Package ‘pointblank’

July 14, 2022

Type Package
Version 0.11.0
Title Data Validation and Organization of Metadata for Local and Remote Tables
Description Validate data in data frames, 'tibble' objects, 'Spark' 'DataFrames', and database tables. Validation pipelines can be made using easily-readable, consecutive validation steps. Upon execution of the validation plan, several reporting options are available. User-defined thresholds for failure rates allow for the determination of appropriate reporting actions. Many other workflows are available including an information management workflow, where the aim is to record, collect, and generate useful information on data tables.
License MIT + file LICENSE
BugReports https://github.com/rich-iannone/pointblank/issues
Encoding UTF-8
LazyData true
ByteCompile true
RoxygenNote 7.2.0
Depends R (>= 3.5.0)
Imports base64enc (>= 0.1-3), blastula (>= 0.3.2), cli (>= 2.5.0), DBI (>= 1.1.0), digest (>= 0.6.27), dplyr (>= 1.0.6), dbplyr (>= 2.1.1), fs (>= 1.5.2), glue (>= 1.6.2), gt (>= 0.6.0), htmltools (>= 0.5.2), knitr (>= 1.30), rlang (>= 1.0.3), magrittr, scales (>= 1.1.1), testthat (>= 2.3.2), tibble (>= 3.1.7), tidyr (>= 1.2.0), tidyselect (>= 1.1.2), yaml (>= 2.2.1)
Suggests arrow, bigquery, covr, crayon, data.table, duckdb, ggforce, ggplot2, jsonlite, log4r, lubridate, RSQLite, RMySQL, RPostgres, readr, rmarkdown, sparklyr, dittodb, odbc
R topics documented:

- action_levels: 4
- activate_steps: 9
- affix_date: 10
- affix_datetime: 13
- all_passed: 16
- col_count_match: 17
- col_exists: 23
- col_is_character: 28
- col_is_date: 33
- col_is_factor: 38
- col_is_integer: 43
- col_is_logical: 49
- col_is_numeric: 54
- col_is POSIX: 59
- col_schema: 64
- col_schema_match: 66
- col_vals_between: 73
- col_vals_decreasing: 81
- col_vals_equal: 88
- col_vals_expr: 95
- col_vals_gt: 101
- col_vals_gte: 109
- col_vals_increasing: 116
- col_vals_in_set: 123
- col_vals_lt: 130
- col_valslte: 137
- col_vals_make_set: 144
- col_vals_make_subset: 150
- col_vals_not_between: 157
- col_vals_not_equal: 165
- col_vals_not_in_set: 172
- col_vals_not_null: 178
- col_vals_null: 184
- col_vals_regex: 190
- col_vals_within_spec: 197
- conjointly: 205
- create_agent: 212
R topics documented:

create_informant .. 220
create_multiagent 224
db_tbl .. 227
deactivate_steps .. 233
draft_validation ... 234
eemail_blast ... 240
e-mail_create ... 244
export_report .. 245
file_tbl .. 248
from_github ... 253
game_revenue ... 254
game_revenue_info .. 256
get_agent_report .. 256
get_agent_x_list ... 261
get_data_extraction 264
get_informant_report 266
get_multiagent_report 268
get_sundered_data .. 272
get_tt_param .. 276
has_columns ... 278
incorporate .. 281
info_columns .. 283
info_columns_from_tbl 287
info_section .. 289
info_snippet ... 292
info_tabular ... 295
interrogate .. 298
log4r_step .. 300
read_disk_multiagent 303
remove_steps ... 304
rows_complete .. 305
rows_distinct ... 311
row_count_match ... 317
scan_data .. 324
serially .. 326
set_tbl ... 333
small_table .. 334
small_table_sqlite 335
snip_highest ... 336
snip_list ... 337
snip_lowest .. 339
snip_stats ... 340
specially ... 342
specifications ... 348
stock_msg_body ... 349
stock_msg_footer ... 349
stop_if_not .. 350
tbl_get ... 351
The action_levels() function works with the actions argument that is present in the create_agent() function and in every validation step function (which also has an actions argument). With it, we can provide threshold fail levels for any combination of warn, stop, or notify states.

