for possible values.
stdconti_pdays: pdays argument of the `ind_stdcontinuous` function. Can contain multiple values. See examples.

simult_ind_stats: stats argument of the `ind_simult` function.

simult_calendar: TRUE or FALSE. calendar argument of the `ind_simult` function.

stdcumul_nPeriod: nPeriod argument of the `ind_stdcumul` function. Can contain multiple values. See examples.

cores: The number of CPU cores to use when executing `ind_simult`. See `detectCores`.

Details

**stats & simult_ind_stats:** Possible values are

- 'mean', 'min', 'median', 'max', 'sd';
- 'pX' where X is an integer value in \([0, 100]\];
- 'q1'='p25', 'q2'='p50'='median', q3='p75'.

**method:** Possible values are

- 'ind_simult' to assess polypharmacy based on the daily simultaneous consumption of medication.
- 'ind_stdcumul' to assess polypharmacy based on the cumulative number of distinct medications consumed over a given period of time (i.e. the standard definition).
- 'ind_wcumul' to assess polypharmacy based on the cumulative number of distinct medication consumed over a given period of time, weighted by the duration of consumption of each medication.
- 'ind_stdcontinuous' to assess polypharmacy based on the number of medications that are consumed both during the initial and the final period of the study period.
- 'ind_ucontinuous' to assess polypharmacy based on the uninterrupted consumption of distinct medications over the study period.

Value

list of the values returned by every function listed in the method argument.

Examples

dt_indic <- indicators(
  processed_tab = sample_Rx_processed,
  stats = c('mean', 'sd', 'min', 'p5', 'p10', 'p25', 'median', 'p75', 'p90', 'p95', 'max'),
  method = c('ind_simult', 'ind_stdcumul', 'ind_wcumul', 'ind_stdcontinuous', 'ind_ucontinuous'),
  stdconti_pdays = c(30, 90),
  simult_ind_stats = c('mean', 'min', 'median', 'max'),
  simult_calendar = TRUE,
  stdcumul_nPeriod = c(1, 3),
)
### ind_simult

```r
ind_simult(
cores = 1
)`
```

---

**ind_simult**  
*Assess polypharmacy based on the daily simultaneous consumption of medications*

---

### Description

Calculates various metrics measuring the number of distinct medications consumed daily for every individual of the study cohort over the study period and provides cohort descriptive statistics on those metrics.

### Usage

```r
ind_simult(
 processed_tab,
 individual_stats = c("mean", "min", "median", "max"),
 "max"),
 calendar = FALSE,
 cores = parallel::detectCores()
)
```

### Arguments

- **processed_tab**  
  Table of individual drug treatments over the study period. Created by `data_process` function.

- **individual_stats**  
  Descriptive statistics of daily consumption over the study period to calculate for every individual. See Details for possible values.

- **stats**  
  Cohort descriptive statistics to calculate on the polypharmacy indicator. See Details for possible values.

- **calendar**  
  TRUE or FALSE. Create a table of the number of drugs consumed everyday by every individual (FALSE by default).

- **cores**  
  The number of CPU cores to use. See `detectCores`.

### Details

**individual_stats & stats:** Possible values are

- 'mean', 'min', 'median', 'max', 'sd';
- 'pX' where X is an integer value in \[0, 100\];
- 'q1'='p25', 'q2'='p50'='median', q3='p75'.

Value

list:

- indic: data.table indicating each stats (columns) for each individual_stats (rows).
- stats_id: data.table indicating each individual_stats for each individuals (all cohort).
- min_conso: data.table indicating each stats for the number of days where an individual consume at least X drugs.
- calendar: If calendar=TRUE, data.table indicating the number of drugs consumed for each day (only for individuals who has at least 1 day with 1 drug consumption).

Examples

```r
rx1 <- data.frame(id = c(1, 1, 2),
code = c("A", "B", "A"),
date = c("2000-01-01", "2000-01-04", "2000-01-08"),
duration = c(5, 7, 5))
cohort1 <- data.frame(id = as.numeric(1:3),
age = c(45, 12, 89),
sex = c("F", "F", "M"))
rx_proc1 <- data_process(Rx_deliv = rx1, Rx_id = "id", Rx_drug_code = "code", Rx_drug_deliv = "date", Rx_deliv_dur = "duration", Cohort = cohort1, Cohort_id = "id", study_start = "2000-01-01", study_end = "2000-01-15", cores = 1)
dt_ind_simult <- ind_simult(rx_proc1, calendar = TRUE, cores = 1)
```

ind_stdcontinuous

Assess polypharmacy based on the number of medications that is consumed both during the initial and the final period of the study period

Description

Calculates the number of distinct medications that are consumed both during the initial and the final period of the overall study period by every individual of the study cohort and provides cohort descriptive statistics on this indicator.

