Package ‘pointblank’

November 20, 2020

Type Package
Version 0.6.0
Title Validation of Local and Remote Data Tables
Description Validate data in data frames, 'tibble' objects, 'Spark' 'DataFrames', and database tables (e.g., 'PostgreSQL' and 'MySQL'). Validation pipelines can be made using easily-readable, consecutive validation steps. Upon execution of the validation plan, several reporting options are available. User-defined thresholds for failure rates allow for the determination of appropriate reporting actions. Many other workflows are available including an information management workflow, where the aim is to record, collect, and generate useful information on data tables.

License MIT + file LICENSE
URL https://github.com/rich-iannone/pointblank
BugReports https://github.com/rich-iannone/pointblank/issues
Encoding UTF-8
LazyData true
ByteCompile true
RoxygenNote 7.1.1
Depends R (>= 3.5.0)
Imports base64enc (>= 0.1-3), blastula (>= 0.3.1), cli (>= 2.0.2), DBI (>= 1.1.0), digest (>= 0.6.25), dplyr (>= 1.0.0), dbplyr (>= 1.4.4), fs (>= 1.4.1), ggforce (>= 0.3.1), ggplot2 (>= 3.3.0), glue (>= 1.3.2), gt (>= 0.2.1), htmltools (>= 0.4.0), log4r (>= 0.3.2), knitr (>= 1.28), rlang (>= 0.3.2), magrittr, scales (>= 1.1.1), testthat (>= 2.3.2), tibble (>= 3.0.0), tidyselect (>= 1.1.0), yaml (>= 2.2.1)
Suggests covr, duckdb, lubridate, RSQLite, RMariaDB, RMySQL, RPostgres, readr, rmarkdown, sparklyr, dittodb, odbc

Author Richard Iannone [aut, cre] (<https://orcid.org/0000-0003-3925-190X>), Mauricio Vargas [aut] (<https://orcid.org/0000-0003-1017-7574>
R topics documented:

Maintainer Richard Iannone <riannone@me.com>
Repository CRAN
Date/Publication 2020-11-20 07:30:10 UTC

R topics documented:

action_levels .. 3
all_passed ... 6
col_exists ... 7
col_is_character .. 10
col_is_date ... 14
col_is_factor ... 17
col_is_integer .. 21
col_is_logical ... 24
col_is_numeric ... 28
col_is_posix .. 31
col_schema ... 35
col_schema_match ... 37
col_vals_between ... 41
col_vals_equal .. 47
col_vals_expr ... 51
col_vals_gt .. 55
col_vals_gte ... 60
col_vals_in_set ... 64
col_vals_lt .. 68
col_vals_lte ... 73
col_vals_not_between ... 77
col_vals_not_equal .. 83
col_vals_not_in_set ... 87
col_vals_not_null ... 91
col_vals_null .. 95
col_vals_regex .. 99
conjointly ... 104
create_agent .. 108
create_informant ... 113
db_tbl .. 115
e-mail_blast ... 116
e-mail_create ... 118
get_agent_report ... 121
get_agent_x_list ... 124
get_data_extracts ... 127
get_informant_report ... 128
get_sundered_data .. 129
incorporate ... 131
info_columns ... 133
info_section .. 135
info_snippet ... 137
action_levels

Set action levels: failure thresholds and functions to invoke

Description

The `action_levels()` function works with the `actions` argument that is present in the `create_agent()` function and in every validation step function. With it, we can provide threshold `fail` levels for any combination of `warn`, `stop`, or `notify` states.

We can react to any entrance of a state by supplying corresponding functions to the `fns` argument. They will undergo evaluation at the time when the matching state is entered. If provided to `create_agent()` then the policies will be applied to every validation step, acting as a default for the validation as a whole.

Calls of `action_levels()` could also be applied directly to any validation step and this will act as an override if set also in `create_agent()`. Usage of `action_levels()` is required to have...
any useful side effects (i.e., warnings, throwing errors) in the case of validation functions operating directly on data (e.g., mtcars %>% col_vals_lt("mpg",35)). There are two helper functions that are convenient when using validation functions directly on data (the agent-less workflow): warn_on_fail() and stop_on_fail(). These helpers either warn or stop (default failure threshold for each is set to 1), and, they do so with informative warning or error messages. The stop_on_fail() helper is applied by default when using validation functions directly on data (more information on this is provided in Details).

Usage

action_levels(warn_at = NULL, stop_at = NULL, notify_at = NULL, fns = NULL)

warn_on_fail(warn_at = 1)

stop_on_fail(stop_at = 1)

Arguments

warn_at, stop_at, notify_at

The threshold number or fraction of test units that can provide a fail result before entering the warn, stop, or notify failure states. If this a decimal value between 0 and 1 then it's a proportional failure threshold (e.g., 0.15 indicates that if 15% percent of the test units are found to fail, then the designated failure state is entered). Absolute values starting from 1 can be used instead, and this constitutes an absolute failure threshold (e.g., 10 means that if 10 of the test units are found to fail, the failure state is entered).

fns

A named list of functions that is to be paired with the appropriate failure states. The syntax for this list involves using failure state names from the set of warn, stop, and notify. The functions corresponding to the failure states are provided as formulas (e.g., list(warn = ~ warning("Too many failures."))). A series of expressions for each named state can be used by enclosing the set of statements with { }.

Details

The output of the action_levels() call in actions will be interpreted slightly differently if using an agent or using validation functions directly on a data table. For convenience, when working directly on data, any values supplied to warn_at or stop_at will be automatically given a stock warning() or stop() function. For example using small_table %>% col_is_integer("date") will provide a detailed stop message by default, indicating the reason for the failure. If you were to supply the fns for stop or warn manually then the stock functions would be overridden. Furthermore, if actions is NULL in this workflow (the default), pointblank will use a stop_at value of 1 (providing a detailed, context-specific error message if there are any fail units). We can absolutely suppress this automatic stopping behavior by at each validation step by setting active = FALSE. In this interactive data case, there is no stock function given for notify_at. The notify failure state is less commonly used in this workflow as it is in the agent-based one.

When using an agent, we often opt to not use any functions in fns as the warn, stop, and notify failure states will be reported on when using create_agent_report() (and, usually that's sufficient). Instead, using the end_fns argument is a better choice since that scheme provides useful
data on the entire interrogation, allowing for finer control on side effects and reducing potential for duplicating any side effects.

Function ID
1-5

See Also
Other Planning and Prep: `col_schema()`, `create_agent()`, `create_informant()`, `db_tbl()`, `scan_data()`, `validate_rmd()`

Examples

```r
# Create an `action_levels()` list
# with fractional values for the
# `warn`, `stop`, and `notify` states
al <- action_levels(
  warn_at = 0.2,
  stop_at = 0.8,
  notify_at = 0.5
)

# Use the included `small_table` dataset
# for the validation example
small_table

# Validate that values in column
# `a` are always greater than `2` and
# apply the list of action levels (`al`)
agent <- create_agent(tbl = small_table) %>%
  col_vals_gt(vars(a), 2, actions = al) %>%
  interrogate()

# The report from the agent will show
# that the `warn` state has been entered
# for the first and only validation step;
# Let's look at the *tibble* version of the
# agent report (accessible through the use
# of the `get_agent_report()` function)
agent %>%
  get_agent_report(display_table = FALSE)

# In the context of using validation
# functions directly on data, their
# use is commonly to trigger warnings
# and raise errors. The following *will*
# provide a warning (but that's
# suppressed here) and the `small_table`
# data will be returned
```
 suppressWarnings(
 small_table %>%
 col_vals_gt(vars(a), 2, actions = al)
)

all_passed

Did all of the validations fully pass?

Description

Given an agent’s validation plan that had undergone interrogation via `interrogate()`, did every single validation step result in zero `fail` levels? Using the `all_passed()` function will let us know whether that’s `TRUE` or not.

Usage

```r
all_passed(agent)
```

Arguments

- `agent` : An agent object of class `ptblank_agent`.

Value

A logical value.

Function ID

7-4

See Also

Other Post-interrogation: `get_agent_x_list()`, `get_data_extracts()`, `get_sundered_data()`

Examples

```r
# Create a simple table with
# a column of numerical values
.tbl <-
  dplyr::tibble(a = c(5, 7, 8, 5))

# Validate that values in column
# `a` are always greater than 4
agent <-
  create_agent(tbl = .tbl) %>%
  col_vals_gt(vars(a), 4) %>%
  interrogate()
```
Determine if these column validations have all passed
by using `all_passed()`
all_passed(agent)

col_exists

Do one or more columns actually exist?

Description

The `col_exists()` validation function, the `expect_col_exists()` expectation function, and the `test_col_exists()` test function all check whether one or more columns exist in the target table. The only requirement is specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl.spark`). Each validation step or expectation will operate over a single test unit, which is whether the column exists or not.

Usage

```r
col_exists(
  x,  
  columns,  
  actions = NULL,  
  step_id = NULL,  
  label = NULL,  
  brief = NULL,  
  active = TRUE
)

expect_col_exists(object, columns, threshold = 1)

test_col_exists(object, columns, threshold = 1)
```

Arguments

- **x**
 A data frame, tibble (`tbl_df` or `tbl.dbi`), Spark DataFrame (`tbl.spark`), or an agent object of class `ptblank_agent` that is created with `create_agent()`.

- **columns**
 One or more columns from the table in focus. This can be provided as a vector of column names using `c()` or bare column names enclosed in `vars()`.

- **actions**
 A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.
step_id

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief

An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.

object

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other `stop()`s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-23

See Also

Other validation functions: `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`, `rows_distinct()`

Examples

For all examples here, we'll use
a simple table with two columns:
'a' and 'b'
tbl <-
 dplyr::tibble(
 a = c(5, 7, 6, 5, 8, 7),
 b = c(7, 1, 0, 0, 0, 3)
)

A: Using an 'agent' with validation
functions and then 'interrogate()'

Validate that columns 'a' and 'b'
exist in the 'tbl' table; this
makes two distinct validation
steps since two columns were
provided to `vars()`
agent <-
 create_agent(tbl) %>%
 col_exists(vars(a, b)) %>%
 interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>% col_exists(vars(a, b))

C: Using the expectation function

With the `expect_*()` form, we need
to be more exacting and provide one
column at a time; this is primarily
used in testthat tests
expect_col_exists(tbl, vars(a))
expect_col_exists(tbl, vars(b))

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us (even if there are multiple
columns tested, as is the case below)
tbl %>% test_col_exists(vars(a, b))

col_is_character | Do the columns contain character/string data?

Description

The `col_is_character()` validation function, the `expect_col_is_character()` expectation function, and the `test_col_is_character()` test function all check whether one or more columns in a table is of the character type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over a single test unit, which is whether the column is a character-type column or not.
Usage

```r
col_is_character(
  x, 
  columns, 
  actions = NULL, 
  step_id = NULL, 
  label = NULL, 
  brief = NULL, 
  active = TRUE
)
```

```r
expect_col_is_character(object, columns, threshold = 1)
```

```r
test_col_is_character(object, columns, threshold = 1)
```

Arguments

- **x**: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with `create_agent()`.

- **columns**: The column (or a set of columns, provided as a character vector) to which this validation should be applied.

- **actions**: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

- **step_id**: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of `columns` provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

- **label**: An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

- **brief**: An optional, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the agent, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).

- **active**: A logical value indicating whether the validation step should be active. If the step function is working with an agent, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with `active`
will simply pass the data through with no validation whatsoever. The default for this is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop(s)).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-16

See Also

Other validation functions: col_exists(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set().
Examples

For all examples here, we'll use
a simple table with a numeric column
('a') and a character column ('b')
tbl <-
dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = LETTERS[1:6]
)

A: Using an `agent` with validation
functions and then `interrogate()`
Validate that column `b` has the
`character` class
agent <-
create_agent(tbl) %>%
 col_is_character(vars(b)) %>
 interrogate()

Determine if this validation
had no failing test units (!)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>% col_is_character(vars(b))

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_character(tbl, vars(b))

D: Using the test function
With the `test_*()` form, we should get a single logical value returned to us:

```r
tbl %>% test_col_is_character(vars(b))
```

col_is_date

Do the columns contain R Date objects?

Description

The `col_is_date()` validation function, the `expect_col_is_date()` expectation function, and the `test_col_is_date()` test function all check whether one or more columns in a table is of the R Date type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an agent object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over a single test unit, which is whether the column is a Date-type column or not.

Usage

```r
col_is_date(
  x,
  columns,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)
```

```r
expect_col_is_date(object, columns, threshold = 1)
```

```r
test_col_is_date(object, columns, threshold = 1)
```

Arguments

- `x` A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class `ptblank_agent` that is created with `create_agent()`.
- `columns` The column (or a set of columns, provided as a character vector) to which this validation should be applied.
- `actions` A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.
step_id

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief

An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexxes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.

object

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop()).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-20

See Also

Other validation functions: col_exists(), col_is_character(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is posix(), col_schema_match(), col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

The `small_table` dataset in the # package has a `date` column; the # following examples will validate # that that column is of the `Date` # class

A: Using an `agent` with validation # functions and then `interrogate()`

Validate that the column `date` has # the `Date` class
agent <-
 create_agent(small_table) %>%
 col_is_date(vars(date)) %>%
 interrogate()

Determine if this validation # had no failing test units (1)
all_passed(agent)

Calling `agent` in the console # prints the agent’s report; but we # can get a `gt_tbl` object directly
col_is_factor

Do the columns contain R factor objects?

Description

The `col_is_factor()` validation function, the `expect_col_is_factor()` expectation function, and the `test_col_is_factor()` test function all check whether one or more columns in a table is of the factor type. Like many of the `col_is_()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over a single test unit, which is whether the column is a factor-type column or not.
Usage

col_is_factor(
 x,
 columns,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_is_factor(object, columns, threshold = 1)

test_col_is_factor(object, columns, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.

actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active
col_is_factor = FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_)
and the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding test that test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
dpending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-22

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_integer(),
col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(),
col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(),.
Examples

Let's modify the 'f' column in the
'small_table' dataset so that the
values are factors instead of having
the 'character' class; the following
examples will validate that the 'f'
column was successfully mutated and
now consists of factors

tbl <-
 small_table %>%
 dplyr::mutate(f = factor(f))

A: Using an 'agent' with validation
functions and then 'interrogate()'

Validate that the column 'f' in the
'tbl' object is of the 'factor' class
agent <-
 create_agent(tbl) %>%
 col_is_factor(vars(f)) %>%
 interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling 'agent' in the console
prints the agent's report; but we
can get a 'gt_tbl' object directly
with 'get_agent_report(agent)'

B: Using the validation function
directly on the data (no 'agent')

This way of using validation functions
acts as a data filter: data is passed
through but should 'stop()' if there
is a single test unit failing; the
behavior of side effects can be
customized with the 'actions' option

tbl %>%
 col_is_factor(vars(f)) %>%
 dplyr::slice(1:5)

C: Using the expectation function

With the 'expect_*()' form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_factor(tbl, vars(f))

D: Using the test function
With the `test_*()` form, we should
get a single logical value returned
to us
tbl %>% test_col_is_factor(vars(f))

col_is_integer

Do the columns contain integer values?

Description

The `col_is_integer()` validation function, the `expect_col_is_integer()` expectation function, and the `test_col_is_integer()` test function all check whether one or more columns in a table is of the integer type. Like many of the `col_is_*()`-type functions in **pointblank**, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over a single test unit, which is whether the column is an integer-type column or not.

Usage

```
col_is_integer(
  x,
  columns,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)
```

```
expect_col_is_integer(object, columns, threshold = 1)
```

```
test_col_is_integer(object, columns, threshold = 1)
```

Arguments

- **x**
 - A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an agent object of class `ptblank_agent` that is created with `create_agent()`.

- **columns**
 - The column (or a set of columns, provided as a character vector) to which this validation should be applied.
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the agent, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. The default for this is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, tidyselect helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()`
function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_is_?-()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-18

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all examples here, we'll use
a simple table with a character
column (`a`) and a integer column
(`b`)
tbl <-
dplyr::tibble(
a = letters[1:6],
b = 2:7
)
A: Using an `agent` with validation
functions and then `interrogate()`
Validate that column `b` has the
`integer` class
agent <-
create_agent(tbl) %>%
col_is_integer(vars(b)) %>%
interrogate()
Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>% col_is_integer(vars(b))

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_integer(tbl, vars(b))

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
tbl %>% test_col_is_integer(vars(b))

col_is_logical

Do the columns contain logical values?

Description
The `col_is_logical()` validation function, the `expect_col_is_logical()` expectation function, and the `test_col_is_logical()` test function all check whether one or more columns in a table is of the logical (TRUE/FALSE) type. Like many of the `col_is_*()`-type functions in pointblank, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a pointblank_agent object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (tbl_dbj), and Spark DataFrames (tbl_spark). Each validation step or expectation will operate over a single test unit, which is whether the column is an logical-type column or not.
Usage

col_is_logical(
 x,
 columns,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

epect_col_is_logical(object, columns, threshold = 1)
test_col_is_logical(object, columns, threshold = 1)

Arguments

 x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
 columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
 actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
 step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
 label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
 brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
 active A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details
If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

Value
For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID
2-19

See Also
Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set().
col_is_logical

col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

The `small_table` dataset in the
package has an `e` column which has
logical values; the following examples
will validate that that column is of
the `logical` class

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that the column `e` has the
`logical` class
agent <-
create_agent(small_table) %>%
col_is_logical(vars(e)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
small_table %>%
col_is_logical(vars(e)) %>%
dplyr::slice(1:5)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_logical(
 small_table, vars(e)
)
D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%
test_col_is_logical(vars(e))

col_is_numeric
Do the columns contain numeric values?

Description

The `col_is_numeric()` validation function, the `expect_col_is_numeric()` expectation function, and the `test_col_is_numeric()` test function all check whether one or more columns in a table is of the numeric type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl.spark`). Each validation step or expectation will operate over a single test unit, which is whether the column is a numeric-type column or not.

Usage

```r

col_is_numeric(
  x,  
  columns, 
  actions = NULL, 
  step_id = NULL, 
  label = NULL, 
  brief = NULL, 
  active = TRUE
)

expect_col_is_numeric(object, columns, threshold = 1)

test_col_is_numeric(object, columns, threshold = 1)
```

Arguments

- `x`
 A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl.spark), or, an agent object of class `ptblank_agent` that is created with `create_agent()`.

- `columns`
 The column (or a set of columns, provided as a character vector) to which this validation should be applied.
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_is_"()()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-17

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_equal(), col vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

The `small_table` dataset in the # package has a `d` column that is # known to be numeric; the following # examples will validate that that # column is indeed of the `numeric` # class

A: Using an `agent` with validation # functions and then `interrogate()`

Validate that the column `d` has # the `numeric` class
agent <-
 create_agent(small_table) %>%
 col_is_numeric(vars(d)) %>%
 interrogate()

Determine if this validation # had no failing test units (!)
Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
small_table %>%
 col_is_numeric(vars(d)) %>%
dplyr::slice(1:5)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_numeric(
 small_table, vars(d)
)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%
test_col_is_numeric(vars(d))

col_is posix

Do the columns contain POSIXct dates?

Description

The `col_isposix()` validation function, the `expect_col_isposix()` expectation function, and the `test_col_isposix()` test function all check whether one or more columns in a table is of the R POSIXct date-time type. Like many of the col_is_*()-type functions in **pointblank**, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a pointblank_agent object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used
include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation step or expectation will operate over a single test unit, which is whether the column is a POSIXct-type column or not.