We can react to any entrance of a state by supplying corresponding functions to the fns argument. They will undergo evaluation at the time when the matching state is entered. If provided to create_agent() then the policies will be applied to every validation step, acting as a default for the validation as a whole.

Calls of action_levels() could also be applied directly to any validation step and this will act as an override if set also in create_agent(). Usage of action_levels() is required to have any useful side effects (i.e., warnings, throwing errors) in the case of validation functions operating directly on data (e.g., mtcars %>% col_vals_lt("mpg", 35)). There are two helper functions that are convenient when using validation functions directly on data (the agent-less workflow): warn_on_fail() and stop_on_fail(). These helpers either warn or stop (default failure threshold for each is set to 1), and, they do so with informative warning or error messages. The stop_on_fail() helper is applied by default when using validation functions directly on data (more information on this is provided in Details).
Usage

```r
action_levels(warn_at = NULL, stop_at = NULL, notify_at = NULL, fns = NULL)

warn_on_fail(warn_at = 1)

stop_on_fail(stop_at = 1)
```

Arguments

- `warn_at`, `stop_at`, `notify_at`

 The threshold number or fraction of test units that can provide a *fail* result before entering the *warn*, *stop*, or *notify* failure states. If this a decimal value between 0 and 1 then it’s a proportional failure threshold (e.g., 0.15 indicates that if 15% percent of the test units are found to *fail*, then the designated failure state is entered). Absolute values starting from 1 can be used instead, and this constitutes an absolute failure threshold (e.g., 10 means that if 10 of the test units are found to *fail*, the failure state is entered).

- `fns`

 A named list of functions that is to be paired with the appropriate failure states. The syntax for this list involves using failure state names from the set of *warn*, *stop*, and *notify*. The functions corresponding to the failure states are provided as formulas (e.g., `list(warn = ~ warning("Too many failures."))`). A series of expressions for each named state can be used by enclosing the set of statements with `{ }`.

Details

The output of the `action_levels()` call in `actions` will be interpreted slightly differently if using an *agent* or using validation functions directly on a data table. For convenience, when working directly on data, any values supplied to `warn_at` or `stop_at` will be automatically given a stock `warning()` or `stop()` function. For example using `small_table %>% col_is_integer("date")` will provide a detailed stop message by default, indicating the reason for the failure. If you were to supply the `fns` for `stop` or `warn` manually then the stock functions would be overridden. Furthermore, if `actions` is `NULL` in this workflow (the default), `pointblank` will use a `stop_at` value of 1 (providing a detailed, context-specific error message if there are any *fail* units). We can absolutely suppress this automatic stopping behavior by at each validation step by setting `active = FALSE`. In this interactive data case, there is no stock function given for `notify_at`. The notify failure state is less commonly used in this workflow as it is in the *agent*-based one.

When using an *agent*, we often opt to not use any functions in `fns` as the *warn*, *stop*, and *notify* failure states will be reported on when using `create_agent_report()` (and, usually that’s sufficient). Instead, using the `end_fns` argument is a better choice since that scheme provides useful data on the entire interrogation, allowing for finer control on side effects and reducing potential for duplicating any side effects.

Examples

For these examples, we will use the included `small_table` dataset.

```
small_table
```
Create an action_levels object with fractional values for the warn, stop, and notify states.

```r
al <- action_levels(
  warn_at = 0.2,
  stop_at = 0.8,
  notify_at = 0.5
)
```

A summary of settings for the al object is shown by printing it.