Usage

```r
ind_stdcontinuous(
 processed_tab,
 pdays,
 stats = c("mean", "sd", "min", "p5", "p10", "p25", "median", "p75", "p90", "p95", "max")
)
```
Arguments

processed_tab: Table of individual drug treatments over the study period. Created by `data_process` function.

pdays: Duration (in days) of the initial and final periods of time. The initial period = [\textit{min}; \textit{min}+\textit{pdays}] and the final period = [\textit{max}−\textit{pdays}; \textit{max}], where \textit{min} and \textit{max} are the \textit{study_start} and \textit{study_end} arguments. See `data_process`.

stats: Cohort descriptive statistics to calculate on the polypharmacy indicator. See \textit{Details} for possible values.

Details

\textit{stats}: Possible values are:

- 'mean', 'min', 'median', 'max', 'sd';
- 'pX' where \textit{X} is an integer value in \textit{[0, 100]};
- 'q1'='p25', 'q2'='p50'='median', 'q3'='p75'.

Value

list:

- indic: data.table indicating each \textit{stats} (columns).
- stats_id: data.table indicating the number of drugs use for each individual (all cohort).

Examples

```r
rx1 <- data.frame(id = c(1, 1, 1, 2, 3),
 duration = c(10, 10, 22, 31, 12))
cohort1 <- data.frame(id = as.numeric(1:4),
 age = c(45, 12, 89, 31),
 sex = c("F", "F", "M", "M"))
rx_proc1 <- data_process(Rx_deliv = rx1, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 Cohort = cohort1, Cohort_id = "id",
 study_start = "2000-01-01", study_end = "2000-01-31",
 cores = 1)
dt_ind_stdcontinuous <- ind_stdcontinuous(processed_tab = rx_proc1, pdays = 10)
```
Assess polypharmacy based on the average number of distinct medications consumed over successive periods of time of equal length

Description

Averages the number of distinct medications that are consumed by every individual during successive periods of time of equal length and provides cohort descriptive statistics on this indicator.

Usage

```r
ind_stdcumul(
 processed_tab,
 nPeriod = 1,
 stats = c("mean", "sd", "min", "p5", "p10", "p25", "median", "p75", "p90", "p95", "max")
)
```

Arguments

- **processed_tab**: Table of individual drug treatments over the study period. Created by `data_process` function.
- **nPeriod**: Number of subperiods of equal time length in which the study period will be subdivided: Integer value greater or equal to 1 and lesser or equal to the total number of days in the study period. If `nPeriod` is greater than 1, the study period is divided in `nPeriod` subperiods and the number of medications consumed in each subperiod is averaged over the number of subperiods.
- **stats**: Cohort descriptive statistics to calculate on the polypharmacy indicator. See Details for possible values.

Details

**stats**: Possible values are

- 'mean', 'min', 'median', 'max', 'sd';
- 'pX' where X is an integer value in [0, 100];
- 'q1'='p25', 'q2'='p50'='median', 'q3'='p75'.

Value

- **indic**: data.table indicating each stats (columns).
- **stats_id**: data.table. For each individual (all cohort), indicate the number of drug use per period (`perX` where X is a number between 1 and `nPeriod`) and the mean of the periods (`nRx`).
Examples

```r
rx1 <- data.frame(id = c(1, 1, 1, 2),
 code = c("A", "B", "C", "A"),
 duration = c(30, 5, 5, 10))
cohort1 <- data.frame(id = as.numeric(1:3),
 age = c(45, 12, 89),
 sex = c("F", "F", "M"))
rx_proc1 <- data_process(Rx_deliv = rx1, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 Cohort = cohort1, Cohort_id = "id",
 study_start = "2000-01-01", study_end = "2000-01-30",
 cores = 1)
1 period
dt_ind_stdcumul_per1 <- ind_stdcumul(processed_tab = rx_proc1, nPeriod = 1)
3 periods
dt_ind_stdcumul_per3 <- ind_stdcumul(processed_tab = rx_proc1, nPeriod = 3)
```

### ind_ucontinuous

Assess polypharmacy based on the uninterrupted consumption of distinct medications over the study period

#### Description

Calculates the number of distinct medications that are consumed everyday with no interruption over the study period by every individual and provides cohort descriptive statistics on this indicator.

#### Usage

```r
ind_ucontinuous(
 processed_tab,
 stats = c("mean", "sd", "min", "p5", "p10", "p25", "median", "p75", "p90", "p95", "max")
)
```

#### Arguments

- **processed_tab**: Table of individual drug treatments over the study period. Created by `data_process` function.
- **stats**: Cohort descriptive statistics to calculate on the polypharmacy indicator. See `Details` for possible values.

#### Details

**stats**: Possible values are
- 'mean', 'min', 'median', 'max', 'sd';
- 'pX' where X is an integer value in [0, 100];
- 'q1'='p25', 'q2'='p50'='median', 'q3'='p75'.

---

### Assess polypharmacy based on the uninterrupted consumption of distinct medications over the study period

Calculates the number of distinct medications that are consumed everyday with no interruption over the study period by every individual and provides cohort descriptive statistics on this indicator.