Usage

col_is_posix(
 x,
 columns,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_is_posix(object, columns, threshold = 1)

test_col_is_posix(object, columns, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
col_is_posix

active A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

Verification step where a table column is expected to consist entirely of R POSIXct dates.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-18
See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_schema_match()`, `col_vals_between()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`, `rows_distinct()`

Examples

```r
# The `small_table` dataset in the # package has a `date_time` column; # the following examples will validate # that that column is of the `POSIXct` # and `POSIXt` classes

# A: Using an `agent` with validation # functions and then `interrogate()`

# Validate that the column `date_time` # is indeed a date-time column agent <-
  create_agent(small_table) %>%
  col_is_posix(vars(date_time)) %>%
  interrogate()

# Determine if this validation # had no failing test units (1) all_passed(agent)

# Calling `agent` in the console # prints the agent’s report; but we # can get a `gt_tbl` object directly # with `get_agent_report(agent)`

# B: Using the validation function # directly on the data (no `agent`)

# This way of using validation functions # acts as a data filter: data is passed # through but should `stop()` if there # is a single test unit failing; the # behavior of side effects can be # customized with the `actions` option small_table %>%
  col_is_posix(vars(date_time)) %>%
  dplyr::slice(1:5)

# C: Using the expectation function # With the `expect_*()` form, we would # typically perform one validation at a # time; this is primarily used in
# testthat tests
expect_col_is_posix(
  small_table, vars(date_time)
)

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us
small_table %>%
  test_col_is_posix(vars(date_time))

---

**col_schema**

*Generate a table column schema manually or with a reference table*

## Description

A table column schema object, as can be created by `col_schema()`, is necessary when using the `col_schema_match()` validation function (which checks whether the table object under study matches a known column schema). The `col_schema` object can be made by carefully supplying the column names and their types as a set of named arguments, or, we could provide a table object, which could be of the `data.frame`, `tbl_df`, `tbl_dbi`, or `tbl_spark` varieties. There’s an additional option, which is just for validating the schema of a `tbl_dbi` or `tbl_spark` object: we can validate the schema based on R column types (e.g., "numeric", "character", etc.), SQL column types (e.g., "double", "varchar", etc.), or Spark SQL column types ("DoubleType", "StringType", etc.). This is great if we want to validate table column schemas both on the server side and when tabular data is collected and loaded into R.

## Usage

```
col_schema(..., .tbl = NULL, .db_col_types = c("r", "sql"))
```

## Arguments

- **...**: A set of named arguments where the names refer to column names and the values are one or more column types.
- **.tbl**: An option to use a table object to define the schema. If this is provided then any values provided to ... will be ignored.
- **.db_col_types**: Determines whether the column types refer to R column types ("r") or SQL column types ("sql").

## Function ID

1-7
See Also

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `db_tbl()`, `scan_data()`, `validate_rmd()`

Examples

```r
Create a simple table with two
columns: one `integer` and the
other `character`
tbl <-
dplyr::tibble(
a = 1:5,
b = letters[1:5]
)

Create a column schema object
that describes the columns and
their types (in the expected
order)
schema_obj <-
col_schema(
a = "integer",
b = "character"
)

Validate that the schema object
exactly defines
of the `tbl` table
agent <-
create_agent(tbl = tbl) %>%
col_schema_match(schema_obj) %>%
interrogate()

Determine if these three validation
steps passed by using `all_passed()`
all_passed(agent)

We can alternatively create
a column schema object from a
`tbl_df` object
schema_obj <-
col_schema(
 .tbl = dplyr::tibble(
 a = integer(0),
 b = character(0)
)
)

This should provide the same
interrogation results as in the
previous example
```
create_agent(tbl = tbl) %>%
col_schema_match(schema_obj) %>%
interrogate() %>%
all_passed()

---

**col_schema_match**  
Do columns in the table (and their types) match a predefined schema?

**Description**

The `col_schema_match()` validation function, the `expect_col_schema_match()` expectation function, and the `test_col_schema_match()` test function all work in conjunction with a `col_schema` object (generated through the `col_schema()` function) to determine whether the expected schema matches that of the target table. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`).

**Usage**

```r

col_schema_match(
 x,
 schema,
 complete = TRUE,
 in_order = TRUE,
 is_exact = TRUE,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_schema_match(
 object,
 schema,
 complete = TRUE,
 in_order = TRUE,
 is_exact = TRUE,
 threshold = 1
)

test_col_schema_match(
 object,
 schema,
 complete = TRUE,
 in_order = TRUE,
 is_exact = TRUE,
 threshold = 1
)
```

---
Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
schema A table schema of type col_schema which can be generated using the col_schema() function.
complete A requirement to account for all table columns in the provided schema. By default, this is TRUE and so that all column names in the target table must be present in the schema object. This restriction can be relaxed by using FALSE, where we can provide a subset of table columns in the schema.
in_order A stringent requirement for enforcing the order of columns in the provided schema. By default, this is TRUE and the order of columns in both the schema and the target table must match. By setting to FALSE, this strict order requirement is removed.
is_exact Determines whether the check for column types should be exact or even performed at all. For example, columns in R data frames may have multiple classes (e.g., a date-time column can have both the “POSIXct” and the “POSIXt” classes). If using is_exact == FALSE, the column type in the user-defined schema for a date-time value can be set as either “POSIXct” or “POSIXt” and pass validation (with this column, at least). This can be taken a step further and using NULL for a column type in the user-defined schema will skip the validation check of a column type. By default, is_exact is set to TRUE.
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a label might be better suited to succinctly describe the validation).

**active**
A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.

**object**
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that evaluates to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Details**

The validation step or expectation operates over a single test unit, which is whether the schema matches that of the table (within the constraints enforced by the complete, in_order, and is_exact options). If the target table is a tbl_dbi or a tbl_spark object, we can choose to validate the column schema that is based on R column types (e.g., "numeric", "character", etc.), SQL column types (e.g., "double", "varchar", etc.), or Spark SQL types (e.g., "DoubleType", "StringType", etc.). That option is defined in the `col_schema()` function (it is the .db_col_types argument).

There are options to make schema checking less stringent (by default, this validation operates with highest level of strictness). With the complete option set to FALSE, we can supply a col_schema object with a partial inclusion of columns. Using in_order set to FALSE means that there is no requirement for the columns defined in the schema object to be in the same order as in the target table. Finally, the is_exact option set to FALSE means that all column classes/types don’t have to be provided for a particular column. It can even be NULL, skipping the check of the column type.

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop(s)).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

**Value**

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2.24

See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_vals_between()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`, `rows_distinct()`

Examples

```r
For all examples here, we'll use
a simple table with two columns:
one 'integer' ('a') and the other
'character' ('b'); the following
examples will validate that the
table columns abides match a schema
object as created by 'col_schema()'

tbl <-
 dplyr::tibble(
 a = 1:5,
 b = letters[1:5]
)

tbl

Create a column schema object with
the helper function 'col_schema()'
that describes the columns and
their types (in the expected order)
schema_obj <-
 col_schema(
 a = "integer",
 b = "character"
)

A: Using an 'agent' with validation
functions and then 'interrogate()'

Validate that the schema object
'schema_obj' exactly defines
the column names and column types
agent <-
 create_agent(tbl) %>%
 col_schema_match(schema_obj) %>%
```
col_vals_between

Are column data between two specified values?

Description

The `col_vals_between()` validation function, the `expect_col_vals_between()` expectation function, and the `test_col_vals_between()` test function all check whether column values in a table fall within a range. The range specified with three arguments: `left`, `right`, and `inclusive`. The `left` and `right` values specify the lower and upper bounds. The bounds can be specified as single, literal values or as column names given in `vars()`. The `inclusive` argument, as a vector of two
logical values relating to `left` and `right`, states whether each bound is inclusive or not. The default is `c(\text{TRUE, TRUE})`, where both endpoints are inclusive (i.e., `[left, right]`). For partially-unbounded versions of this function, we can use the `col_vals_lt()`, `col_vals_lte()`, `col_vals_gt()`, or `col_vals_gte()` validation functions. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over a single test unit, which is whether the column is an integer-type column or not. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_between(
 x,
 columns,
 left,
 right,
 inclusive = c(\text{TRUE, TRUE}),
 na_pass = FALSE,
 preconditions = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = \text{TRUE}
)
```

```r
expect_col_vals_between(
 object,
 columns,
 left,
 right,
 inclusive = c(\text{TRUE, TRUE}),
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```

```r
test_col_vals_between(
 object,
 columns,
 left,
 right,
 inclusive = c(\text{TRUE, TRUE}),
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```
Arguments

x
- A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns
- The column (or a set of columns, provided as a character vector) to which this validation should be applied.

left
- The lower bound for the range. The validation includes this bound value (if the first element in inclusive is TRUE) in addition to values greater than left. This can be a single value or a compatible column given in vars().

right
- The upper bound for the range. The validation includes this bound value (if the second element in inclusive is TRUE) in addition to values lower than right. This can be a single value or a compatible column given in vars().

inclusive
- A two-element logical value that indicates whether the left and right bounds should be inclusive. By default, both bounds are inclusive.

na_pass
- Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.

preconditions
- expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10).

actions
- A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
- One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
- An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
- An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
- A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names to `columns`, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

This validation function supports special handling of `NA` values. The `na_pass` argument will determine whether an `NA` value appearing in a test unit should be counted as a `pass` or a `fail`. The default of `na_pass = FALSE` means that any `NA`s encountered will accumulate failing test units.

Having table preconditions means `pointblank` will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_a = col_b + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_a = col_b + 10)`).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.
Function ID

2-7

See Also

The analogue to this function: \texttt{col_vals_not_between()}. Other validation functions: \texttt{col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()}

Examples

# The \texttt{`small_table`} dataset in the
# package has a column of numeric
# values in \texttt{`c`} (there are a few NAs
# in that column); the following
# examples will validate the values
# in that numeric column

# A: Using an \texttt{`agent`} with validation
# functions and then \texttt{`interrogate()`}

# Validate that values in column \texttt{`c`}
# are all between \texttt{`1`} and \texttt{`9`}; because
# there are NA values, we'll choose to
# let those pass validation by setting
# \texttt{`na_pass = TRUE`}
agent <-
  create_agent(small_table) %>%
  col_vals_between(
    vars(c), 1, 9, na_pass = TRUE
  ) %>%
  interrogate()

# Determine if this validation
# had no failing test units (there
# are 13 test units, one for each row)
all_passed(agent)

# Calling \texttt{`agent`} in the console
# prints the agent's report; but we
# can get a \texttt{`gt_tbl`} object directly
# with \texttt{`get_agent_report(agent)}`

# B: Using the validation function
# directly on the data (no \texttt{`agent`})

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the `actions` option
small_table %>%
  col_vals_between(
    vars(c), 1, 9, na_pass = TRUE
  ) %>%
dplyr::pull(c)

# C: Using the expectation function

# With the `expect_*()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests
expect_col_vals_between(
  small_table, vars(c), 1, 9,
  na_pass = TRUE
)

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us
small_table %>%
  test_col_vals_between(
    vars(c), 1, 9,
    na_pass = TRUE
  )

# An additional note on the bounds for
# this function: they are inclusive by
# default (i.e., values of exactly 1
# and 9 will pass); we can modify the
# inclusiveness of the upper and lower
# bounds with the `inclusive` option,
# which is a length-2 logical vector

# Testing with the upper bound being
# non-inclusive, we get `FALSE` since
# two values are `9` and they now fall
# outside of the upper (or right) bound
small_table %>%
  test_col_vals_between(
    vars(c), 1, 9,
    inclusive = c(TRUE, FALSE),
    na_pass = TRUE
  )
col_vals_equal

Are column data equal to a specified value?

Description

The `col_vals_equal()` validation function, the `expect_col_vals_equal()` expectation function, and the `test_col_vals_equal()` test function all check whether column values in a table are equal to a specified value. The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_equal(
 x,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_vals_equal(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```

```r
test_col_vals_equal(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```
Arguments

x | A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns | The column (or a set of columns, provided as a character vector) to which this validation should be applied.
value | A numeric value used to test for equality.
na_pass | Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
preconditions | expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col = col + 10)`).
actions | A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id | One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label | An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief | An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
active | A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.
object | A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.
threshold | A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Having table preconditions means pointblank will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using dplyr code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-3
See Also

The analogue to this function: `col_vals_not_equal()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`, `rows_distinct()`

Examples

# For all of the examples here, we’ll
# use a simple table with three numeric
# columns (‘a’, ‘b’, and ‘c’) and three
# character columns (‘d’, ‘e’, and ‘f’)
tbl <-
dplyr::tibble(
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 2, 2),
d = LETTERS[c(1:3, 5:7)],
e = LETTERS[c(1:6)],
f = LETTERS[c(1:6)]
)
tbl

# A: Using an ‘agent’ with validation
# functions and then ‘interrogate()’

# Validate that values in column ‘a’
# are all equal to the value of ‘5’
agent <-
create_agent(tbl) %>%
  col_vals_equal(vars(a), 5) %>%
  interrogate()

# Determine if this validation
# had no failing test units (there
# are 6 test units, one for each row)
all_passed(agent)

# Calling ‘agent’ in the console
# prints the agent’s report; but we
# can get a ‘gt_tbl’ object directly
# with ‘get_agent_report(agent)’

# B: Using the validation function
# directly on the data (no ‘agent’)

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there is a single test unit failing; the behavior of side effects can be customized with the `actions` option

```r
tbl %>%
col_vals_equal(vars(a), 5) %>%
dplyr::pull(a)
```

# C: Using the expectation function

# With the `expect_*()` form, we would typically perform one validation at a time; this is primarily used in testthat tests

```r
expect_col_vals_equal(tbl, vars(a), 5)
```

# D: Using the test function

# With the `test_*()` form, we should get a single logical value returned to us

```r
test_col_vals_equal(tbl, vars(a), 5)
```

---

**col_vals_expr**  
*Do column data agree with a predicate expression?*

**Description**

The `col_vals_expr()` validation function checks for whether column values in a table match a user-defined predicate expression. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_expr(
 x,
 expr,
 preconditions = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```
expect_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)

test_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class pointblank_agent that is created with create_agent().

expr An expression to use for this test. This can either be in the form of a call made with the expr() function or as a one-sided R formula (using a leading ~).

preconditions expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

Having table preconditions means pointblank will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using dplyr code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop(s) at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-25

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is posix(), col_schema_match(), col_vals_between(), col_vals_equal(), col_vals_gte(), col_vals_gt(), col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()
Examples

# For all of the examples here, we'll use a simple table with three numeric columns ('a', 'b', and 'c') and three character columns ('d', 'e', and 'f')
tbl <-
dplyr::tibble(
  a = c(1, 2, 1, 7, 8, 6),
  b = c(0, 0, 0, 1, 1, 1),
  c = c(0.5, 0.3, 0.8, 1.4, 1.9, 1.2),
)

tbl

# A: Using an `agent` with validation functions and then `interrogate()`

# Validate that values in column `a` are integer-like by using the R modulo operator and expecting `0`
agent <-
  create_agent(tbl) %>%
  col_vals_expr(expr(a %% 1 == 0)) %>%
  interrogate()

# Determine if this validation had no failing test units (there are 6 test units, one for each row)
all_passed(agent)

# Calling `agent` in the console prints the agent's report; but we can get a `gt_tbl` object directly with `get_agent_report(agent)`

# B: Using the validation function directly on the data (no `agent`)

tbl %>%
  col_vals_expr(expr(a %% 1 == 0)) %>%
  dplyr::pull(a)

# C: Using the expectation function

# With the `expect_*()` form, we would typically perform one validation at a
col_vals_gt

# time; this is primarily used in
# testthat tests
expect_col_vals_expr(tbl, ~ a%%1 == 0)

# D: Using the test function

# With the 'test_*()' form, we should
# get a single logical value returned
# to us
test_col_vals_expr(tbl, ~ a%%1 == 0)

# Variations

# We can do more complex things by
# taking advantage of the 'case_when()'
# and 'between()' functions (available
# for use in the pointblank package)
tbl %>%
  test_col_vals_expr(~ case_when(
    b == 0 ~ a%%between(0, 5) & c < 1,
    b == 1 ~ a > 5 & c >= 1
  ))

# If you only want to test a subset of
# rows, then the 'case_when()' statement
# doesn't need to be exhaustive; any
# rows that don't fall into the cases
# will be pruned (giving us less test
# units overall)
tbl %>%
  test_col_vals_expr(~ case_when(
    b == 1 ~ a > 5 & c >= 1
  ))

---

col_vals_gt Are column data greater than a specified value?

Description

The col_vals_gt() validation function, the expect_col_vals_gt() expectation function, and the test_col_vals_gt() test function all check whether column values in a table are greater than a specified value (the exact comparison used in this function is col_val > value). The value can be specified as a single, literal value or as a column name given in vars(). The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).
Usage

col_vals_gt(
  x,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_col_vals_gt(
  object,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

test_col_vals_gt(
  object,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.

value A numeric value used for this test. Any column values > value are considered passing.

na_pass Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.

preconditions expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10).
actions

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

step_id

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief

An optional, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the agent, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).

active

A logical value indicating whether the validation step should be active. If the step function is working with an agent, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. The default for this is `TRUE`.

object

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to `1` meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond `1` indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between `0` and `1`) act as a proportional failure threshold, where `0.15` means that `15` percent of failing test units results in an overall test failure.

Details

If providing multiple column names to `columns`, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

This validation function supports special handling of `NA` values. The `na_pass` argument will determine whether an `NA` value appearing in a test unit should be counted as a `pass` or a `fail`. The default of `na_pass = FALSE` means that any `NAs` encountered will accumulate failing test units.
Having table preconditions means **pointblank** will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using **dplyr** code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided **R** formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_a = col_b + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_a = col_b + 10)`).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**Value**

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Function ID**

2-6

**See Also**

The analogous function with a left-closed bound: `col_vals_gte()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`, `rows_distinct()`

**Examples**

```R
For all of the examples here, we’ll
use a simple table with three numeric
columns (‘a’, ‘b’, and ‘c’) and three
character columns (‘d’, ‘e’, and ‘f’)
tbl <-
 dplyr::tibble(
 a = 1:10,
 b = 11:20,
 c = 21:30,
 d = c("apple", "banana", "cherry", "date", "elderberry"),
 e = c("apple", "banana", "cherry", "date", "elderberry"),
 f = c("apple", "banana", "cherry", "date", "elderberry")
)```
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 2, 3, 4),
d = LETTERS[a],
e = LETTERS[b],
f = LETTERS[c]
)

tbl

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column `a` are all greater than the value of `4` agent <-
 create_agent(tbl) %>%
 col_vals_gt(vars(a), 4) %>%
 interrogate()

Determine if this validation had no failing test units (there are 6 test units, one for each row) all_passed(agent)

Calling `agent` in the console prints the agent's report; but we can get a `gt_tbl` object directly with `get_agent_report(agent)`

B: Using the validation function directly on the data (no `agent`)

This way of using validation functions acts as a data filter: data is passed through but should `stop()` if there is a single test unit failing; the behavior of side effects can be customized with the `actions` option tbl %>%
 col_vals_gt(vars(a), 4) %>%
 dplyr::pull(a)

C: Using the expectation function

With the `expect_*()` form, we would typically perform one validation at a time; this is primarily used in testthat tests expect_col_vals_gt(tbl, vars(a), 4)

D: Using the test function
With the `test_*()` form, we should
get a single logical value returned
to us
test_col_vals_gt(tbl, vars(a), 4)

col_vals_gte Are column data greater than or equal to a specified value?