Create a pointblank agent and apply the al object to actions. Add two validation steps and interrogate the small_table.

```r
agent_1 <- create_agent(
  tbl = small_table,
  actions = al
) %>%
  col_vals_gt(
    columns = vars(a), value = 2
  ) %>%
  col_vals_lt(
    columns = vars(d), value = 20000
  ) %>%
  interrogate()
```

The report from the agent will show that the warn state has been entered for the first validation step but not the second one. We can confirm this in the console by inspecting the warn component in the agent's x-list.
Applying the action_levels object to the agent means that all validation steps will inherit these settings but we can override this by applying another such object to the validation step instead (this time using the warn_on_fail() shorthand).

agent_2 <-
create_agent(
 tbl = small_table,
 actions = al
)
%>%
col_vals_gt(
 columns = vars(a), value = 2,
 actions = warn_on_fail(warn_at = 0.5)
)
%>%
col_vals_lt(
 columns = vars(d), value = 20000
)
%>%
interrogate()

In this case, the first validation step has a less stringent failure threshold for the warn state and it’s high enough that the condition is not entered. This can be confirmed in the console through inspection of the x-list warn component.

x_list <- get_agent_x_list(agent = agent_2)

x_list$warn
[1] FALSE FALSE

In the context of using validation functions directly on data (i.e., no involvement of an agent) we want to trigger warnings and raise errors. The following will yield a warning if it is executed (returning the small_table data).

small_table %>%
col_vals_gt(
 columns = vars(a), value = 2,
 actions = warn_on_fail(warn_at = 2)
)

A tibble: 13 × 8
date_time date a b c d e
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl>
1 2016-01-04 11:00:00 2016-01-04 2 bcd- . 3 3423. TRUE
With the same pipeline, not supplying anything for actions (it’s NULL by default) will have the same effect as using `stop_on_fail(stop_at = 1)`.

```r
small_table %>%
  col_vals_gt(columns = vars(a), value = 2)
```

Error: Exceedance of failed test units where values in `a` should have been > 2.
The `col_vals_gt()` validation failed beyond the absolute threshold level (1).
* failure level (4) >= failure threshold (1)

Here’s the equivalent set of statements:

```r
small_table %>%
  col_vals_gt(
    columns = vars(a), value = 2,
    actions = stop_on_fail(stop_at = 1)
  )
```

Error: Exceedance of failed test units where values in `a` should have been > 2.
The `col_vals_gt()` validation failed beyond the absolute threshold level (1).
* failure level (4) >= failure threshold (1)

This is because the `stop_on_fail()` call is auto-injected in the default case (when operating on data) for your convenience. Behind the scenes a ‘secret agent’ uses ‘covert actions’: all so you can type less.
activate_steps

Function ID

1-5

See Also

Other Planning and Prep: create_agent(), create_informant(), db_tbl(), draft_validation(), file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

activate_steps Activate one or more of an agent’s validation steps

Description

If certain validation steps need to be activated after the creation of the validation plan for an agent, use the activate_steps() function. This is equivalent to using the active = TRUE for the selected validation steps (active is an argument in all validation functions). This will replace any function that may have been defined for the active argument during creation of the targeted validation steps.

Usage

activate_steps(agent, i = NULL)

Arguments

agent An agent object of class ptblank_agent.

i The validation step number, which is assigned to each validation step in the order of definition.

Value

A ptblank_agent object.

Function ID

9-5

See Also

For the opposite behavior, use the deactivate_steps() function.

Other Object Ops: deactivate_steps(), export_report(), remove_steps(), set_tbl(), x_read_disk(), x_write_disk()
Examples

```r
agent_1 <-
  create_agent(
    tbl = small_table,
    tbl_name = "small_table",
    label = "An example."
  ) %>%
  col_exists(
    columns = vars(date),
    active = FALSE
  ) %>%
  col_vals_regex(
    columns = vars(b),
    regex = "\[0-9\]-[a-z]\{3\}-\[0-9\]\{3\}",
    active = FALSE
  ) %>%
  interrogate()

# In the above, the data is
# not actually interrogated
# because the `active` setting
# was `FALSE` in all steps; we
# can selectively change this
# with `activate_steps`
agent_2 <-
  agent_1 %>%
  activate_steps(i = 1) %>%
  interrogate()
```

affix_date

Put the current date into a file name

Description

This function helps to affix the current date to a filename. This is useful when writing \textit{agent} and/or \textit{informant} objects to disk as part of a continuous process. The date can be in terms of UTC time or the local system time. The date can be affixed either to the end of the filename (before the file extension) or at the beginning with a customizable delimiter.