**Usage**

```r
ind_ucontinuous(
 processed_tab,
 stats = c("mean", "sd", "min", "p5", "p10", "p25", "median", "p75", "p90", "p95", "max")
)
```

**Arguments**

- **processed_tab**: Table of individual drug treatments over the study period. Created by `data_process` function.
- **stats**: Cohort descriptive statistics to calculate on the polypharmacy indicator. See `Details` for possible values.

**Details**

**stats**: Possible values are
- 'mean', 'min', 'median', 'max', 'sd';
- 'pX' where X is an integer value in [0, 100];
- 'q1'='p25', 'q2'='p50'='median', 'q3'='p75'.

---

Assess polypharmacy based on the uninterrupted consumption of distinct medications over the study period
Value

list:

• indic: data.table indicating each stats (columns).
• stats_id: data.table indicating the number of drugs use for each individual (all cohort).

Examples

```r
rx1 <- data.frame(id = c(1, 1, 1, 2),
 code = c("A", "B", "C", "A"),
 duration = c(30, 29, 5, 10))
cohort1 <- data.frame(id = as.numeric(1:3),
 age = c(45, 12, 89),
 sex = c("F", "F", "M"))
rx_proc1 <- data_process(Rx_deliv = rx1, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 Cohort = cohort1, Cohort_id = "id",
 study_start = "2000-01-01", study_end = "2000-01-30",
 cores = 1)
dt_ind_ucontinuous <- ind_ucontinuous(processed_tab = rx_proc1)
```

---

**ind_wcumul** Assess polypharmacy based on the number of distinct medications consumed weighted to their respective duration of consumption

Description

Calculates the number of distinct medications weighted by the duration of consumption that are consumed by every individual and provides cohort descriptive statistics on this indicator.

Usage

```r
ind_wcumul(
 processed_tab,
 stats = c("mean", "sd", "min", "p5", "p10", "p25", "median", "p75", "p90", "p95", "max")
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>processed_tab</td>
<td>Table of individual drug treatments over the study period. Created by <code>data_process</code> function.</td>
</tr>
<tr>
<td>stats</td>
<td>Cohort descriptive statistics to calculate on the polypharmacy indicator. See <code>Details</code> for possible values.</td>
</tr>
</tbody>
</table>
Details

**stats:** Possible values are

- 'mean', 'min', 'median', 'max', 'sd';
- 'pX' where X is an integer value in [0, 100];
- 'q1'='p25', 'q2'='p50'='median', q3='p75'.

Value

list:

- indic: data.table indicating each stats (columns).
- stats_id: data.table indicating the number of drugs use for each individual (all cohort).

Examples

```r
tax1 <- data.frame(id = c(1, 1, 1, 2),
 code = c("A", "B", "C", "A"),
 duration = c(30, 5, 5, 10))
coh1t1 <- data.frame(id = as.numeric(1:3),
 age = c(45, 12, 89),
 sex = c("F", "F", "M"))
rx_proc1 <- data_process(Rx_deliv = rx1, Rx_id = "id", Rx_drug_code = "code",
 Rx_drug_deliv = "date", Rx_deliv_dur = "duration",
 Cohort = coh1t1, Cohort_id = "id",
 study_start = "2000-01-01", study_end = "2000-01-30",
 cores = 1)
dt_ind_wcumul <- ind_wcumul(processed_tab = rx_proc1)
```

Description

This table is provided to users of this package for training purposes. It is created by using `data_process` function on `sample_Rx_unprocessed` data.

Usage

`sample_Rx_processed`

Format

A data.table with 6792 obs and 4 variables:

- **id** Individual unique identifier.
- **code** Medication unique identifier.
- **tx_start** The date of initiation of the reconstructed continued treatment (format as date).
- **tx_end** The end date of the reconstructed continued treatment (format as date).
Table: Prescription drugs deliveries

Description
A sample table of prescription drugs deliveries provided to users of this package for training purposes. It contains the raw information that leads to `sample_Rx_processed` when processed by the `data_process` function.

Usage

`sample_Rx_unprocessed`

Format
A `data.table` with 17060 obs and 4 variables:

- `id` Individual unique identifier.
- `code` Medication unique identifier.
- `start` Date of the medication delivery.
- `duration` Treatment duration of the delivery.
Index

* datasets
  sample_Rx_processed, 19
  sample_Rx_unprocessed, 20

cst_deliv_duration, 3

data_process, 4, 11, 13, 15–20
detectCores, 6, 12, 13
drug_bkdn, 10

ind_simult, 12, 13
ind_stdcontinuous, 12, 14
ind_stdcumul, 12, 16
ind_ucontinuous, 17
ind_wcumul, 18
indicators, 11

polypharmacy (polypharmacy-package), 2
polypharmacy-package, 2

sample_Rx_processed, 19, 20
sample_Rx_unprocessed, 19, 20