Description

The `col_vals_gte()` validation function, the `expect_col_vals_gte()` expectation function, and the `test_col_vals_gte()` test function all check whether column values in a table are greater than or equal to a specified value (the exact comparison used in this function is \(\text{col_val} >= \text{value}\)). The value can be specified as a single, literal value or as a column name given in `vars()`. The validation step function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_gte(
  x,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_col_vals_gte(
  object,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

test_col_vals_gte(
```
Arguments

x
A data frame, tibble (tbl_df or tbl_db), Spark DataFrame (tbl_spark), or, an agent object of class `ptblank_agent` that is created with `create_agent()`.

columns
The column (or a set of columns, provided as a character vector) to which this validation should be applied.

value
A numeric value used for this test. Any column values \(\geq \) value are considered passing.

na_pass
Should any encountered `NA` values be considered as passing test units? This is by default `FALSE`. Set to `TRUE` to give `NA`s a pass.

preconditions
Expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading `~`. In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col = col + 10)`).

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the agent, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the step function is working with an agent, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. The default for this is `TRUE`.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names to `columns`, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

This validation function supports special handling of NA values. The `na_pass` argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of `na_pass = FALSE` means that any NAs encountered will accumulate failing test units.

Having table preconditions means `pointblank` will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `~` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_a = col_b + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_a = col_b + 10)`).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-5

See Also

The analogous function with a left-open bound: `col_vals_gt()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`, `rows_distinct()`

Examples

```r
# For all of the examples here, we'll use a simple table with three numeric columns (`a`, `b`, and `c`) and three character columns (`d`, `e`, and `f`)
tbl <-
dplyr::tibble(
    a = c(5, 5, 5, 5, 5, 5),
    b = c(1, 1, 1, 2, 2, 2),
    c = c(1, 1, 1, 2, 3, 4),
    d = LETTERS[a],
    e = LETTERS[b],
    f = LETTERS[c]
)
tbl

# A: Using an 'agent' with validation functions and then 'interrogate()'

# Validate that values in column 'a'
# are all greater than or equal to the value of '5'
agent <-
create_agent(tbl) %>%
col_vals_gte(vars(a), 5) %>%
interrogate()

# Determine if this validation had no failing test units (there are 6 test units, one for each row)
all_passed(agent)

# Calling 'agent' in the console
# prints the agent's report; but we
# can get a `gt_tbl` object directly
# with `get_agent_report(agent)`

# B: Using the validation function
# directly on the data (no `agent`)

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the `actions` option

```r
tbl %>%
col_vals_gte(vars(a), 5) %>%
dplyr::pull(a)
```

# C: Using the expectation function

# With the `expect_*()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests

```r
expect_col_vals_gte(tbl, vars(a), 5)
```

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us

```r
test_col_vals_gte(tbl, vars(a), 5)
```

---

**col_vals_in_set**

Are column data part of a specified set of values?

**Description**

The `col_vals_in_set()` validation function, the `expect_col_vals_in_set()` expectation function, and the `test_col_vals_in_set()` test function all check whether column values in a table are part of a specified set of values. The validation step function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_in_set()
```
expect_col_vals_in_set(
  object, 
  columns, 
  set, 
  preconditions = NULL, 
  actions = NULL, 
  step_id = NULL, 
  label = NULL, 
  brief = NULL, 
  active = TRUE 
)

test_col_vals_in_set(object, columns, set, preconditions = NULL, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl.spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
set A vector of numeric or string-based elements, where column values found within this set will be considered as passing.
preconditions expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10)).
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
**col_vals_in_set**

- **brief**: An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the agent, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

- **active**: A logical value indicating whether the validation step should be active. If the step function is working with an agent, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. The default for this is `TRUE`.

- **object**: A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

- **threshold**: A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding *testthat* test or evaluate to *TRUE*. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Details**

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Having table preconditions means *pointblank* will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using *dplyr* code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided *R* formula (using a leading `~`). In the formula representation, the `.~` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_a = col_b + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_a = col_b + 10)`).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an *agent*. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want...
to do it. The **autobrief** protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

### Value

For the validation function, the return value is either a `agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

### Function ID

2-9

### See Also

The analogue to this function: `col_vals_not_in_set()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is POSIX()`, `col_schema_match()`, `col_vals_between()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_lte()`, `col_vals_lte()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`, `rows_distinct()`

### Examples

```r
The `small_table` dataset in the # package will be used to validate that # column values are part of a given set

A: Using an `agent` with validation # functions and then `interrogate()`

Validate that values in column `f` # are all part of the set of values # containing `low`, `mid`, and `high` agent <-
create_agent(small_table) ->
col_vals_in_set(
 vars(f), c("low", "mid", "high")
) ->
interrogate()

Determine if this validation # had no failing test units (there # are 13 test units, one for each row) all_passed(agent)

Calling `agent` in the console # prints the agent's report; but we # can get a `gt_tbl` object directly # with `get_agent_report(agent)`
```
# B: Using the validation function
# directly on the data (no `agent`)

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the `actions` option
small_table %>%
  col_vals_in_set(
    vars(f), c("low", "mid", "high")
  ) %>%
dplyr::pull(f) %>%
  unique()

# C: Using the expectation function

# With the `expect_*()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests
expect_col_vals_in_set(
  small_table,
  vars(f), c("low", "mid", "high")
)

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us
small_table %>%
test_col_vals_in_set(
  vars(f), c("low", "mid", "high")
)

---

**col_vals_lt**

Are column data less than a specified value?

---

**Description**

The `col_vals_lt()` validation function, the `expect_col_vals_lt()` expectation function, and the `test_col_vals_lt()` test function all check whether column values in a table are less than a specified value (the exact comparison used in this function is `col_val < value`). The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types
of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_lt(
 x, columns, value, na_pass = FALSE, preconditions = NULL, actions = NULL, step_id = NULL, label = NULL, brief = NULL, active = TRUE
)
```

```r
effect_col_vals_lt(
 object, columns, value, na_pass = FALSE, preconditions = NULL, threshold = 1
)
```

```r
test_col_vals_lt(
 object, columns, value, na_pass = FALSE, preconditions = NULL, threshold = 1
)
```

Arguments

- **x**: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with `create_agent()`.

- **columns**: The column (or set of columns, provided as a character vector) to which this validation should be applied.

- **value**: A numeric value used for this test. Any column values < value are considered passing.

- **na_pass**: Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10).

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Having table preconditions means pointblank will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using dplyr code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-1

See Also

The analogous function with a right-closed bound: col_vals_lte().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(), col_vals_lte(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()
Examples

# For all of the examples here, we'll use a simple table with three numeric columns (`a`, `b`, and `c`) and three character columns (`d`, `e`, and `f`)

tbl <- dplyr::tibble(
  a = c(5, 5, 5, 5, 5, 5),
  b = c(1, 1, 1, 2, 2, 2),
  c = c(1, 1, 1, 2, 3, 4),
  d = LETTERS[a],
  e = LETTERS[b],
  f = LETTERS[c]
)

tbl

# A: Using an `agent` with validation functions and then `interrogate()`

# Validate that values in column `c` are all less than the value of `5`
agent <-
  create_agent(tbl) %>%
  col_vals_lt(vars(c), 5) %>%
  interrogate()

# Determine if this validation had no failing test units (there are 6 test units, one for each row)
all_passed(agent)

# Calling `agent` in the console prints the agent's report; but we can get a `gt_tbl` object directly with `get_agent_report(agent)`

# B: Using the validation function directly on the data (no `agent`)

# This way of using validation functions acts as a data filter: data is passed through but should `stop()` if there is a single test unit failing; the behavior of side effects can be customized with the `actions` option

tbl %>%
  col_vals_lt(vars(c), 5) %>%
  dplyr::pull(c)

# C: Using the expectation function
With the `expect_*()` form, we would typically perform one validation at a time; this is primarily used in testthat tests. 

```r
expect_col_vals_lt(tbl, vars(c), 5)
```

Using the test function:

```r
D: Using the test function
With the `test_*()` form, we should get a single logical value returned
to us
test_col_vals_lt(tbl, vars(c), 5)
```

---

**col_vals_lte**

Are column data less than or equal to a specified value?

**Description**

The `col_vals_lte()` validation function, the `expect_col_vals_lte()` expectation function, and the `test_col_vals_lte()` test function all check whether column values in a table are *less than or equal to* a specified value (the exact comparison used in this function is `col_val <= value`). The value can be specified as a single, literal value or as a column name given in `vars()`. The validation step function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl.spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_lte(
 x,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_vals_lte(
 object,
 columns,
```
test_col_vals_lte(
  object,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

Arguments

x
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns
The column (or a set of columns, provided as a character vector) to which this validation should be applied.

value
A numeric value used for this test. Any column values <= value are considered passing.

na_pass
Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.

preconditions
expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10)).

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided
in `create_agent()`’s `lang` argument (which defaults to "en" or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**

A logical value indicating whether the validation step should be active. If the step function is working with an agent, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. The default for this is `TRUE`.

**object**

A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

**threshold**

A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding `testThat` test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Details**

If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

This validation function supports special handling of `NA` values. The `na_pass` argument will determine whether an `NA` value appearing in a test unit should be counted as a `pass` or a `fail`. The default of `na_pass = FALSE` means that any `NA`s encountered will accumulate failing test units.

Having table preconditions means `pointblank` will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_a = col_b + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_a = col_b + 10)`).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).
Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when \( \text{brief} = \text{NULL} \) and a simple brief will then be automatically generated.

**Value**

For the validation function, the return value is either a \texttt{ptblank_agent} object or a table object (depending on whether an agent object or a table was passed to \( x \)). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Function ID**

2-2

**See Also**

The analogous function with a right-open bound: \texttt{col_vals_lt()}.

Other validation functions: \texttt{col_exists()}, \texttt{col_is_character()}, \texttt{col_is_date()}, \texttt{col_is_factor()}, \texttt{col_is_integer()}, \texttt{col_is_logical()}, \texttt{col_is_numeric()}, \texttt{col_is_posix()}, \texttt{col_schema_match()}, \texttt{col_vals_between()}, \texttt{col_vals_equal()}, \texttt{col_vals_expr()}, \texttt{col_vals_gte()}, \texttt{col_vals_gt()}, \texttt{col_vals_in_set()}, \texttt{col_vals_lt()}, \texttt{col_vals_not_between()}, \texttt{col_vals_not_equal()}, \texttt{col_vals_not_in_set()}, \texttt{col_vals_not_null()}, \texttt{col_vals_null()}, \texttt{col_vals_regex()}, \texttt{conjointly()}, \texttt{rows_distinct()}

**Examples**

```r
For all of the examples here, we’ll use a simple table with three numeric # columns (‘a’, ‘b’, and ‘c’) and three # character columns (‘d’, ‘e’, and ‘f’)
tbl <-
 dplyr::tibble(
 a = c(5, 5, 5, 5, 5, 5),
 b = c(1, 1, 1, 2, 2, 2),
 c = c(1, 1, 1, 2, 3, 4),
 d = LETTERS[a],
 e = LETTERS[b],
 f = LETTERS[c]
)

tbl

A: Using an ‘agent’ with validation # functions and then ‘interrogate()’

Validate that values in column ‘c’ # are all less than or equal to the # value of ‘4’
agent <-
 create_agent(tbl) %>%
```
The `col_vals_not_between()` validation function, the `expect_col_vals_not_between()` expectation function, and the `test_col_vals_not_between()` test function all check whether column values in a table _do not_ fall within a range. The range specified with three arguments:
left, right, and inclusive. The left and right values specify the lower and upper bounds. The bounds can be specified as single, literal values or as column names given in \( \text{vars()} \). The inclusive argument, as a vector of two logical values relating to left and right, states whether each bound is inclusive or not. The default is \( \text{c(TRUE, TRUE)} \), where both endpoints are inclusive (i.e., \([\text{left}, \text{right}]\)). For partially-unbounded versions of this function, we can use the \( \text{col_vals_lt()} \), \( \text{col_vals_lte()} \), \( \text{col_vals_gt()} \), or \( \text{col_vals_gte()} \) validation functions. The validation function can be used directly on a data table or with an agent object (technically, a \text{ptblank_agent} object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (\text{tbl_dbi}), and Spark DataFrames (\text{tbl_spark}). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
\text{col_vals_not_between(}
 x,
 columns,
 left,
 right,
 inclusive = \text{c(TRUE, TRUE)},
 na_pass = \text{FALSE},
 preconditions = \text{NULL},
 actions = \text{NULL},
 step_id = \text{NULL},
 label = \text{NULL},
 brief = \text{NULL},
 active = \text{TRUE}
)\n```

```r
\text{expect_col_vals_not_between(}
  object,
  columns,
  left,
  right,
  inclusive = \text{c(TRUE, TRUE)},
  na_pass = \text{FALSE},
  preconditions = \text{NULL},
  threshold = 1
)\n```

```r
\text{test_col_vals_not_between(}
 object,
 columns,
 left,
 right,
 inclusive = \text{c(TRUE, TRUE)},
 na_pass = \text{FALSE},
 preconditions = \text{NULL},
 threshold = 1
)\n```
Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with `create_agent()`.
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
left, right The lower and upper bounds for the range. The validation Any values >= left and <= right will be considered as failing.
inclusive A two-element logical value that indicates whether the left and right bounds should be inclusive. By default, both bounds are inclusive.
na_pass Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
preconditions expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10)).
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the agent, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).
active A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with `active` = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.
object

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Having table preconditions means pointblank will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using dplyr code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.
Function ID

2-8

See Also

The analogue to this function: `col_vals_between()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`, `rows_distinct()`

Examples

```r
# The `small_table` dataset in the
# package has a column of numeric
# values in `c` (there are a few NAs
# in that column); the following
# examples will validate the values
# in that numeric column

# A: Using an `agent` with validation
# functions and then `interrogate()`

# Validate that values in column `c`
# are all between `10` and `20`; because
# there are NA values, we'll choose to
# let those pass validation by setting
# `na_pass = TRUE`
agent <-
  create_agent(small_table) %>%
  col_vals_not_between(
    vars(c), 10, 20, na_pass = TRUE
  ) %>%
  interrogate()

# Determine if this validation
# had no failing test units (there
# are 13 test units, one for each row)
all_passed(agent)

# Calling `agent` in the console
# prints the agent's report; but we
# can get a `gt_tbl` object directly
# with `get_agent_report(agent)`

# B: Using the validation function
# directly on the data (no `agent`)

# This way of using validation functions
# acts as a data filter: data is passed
```
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
small_table %>%
 col_vals_not_between(
 vars(c), 10, 20, na_pass = TRUE
) %>%
dplyr::pull(c)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_not_between(
 small_table, vars(c), 10, 20,
 na_pass = TRUE
)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%
 test_col_vals_not_between(
 vars(c), 10, 20,
 na_pass = TRUE
)

An additional note on the bounds for
this function: they are inclusive by
default; we can modify the
inclusiveness of the upper and lower
bounds with the `inclusive` option,
which is a length-2 logical vector

In changing the lower bound to be
`9` and making it non-inclusive, we
get `TRUE` since although two values
are `9` and they fall outside of the
lower (or left) bound (and any values
'not between' count as passing test
units)
small_table %>%
 test_col_vals_not_between(
 vars(c), 9, 20,
 inclusive = c(FALSE, TRUE),
 na_pass = TRUE
)
Description

The `col_vals_not_equal()` validation function, the `expect_col_vals_not_equal()` expectation function, and the `test_col_vals_not_equal()` test function all check whether column values in a table are not equal to a specified value. The validation step function can be used directly on a data table or with an agent object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_not_equal(
  x,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)
```

```r
expect_col_vals_not_equal(
  object,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)
```

```r
test_col_vals_not_equal(
  object,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)
```
Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
value a numeric value used to test for non-equality.
na_pass Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
preconditions expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10)).
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
active A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.
threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold.
value will result in a succeeding test that or evaluate to TRUE. Likewise, fractional values (between \(0\) and \(1\)) act as a proportional failure threshold, where \(0.15\) means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

This validation function supports special handling of NA values. The `na_pass` argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of `na_pass = FALSE` means that any NAs encountered will accumulate failing test units.

Having table preconditions means `pointblank` will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_a = col_b + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_a = col_b + 10)`).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when \(x\) is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if \(x\) is an agent. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a `pointblank_agent` object or a table object (depending on whether an agent object or a table was passed to \(x\)). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-4
See Also

The analogue to this function: `col_vals_equal()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_not_between()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`, `rows_distinct()`

Examples

For all of the examples here, we'll
use a simple table with three numeric
columns ("a", "b", and "c") and three
character columns ("d", "e", and "f")
tbl <-
dplyr::tibble(
 a = c(5, 5, 5, 5, 5, 5),
 b = c(1, 1, 1, 2, 2, 2),
 c = c(1, 1, 1, 2, 2, 2),
 d = LETTERS[c(1:3, 5:7)],
 e = LETTERS[c(1:6)],
 f = LETTERS[c(1:6)]
)
tbl

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column "a"
are all *not* equal to the value
of "6"
agent <-
 create_agent(tbl) %>%
 col_vals_not_equal(vars(a), 6) %>%
 interrogate()

Determine if this validation
had no failing test units (there
are 6 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
The `col_vals_not_in_set()` validation function, the `expect_col_vals_not_in_set()` expectation function, and the `test_col_vals_not_in_set()` test function all check whether column values in a table are not part of a specified set of values. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_not_in_set(
  x, 
  columns, 
  set, 
  preconditions = NULL, 
  actions = NULL, 
  step_id = NULL, 
  label = NULL,
)```
brief = NULL,
active = TRUE
)

expect_col_vals_not_in_set(
  object,
  columns,
  set,
  preconditions = NULL,
  threshold = 1
)

test_col_vals_not_in_set(
  object,
  columns,
  set,
  preconditions = NULL,
  threshold = 1
)

Arguments

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this validation should be applied.

A vector of numeric or string-based elements, where column values found within this set will be considered as failing.

expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10)).

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
col_vals_not_in_set

**brief**
An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the agent, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

**active**
A logical value indicating whether the validation step should be active. If the step function is working with an agent, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. The default for this is `TRUE`.

**object**
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**
A simple failure threshold value for use with the expectation (expect_*) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Details**

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, tidyselect helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Having table preconditions means `pointblank` will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `~` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_a = col_b + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_a = col_b + 10)`).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an *agent*. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want...
to do it. The *autobrief* protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**Value**

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Function ID**

2-10

**See Also**

The analogue to this function: `col_vals_in_set()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`, `rows_distinct()`

**Examples**

```r
The `small_table` dataset in the `dplyr` package will be used to validate that column values are part of a given set

A: Using an `agent` with validation functions and then `interrogate()`

Validate that values in column `f` contain none of the values `lows`, `mids`, and `highs`
agent <- create_agent(small_table) %>%
col_vals_not_in_set(v = vars(f), c("lows", "mids", "highs")) %>%
interrogate()

Determine if this validation had no failing test units (there are 13 test units, one for each row)
all_passed(agent)

Calling `agent` in the console prints the agent's report; but we can get a `gt_tbl` object directly
with `get_agent_report(agent)`
```
# B: Using the validation function
# directly on the data (no `agent`)

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the `actions` option
small_table %>%
  col_vals_not_in_set(
    vars(f), c("lows", "mids", "highs")
  ) %>%
dplyr::pull(f) %>%
unique()

# C: Using the expectation function

# With the `expect_*()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests
expect_col_vals_not_in_set(
  small_table,
  vars(f), c("lows", "mids", "highs")
)

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us
small_table %>%
test_col_vals_not_in_set(
  vars(f), c("lows", "mids", "highs")
)

col_vals_not_null Are column data not NULL/NA?