The \texttt{x_write_disk()}, \texttt{yaml_write()} functions allow for the writing of \texttt{pointblank} objects to disk. Furthermore the \texttt{log4r_step()} function has the append_to argument that accepts filenames, and, it’s reasonable that a series of log files could be differentiated by a date component in the naming scheme. The modification of the filename string takes effect immediately but not at the time of writing a file to disk. In most cases, especially when using \texttt{affix_date()} with the aforementioned
file-writing functions, the file timestamps should approximate the time components affixed to the filenames.

Usage

```r
affix_date(
  filename,
  position = c("end", "start"),
  format = "%Y-%m-%d",
  delimiter = ",",
  utc_time = TRUE
)
```

Arguments

- **filename**: The filename to modify.
- **position**: Where to place the formatted date. This could either be at the "end" of the filename (the default) or at the "start".
- **format**: A `base::strptime()` format string for formatting the date. By default, this is "%Y-%m-%d" which expresses the date according to the ISO 8601 standard (as YYYY-MM-DD). Refer to the documentation on `base::strptime()` for conversion specifications if planning to use a different format string.
- **delimiter**: The delimiter characters to use for separating the date string from the original file name.
- **utc_time**: An option for whether to use the current UTC time to establish the date (the default, with TRUE), or, use the system’s local time (FALSE).

Value

A character vector.

Examples

The basics of creating a filename with the current date:

Taking the generic "pb_file" name for a file, we add the current date to it as a suffix.

```r
affix_date(filename = "pb_file")
#> [1] "pb_file_2022-04-01"
```

File extensions won’t get in the way:

```r
affix_date(filename = "pb_file.rds")
#> [1] "pb_file_2022-04-01.rds"
```

The date can be used as a prefix.

```r
affix_date(
  filename = "pb_file",
  position = "start"
)
```
The date pattern can be changed and so can the delimiter.

```r
affix_date(
  filename = "pb_file.yml",
  format = "%Y%m%d",
  delimiter = "-"
)
```

[1] "pb_file-20220401.yml"

Using a date-based filename in a pointblank workflow:

We can use a file-naming convention involving dates when writing output files immediately after interrogating. This is just one example (any workflow involving a `filename` argument is applicable). It’s really advantageous to use date-based filenames when interrogating directly from YAML in a scheduled process.

```r
yaml_agent_interrogate(
  filename = system.file("yaml", "agent-small_table.yml",
                        package = "pointblank"
  )
)
```  

```r
x_write_disk(
  filename = affix_date(
    filename = "small_table_agent.rds",
    delimiter = "-"
  ),
  keep_tbl = TRUE,
  keep_extracts = TRUE
)
```

In the above, we used the written-to-disk agent (The "agent-small_table.yml" YAML file) for an interrogation via `yaml_agent_interrogate()`. Then, the results were written to disk as an RDS file. In the `filename` argument of `x_write_disk()`, the `affix_date()` function was used to ensure that a daily run would produce a file whose name indicates the day of execution.

Function ID

13-3

See Also

The `affix_datetime()` function provides the same features except it produces a datetime string by default.

Other Utility and Helper Functions: `affix_datetime()`, `col_schema()`, `from_github()`, `has_columns()`, `stop_if_not()`
affix_datetime

Put the current datetime into a file name

Description

This function helps to affix the current datetime to a filename. This is useful when writing agent and/or informant objects to disk as part of a continuous process. The datetime string can be based on the current UTC time or the local system time. The datetime can be affixed either to the end of the filename (before the file extension) or at the beginning with a customizable delimiter. Optionally, the time zone information can be included. If the datetime is based on the local system time, the user system time zone is shown with the format <time>(+/-)hmm. If using UTC time, then the <time>Z format is adopted.

The x_write_disk(), yaml_write() functions allow for the writing of pointblank objects to disk. The modification of the filename string takes effect immediately but not at the time of writing a file to disk. In most cases, especially when using affix_datetime() with the aforementioned file-writing functions, the file timestamps should approximate the time components affixed to the filenames.