Description

The `col_vals_not_null()` validation function, the `expect_col_vals_not_null()` expectation function, and the `test_col_vals_not_null()` test function all check whether column values in a table are not NA values or, in the database context, not NULL values. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames.
col_vals_not_null

(tbl_spark). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_not_null(
  x,
  columns,
  preconditions = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)
test_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)

Arguments

x          A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns    The column (or a set of columns, provided as a character vector) to which this validation should be applied.

preconditions expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the ~ serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10).

actions    A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id    One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label     An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief     An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided
in `create_agent()`’s lang argument (which defaults to "en" or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**
A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.

**object**
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Details**

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Having table preconditions means pointblank will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using dplyr code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop:s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.
Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-12

See Also

The analogue to this function: col_vals_null().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

# For all examples here, we'll use
# a simple table with four columns:
# `a`, `b`, `c`, and `d`
tbl <-
dplyr::tibble(
  a = c(5, 7, 6, 5, 8),
  b = c(7, 1, 0, 0, 0),
  c = c(NA, NA, NA, NA, NA),
  d = c(35, 23, NA, NA, NA)
)
tbl

# A: Using an `agent` with validation
# functions and then `interrogate()`

# Validate that all values in column
# `b` are *not* NA (they would be
# non-NULL in a database context, which
# isn't the case here)
agent <-
  create_agent(tbl) %>%
  col_vals_not_null(vars(b)) %>%
  interrogate()

# Determine if this validation
# had no failing test units (there
# are 5 test units, one for each row)
all_passed(agent)
# Calling `agent` in the console
# prints the agent's report; but we
# can get a `gt_tbl` object directly
# with `get_agent_report(agent)`

# B: Using the validation function
# directly on the data (no `agent`)

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the `actions` option
tbl %>%
  col_vals_not_null(vars(b)) %>%
dplyr::pull(b)

# C: Using the expectation function

# With the `expect_*()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests
expect_col_vals_not_null(tbl, vars(b))

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us
tbl %>% test_col_vals_not_null(vars(b))

---

col_vals_null Are column data NULL/NA?

**Description**

The `col_vals_null()` validation function, the `expect_col_vals_null()` expectation function, and the `test_col_vals_null()` test function all check whether column values in a table are NA values or, in the database context, NULL values. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).
Usage

col_vals_null(
  x,
  columns,
  preconditions = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_col_vals_null(object, columns, preconditions = NULL, threshold = 1)

test_col_vals_null(object, columns, preconditions = NULL, threshold = 1)

Arguments

x       A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
preconditions expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the ~ serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10)).
actions   A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id   One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Having table preconditions means pointblank will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using dplyr code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop(s) at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Function ID**

2-11

**See Also**

The analogue to this function: `col_vals_not_null()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_regex()`, `conjointly()`, `rows_distinct()`

**Examples**

```r
For all examples here, we'll use
a simple table with four columns:
'a', 'b', 'c', and 'd'
tbl <-
dplyr::tibble(
 a = c(5, 7, 6, 5, 8),
 b = c(7, 1, 0, 0, 0),
 c = c(NA, NA, NA, NA, NA),
 d = c(35, 23, NA, NA, NA)
)

tbl

A: Using an 'agent' with validation
functions and then `interrogate()`
agent <-
 create_agent(tbl) %>%
 col_vals_null(vars(c)) %>%
 interrogate()

Determine if this validation
had no failing test units (there
are 5 test units, one for each row)
all_passed(agent)

Calling 'agent' in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`
```
# B: Using the validation function
# directly on the data (no `agent`)
#
# This way of using validation functions acts as a data filter: data is passed
# through but should `stop()` if there is a single test unit failing; the
# behavior of side effects can be customized with the `actions` option

tbl %>%
  col_vals_null(vars(c)) %>%
dplyr::pull(c)

# C: Using the expectation function
#
# With the `expect_*()` form, we would typically perform one validation at a
# time; this is primarily used in testthat tests
EXPECT_COL_VALS_NULL(tbl, vars(c))

# D: Using the test function
#
# With the `test_*()` form, we should get a single logical value returned
# to us

tbl %>% test_col_vals_null(vars(c))

---

**Description**

The `col_vals_regex()` validation function, the `expect_col_vals_regex()` expectation function, and the `test_col_vals_regex()` test function all check whether column values in a table correspond to a regex matching expression. The validation step function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_regex(
 x,
 columns,
)```
regex,
na_pass = FALSE,
preconditions = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
}

eexpect_col_vals_regex(
 object,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
threshold = 1
)

test_col_vals_regex(
 object,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
threshold = 1
)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
regex A regex pattern to test for matching strings.
na_pass Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
preconditions expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10)).
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details
If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Having table preconditions means pointblank will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using dplyr code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at arg-
argument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-13

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is.logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(),
col_vals_in_set(), col_vals_lte(), col_vals_lte(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), conjointly(), rows_distinct()

Examples

The `small_table` dataset in the
package has a character-based `b`
column with values that adhere to
a very particular pattern; the
following examples will validate
that that column abides by a regex
pattern
small_table

This is the regex pattern that will
be used throughout
pattern <- "[0-9]-[a-z]{3}-[0-9]{3}"
A: Using an ‘agent’ with validation
functions and then `interrogate()`

Validate that all values in column
‘b’ match the regex ‘pattern’
agent <-
 create_agent(small_table) %>%
 col_vals_regex(vars(b), pattern) %>%
 interrogate()

Determine if this validation
had no failing test units (there
are 13 test units, one for each row)
all_passed(agent)

Calling ‘agent’ in the console
prints the agent’s report; but we
can get a ‘gt_tbl’ object directly
with ‘get_agent_report(agent)’

B: Using the validation function
directly on the data (no ‘agent’)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions’ option
small_table %>%
 col_vals_regex(vars(b), pattern) %>%
 dplyr::slice(1:5)

C: Using the expectation function

With the ‘expect_*()’ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_regex(
 small_table,
 vars(b), pattern
)

D: Using the test function

With the ‘test_*()’ form, we should
get a single logical value returned
to us
small_table %>%
 test_col_vals_regex(
 vars(b), pattern
)
Perform multiple rowwise validations for joint validity

Description

The `conjointly()` validation function, the `expect_conjointly()` expectation function, and the `test_conjointly()` test function all check whether test units at each index (typically each row) all pass multiple validations with `col_vals_*()`-type functions. Because of the imposed constraint on the allowed validation functions, all test units are rows of the table (after any common preconditions have been applied). Each of the functions (composed with multiple validation function calls) ultimately perform a rowwise test of whether all sub-validations reported a pass for the same test units. In practice, an example of a joint validation is testing whether values for column a are greater than a specific value while values for column b lie within a specified range. The validation functions to be part of the conjoint validation are to be supplied as one-sided R formulas (using a leading ~, and having a . stand in as the data object). The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table.

Usage

```r
conjointly(
  x,
  ..., .list = list2(...),
  preconditions = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)
```

```r
expect_conjointly(
  object,
  ..., .list = list2(...),
  preconditions = NULL,
  threshold = 1
)
```

```r
test_conjointly(
  object,
  ..., .list = list2(...),
  preconditions = NULL,
```
threshold = 1
)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

... a collection one-sided formulas that consist of validation step functions that validate row units. Specifically, these functions should be those with the naming pattern col_vals_*(.)(). An example of this is ~ col_vals_gte(., vars(a), 5.5), ~ col_vals_not_null(., vars(b)).

.list Allows for the use of a list as an input alternative to . . .

preconditions expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Details

If providing multiple column names in any of the supplied validation step functions, the result will be an expansion of sub-validation steps to that number of column names. Aside from column names in quotes and in `vars()`, tidyselect helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Having table preconditions means pointblank will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when x is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop(s) at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-14

See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`,
Examples

For all examples here, we'll use
a simple table with three numeric
columns ('a', 'b', and 'c'); this is
a very basic table but it'll be more
useful when explaining things later

tbl <-
 dplyr::tibble(
 a = c(5, 2, 6),
 b = c(3, 4, 6),
 c = c(9, 8, 7)
)

tbl

A: Using an 'agent' with validation
functions and then 'interrogate()'

Validate a number of things on a
row-by-row basis using validation
functions of the 'col_vals*' type
(all have the same number of test
units): (1) values in 'a' are less
than '4', (2) values in 'c' are
greater than the adjacent values in
'a', and (3) there aren't any NA
values in 'b'
agent <-
 create_agent(tbl = tbl) %>%
 conjointly(
 ~ col_vals_lt(., vars(a), 8),
 ~ col_vals_gt(., vars(c), vars(a)),
 ~ col_vals_not_null(., vars(b))
) %>%
 interrogate()

Determine if this validation
had no failing test units (there
are 3 test units, one for each row)
all_passed(agent)

Calling 'agent' in the console
prints the agent's report; but we
can get a 'gt_tbl' object directly
with 'get_agent_report(agent)'

What's going on? Think of there being
three parallel validations, each

\[
\text{col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(),}
\text{col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(),}
\text{col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), rows_distinct()}
\]
`create_agent`

Create a `pointblank` agent object

```r
# producing a column of 'TRUE' or 'FALSE'
# values ('pass' or 'fail') and line them
# up side-by-side, any rows with any
# 'FALSE' values results in a conjoint
# 'fail' test unit

# B: Using the validation function
# directly on the data (no 'agent')

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the 'actions' option
tbl %>%
  conjointly(
    ~ col_vals_lt(., vars(a), 8),
    ~ col_vals_gt(., vars(c), vars(a)),
    ~ col_vals_not_null(., vars(b))
  )

# C: Using the expectation function

# With the `expect_*()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests
expect_conjointly(
  tbl,
  ~ col_vals_lt(., vars(a), 8),
  ~ col_vals_gt(., vars(c), vars(a)),
  ~ col_vals_not_null(., vars(b))
)

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us
tbl %>%
  test_conjointly(
    ~ col_vals_lt(., vars(a), 8),
    ~ col_vals_gt(., vars(c), vars(a)),
    ~ col_vals_not_null(., vars(b))
  )
```
create_agent

Description

The create_agent() function creates an agent object, which is used in a data quality reporting workflow. The overall aim of this workflow is to generate useful reporting information for assessing the level of data quality for the target table. We can supply as many validation functions as the user wishes to write, thereby increasing the level of validation coverage for that table. The agent assigned by the create_agent() call takes validation functions, which expand to validation steps (each one is numbered). This process is known as developing a validation plan.

The validation functions, when called on an agent, are merely instructions up to the point the interrogate() function is called. That kicks off the process of the agent acting on the validation plan and getting results for each step. Once the interrogation process is complete, we can say that the agent has intel. Calling the agent itself will result in a reporting table. This reporting of the interrogation can also be accessed with the get_agent_report() function, where there are more reporting options.

Usage

create_agent(
 tbl = NULL,
 read_fn = NULL,
 tbl_name = NULL,
 label = NULL,
 actions = NULL,
 end_fns = NULL,
 embed_report = FALSE,
 lang = NULL,
 locale = NULL
)

Arguments

tbl
The input table. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, a function can be used to read in the input data table with the read_fn argument (in which case, tbl can be NULL).

read_fn
A function that’s used for reading in the data. Even if a tbl is provided, this function will be invoked to obtain the data (i.e., the read_fn takes priority). There are two ways to specify a read_fn: (1) using a function (e.g., function() { <table reading code> }) or, (2) with an R formula expression (e.g., ~ { <table reading code> }).

tbl_name
A optional name to assign to the input table object. If no value is provided, a name will be generated based on whatever information is available. This table name will be displayed in the header area of the agent report generated by printing the agent or calling get_agent_report().

label
An optional label for the validation plan. If no value is provided, a label will be generated based on the current system time. Markdown can be used here to make the label more visually appealing (it will appear in the header area of the agent report).
actions A option to include a list with threshold levels so that all validation steps can react accordingly when exceeding the set levels. This is to be created with the \texttt{action_levels()} helper function. Should an action levels list be used for a specific validation step, the default set specified here will be overridden.

end_fns A list of function calls that should be performed at the end of an interrogation. Each function call should be in the form of a one-sided R formula expression, so overall this construction should be used: \texttt{end_fns = list(~ <R statements>, ~ <R statements>, ...)}. An example of a function that can be sensibly used here is \texttt{email_blast()}, where an email of the validation report is generated and sent based on sending condition.

embed_report An option to embed a \texttt{gt}-based validation report into the \texttt{ptblank_agent} object. If \texttt{FALSE} (the default) then the table object will be not generated and available with the \texttt{agent} upon returning from the interrogation.

lang The language to use for automatic creation of briefs (short descriptions for each validation step) and for the \texttt{agent report} (a summary table that provides the validation plan and the results from the interrogation. By default, \texttt{NULL} will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese, ("pt"), Chinese ("zh"), and Russian ("ru").

locale An optional locale ID to use for formatting values in the \texttt{agent report} summary table according the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").

Details

A very detailed list object, known as the x-list, can be obtained by using the \texttt{get_agent_x_list()} function on the \texttt{agent}. This font of information can be taken as a whole, or, broken down by the step number (with the \texttt{i} argument).

Sometimes it is useful to see which rows were the failing ones. By using the \texttt{get_data_extracts()} function on the \texttt{agent}, we either get a list of tibbles (for those steps that have data extracts) or one tibble if the validation step is specified with the \texttt{i} argument.

If we just need to know whether all validations completely passed (i.e., all steps had no failing test units), the \texttt{all_passed()} function could be used on the \texttt{agent}. However, in practice, it’s not often the case that all data validation steps are free from any failing units.

Value

A \texttt{ptblank_agent} object.

Figures

Function ID

1-2
create_agent

See Also

Other Planning and Prep: action_levels(), col_schema(), create_informant(), db_tbl(), scan_data(), validate_rmd()

Examples

Let's walk through a data quality analysis of an extremely small table;
it's actually called `small_table` and we can find it as a dataset in this package
small_table

We ought to think about what's tolerable in terms of data quality so let's designate proportional failure
thresholds to the `warn`, `stop`, and `notify` states using `action_levels()`
al <-
 action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
)

Now create a pointblank `agent` object and give it the `al` object (which serves as a default for all validation
steps which can be overridden); the static thresholds provided by `al` will make the reporting a bit more useful
agent <-
 create_agent(
 read_fn = ~ small_table,
 label = "An example.",
 actions = al
)

Then, as with any `agent` object, we can add steps to the validation plan by using as many validation functions as we want; then, we use `interrogate()` to physically perform the validations and gather intel
agent <-
 agent %>%
 col_exists(vars(date, date_time)) %>%
 col_vals_regex(
 vars(b), "[0-9\-][a-z]{3}-[0-9]{3}\"
) %>%
 rows_distinct() %>%
 col_vals_gt(vars(d), 100) %>%
\begin{verbatim}
col_vals_lte(vars(c), 5) %>%
col_vals_equal(
 vars(d), vars(d),
 na_pass = TRUE
) %>%
col_vals_between(
 vars(c),
 left = vars(a), right = vars(d),
 na_pass = TRUE
) %>%
interrogate()

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`
report <- get_agent_report(agent)
class(report)

What can you do with the report?
Print it from an R Markdown code
chunk, use it in a **blastula** email,
put it in a webpage, or further
modify it with the **gt** package

From the report we know that Step
4 had two test units (rows, really)
that failed; we can see those rows
with `get_data_extracts()`
agent %>% get_data_extracts(i = 4)

We can get an x-list for the whole
validation (8 steps), or, just for
the 4th step with `get_agent_x_list()`
xl_step_4 <-
 agent %>% get_agent_x_list(i = 4)

And then we can peruse the different
parts of the list; let's get the
fraction of test units that failed
xl_step_4$f_failed

Just printing the x-list will tell
us what's available therein
xl_step_4

An x-list not specific to any step
will have way more information and a
slightly different structure; see
`help(get_agent_x_list)` for more info
get_agent_x_list(agent)
\end{verbatim}
create_informant

Create a **pointblank** informant object

Description

The `create_informant()` function creates an *informant* object, which is used in an *information management* workflow. The overall aim of this workflow is to record, collect, and generate useful information on data tables. We can supply as information that is useful for describing a particular data table. The *informant* object created by the `create_informant()` function takes information-focused functions (the `info_*()` series of functions).

Usage

```r
create_informant(
  tbl = NULL,
  read_fn = NULL,
  agent = NULL,
  tbl_name = NULL,
  label = NULL,
  lang = NULL,
  locale = NULL
)
```

Arguments

- **tbl**
 The input table. This can be a data frame, a tibble, a `tbl_dbi` object, or a `tbl_spark` object. Alternatively, a function can be used to read in the input data table with the `read_fn` argument (in which case, `tbl` can be `NULL`).

- **read_fn**
 A function that’s used for reading in the data. Even if a `tbl` is provided, this function will be invoked to obtain the data (i.e., the `read_fn` takes priority). There are two ways to specify a `read_fn`: (1) using a function (e.g., function() { <table reading code> }) or, (2) with an R formula expression.

- **agent**
 A pointblank *agent* object. This object can be used instead of supplying a table in `tbl` or a table-reading function in `read_fn`.

- **tbl_name**
 A optional name to assign to the input table object. If no value is provided, a name will be generated based on whatever information is available.

- **label**
 An optional label for the information report. If no value is provided, a label will be generated based on the current system time. Markdown can be used here to make the label more visually appealing (it will appear in the header area of the information report).

- **lang**
 The language to use for the information report (a summary table that provides all of the available information for the table). By default, `NULL` will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Chinese ("zh"), and Russian ("ru").
locale An optional locale ID to use for formatting values in the information report according the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").

Value A pointblank_informant object.

Figures

Function ID

1-3

See Also

Other Planning and Prep: action_levels(), col_schema(), create_agent(), db_tbl(), scan_data(), validate_rmd()

Examples

```r
# Let’s walk through how we can
# generate some useful information for a
# really small table; it’s actually
# called ‘small_table’ and we can find
# it as a dataset in this package
small_table

# Create a pointblank ‘informant’
# object with ‘create_informant()’
# and the ‘small_table’ dataset
informant <-
  create_informant(
    read_fn = ~small_table,
    tbl_name = "small_table",
    label = "An example."
  )

# This function creates some information
# without any extra help by profiling
# the supplied table object; it adds
# the sections: (1) ‘table’ and
# (2) ‘columns’ and we can print the
# object to see the information report

# Alternatively, we can get the same report
# by using ‘get_informant_report()’
report <- get_informant_report(informant)
```
db_tbl

`class(report)`

db_tbl
Get a table from a database

Description

If your target table is in a database, the `db_tbl()` function is a handy way of accessing it. This function simplifies the process of getting a `tbl_dbi` object, which usually involves a combination of building a connection to a database and using the `dplyr::tbl()` function with the connection and the table name (or a reference to a table in a schema). A better option is to use this function as the `read_fn` parameter in `create_agent()` and `create_informant()`. This can be done by using a leading ~ (e.g., `read_fn =~ db_tbl(...)`).

The username and password are supplied through environment variables. If desired, these can be supplied directly by enclosing those values in `I()`.

Usage

```r
db_tbl(db, dbname, table, user, password, host = NULL, port = NULL)
```

Arguments

- `db`: Either an appropriate driver function (e.g., `RPostgres::Postgres()`) or a shorthand name for the database type. Valid names are: "postgresql", "postgres", or "pgsql" (PostgreSQL, using the `RPostgres::Postgres()` driver function); "mysql" (MySQL, using `RMySQL::MySQL()`); "mariadb" or "mariadb" (MariaDB, using `RMariaDB::MariaDB()`); "duckdb" (DuckDB, using `duckdb::duckdb()`); and "sqlite" (SQLite, using `RSQLite::SQLite()`).

- `dbname`: The database name.

- `table`: The name of the table, or, a reference to a table in a schema (two-element vector with the names of schema and table). Alternatively, this can be supplied as a data table to copy into an in-memory database connection. This only works if: (1) the `db` is either "sqlite" or "duckdb", (2) the `dbname` was chosen as ":memory:", and (3) the `data_tbl` is a data frame or a tibble object.

- `user`, `password`: The environment variables used to access the username and password for the database.

- `host`, `port`: The database host and optional port number.

Value

A `tbl_dbi` object.

Function ID

1-6
See Also

Other Planning and Prep: action_levels(), col_schema(), create_agent(), create_informant(), scan_data(), validate_rmd()

e-mail_blast, Send email at a validation step or at the end of an interrogation

Description

The email_blast() function is useful for sending an email message that explains the result of a pointblank validation. It is powered by the blastula and glue packages. This function should be invoked as part of the end_fns argument of create_agent(). It's also possible to invoke email_blast() as part of the fns argument of the action_levels() function (to possibly send an email message at one or more steps).

Usage

```r
e-mail_blast(
  x,
  to,
  from,
  credentials = NULL,
  msg_subject = NULL,
  msg_header = NULL,
  msg_body = stock_msg_body(),
  msg_footer = stock_msg_footer(),
  send_condition = ~TRUE %in% x$notify
)
```

Arguments

- **x**: A reference to the x-list object prepared by the agent. This version of the x-list is the same as that generated via get_agent_x_list(agent) except this version is internally generated and hence only available in an internal evaluation context.
- **to**, **from**: The email addresses for the recipients and the sender.
- **credentials**: A credentials list object that is produced by either of the blastula::creds(), blastula::creds_anonymous(), blastula::creds_key(), or blastula::creds_file() functions. Please refer to the blastula documentation for details on each of these helper functions.
- **msg_subject**: The subject line of the email message.
- **msg_header**, **msg_body**, **msg_footer**: Content for the header, body, and footer components of the HTML email message.
send_condition An expression that should evaluate to a logical vector of length 1. If TRUE then the email will be sent, if FALSE then that won’t happen. The expression can use x-list variables (e.g., x$notify, x$type, etc.) and all of those variables can be viewed using the get_agent_x_list() function. The default expression is ~TRUE %in% x$notify, which results in TRUE if there are any TRUE values in the x$notify logical vector (i.e., any validation step results in a 'notify' condition).

Details
To better get a handle on emailing with email_blast(), the analogous email_create() can be used with a pointblank agent object or the output obtained from using the get_agent_x_list() function.

Function ID
4-1

See Also
Other Emailing: email_create(), stock_msg_body(), stock_msg_footer()

Examples
Create a simple table with two # columns of numerical values
tbl <-
dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = c(7, 1, 0, 0, 0, 3)
)

Create an `action_levels()` list # with absolute values for the # `warn`, and `notify` states (with # thresholds of 1 and 2 'fail' units)
al <-
 action_levels(
warn_at = 1,
notify_at = 2
)

Validate that values in column # `a` from `tbl` are always > 5 and # that `b` values are always < 5; # first, apply the `actions_levels()` # directive to `actions` and set up # an `email_blast()` as one of the # `end_fns` (by default, the email # will be sent if there is a single # `notify` state across all # validation steps)
agent <-
create_agent(
tbl = tbl,
actions = al,
end_fns = list(
~ email_blast(
x,
to = "joe_public@example.com",
from = "pb_notif@example.com",
msg_subject = "Table Validation",
credentials = blastula::creds_key(
id = "gmail"
)
),
)
)
)
col_vals_gt(vars(a), 5)
col_vals_lt(vars(b), 5)
interrogate()

This example was intentionally
not run because email credentials
aren't available and the `to`
and `from` email addresses are
nonexistent; to look at the email
message before sending anything of
the like, we can use the
`email_create()` function
email_object <-
 create_agent(
 tbl = tbl,
 actions = al
)
 col_vals_gt(vars(a), 5)
 col_vals_lt(vars(b), 5)
 interrogate()
 email_create()

email_create
Create an email object from a **pointblank** agent

Description
The email_create() function produces an email message object that could be sent using the blastula package. The x that we need for this could either be a **pointblank** agent, the agent x-list (produced from the agent with the get_agent_x_list() function), or a **pointblank** informant. In all casesm, the email message will appear in the Viewer and a blastula email_message object will be returned.
email_create

Usage

e-mail_create(
 x,
 msg_header = NULL,
 msg_body = stock_msg_body(),
 msg_footer = stock_msg_footer()
)

Arguments

 x
 A pointblank agent, an agent x-list, or a pointblank informant. The x-list object can be created with the get_agent_x_list() function. It is recommended that the option i = NULL be used with get_agent_x_list() if supplying an x-list as x. Furthermore, The option generate_report = TRUE could be used with create_agent() so that the agent report is available within the email.

 msg_header, msg_body, msg_footer
 Content for the header, body, and footer components of the HTML email message.

Value

 A blastula email_message object.

Function ID

4-2

See Also

Other Emailing: email_blast(), stock_msg_body(), stock_msg_footer()
In a workflow that involves an `agent` object, we can make use of the `end_fns` argument and programmatically email the report with the `email_blast()` function, however, an alternate workflow is to produce the email object and choose to send outside of the pointblank API; the `email_create()` function lets us do this with an `agent` object.

```r
email_object_1 <-
  create_agent(
    tbl = tbl,
    actions = al
  ) %>%
  col_vals_gt(vars(a), 5) %>%
  col_vals_lt(vars(b), 5) %>%
  interrogate() %>%
  email_create()
```

We can view the HTML email just by printing `email_object`; it should appear in the Viewer.

```r
email_object_2 <-
  create_agent(
    tbl = tbl,
    actions = al
  ) %>%
  col_vals_gt(vars(a), 5) %>%
  col_vals_lt(vars(b), 5) %>%
  interrogate() %>%
  get_agent_x_list() %>%
  email_create()
```

An information report that's produced by the informant can be made into an email message object; let's create an informant and use `email_create()`.

```r
email_object_3 <-
  create_informant(
    tbl = tbl
  ) %>%
  info_tabular(
    info = "A simple table in the *Examples* section of the function called `email_create()`.",
  ) %>%
```
get_agent_report

```r
# info_columns(
# columns = vars(a),
# info = "Numbers. On the high side."
# )
# info_columns(
# columns = vars(b),
# info = "Lower numbers. Zeroes, even."
# )
# incorporate()
# email_create()
```

get_agent_report
Get a summary report from an agent

Description

We can get an informative summary table from an agent by using the `get_agent_report()` function. The table can be provided in two substantially different forms: as a **gt** based display table (the default), or, as a tibble. The amount of fields with intel is different depending on whether or not the agent performed an interrogation (with the `interrogate()` function). Basically, before `interrogate()` is called, the agent will contain just the validation plan (however many rows it has depends on how many validation functions were supplied a part of that plan). Post-interrogation, information on the passing and failing test units is provided, along with indicators on whether certain failure states were entered (provided they were set through `actions`). The display table variant of the agent report, the default form, will have the following columns:

- **i (unlabeled):** the validation step number
- **STEP:** the name of the validation function used for the validation step
- **COLUMNS:** the names of the target columns used in the validation step (if applicable)
- **VALUES:** the values used in the validation step, where applicable; this could be as literal values, as column names, an expression, a set of sub-validations (for a **conjointly** validation step), etc.
- **TBL:** indicates whether any there were any preconditions to apply before interrogation; if not, a script ’I’ stands for ’identity’ but, if so, a right-facing arrow appears
- **EVAL:** a character value that denotes the result of each validation step functions’ evaluation during interrogation
- **N:** the total number of test units for the validation step
- **PASS:** the number of test units that received a **pass**
- **FAIL:** the fraction of test units that received a **pass**
- **W, S, N:** indicators that show whether the warn, stop, or notify states were entered; unset states appear as dashes, states that are set with thresholds appear as unfilled circles when not entered and filled when thresholds are exceeded (colors for W, S, and N are amber, red, and blue)
get_agent_report

- EXT: a column that provides buttons with data extracts for each validation step where failed rows are available (as CSV files)

The small version of the display table (obtained using size = "small") omits the COLUMNS, TBL, and EXT columns. The width of the small table is 575px; the standard table is 875px wide.

If choosing to get a tibble (with display_table = FALSE), it will have the following columns:

- i: the validation step number
- type: the name of the validation function used for the validation step
- columns: the names of the target columns used in the validation step (if applicable)
- values: the values used in the validation step, where applicable; for a conjointly() validation step, this is a listing of all sub-validations
- precon: indicates whether any there are any preconditions to apply before interrogation and, if so, the number of statements used
- active: a logical value that indicates whether a validation step is set to "active" during an interrogation
- eval: a character value that denotes the result of each validation step functions’ evaluation during interrogation
- units: the total number of test units for the validation step
- n_pass: the number of test units that received a pass
- f_pass: the fraction of test units that received a pass
- W, S, N: logical value stating whether the warn, stop, or notify states were entered
- extract: a logical value that indicates whether a data extract is available for the validation step

Usage

get_agent_report(
 agent,
 arrange_by = c("i", "severity"),
 keep = c("all", "fail_states"),
 display_table = TRUE,
 size = "standard",
 lang = NULL,
 locale = NULL
)

Arguments

agent An agent object of class ptblank_agent.
arrange_by A choice to arrange the report table rows by the validation step number ("i", the default), or, to arrange in descending order by severity of the failure state (with "severity").
keep An option to keep "all" of the report’s table rows (the default), or, keep only those rows that reflect one or more "fail_states".
display_table Should a display table be generated? If TRUE (the default), and if the gt package is installed, a display table for the report will be shown in the Viewer. If FALSE, or if gt is not available, then a tibble will be returned.

size The size of the display table, which can be either "standard" (the default) or "small". This only applies to a display table (where display_table = TRUE).

lang The language to use for automatic creation of briefs (short descriptions for each validation step) and for the agent report (a summary table that provides the validation plan and the results from the interrogation. By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Chinese ("zh"), and Russian ("ru"). This lang option will override any previously set lang value (e.g., by the create_agent() call).

locale An optional locale ID to use for formatting values in the agent report summary table according the locale's rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES"). This locale option will override any previously set locale value (e.g., by the create_agent() call).

Value

A gt table object if display_table = TRUE or a tibble if display_table = FALSE.

Function ID

5-2

See Also

Other Interrogate and Report: interrogate()

Examples

Create a simple table with a
column of numerical values
tbl <-
 dplyr::tibble(a = c(5, 7, 8, 5))

Validate that values in column
`a` are always greater than 4
agent <-
 create_agent(tbl = tbl) %>%
 col_vals_gt(vars(a), 4) %>%
 interrogate()

Get a tibble-based report from the
agent by using `get_agent_report()`
with `display_table = FALSE`
agent %>%
 get_agent_report(display_table = FALSE)
get_agent_x_list

View a the report by printing the
`agent` object anytime, but, return a
gt table object by using this with
`display_table = TRUE` (the default)
report <- get_agent_report(agent)
class(report)

What can you do with the report?
Print it from an R Markdown code,
use it in an email, put it in a
webpage, or further modify it with
the **gt** package

The agent report as a **gt** display
table comes in two sizes: "standard"
(the default) and "small"
small_report <-
 get_agent_report(agent, size = "small")
class(small_report)

The standard report is 875px wide
the small one is 575px wide

get_agent_x_list

Description

The agent’s **x-list** is a record of information that the agent possesses at any given time. The **x-list** will contain the most complete information after an interrogation has taken place (before then, the data largely reflects the validation plan). The **x-list** can be constrained to a particular validation step (by supplying the step number to the `i` argument), or, we can get the information for all validation steps by leaving `i` unspecified. The **x-list** is indeed an R list object that contains a veritable cornucopia of information.

Usage

```r
get_agent_x_list(agent, i = NULL)
```

Arguments

- **agent**: An agent object of class `ptblank_agent`.
- **i**: The validation step number, which is assigned to each validation step in the order of invocation. If `NULL` (the default), the **x-list** will provide information for all validation steps. If a valid step number is provided then **x-list** will have information pertaining only to that step.
Details

For an x-list obtained with i specified for a validation step, the following components are available:

- **time_start**: the time at which the interrogation began (POSIXct [0 or 1])
- **time_end**: the time at which the interrogation ended (POSIXct [0 or 1])
- **label**: the optional label given to the agent (chr [1])
- **tbl_name**: the name of the table object, if available (chr [1])
- **tbl_src**: the type of table used in the validation (chr [1])
- **tbl_src_details**: if the table is a database table, this provides further details for the DB table (chr [1])
- **tbl**: the table object itself
- **col_names**: the table’s column names (chr [ncol(tbl)])
- **col_types**: the table’s column types (chr [ncol(tbl)])
- **i**: the validation step index (int [1])
- **type**: the type of validation, value is validation function name (chr [1])
- **columns**: the columns specified for the validation function (chr [variable length])
- **values**: the values specified for the validation function (mixed types [variable length])
- **briefs**: the brief for the validation step in the specified lang (chr [1])
- **eval_error, eval_warning**: indicates whether the evaluation of the step function, during interrogation, resulted in an error or a warning (lgl [1])
- **capture_stack**: a list of captured errors or warnings during step-function evaluation at interrogation time (list [1])
- **n**: the number of test units for the validation step (num [1])
- **n_passed, n_failed**: the number of passing and failing test units for the validation step (num [1])
- **f_passed**: the fraction of passing test units for the validation step, n_passed / n (num [1])
- **f_failed**: the fraction of failing test units for the validation step, n_failed / n (num [1])
- **warn, stop, notify**: a logical value indicating whether the level of failing test units caused the corresponding conditions to be entered (lgl [1])
- **lang**: the two-letter language code that indicates which language should be used for all briefs, the agent report, and the reporting generated by the scan_data() function (chr [1])

If i is unspecified (i.e., not constrained to a specific validation step) then certain length-one components in the x-list will be expanded to the total number of validation steps (these are: i, type, columns, values, briefs, eval_error, eval_warning, capture_stack, n, n_passed, n_failed, f_passed, f_failed, warn, stop, and notify). The x-list will also have additional components when i is NULL, which are:

- **report_object**: a gt table object, which is also presented as the default print method for a ptblank_agent
- **email_object**: a blastula email_message object with a default set of components
• `report_html`: the HTML source for the `report_object`, provided as a length-one character vector
• `report_html_small`: the HTML source for a narrower, more condensed version of `report_object`, provided as a length-one character vector; The HTML has inlined styles, making it more suitable for email message bodies

Value
A list object.

Function ID
7-1

See Also
Other Post-interrogation: `all_passed()`, `get_data_extracts()`, `get_sundered_data()`

Examples

```r
# Create a simple data frame with
# a column of numerical values
tbl <- dplyr::tibble(a = c(5, 7, 8, 5))

# Create an `action_levels()` list
# with fractional values for the
# `warn`, `stop`, and `notify` states
al <- action_levels(
  warn_at = 0.2,
  stop_at = 0.8,
  notify_at = 0.345
)

# Create an agent (giving it the
# `tbl` and the `al` objects),
# supply two validation step
# functions, then interrogate
agent <- create_agent(
  tbl = tbl,
  actions = al
) %>%
  col_vals_gt(vars(a), 7) %>%
  col_is_numeric(vars(a)) %>%
  interrogate()

# Get the agent x-list
x <- get_agent_x_list(agent)

# Print the x-list object `x`
x
```
Description

In an agent-based workflow, after interrogation with `interrogate()` we can get the row data that didn’t pass row-based validation steps with the `get_data_extracts()` function. The amount of data available in a particular extract depends on both the fraction of test units that didn’t pass a validation step and the level of sampling or explicit collection from that set of units.

The availability of data extracts for each row-based validation step is depends on whether `extract_failed` is set to `TRUE` within the `interrogate()` call (it is by default). The amount of `fail` rows extracted depends on the collection parameters in `interrogate()`, and the default behavior is to collect up to the first 5000 `fail` rows.

Row-based validation steps are based on the validation functions of the form `col_vals_*()` and also include `conjointly()` and `rows_distinct()`. Only those types of validation steps can provide data extracts.

Usage

```r
get_data_extracts(agent, i = NULL)
```

Arguments

- **agent**: An agent object of class `ptblank_agent`. It should have had `interrogate()` called on it, such that the validation steps were carried out and any sample rows from non-passing validations could potentially be available in the object.
- **i**: The validation step number, which is assigned to each validation step in the order of definition. If `NULL` (the default), all data extract tables will be provided in a list object.

Value

A list of tables if `i` is not provided, or, a standalone table if `i` is given.

Function ID

7-2

See Also

Other Post-interrogation: `all_passed()`, `get_agent_x_list()`, `get_sundered_data()`
get_informant_report

get_informant_report Get a table information report from an informant object

Description

We can get a table information report from an informant object that’s generated by the create_informant() function. The report is provided as a gt based display table. The amount of information shown depends on the extent of that added via the use of the info_*() functions or through direct editing of a pointblank YAML file (an informant can be written to pointblank YAML with yaml_write(informant = <informant>, ...)).

Usage

get_informant_report(informant, size = "standard", lang = NULL, locale = NULL)

Arguments

informant An informant object of class ptblank_informant.
size The size of the display table, which can be either "standard" (the default, with a width of 875px) or "small" (width of 575px).
lang The language to use for the information report (a summary table that provides the validation plan and the results from the interrogation. By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Chinese ("zh"), and Russian ("ru"). This lang option will override any previously set lang value (e.g., by the create_agent() call).
locale

An optional locale ID to use for formatting values in the information report summary table according to the locale's rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES"). This locale option will override any previously set locale value (e.g., by the create_agent() call).

Value

A gt table object.