Usage

affix_datetime(
 filename,
 position = c("end", "start"),
 format = "%Y-%m-%dT%H:%M:%S",
 delimiter = "_",
 utc_time = TRUE,
 add_tz = FALSE
)

Arguments

filename
 The filename to modify.

position
 Where to place the formatted datetime. This could either be at the "end" of the filename (the default) or at the "start".

format
 A base::strptime() format string for formatting the datetime. By default, this is "%Y-%m-%d %H:%M:%S" which expresses the date according to the ISO 8601 standard. For example, if the current datetime is 2020-12-04 13:11:23, the formatted string would become "2020-12-04T13:11:23". Refer to the documentation on base::strptime() for conversion specifications if planning to use a different format string.

delimiter
 The delimiter characters to use for separating the datetime string from the original file name.

utc_time
 An option for whether to use the current UTC time to establish the datetime (the default, with TRUE), or, use the system's local time (FALSE).
affix_datetime

add_tz

Should the time zone (as an offset from UTC) be provided? If TRUE then the UTC offset will be either provided as <time>Z (if utc_time = TRUE) or <time>(+-)hhmm. By default, this is FALSE.

Value

A character vector.

Examples

The basics of creating a filename with the current date and time:
Taking the generic "pb_file" name for a file, we add the current datetime to it as a suffix.

```r
affix_datetime(filename = 'pb_file')
## [1] "pb_file_2022-04-01_00-32-53"
```

File extensions won't get in the way:

```r
affix_datetime(filename = 'pb_file.rds')
## [1] "pb_file_2022-04-01_00-32-53.rds"
```

The datetime can be used as a prefix.

```r
affix_datetime(
  filename = 'pb_file',
  position = "start"
)
## [1] "2022-04-01_00-32-53_pb_file"
```

The datetime pattern can be changed and so can the delimiter.

```r
affix_datetime(
  filename = 'pb_file.yml',
  format = "%Y%m%d_%H%M%S",
  delimiter = "-"
)
## [1] "pb_file-20220401_003253.yml"
```

Time zone information can be included. By default, all datetimes are given in the UTC time zone.

```r
affix_datetime(
  filename = 'pb_file.yml',
  add_tz = TRUE
)
## [1] "pb_file_2022-04-01_00-32-53Z.yml"
```

We can use the system's local time zone with utc_time = FALSE.
Using a datetime-based filename in a pointblank workflow:

We can use a file-naming convention involving datetimes when writing output files immediately after interrogating. This is just one example (any workflow involving a filename argument is applicable). It’s really advantageous to use datetime-based filenames when interrogating directly from YAML in a scheduled process, especially if multiple validation runs per day are being executed on the same target table.

```r
yaml_agent_interrogate(
  filename = system.file(
    "yaml", "agent-small_table.yml",
    package = "pointblank"
  )
) %>%
x_write_disk(
  filename = affix_datetime(
    filename = "small_table_agent.rds",
    delimiter = "-"
  ),
  keep_tbl = TRUE,
  keep_extracts = TRUE
)
```

In the above, we used the written-to-disk agent (The "agent-small_table.yml" YAML file) for an interrogation via `yaml_agent_interrogate()`. Then, the results were written to disk as an RDS file. In the filename argument of `x_write_disk()`, the `affix_datetime()` function was used to ensure that frequent runs would produce files whose names indicate the day and time of execution.

Function ID

13-4

See Also

The `affix_date()` function provides the same features except it produces a date string by default.

Other Utility and Helper Functions: `affix_date()`, `col_schema()`, `from_github()`, `has_columns()`, `stop_if_not()`
all_passed

Did all of the validations fully pass?

Description

Given an agent’s validation plan that had undergone interrogation via `interrogate()`, did every single validation step result in zero failing test units? Using the `all_passed()` function will let us know whether that’s TRUE or not.

Usage

```r
all_passed(agent, i = NULL)
```

Arguments

- `agent`: An agent object of class `ptblank_agent`.
- `i`: A vector of validation step numbers. These values are assigned to each validation step by `pointblank` in the order of definition. If `NULL` (the default), all validation steps will be used for the evaluation of complete passing.