Function ID

6-2

See Also

Other Incorporate and Report: incorporate()

Examples

Generate an informant object using # the 'small_table' dataset informant <- create_informant(small_table)

This function creates some information # without any extra help by profiling # the supplied table object; it adds # the sections 'table' and columns and # we can print the object to see the # table information report

Alternatively, we can get the same report # by using 'get_informant_report()' report <- get_informant_report(informant)

class(report)

Description

Validation of the data is one thing but, sometimes, you want to use the best part of the input dataset for something else. The get_sundered_data() function works with an agent object that has intel (i.e., post_interrogate()) and gets either the 'pass' data piece (rows with no failing test units across all row-based validation functions), or, the 'fail' data piece (rows with at least one failing test unit across the same series of validations).
Usage

get_sundered_data(
 agent,
 type = c("pass", "fail", "combined"),
 pass_fail = c("pass", "fail"),
 id_cols = NULL
)

Arguments

agent An agent object of class `ptblank_agent`. It should have had `interrogate()` called on it, such that the validation steps were actually carried out.

type The desired piece of data resulting from the splitting. Options for returning a single table are "pass" (the default) and "fail". Each of these options return a single table with, in the "pass" case, only the rows that passed across all validation steps (i.e., had no failing test units in any part of a row for any validation step), or, the complementary set of rows in the "fail" case. Providing NULL returns both of the split data tables in a list (with the names of "pass" and "fail"). The option "combined" applies a categorical (pass/fail) label (settable in the `pass_fail` argument) in a new `.pb_combined` flag column. For this case the ordering of rows is fully retained from the input table.

pass_fail A vector for encoding the flag column with 'pass' and 'fail' values when `type` = "combined". The default is c("pass","fail") but other options could be c(TRUE,FALSE), c(1,0), or c(1L,0L).

id_cols An optional specification of one or more identifying columns. When taken together, we can count on this single column or grouping of columns to distinguish rows. If the table undergoing validation is not a data frame or tibble, then columns need to be specified for `id_cols`.

Details

There are some caveats to sundering. The validation steps considered for this splitting has to be of the row-based variety (e.g., the `col_vals_*`() functions or `conjointly()`, but not `rows_distinct()`). Furthermore, validation steps that experienced evaluation issues during interrogation are not considered, and, validation steps where `active = FALSE` will be disregarded. The collection of validation steps that fulfill the above requirements for sundering are termed in-consideration validation steps. If using any preconditions for validation steps, we must ensure that all in-consideration validation steps use the same specified preconditions function. Put another way, we cannot split the target table using a collection of in-consideration validation steps that use different forms of the input table.

Value

A list of table objects if `type` is NULL, or, a single table if a `type` is given.

Function ID

7-3
incorporate

See Also

Other Post-interrogation: all_passed(), get_agent_x_list(), get_data_extracts()

Examples

Create a series of three validation
steps focus on test row values for
the `small_table` tibble object;
`interrogate()` immediately
agent <-
create_agent(tbl = small_table) %>%
 col_vals_gt(vars(d), 100) %>%
 col_vals_equal(
 vars(d), vars(d),
 na_pass = TRUE
) %>%
 col_vals_between(
 vars(c), left = vars(a), right = vars(d),
 na_pass = TRUE
) %>%
 interrogate()

Get the sundered data piece that
contains only rows that passed all
validation steps (the default piece)
agent %>% get_sundered_data()

incorporate Given an informant object, update and incorporate table snippets

Description

When the informant object has a number of snippets available (by using info_snippet()) and
the strings to use them (by using the info_*() functions and {<snippet_name>} in the text ele-
ments), the process of incorporating aspects of the table into the info text can occur by using the
incorporate() function. After that, the information will be fully updated (getting the current state
of table dimensions, re-rendering the info text, etc.) and we can print the informant object or use
the get_informant_report() function to see the information report.

Usage

incorporate(informant)

Arguments

informant An informant object of class ptblank_informant.
Value

A ptblank_informant object.

Function ID

6-1

See Also

Other Incorporate and Report: get_informant_report()

Examples

Take the `small_table` and
assign it to `test_table`; we'll
modify it later
test_table <- small_table

Generate an informant object, add
two snippets with `info_snippet()`,
add information with some other
`info_*()` functions and then
`incorporate()` the snippets into
the info text
informant <-
create_informant(
 read_fn = ~ test_table,
 tbl_name = "test_table"
) %>%
info_snippet(
 snippet_name = "row_count",
 fn = ~ . %>% nrow()
) %>%
info_snippet(
 snippet_name = "col_count",
 fn = ~ . %>% ncol()
) %>%
info_columns(
 columns = vars(a),
 info = "In the range of 1 to 10. (SIMPLE)"
) %>%
info_columns(
 columns = starts_with("date"),
 info = "Time-based values (e.g., `Sys.time()`)."
) %>%
info_columns(
 columns = "date",
 info = "The date part of `date_time`. (CALC)"
) %>%
info_section(
 section_name = "rows",
 row_count = "There are {row_count} rows available."
We can print the 'informant' object
to see the information report

Let's modify 'test_table' to give
it more rows and an extra column
test_table <-
dplyr::bind_rows(test_table, test_table) %%
dplyr::mutate(h = a + c)

Using 'incorporate()' will cause
the snippets to be reprocessed, and,
the strings to be updated
informant <-
informant %>% incorporate()

When printed again, we'll see that the
row and column counts in the header
have been updated to reflect the
changed 'test_table'

info_columns

Add information that focuses on aspects of a data table's columns

Description

Upon creation of an *informant* object (with the `create_informant()` function), there are two sections containing properties: (1) 'table' and (2) 'columns'. The 'columns' section is initialized with the table's column names and their types (as _type). Beyond that, it is useful to provide details about the nature of each column and we can do that with the `info_columns()` function. A single column (or multiple columns) is targeted, and then a series of named arguments (in the form `entry_name = "The *info text*."`) serves as additional information for the column or columns.

Usage

```r
info_columns(x, columns, ..., .add = TRUE)
```

Arguments

- `x`
 An informant object of class `ptblank_informant`.

- `columns`
 The column or set of columns to focus on. Can be defined as a column name in quotes (e.g., "<column_name>"), one or more column names in `vars()` (e.g., `vars(<column_name>)`), or with a select helper (e.g., `starts_with("date")`).
Information entries as a series of named arguments. The names refer to sub-section titles within `COLUMN -> <COLUMN_NAME>` and the RHS contains the *info text* (informational text that can be written as Markdown and further styled with *Text Tricks*).

`.add` Should new text be added to existing text? This is TRUE by default; setting to FALSE replaces any existing text for a property.

Details

The *info text* readily accepts Markdown formatting. Also, there are a few *Text Tricks* that are good to know. Markdown links written as `<link url>` or `[link text](link url)` will get nicely-styled links. Any dates expressed in the ISO-8601 standard with parentheses, "(2004-12-01)", will be styled with a font variation (monospaced) and underlined in purple. Spans of text can be converted to label text by using: (1) double parentheses around text for a rectangular label as in ((label text)), or (2) triple parentheses around text for a rounded-rectangular label like (((label text))). Finally, CSS styles can be applied to spans of *info text* with the following form:

```
[[ info text ]][<CSS style rules>>
```

As an example of this in practice suppose you’d like to change the color of some text to red and make the font appear somewhat thinner. A variation on the following might be used:

"This is a [[factor]]<color: red; font-weight: 300>> value."

Value

A ptblank_informant object.

Figures

Function ID

3-2

See Also

Other Information Functions: `info_section()`, `info_snippet()`, `info_tabular()`

Examples

```r
# Create a pointblank 'informant'
# object with 'create_informant()';
# we specify a 'read_fn' with the
# '~' followed by a statement that
# gets the 'small_table' dataset
informant <-
  create_informant(
    read_fn = ~ small_table,
    tbl_name = "small_table",
    label = "An example."
  )
```
Description

While the `info_tabular()` and `info_columns()` functions allow us to add/modify info text for specific sections, the `info_section()` makes it possible to add sections of our own choosing and the information that make sense for those sections. Define a `section_name` and provide a series of named arguments (in the form `entry_name = "The *info text*."`) to build the informational content for that section.
Usage

info_section(x, section_name, ...)

Arguments

x An informant object of class ptblank_informant.
section_name The name of the section for which this information pertains.
... Information entries as a series of named arguments. The names refer to subsection titles within the section defined as section_name and the RHS is the info text (informational text that can be written as Markdown and further styled with Text Tricks).

Details

The info text readily accepts Markdown formatting. Also, there are a few Text Tricks that are good to know. Markdown links written as < link url > or [link text](link url) will get nicely-styled links. Any dates expressed in the ISO-8601 standard with parentheses, "(2004-12-01)", will be styled with a font variation (monospaced) and underlined in purple. Spans of text can be converted to label text by using: (1) double parentheses around text for a rectangular label as in (((label text))), or (2) triple parentheses around text for a rounded-rectangular label like ((((label text))). Finally, CSS styles can be applied to spans of info text with the following form:
[[info text]]<< CSS style rules >>

As an example of this in practice suppose you’d like to change the color of some text to red and make the font appear somewhat thinner. A variation on the following might be used:

"This is a [[factor]]<<color: red; font-weight: 300;>> value."

Value

A ptblank_informant object.

Figures

Function ID

3-3

See Also

Other Information Functions: info_columns(), info_snippet(), info_tabular()

Examples

Create a pointblank 'informant'
object with 'create_informant()';
we specify a 'read_fn' with the
'~' followed by a statement that
gets the 'small_table' dataset
informant <-
create_informant(
 read_fn = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
)

The `informant` object has the 'table'
and 'columns' sections; we can create
entirely different sections with their
own properties using `info_section()`
informant <-
informant %>%
info_section(
 section_name = "notes",
 creation = "Dataset generated on (2020-01-15).",
 usage = "`small_table %>% dplyr::glimpse()`"
)

Upon printing the `informant` object, we see
the addition of the 'Notes' section and its
own information

The `informant` object can be written to
a YAML file with the `yaml_write()`
function; then, information can
be directly edited or modified
yaml_write(
informant = informant,
filename = "informant.yml"
)

The YAML file can then be read back
into an informant object with the
`yaml_read_informant()` function
informant <-
yaml_read_informant(path = "informant.yml")

info_snippet Generate a useful text `snippet` from the target table

Description

Getting little snippets of information from a table goes hand-in-hand with mixing those bits of info
with your table info. Call `info_snippet()` to define a snippet and how you'll get that from the
target table (it's with a function). So long as you know how to interact with a table and extract
information, you can easily define snippets for a `informant` object. And once those snippets are
defined, you can insert them into the info text as defined through the info_*() functions. Just use
curly braces with the `snippet_name` inside (e.g., "This column has {n_cat} categories.").
Usage

\texttt{info_snippet(x, snippet_name, fn)}

Arguments

\begin{itemize}
 \item \texttt{x} \hspace{1cm} An informant object of class \texttt{ptblank_informant}.
 \item \texttt{snippet_name} \hspace{1cm} The name for snippet, which is used for interpolating the snippet itself into info text.
 \item \texttt{fn} \hspace{1cm} A function that obtains a snippet of data from the target table.
\end{itemize}

Value

A \texttt{ptblank_informant} object.

Figures

Function ID

3-4

See Also

Other Information Functions: \texttt{info_columns()}, \texttt{info_section()}, \texttt{info_tabular()}

Examples

\begin{verbatim}
Take the `small_table` and
assign it to `test_table`; we'll
modify it later
test_table <- small_table

Generate an informant object, add
two snippets with `info_snippet()`,
add information with some other
`info_*()` functions and then
`incorporate()` the snippets into
the info text
informant <-
 create_informant(
 read_fn = ~test_table,
 tbl_name = "test_table",
 label = "An example."
) %>%
 info_snippet(
 snippet_name = "row_count",
 fn = ~ . %>% nrow()
) %>%
 info_snippet(
 snippet_name = "col_count",
 fn = ~ . %>% ncol()
) %>%
 incorporate()
\end{verbatim}
fn = ~ . %>% ncol()

info_columns(
 columns = vars(a),
 info = "In the range of 1 to 10. (SIMPLE)"
)

info_columns(
 columns = starts_with("date"),
 info = "Time-based values (e.g.,`Sys.time()`)."
)

info_columns(
 columns = "date",
 info = "The date part of `date_time`. (CALC)"
)

info_section(
 section_name = "rows",
 row_count = "There are \{row_count\} rows available."
)

incorporate()

We can print the 'informant' object
to see the information report

Let's modify `test_table` to give
it more rows and an extra column

test_table <-
dplyr::bind_rows(test_table, test_table) %>%
dplyr::mutate(h = a + c)

Using 'incorporate()' will cause
the snippets to be reprocessed, and,
the info text to be updated

informant <-
informant %>%
incorporate()

info_tabular

Add information that focuses on aspects of the data table as a whole

Description

When an *informant* object is created with the `create_informant()` function, it has two starter sections: (1) 'table' and (2) 'columns'. The 'table' section should contain a few properties upon creation, such as the supplied table name (`name`) and table dimensions (as `_columns` and `_rows`). We can add more table-based properties with the `info_tabular()` function. By providing a series of named arguments (in the form `entry_name = "The *info* text."`), we can add more information that makes sense for describing the table as a whole.

Usage

```
info_tabular(x, ...)
```
Arguments

- An informant object of class `ptblank_informant`.

Information entries as a series of named arguments. The names refer to subsection titles within the TABLE section and the RHS is the *info text* (informational text that can be written as Markdown and further styled with *Text Tricks*).

Details

The *info text* readily accepts Markdown formatting. Also, there are a few *Text Tricks* that are good to know. Markdown links written as `<link url>` or `[link text]()` will get nicely-styled links. Any dates expressed in the ISO-8601 standard with parentheses, "(2004-12-01)", will be styled with a font variation (monospaced) and underlined in purple. Spans of text can be converted to label text by using: (1) double parentheses around text for a rectangular label as in `((label text))`, or (2) triple parentheses around text for a rounded-rectangular label like `(((label text)))`. Finally, CSS styles can be applied to spans of *info text* with the following form:

```
[[info text]]<<CSS style rules>>
```

As an example of this in practice suppose you’d like to change the color of some text to red and make the font appear somewhat thinner. A variation on the following might be used:

```
"This is a [[factor]]<<color: red; font-weight: 300;>> value."
```

Value

A `ptblank_informant` object.

Figures

Function ID

3-1

See Also

Other Information Functions: `info_columns()`, `info_section()`, `info_snippet()`

Examples

```r
# Create a pointblank `informant`
# object with `create_informant()`;
# we specify a `read_fn` with the
# `~` followed by a statement that
# gets the `small_table` dataset
informant <-
  create_informant(
    read_fn = ~ small_table,
    tbl_name = "small_table",
    label = "An example."
  )
```

Given an agent that has a validation plan, perform an interrogation

Description

When the agent has all the information on what to do (i.e., a validation plan which is a series of validation steps), the interrogation process can occur according its plan. After that, the agent will have gathered intel, and we can use functions like `get_agent_report()` and `all_passed()` to understand how the interrogation went down.

Usage

```r
interrogate(
  agent,
  extract_failed = TRUE,
  get_first_n = NULL,
  sample_n = NULL,
)```

sample_frac = NULL,
sample_limit = 5000
)

Arguments

agent          An agent object of class ptblank_agent that is created with create_agent().
extracl_failed An option to collect rows that didn’t pass a particular validation step. The default is TRUE and further options allow for fine control of how these rows are collected.
get_first_n    If the option to collect non-passing rows is chosen, there is the option here to collect the first n rows here. Supply the number of rows to extract from the top of the non-passing rows table (the ordering of data from the original table is retained).
sample_n       If the option to collect non-passing rows is chosen, this option allows for the sampling of n rows. Supply the number of rows to sample from the non-passing rows table. If n is greater than the number of non-passing rows, then all the rows will be returned.
sample_frac    If the option to collect non-passing rows is chosen, this option allows for the sampling of a fraction of those rows. Provide a number in the range of 0 and 1. The number of rows to return may be extremely large (and this is especially when querying remote databases), however, the sample_limit option will apply a hard limit to the returned rows.
sample_limit   A value that limits the possible number of rows returned when sampling non-passing rows using the sample_frac option.

Value

A ptblank_agent object.

Function ID

5-1

See Also

Other Interrogate and Report: get_agent_report()

Examples

# Create a simple table with two # columns of numerical values tbl <-
dplyr::tibble(
  a = c(5, 7, 6, 5, 8, 7),
  b = c(7, 1, 0, 0, 0, 3)
)

# Validate that values in column # `a` from `tbl` are always > 5,
Enable logging of failure conditions at the validation step level

Description

The log4r_step() function can be used as an action in the action_levels() function (as a list component for the fns list). Place a call to this function in every failure condition that should produce a log (i.e., warn, stop, notify). Only the failure condition with the highest severity for a given validation step will produce a log entry (skipping failure conditions with lower severity) so long as the call to log4r_step() is present.

Usage

log4r_step(x, message = NULL, append_to = "pb_log_file")

Arguments

x A reference to the x-list object prepared by the agent. This version of the x-list is the same as that generated via get_agent_x_list(<agent>, i = <step>) except this version is internally generated and hence only available in an internal evaluation context.

message The message to use for the log entry. When not provided, a default glue string is used for the messaging. This is dynamic since the internal glue::glue() call occurs in the same environment as x, the x-list that’s constrained to the validation step. The default message, used when message = NULL is the glue string "Step {x$i} exceeded the {level} failure threshold (f_failed = {x$f_failed}) ['(x$type')]". As can be seen, a custom message can be crafted that uses other elements of the x-list with the {x$<component>} construction.

append_to The file to which log entries at the warn level are appended. This can alternatively be one or more log4r appenders.
remove_read_fn

Remove a table-reading function associated with an agent or informant

Description

Removing an agent or an informant's association to a table-reading function can be done with remove_read_fn(). This may be a good idea in an interactive session when instead relying on the direct association of a data table (settable in create_agent() and create_informant()’s tbl argument or with set_tbl()). The table-reading function can be set again with set_read_fn().

Usage

remove_read_fn(x)

Arguments

x An agent object of class ptblank_agent, or, an informant of class ptblank_informant.

Function ID

8-6

See Also

Other Object Ops: remove_tbl(), set_read_fn(), set_tbl(), x_read_disk(), x_write_disk()

remove_tbl

Remove a data table associated with an agent or informant

Description

Removing an agent or informant’s association to a data table can be done with the remove_tbl() function. This can be useful to ensure that the table data isn’t unintentionally written to disk. It is usually best to avoid directly associating a table to an agent or informant, instead opting for setting a table-reading function (via create_agent() and create_informant()’s read_fn argument, or, with set_read_fn()). The association to a table can be set again with set_tbl().

Usage

remove_tbl(x)

Arguments

x An agent object of class ptblank_agent, or, an informant of class ptblank_informant.
**Function ID**

8-4

**See Also**

Other Object Ops: `remove_read_fn()`, `set_read_fn()`, `set_tbl()`, `x_read_disk()`, `x_write_disk()`

---

**rows_distinct** *Are row data distinct?*

**Description**

The `rows_distinct()` validation function, the `expect_rows_distinct()` expectation function, and the `test_rows_distinct()` test function all check whether row values (optionally constrained to a selection of specified columns) are, when taken as a complete unit, distinct from all other units in the table. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). As a validation step or as an expectation, this will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
rows_distinct(
 x,
 columns = NULL,
 preconditions = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_rows_distinct(
 object,
 columns = NULL,
 preconditions = NULL,
 threshold = 1
)

test_rows_distinct(object, columns = NULL, preconditions = NULL, threshold = 1)
```
Arguments

- **x**: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

- **columns**: The column (or a set of columns, provided as a character vector) to which this validation should be applied.

- **preconditions**: Expressions used for mutating the input table before proceeding with the validation. This is ideally as a one-sided R formula using a leading ~. In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col = col + 10).

- **actions**: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

- **step_id**: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

- **label**: An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

- **brief**: An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

- **active**: A logical value indicating whether the validation step should be active. If the step function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the step function will be operating directly on data, then any step with active = FALSE will simply pass the data through with no validation whatsoever. The default for this is TRUE.