Details

The `all_passed()` function provides a single logical value based on an interrogation performed in the `agent`-based workflow. For very large-scale validation (where data quality is a known issue, and is perhaps something to be tamed over time) this function is likely to be less useful since it is quite stringent (all test units must pass across all validation steps).

Should there be a requirement for logical values produced from validation, a more flexible alternative is in using the test (`test_*()`) variants of the validation functions. Each of those produce a single logical value and each and have a threshold option for failure levels. Another option is to utilize post-interrogation objects within the agent’s x-list (obtained by using the `get_agent_x_list()` function). This allows for many possibilities in producing a single logical value from an interrogation.

Value

A logical value.

Examples

Create a simple table with a column of numerical values.

```r
tbl <- dplyr::tibble(a = c(4, 5, 7, 8))

tbl
```
A tibble: 4 × 1
a
<dbl>
1 4
2 5
3 7
4 8

Validate that values in column a are always greater than 4.

```r
agent <-
  create_agent(tbl = tbl) %>%
  col_vals_gt(columns = vars(a), value = 3) %>%
  col_vals_lte(columns = vars(a), value = 10) %>%
  col_vals_increasing(columns = vars(a)) %>%
  interrogate()
```

Determine if these column validations have all passed by using all_passed() (they do).

```r
all_passed(agent = agent)
#> [1] TRUE
```

Function ID
8-4

See Also
Other Post-interrogation: get_agent_x_list(), get_data_extracts(), get_sundered_data(), write_testthat_file()

<table>
<thead>
<tr>
<th>col_count_match</th>
<th>Does the column count match that of a different table?</th>
</tr>
</thead>
</table>

Description
The `col_count_match()` validation function, the `expect_col_count_match()` expectation function, and the `test_col_count_match()` test function all check whether the column count in the target table matches that of a comparison table. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. As a validation step or as an expectation, there is a single test unit that hinges on whether the column counts for the two tables are the same (after any preconditions have been applied).
Usage

col_count_match(
 x,
 count,
 preconditions = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_count_match(object, count, preconditions = NULL, threshold = 1)
test_col_count_match(object, count, preconditions = NULL, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

count Either a literal value for the number of columns, or, a table to compare against the target table in terms of column count values. If supplying a comparison table, it can either be a table object such as a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, a table-prep formula (~ <table reading code>) or a function (function() <table reading code>) can be used to lazily read in the comparison table at interrogation time.

preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in `create_agent()`'s `lang` argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `. (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d, e)))`. The default for `active` is `TRUE`.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a *pointblank_agent* object or a table object (depending on whether an *agent* object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
 - *PostgreSQL* tables (using the RPostgres::Postgres() as driver)
 - *MySQL* tables (with RMySQL::MySQL())
 - *Microsoft SQL Server* tables (via odbc)
 - *BigQuery* tables (using bigquery::bigquery())
 - *DuckDB* tables (through duckdb::duckdb())
 - *SQLite* (with RSQLite::SQLite())
Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that this particular validation requires some operation on the target table before the column count comparison takes place. Using preconditions can be useful at times since since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed. Alternatively, a function could instead be supplied.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_count_match() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_count_match() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_count_match(
    count = ~ file_tbl(
      file = from_github(
        file = "sj_all_revenue_large.rds",
        repo = "rich-iannone/intendo",
```
subdir = "data-large"
)
),
preconditions = ~ . %>% dplyr::filter(a < 10),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_count_match()` step.",
active = FALSE
)

YAML representation:

steps:
 - col_count_match:
 count: ~ file_tbl(
 file = from_github(
 file = "sj_all_revenue_large.rds",
 repo = "rich-iannone/intendo",
 subdir = "data-large"
)
)
 preconditions: ~. %>% dplyr::filter(a < 10)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_count_match()` step.
 active: false

In practice, both of these will often be shorter. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

Create a simple table with three columns and three rows of values:

tbl <-
dplyr::tibble(
a = c(5, 7, 6),
b = c(7, 1, 0),
c = c(1, 1, 1)
)
tbl

A tibble: 3 × 3
a b c
<dbl> <dbl> <dbl>
1 5 7 1
2 7 1 1
3 6 0 1

Create a second table which is quite different but has the same number of columns as tbl.