- **object**: A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

- **threshold**: A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.
Details

We can specify the constraining column names in quotes, in `vars()`, and with the following `tidyselect` helper functions: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Having table preconditions means `pointblank` will mutate the table just before interrogation. Such a table mutation is isolated in scope to the validation step(s) produced by the validation function call. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x,col_a = col_b + 10)`).

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-15

See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`

Examples

# Create a simple table with three
# columns of numerical values
tbl <-
```r
dplyr::tibble(
 a = c(5, 7, 6, 5, 8, 7),
 b = c(7, 1, 0, 0, 8, 3),
 c = c(1, 1, 1, 3, 3, 3)
)
```

# Validate that when considering only
# data in columns `a` and `b`, there
# are no duplicate rows (i.e., all
# rows are distinct)
agent <-
  create_agent(tbl = tbl) %>%
  rows_distinct(vars(a, b)) %>%
  interrogate()

# Determine if these column
# validations have all passed
# by using `all_passed()`
all_passed(agent)

---

**scan_data**

*Thoroughly scan a table to better understand it*

**Description**

Generate an HTML report that scours the input table data. Before calling up an *agent* to validate the data, it’s a good idea to understand the data with some level of precision. Make this the initial step of a well-balanced *data quality reporting* workflow. The reporting output contains several sections to make everything more digestible, and these are:

- **Overview** Table dimensions, duplicate row counts, column types, and reproducibility information
- **Variables** A summary for each table variable and further statistics and summaries depending on the variable type
- **Interactions** A matrix plot that shows interactions between variables
- **Correlations** A set of correlation matrix plots for numerical variables
- **Missing Values** A summary figure that shows the degree of missingness across variables
- **Sample** A table that provides the head and tail rows of the dataset

The output HTML report will appear in the RStudio Viewer and can also be integrated in R Markdown HTML output. If you need the output HTML as a string, it’s possible to get that by using `as.character()` (e.g., `scan_data(tbl = mtcars) %>% as.character()`). The resulting HTML string is a complete HTML document where *Bootstrap* and *jQuery* are embedded within.

**Usage**

```r
scan_data(tbl, sections = "OVICMS", navbar = TRUE, lang = NULL, locale = NULL)
```
### Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tbl</td>
<td>The input table. This can be a data frame, tibble, a tbl_dbi object, or a tbl_spark object.</td>
</tr>
<tr>
<td>sections</td>
<td>The sections to include in the finalized Table Scan report. A string with key characters representing section names is required here. The default string is &quot;OVICMS&quot; wherein each letter stands for the following sections in their default order: &quot;O&quot;: &quot;overview&quot;; &quot;V&quot;: &quot;variables&quot;; &quot;I&quot;: &quot;interactions&quot;; &quot;C&quot;: &quot;correlations&quot;; &quot;M&quot;: &quot;missing&quot;; and &quot;S&quot;: &quot;sample&quot;. This string can be comprised of less characters and the order can be changed to suit the desired layout of the report. For tbl_dbi and tbl_spark objects supplied to tbl, the &quot;interactions&quot; and &quot;correlations&quot; sections are currently excluded.</td>
</tr>
<tr>
<td>navbar</td>
<td>Should there be a navigation bar anchored to the top of the report page? By default this is TRUE.</td>
</tr>
<tr>
<td>lang</td>
<td>The language to use for label text in the report. By default, NULL will create English (&quot;en&quot;) text. Other options include French (&quot;fr&quot;), German (&quot;de&quot;), Italian (&quot;it&quot;), Spanish (&quot;es&quot;), Portuguese, (&quot;pt&quot;), Chinese (&quot;zh&quot;), and Russian (&quot;ru&quot;).</td>
</tr>
<tr>
<td>locale</td>
<td>An optional locale ID to use for formatting values in the report according the locale’s rules. Examples include &quot;en_US&quot; for English (United States) and &quot;fr_FR&quot; for French (France); more simply, this can be a language identifier without a country designation, like &quot;es&quot; for Spanish (Spain, same as &quot;es_ES&quot;).</td>
</tr>
</tbody>
</table>

### See Also

Other Planning and Prep: `action_levels()`, `col_schema()`, `create_agent()`, `create_informant()`, `db_tbl()`, `validate_rmd()`

### Examples

```r
Get an HTML report that describes all of
the data in the 'dplyr::storms' dataset
scan_data(tbl = dplyr::storms)
```

---

**Description**

A table-reading function can be associated with an *agent* or *informant* with `set_read_fn()`. Should both a tbl and a read_fn be associated with the *agent* or *informant*, the read_fn will take priority. There are two ways to specify a read_fn: (1) using a function (e.g., function() { <table reading code> }) or, (2) with an R formula expression (e.g., ~ { <table reading code> }). The table-reading function can removed with `remove_read_fn()`.
Usage

```
set_read_fn(x, read_fn)
```

Arguments

- **x**: An `agent` object of class `ptblank_agent`, or, an `informant` of class `ptblank_informant`.
- **read_fn**: A function that’s used for reading in the data. This can be specified by using a function (e.g., `function() { <table reading code> }`) or an R formula expression (e.g., `~ { <table reading code> }`).

Function ID

8-5

See Also

Other Object Ops: `remove_read_fn()`, `remove_tbl()`, `set_tbl()`, `x_read_disk()`, `x_write_disk()`

---

**set_tbl**

Set a data table to an agent or informant

Description

Setting a data table to an `agent` or `informant` with `set_tbl()` replaces any associated table (a data frame, a tibble, objects of class `tbl_dbi` or `tbl_spark`). If a data table is associated with an `agent` or `informant` along with a table-reading function (settable in `create_agent()` and `create_informant()`’s `read_fn` argument or with `set_read_fn()`), the table-reading function will take precedence. If this is undesirable, it be removed with the `remove_read_fn()` function. The association to a table can be removed with `remove_tbl()`.

Usage

```
set_tbl(x, tbl)
```

Arguments

- **x**: An `agent` object of class `ptblank_agent`, or, an `informant` of class `ptblank_informant`.
- **tbl**: The input table for the agent. This can be a data frame, a tibble, a `tbl_dbi` object, or a `tbl_spark` object. Any table already associated with the `agent` or `informant` will be overwritten.

Function ID

8-3

See Also

Other Object Ops: `remove_read_fn()`, `remove_tbl()`, `set_read_fn()`, `x_read_disk()`, `x_write_disk()`
**small_table**

A small table that is useful for testing

---

**Description**

This is a small table with a few different types of columns. It’s probably just useful when testing the functions from pointblank. Rows 9 and 10 are exact duplicates. The \texttt{c} column contains two \texttt{NA} values.

**Usage**

\texttt{small_table}

**Format**

A tibble with 13 rows and 8 variables:

- **date_time**: A date-time column (of the POSIXct class) with dates that correspond exactly to those in the date column. Time values are somewhat randomized but all 'seconds' values are 00.
- **date**: A Date column with dates from 2016-01-04 to 2016-01-30.
- **a**: An integer column with values ranging from 1 to 8.
- **b**: A character column with values that adhere to a common pattern.
- **c**: An integer column with values ranging from 2 to 9. Contains two \texttt{NA} values.
- **d**: A numeric column with values ranging from 108 to 10000.
- **e**: A logical column.
- **f**: A character column with "low", "mid", and "high" values.

**Function ID**

10-1

**See Also**

Other Datasets: \texttt{small_table_sqlite()}

**Examples**

```r
Here is a glimpse at the data
available in `small_table`
dplyr::glimpse(small_table)
```
small_table_sqlite  A SQLite version of the small_table dataset

Description

The small_table_sqlite() function creates a SQLite, tbl_dbi version of the small_table dataset. A requirement is the availability of the DBI and RSQLite packages. These packages can be installed by using install.packages("DBI") and install.packages("RSQLite").

Usage

small_table_sqlite()

Function ID

10-2

See Also

Other Datasets: small_table

Examples

# Use `small_table_sqlite()` to
# create a SQLite version of the
# `small_table` table
#
# small_table_sqlite <- small_table_sqlite()


snip_highest  A fn for info_snippet(): get the highest value from a column

Description

The snip_highest() function can be used as an info_snippet() function (i.e., provided to fn) to get the highest numerical, time value, or alphabetical value from a column in the target table.

Usage

snip_highest(column)

Arguments

column The name of the column that contains the target values.
snip_list

Value
A formula needed for info_snippet()’s fn argument.

---

**snip_list**

*An fn for info_snippet(): get a list of column categories*

---

**Description**
The `snip_list()` function can be used as an `info_snippet()` function (i.e., provided to fn) to get a catalog list from a table column. You can limit the of items in that list with the `limit` value.

**Usage**

`snip_list(column, limit = 5)`

**Arguments**

- `column`: The name of the column that contains the target values.
- `limit`: A limit of items put into the generated list. The returned text will state the remaining number of items beyond the limit.

**Value**
A formula needed for info_snippet()’s fn argument.

---

**snip_lowest**

*An fn for info_snippet(): get the lowest value from a column*

---

**Description**
The `snip_lowest()` function can be used as an `info_snippet()` function (i.e., provided to fn) to get the lowest numerical, time value, or alphabetical value from a column in the target table.

**Usage**

`snip_lowest(column)`

**Arguments**

- `column`: The name of the column that contains the target values.

**Value**
A formula needed for info_snippet()’s fn argument.
**stock_msg_body**

| stock_msg_body | Provide simple email message body components: body |

**Description**

The `stock_msg_body()` function simply provides some stock text for an email message sent via `email_blast()` or obtained as a standalone object through `email_create()`.

**Usage**

```r
stock_msg_body()
```

**Value**

Text suitable for the `msg_body` arguments of `email_blast()` and `email_create()`.

**Function ID**

4-3

**See Also**

Other Emailing: `email_blast()`, `email_create()`, `stock_msg_footer()`

---

**stock_msg_footer**

| stock_msg_footer | Provide simple email message body components: footer |

**Description**

The `stock_msg_footer()` function simply provides some stock text for an email message sent via `email_blast()` or obtained as a standalone object through `email_create()`.

**Usage**

```r
stock_msg_footer()
```

**Value**

Text suitable for the `msg_footer` argument of `email_blast()` and `email_create()`.

**Function ID**

4-4

**See Also**

Other Emailing: `email_blast()`, `email_create()`, `stock_msg_body()`
Description

This is `stopifnot()` but with a twist: it works well as a standalone, replacement for `stopifnot()` but is also customized for use in validation checks in R Markdown documents where `pointblank` is loaded. Using `stop_if_not()` in a code chunk where the `validate = TRUE` option is set will yield the correct reporting of successes and failures whereas `stopifnot()` does not.

Usage

```r
stop_if_not(...)
```

Arguments

... 

R expressions that should each evaluate to (a logical vector of all) TRUE.

Value

NULL if all statements in ... are TRUE.

Examples

```r
This checks whether the number of rows in 'small_table' is greater
than 10
stop_if_not(nrow(small_table) > 10)

This will stop for sure: there isn't a 'time' column in 'small_table'
(but there are the 'date_time' and 'date' columns)
stop_if_not("time" %in% colnames(small_table))

You're not bound to using tabular data here, any statements that
evaluate to logical vectors will work
stop_if_not(1:5 < 20:25)
```
Modify pointblank validation testing options within R Markdown documents

Description

Using pointblank in an R Markdown workflow is enabled by default once the pointblank library is loaded. The framework allows for validation testing within specialized validation code chunks where the validate = TRUE option is set. Using pointblank validation functions on data in these marked code chunks will flag overall failure if the stop threshold is exceeded anywhere. All errors are reported in the validation code chunk after rendering the document to HTML, where green or red status buttons indicate whether all validations succeeded or failures occurred. Clicking any such button reveals the otherwise hidden validation statements and their error messages (if any). While the framework for such testing is set up by default, the validate_rmd() function offers an opportunity to set UI and logging options.

Usage

validate_rmd(summary = TRUE, log_to_file = NULL)

Arguments

summary If TRUE (the default), then there will be a leading summary of all validations in the rendered R Markdown document. With FALSE, this element is not shown.

log_to_file An option to log errors to a text file. By default, no logging is done but TRUE will write log entries to "validation_errors.log" in the working directory. To both enable logging and to specify a file name, include a path to a log file of the desired name.

Function ID

1-4

See Also

Other Planning and Prep: action_levels(), col_schema(), create_agent(), create_informant(), db_tbl(), scan_data()
**x_read_disk**

Read a **pointblank** agent or informant from disk

---

**Description**

An *agent* or *informant* that has been written to disk (with `x_write_disk()`) can be read back into memory with the `x_read_disk()` function. Once the *agent* or *informant* has been generated in this way, it may not have a data table associated with it (depending on whether the `keep_tbl` option was `TRUE` or `FALSE` when writing to disk) but it should still be able to produce reporting (by printing the *agent* or *informant* to the console or using `get_agent_report()*/get_informant_report()`). An *agent* will return an x-list with `get_agent_x_list()` and yield any available data extracts with `get_data_extracts()`. Furthermore, all of an *agent’s* validation steps will still be present (along with results from the last interrogation).

**Usage**

```r
x_read_disk(path)
```

**Arguments**

- `path`: The path to a file that was previously written by `x_write_disk()`.

**Details**

Should the *agent* or *informant* possess a table-reading function (can be set any time with `set_read_fn()` or a specific table (settable with `set_tbl()`) we could use the `interrogate()` or `incorporate()` function again. For a `data quality reporting` workflow, it is useful to `interrogate()` target tables that evolve over time. While the same validation steps will be used, more can be added before calling `interrogate()`. For an `information management` workflow with an *informant* object, using `incorporate()` will update aspects of the reporting such as table dimensions, and info snippets/text will be regenerated.

**Function ID**

8-2

**See Also**

Other Object Ops: `remove_read_fn()`, `remove_tbl()`, `set_read_fn()`, `set_tbl()`, `x_write_disk()`
x_write_disk

Write a pointblank agent or informant to disk

Description

Writing an agent or informant to disk with x_write_disk() can be useful for keeping data validation intel or table information close at hand for later retrieval (with x_read_disk()). By default, any data table that the agent or informant may have held before being committed to disk will be expunged. This behavior can be changed by setting keep_tbl to TRUE but this only works in the case where the table is not of the tbl_dbi or the tbl_spark class.

Usage

x_write_disk(x, filename, path = NULL, keep_tbl = FALSE, keep_extracts = FALSE)

Arguments

x
An agent object of class ptblank_agent, or, an informant of class ptblank_informant.

filename
The filename to create on disk for the agent or informant.

path
An optional path to which the file should be saved (this is automatically combined with filename).

keep_tbl
An option to keep a data table that is associated with the agent or informant (which is the case when the agent, for example, is created using create_agent(tbl = <data table, ...)). The default is FALSE where the data table is removed before writing to disk. For database tables of the class tbl_dbi and for Spark DataFrames (tbl_spark) the table is always removed (even if keep_tbl is set to TRUE).

keep_extracts
An option to keep any collected extract data for failing rows. By default, this is FALSE.

Details

It is recommended to set a table-reading function for later reuse of the agent and informant after being read from disk through x_read_disk(). This can be done initially with the read_fn argument of create_agent()/create_informant() or, later, with set_read_fn(). Alternatively, we can reintroduce the agent or informant to a data table with the set_tbl() function.

Function ID

8-1

See Also

Other Object Ops: remove_read_fn(), remove_tbl(), set_read_fn(), set_tbl(), x_read_disk()
yaml_agent_interrogate

Get an agent from pointblank YAML and interrogate()

Description

The `yaml_agent_interrogate()` function operates much like the `yaml_read_agent()` function (reading a pointblank YAML file and generating an agent with a validation plan in place). The key difference is that this function takes things a step further and interrogates the target table (defined by table-reading, `read_fn`, function that is required in the YAML file). The additional auto-invocation of `interrogate()` uses the default options of that function. As with `yaml_read_agent()` the agent is returned except, this time, it has intel from the interrogation.

Usage

```
yaml_agent_interrogate(path)
```

Arguments

- `path`: A path to a pointblank YAML file that contains fields related to an agent.

Function ID

9-4

See Also

Other pointblank YAML: `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

Examples

```r
Let's go through the process of
developing an agent with a validation
plan (to be used for the data quality
analysis of the 'small_table' dataset),
and then offloading that validation
plan to a pointblank YAML file; this
will later be read in as a new agent and
the target data will be interrogated
(one step) with 'yaml_agent_interrogate()'

We ought to think about what's
tolerable in terms of data quality so
let's designate proportional failure
thresholds to the 'warn', 'stop', and
'notify' states using 'action_levels()'
al <-
 action_levels(
```
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35
)

# Now create a pointblank `agent` object
# and give it the `al` object (which
# serves as a default for all validation
# steps which can be overridden); the
# data will be referenced in a `read_fn`
# (a requirement for writing to YAML)
agent <-
  create_agent(
    read_fn = ~small_table,
    label = "A simple example with the 'small_table'.",
    actions = al
  )

# Then, as with any `agent` object, we
# can add steps to the validation plan by
# using as many validation functions as we
# want
agent <-
  agent %>%
    col_exists(vars(date, date_time)) %>%
    col_vals_regex(
      vars(b), "[0-9]-[a-z]{3}-[0-9]{3}\""
    ) %>%
    rows_distinct() %>%
    col_vals_gt(vars(d), 100) %>%
    col_vals_lte(vars(c), 5)

# The agent can be written to a pointblank
# YAML file with `yaml_write`
# yaml_write(
#   agent = agent,
#   filename = "agent-small_table.yml"
# )

# The 'agent-small_table.yml' file is
# available in the package through `system.file`
yml_file <-
  system.file(
    "agent-small_table.yml",
    package = "pointblank"
  )

# We can view the YAML file in the console
# with the `yaml_agent_string` function
yaml_agent_string(path = yml_file)

# The YAML can also be printed in the console
# by supplying the agent as the input
yaml_agent_show_exprs

yaml_agent_string(agent = agent)

# We can interrogate the data (which
# is accessible through the `read_fn`)
# through direct use of the YAML file
# with `yaml_agent_interrogate()`
agent <-
  yaml_agent_interrogate(path = yml_file)

class(agent)

# If it's desired to only create a new
# agent with the validation plan in place
# (stopping short of interrogating the data),
# then the `yaml_read_agent()` function
# will be useful
agent <- yaml_read_agent(path = yml_file)

class(agent)

---

yaml_agent_show_exprs  
*Display validation expressions using pointblank YAML*

Description

The `yaml_agent_show_exprs()` function follows the specifications of a pointblank YAML file to generate and show the pointblank expressions for generating the described validation plan. The expressions are shown in the console, providing an opportunity to copy the statements and extend as needed. A pointblank YAML file can itself be generated by using the `yaml_write()` function with a pre-existing `agent`, or, it can be carefully written by hand.

Usage

`yaml_agent_show_exprs(path)`

Arguments

- `path`  
  A path to a pointblank YAML file that contains fields related to an `agent`.

Function ID

9-6

See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_string()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`
Examples

# Let's create a validation plan for the
# data quality analysis of the `small_table`
# dataset; we need an agent and its
# table-reading function enables retrieval
# of the target table
agent <-
create_agent(
  read_fn = ~small_table,
  label = "A simple example with the `small_table`",
  actions = action_levels(
    warn_at = 0.10,
    stop_at = 0.25,
    notify_at = 0.35
  )
) %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(
  vars(b), "[0-9]-[a-z]{3}-[0-9]{3}"
) %>%
rows_distinct() %>%
col_vals_gt(vars(d), 100) %>%
col_vals_lte(vars(c), 5)

# The agent can be written to a pointblank
# YAML file with `yaml_write`
# yaml_write(
#  agent = agent,
#  filename = "agent-small_table.yml"
# )

# The `agent-small_table.yml` file is
# available in the package through
# `system.file`
yml_file <-
system.file(
  "agent-small_table.yml",
  package = "pointblank"
)

# At a later time, the YAML file can
# be read into a new agent with the
# `yaml_read_agent` function
agent <- yaml_read_agent(path = yml_file)

class(agent)

# To get a sense of which expressions are
# being used to generate the new agent, we
# can use `yaml_agent_show_exprs`
yaml_agent_show_exprs(path = yml_file)
yaml_agent_string

**Display pointblank YAML using an agent or a YAML file**

**Description**

With pointblank YAML, we can serialize an agent’s validation plan (with `yaml_write()`), read it back later with a new agent (with `yaml_read_agent()`), or perform an interrogation on the target data table directly with the YAML file (with `yaml_agent_interrogate()`). The `yaml_agent_string()` function allows us to inspect the YAML generated by `yaml_write()` in the console, giving us a look at the YAML without needing to open the file directly. Alternatively, we can provide an `agent` to the `yaml_agent_string()` and view the YAML representation of the validation plan without needing to write the YAML to disk beforehand.

**Usage**

```r
yaml_agent_string(agent = NULL, path = NULL)
```

**Arguments**

- `agent` An `agent` object of class `ptblank_agent`.
- `path` A path to a YAML file that specifies a validation plan for an `agent`.

**Function ID**

9-5

**See Also**

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

**Examples**

```r
Let’s create a validation plan for the
data quality analysis of the `small_table`
dataset; we need an agent and its
table-reading function enables retrieval
of the target table
agent <-
create_agent(
 read_fn = ~small_table,
 label = "A simple example with the `small_table`.",
 actions = action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
)
)
```
col_exists(vars(date, date_time)) %>%
col_vals_regex(
  vars(b), "[0-9]-[a-z]{3}-[0-9]{3}"
) %>%
rows_distinct() %>%
col_vals_gt(vars(d), 100) %>%
col_vals_lte(vars(c), 5)

# We can view the YAML file in the console
# with the `yaml_agent_string()` function,
# providing the `agent` object as the input
yaml_agent_string(agent = agent)

# The agent can be written to a pointblank
# YAML file with `yaml_write`
# yaml_write(
#   agent = agent,
#   filename = "agent-small_table.yml"
# )

# The 'agent-small_table.yml' file is
# available in the package through `system.file`
yml_file <-
  system.file(
    "agent-small_table.yml",
    package = "pointblank"
  )

# The `yaml_agent_string()` function can
# be used with the YAML file as well
yaml_agent_string(path = yml_file)

# At a later time, the YAML file can
# be read into a new agent with the
# `yaml_read_agent()` function
agent <- yaml_read_agent(path = yml_file)
class(agent)

---

**yaml_informant_incorporate**

*Get an informant from pointblank YAML and incorporate()*

**Description**

The `yaml_informant_incorporate()` function operates much like the `yaml_read_informant()` function (reading a pointblank YAML file and generating an informant with all information in place). The key difference is that this function takes things a step further and incorporates aspects from the the target table (defined by table-reading, `read_fn`, function that is required in the YAML file). The additional auto-invocation of `incorporate()` uses the default options of that function.
As with `yaml_read_informant()` the informant is returned except, this time, it has been updated with the latest information from the target table.

**Usage**

`yaml_informant_incorporate(path)`

**Arguments**

`path` A path to a YAML file that specifies a information for an informant.

**Function ID**

9-7

**See Also**

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

**Examples**

```r
Let's go through the process of
developing an informant with information
about the `small_table` dataset and then
move all that to a pointblank YAML
file; this will later be read in as a
new informant and the target data will
be incorporated into the info text
(in one step) with
`yaml_informant_incorporate`

Now create a pointblank `informant`
object; the data will be referenced
in a `read_fn` (a requirement for
writing to YAML)
informant <-
 create_informant(
 read_fn = ~small_table,
 label = "A simple example with the 'small_table'.")

Then, as with any 'informant' object, we
can add information by using as many
`info_*()` functions as we want
informant <-
 informant %>%
 info_columns(
 columns = vars(a),
 info = "In the range of 1 to 10. (SIMPLE)"
) %>%
 info_columns(
```
columns = starts_with("date"),
info = "Time-based values (e.g., `Sys.time()`)."
) %>%
info_columns(
columns = "date",
info = "The date part of `date_time`. (CALC)"
) %>%
info_section(
section_name = "rows",
row_count = "There are {row_count} rows available."
) %>%
info_snippet(
snippet_name = "row_count",
fn = ~ . %>% nrow()
) %>%
incorporate()

# The informant can be written to a pointblank
# YAML file with `yaml_write()`
# yaml_write(
# informant = informant,
# filename = "informant-small_table.yml"
# )

# The `informant-small_table.yml` file
# is available in the package through
# `system.file()`
yml_file <-
system.file(  
  "informant-small_table.yml",
  package = "pointblank"
)

# We can incorporate the data (which
# is accessible through the `read_fn`
# into the info text through direct
# use of the YAML file with
# `yaml_informant_incorporate()`
informant <-
yaml_informant_incorporate(path = yml_file)

class(informant)

# If it's desired to only create a new
# informant with the information in place
# (stopping short of processing), then the
# `yaml_read_informant()` function will
# be useful
informant <-
yaml_read_informant(path = yml_file)

class(informant)
**yaml_read_agent**

**Description**

With `yaml_read_agent()` we can read a **pointblank** YAML file that describes a validation plan to be carried out by an **agent** (typically generated by the `yaml_write()` function. What’s returned is a new **agent** with that validation plan, ready to interrogate the target table at will (using the table-reading function stored as the `read_fn`). The agent can be given more validation steps if needed before using `interrogate()` or taking part in any other agent ops (e.g., writing to disk with outputs intact via `x_write_disk()` or again to **pointblank** YAML with `yaml_write()`).

To get a picture of how `yaml_read_agent()` is interpreting the validation plan specified in the **pointblank** YAML, we can use the `yaml_agent_show_exprs()` function. That function shows us (in the console) the **pointblank** expressions for generating the described validation plan.

**Usage**

```r
yaml_read_agent(path)
```

**Arguments**

- `path` A path to a **pointblank** YAML file that contains fields related to an **agent**.

**Function ID**

9-2

**See Also**

Other **pointblank** YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_informant_incorporate()`, `yaml_read_informant()`, `yaml_write()`

**Examples**

```r
Let's go through the process of
developing an agent with a validation
plan (to be used for the data quality
analysis of the 'small_table' dataset),
and then offloading that validation
plan to a pointblank YAML file; this
will be read in with `yaml_read_agent()
#
We ought to think about what's
tolerable in terms of data quality so
let's designate proportional failure
thresholds to the 'warn', 'stop', and
'notify' states using 'action_levels('
al <-
```
yaml_read_agent

```r
action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
)

Now create a pointblank `agent` object
and give it the `al` object (which
serves as a default for all validation
steps which can be overridden); the
data will be referenced in a `read_fn`
(a requirement for writing to YAML)
agent <-
 create_agent(
 read_fn = ~small_table,
 label = "A simple example with the 'small_table'.",
 actions = al
)

Then, as with any `agent` object, we
can add steps to the validation plan by
using as many validation functions as we
want
agent <-
 agent %>%
 col_exists(vars(date, date_time)) %>%
 col_vals_regex(
 vars(b), "[0-9]-[a-z]{3}-[0-9]{3}"
) %>%
 rows_distinct() %>%
 col_vals_gt(vars(d), 100) %>%
 col_vals_lte(vars(c), 5)

The agent can be written to a pointblank
YAML file with `yaml_write()`
yaml_write(
agent = agent,
filename = "agent-small_table.yml"
)

The 'agent-small_table.yml' file is
available in the package through `system.file()`
yml_file <-
 system.file(
 "agent-small_table.yml",
 package = "pointblank"
)

We can view the YAML file in the console
with the `yaml_agent_string()` function
yaml_agent_string(path = yml_file)

The YAML can also be printed in the console
```
yaml_read_informant

Read a pointblank YAML file to create an informant object

Description

With `yaml_read_informant()` we can read a pointblank YAML file that describes table information (typically generated by the `yaml_write()` function). What’s returned is a new `informant` object with the information intact. The `informant` object can be given more information through use of the `info_*()` functions.

Usage

```
yaml_read_informant(path)
```

Arguments

- `path` A path to a pointblank YAML file that contains fields related to an `informant`.

Function ID

9-3

See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_write()`
Examples

# Create a pointblank `informant`
# object with `create_informant()`
# and the `small_table` dataset
informant <- create_informant(small_table)

# An `informant` object can be written
# to a YAML file with the `yaml_write()`
# function
# yaml_write(
# informant = informant,
# filename = "informant-small_table.yml"
# )

# The `informant-small_table.yml` file
# looks like this when written

```
info_label: '[2020-09-06|13:37:38]

table:
name: small_table
_columns: 8
_rows: 13
_type: tbl_df
columns:
date_time:
_type: POSIXct, POSIXt
date:
_type: Date
a:
_type: integer
b:
_type: character
c:
_type: numeric
d:
_type: numeric
e:
_type: logical
f:
_type: character
```

# We can add keys and values to
# add more pertinent information; with
# some direct editing of the file we get:

```
info_label: '[2020-09-06|13:37:38]

table:
name: small_table
_columns: 8
_rows: 13
_type: tbl_df
columns:
```
Write an agent and informant to a `pointblank` YAML file

```r
#> date_time:
#> _type: POSIXct, POSIXt
#> info: Date-time values.
#> date:
#> _type: Date
#> info: Date values (the date part of 'date_time').
#> a:
#> _type: integer
#> info: Small integer values (no missing values).
#> b:
#> _type: character
#> info: Strings with a common pattern.
#> c:
#> _type: numeric
#> info: Small numeric values (contains missing values).
#> d:
#> _type: numeric
#> info: Large numeric values (much greater than 'c').
#> e:
#> _type: logical
#> info: TRUE and FALSE values.
#> f:
#> _type: character
#> info: Strings of the set "low", "mid", and "high".

We could also have done the same
with the `informant` object by use of
the `info_columns()` function

The `informant-small_table.yml` file
is available in the package through
`system.file()`
yml_file <-
system.file(
 "informant-small_table.yml",
 package = "pointblank"
)

We can read this YAML file back
as an `informant` object by using
`yaml_read_informant()`
informant <-
yaml_read_informant(path = yml_file)

class(informant)
```
Description

With `yaml_write()` we can take an existing `agent` and write that `agent`'s validation plan to a YAML file. With `pointblank` YAML, we can modify the YAML markup if so desired, or, use as is to create a new agent with the `yaml_read_agent()` function. That `agent` will have a validation plan and is ready to `interrogate()` the data. We can go a step further and perform an interrogation directly from the YAML file with the `yaml_agent_interrogate()` function. That returns an agent with intel (having already interrogated the target data table). An `informant` object can also be written to YAML with `yaml_write()`.

One requirement for writing the `agent` to YAML is that we need to have a table-reading function (`read_fn`) specified (it's a function that is used to read the target table when `interrogate()` is called). This option can be set when using `create_agent()` or with `set_read_fn()` (for use with an existing `agent`).

Usage

```r
yaml_write(agent = NULL, informant = NULL, filename, path = NULL)
```

Arguments

- `agent`: An `agent` object of class `ptblank_agent`.
- `informant`: An `informant` object of class `ptblank_informant`.
- `filename`: The name of the YAML file to create on disk. It is recommended that either the `.yaml` or `.yml` extension be used for this file.
- `path`: An optional path to which the YAML file should be saved (combined with `filename`).

Function ID

9-1

See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`

Examples

```r
Let's go through the process of
developing an agent with a validation
plan (to be used for the data quality
analysis of the 'small_table' dataset),
and then offloading that validation
plan to a pointblank YAML file

We ought to think about what's
tolerable in terms of data quality so
let's designate proportional failure
thresholds to the 'warn', 'stop', and
'notify' states using 'action_levels('
```
al <-
 action_levels(
   warn_at = 0.10,
   stop_at = 0.25,
   notify_at = 0.35
 )

# Now create a pointblank `agent` object
# and give it the `al` object (which
# serves as a default for all validation
# steps which can be overridden); the
# data will be referenced in a `read_fn`
# (a requirement for writing to YAML)
agent <-
 create_agent(
   read_fn = ~small_table,
   label = "A simple example with the 'small_table'.",
   actions = al
 )

# Then, as with any `agent` object, we
# can add steps to the validation plan by
# using as many validation functions as we
# want
agent <-
 agent %>%
 col_exists(vars(date, date_time)) %>%
 col_vals_regex(  
   vars(b), "[0-9]-[a-z](3)-[0-9](3)"
 ) %>%
 rows_distinct() %>%
 col_vals_gt(vars(d), 100) %>%
 col_vals_lte(vars(c), 5)

# The agent can be written to a pointblank
# YAML file with `yaml_write()`
# yaml_write(
#   agent = agent,
#   filename = "agent-small_table.yml"
# )

# The 'agent-small_table.yml' file is
# available in the package through
# `system.file()`
yml_file <-
 system.file(  
   "agent-small_table.yml",
   package = "pointblank"
 )

# We can view the YAML file in the console
# with the `yaml_agent_string()` function
yaml_agent_string(path = yml_file)
# The YAML can also be printed in the console
# by supplying the agent as the input
yaml_agent_string(agent = agent)

# At a later time, the YAML file can
# be read into a new agent with the
# `yaml_read_agent()` function
agent <-
  yaml_read_agent(path = yml_file)

class(agent)

# We can interrogate the data (which
# is accessible through the `read_fn`)
# with `interrogate()` and get an
# agent with intel, or, we can
# interrogate directly from the YAML
# file with `yaml_agent_interrogate`
agent <-
  yaml_agent_interrogate(path = yml_file)

class(agent)
Index

* Datasets
  small_table, 151
  small_table_sqlite, 152

* Emailing
  email_blast, 116
  email_create, 118
  stock_msg_body, 154
  stock_msg_footer, 154

* Incorporate and Report
  get_informant_report, 128
  incorporate, 131

* Information Functions
  info_columns, 133
  info_section, 135
  info_snippet, 137
  info_tabular, 139

* Interrogate and Report
  get_agent_report, 121
  interrogate, 141

* Object Ops
  remove_read_fn, 144
  remove_tbl, 144
  set_read_fn, 149
  set_tbl, 150
  x_read_disk, 157
  x_write_disk, 158

* Planning and Prep
  action_levels, 3
  col_schema, 35
  create_agent, 108
  create_informant, 113
  db_tbl, 115
  scan_data, 148
  validate_rmd, 156

* Post-interrogation
  all_passed, 6
  get_agent_x_list, 124
  get_data_extracts, 127
  get_sundered_data, 129

* datasets
  small_table, 151

* pointblank YAML
  yaml_agent_interrogate, 159
  yaml_agent_show_exprs, 161
  yaml_agent_string, 163
  yaml_informant_incorporate, 164
  yaml_read_agent, 167
  yaml_read_informant, 169
  yaml_write, 171

* validation functions
  col_exists, 7
  col_is_character, 10
  col_is_date, 14
  col_is_factor, 17
  col_is_integer, 21
  col_is_logical, 24
  col_is_numeric, 28
  col_is_posix, 31
  col_schema_match, 37
  col_vals_between, 41
  col_vals_equal, 47
  col_vals_expr, 51
  col_vals_gt, 55
  col_vals_gte, 60
  col_vals_in_set, 64
  col_vals_lte, 68
  col_vals_lt, 73
  col_vals_not_between, 77
  col_vals_not_equal, 83
  col_vals_not_in_set, 87
  col_vals_not_null, 91
  col_vals_null, 95
  col_vals_regex, 99
  conjointly, 104
  rows_distinct, 145

  action_levels, 3, 36, 111, 114, 116, 149, 156
  action_levels(), 7, 8, 11, 12, 14, 15, 18, 19, 22, 25, 26, 29, 32, 33, 38, 39, 43, 44
col_is_character, col_is_logical, col_vals_equal(), col_vals_expr, col_vals_gt, col_vals_gte, col_vals_in_set, col_vals_lte, col_vals_not_between, col_vals_not_null, col_vals_regex, colval_schema_match, colval_schema_match()
set_read_fn, 144, 145, 149, 150, 157, 158
set_read_fn(), 144, 150, 157, 158, 172
set_tbl, 144, 145, 150, 157, 158
set_tbl(), 144, 157, 158
small_table, 151, 152
small_table_sqlite, 151, 152
snip_highest, 152
snip_lowest, 153
snip_list, 153
stock_msg_body, 117, 119, 154, 154
stock_msg_footer, 117, 119, 154, 154
stop_if_not, 155
stop_on_fail (action_levels), 3
test_col_exists (col_exists), 7
test_col_is_character (col_is_character), 10
test_col_is_date (col_is_date), 14
test_col_is_factor (col_is_factor), 17
test_col_is_integer (col_is_integer), 21
test_col_is_logical (col_is_logical), 24
test_col_is_numeric (col_is_numeric), 28
test_col_is posix (col_is posix), 31
test_col_schema_match (col_schema_match), 37
test_col_vals_between (col_vals_between), 41
test_col_vals_equal (col_vals_equal), 47
test_col_vals_expr (col_vals_expr), 51
test_col_vals_gt (col_vals_gt), 55
test_col_vals_gte (col_vals_gte), 60
test_col_vals_in_set (col_vals_in_set), 64
test_col_vals_lt (col_vals_lt), 68
test_col_vals_lte (col_vals_lte), 73
test_col_vals_not_between (col_vals_not_between), 77
test_col_vals_not_equal (col_vals_not_equal), 83
test_col_vals_not_in_set (col_vals_not_in_set), 87
test_col_vals_not null (col_vals_not null), 91
test_col_vals_null (col_vals_null), 95
test_col_vals_regex (col_vals_regex), 99
test_conjointly (conjointly), 104
test_rows_distinct (rows_distinct), 145
validate_rmd, 5, 36, 111, 114, 116, 149, 156

vars(), 7
warn_on_fail (action_levels), 3
x_read_disk, 144, 145, 150, 157, 158
x_read_disk(), 158
x_write_disk, 144, 145, 150, 157, 158
x_write_disk(), 157, 167
yaml_agent_interrogate, 159, 161, 163, 165, 167, 169, 172
yaml_agent_interrogate(), 163, 172
yaml_agent_show_exprs, 159, 161, 163, 165, 167, 169, 172
yaml_agent_show_exprs(), 167
yaml_agent_string, 159, 161, 163, 165, 167, 169, 172
yaml_informant_incorporate, 159, 161, 163, 164, 167, 169, 172
yaml_read_agent, 159, 161, 163, 165, 167, 169, 172
yaml_read_agent(), 159, 163, 172
yaml_read_informant, 159, 161, 163, 165, 167, 169, 172
yaml_read_informant(), 164, 165
yaml_write, 159, 161, 163, 165, 167, 169, 171
yaml_write(), 161, 163, 167, 169