```r
tbl_2 <-
  dplyr::tibble(
    e = c("a", NA, "a", "c"),
    f = c(2.6, 1.2, 0, NA),
    g = c("f", "g", "h", "i")
  )

tbl_2
```

```
## # A tibble: 4 × 3
##   e    f    g
## <chr> <dbl> <chr>
## 1 a    2.6  f
## 2 NA   1.2  g
## 3 a    0    h
## 4 c    NA  i
```

We’ll use these tables with the different function variants.

A: Using an agent with validation functions and then interrogate():
Validate that the count of columns in the target table (tbl) matches that of the comparison table (tbl_2).

```r
agent <-
  create_agent(tbl = tbl) %>%
  col_count_match(count = tbl_2) %>%
  interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

**B: Using the validation function directly on the data (no agent):**
This way of using validation functions acts as a data filter: data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>% col_count_match(count = tbl_2)
```

```
A tibble: 3 × 3
a b c
<dbl> <dbl> <dbl>
1 5 7 1
2 7 1 1
3 6 0 1
```
C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

\[\text{expect_col_count_match(tbl, count = tbl_2)}\]

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

\[\text{tbl \%\% test_col_count_match(count = 3)}\]

\[
\#\# \text{[1]} \text{ TRUE}
\]

Function ID

2-32

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(), col_vals_increasing(), col_vals_lte(), col_vals_lt(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()
```
col_exists

 brief = NULL,
 active = TRUE
)

expect_col_exists(object, columns, threshold = 1)
test_col_exists(object, columns, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns One or more columns from the table in focus. This can be provided as a vector of column names using c() or bare column names enclosed in vars().
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.
```
col_exists

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. Using \texttt{action\_levels(warn\_at = 1)} or \texttt{action\_levels(stop\_at = 1)} are good choices depending on the situation (the first produces a warning, the other \texttt{stop()}).

**Briebs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \(x\) is an \textit{agent}. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The \texttt{autobrief} protocol is kicked in when \texttt{brief = NULL} and a simple brief will then be automatically generated.

**YAML**

A \texttt{pointblank} agent can be written to YAML with \texttt{yaml\_write()} and the resulting YAML can be used to regenerate an agent (with \texttt{yaml\_read\_agent()}) or interrogate the target table (via \texttt{yaml\_agent\_interrogate()}). When \texttt{col\_exists()} is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of \texttt{col\_exists()} as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_exists(
 columns = vars(a),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The \texttt{\textbackslash{col_exists()}} step.",
 active = FALSE
)
```

YAML representation:

```yaml
steps:
 - col_exists:
 columns: vars(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The \texttt{\textbackslash{col_exists()}} step.
 active: false
```

In practice, both of these will often be shorter as only the \texttt{columns} argument requires a value. Arguments with default values won’t be written to YAML when using \texttt{yaml\_write()} (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the \texttt{yaml\_agent\_string()} function.
Examples

For all examples here, we’ll use a simple table with two columns: a and b.

```r
tbl <-
 dplyr::tibble(
 a = c(5, 7, 6, 5, 8, 7),
 b = c(7, 1, 0, 0, 0, 3)
)

tbl
```

We’ll use this table with the different function variants.

A: Using an agent with validation functions and then `interrogate()`:
Validate that column a exists in the tbl table with col_exists().

```r
agent <-
 create_agent(tbl = tbl) %>%
 col_exists(columns = vars(a)) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>% col_exists(columns = vars(a))
```
C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_exists(tbl, columns = vars(a))
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
tbl %>% test_col_exists(columns = vars(a))
[1] TRUE
```

**Function ID**
2-29

**See Also**
Other validation functions: `col_count_match()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

---

**col_is_character**

*Do the columns contain character/string data?*

**Description**

The `col_is_character()` validation function, the `expect_col_is_character()` expectation function, and the `test_col_is_character()` test function all check whether one or more columns in a table is of the character type. Like many of the `col_is_*()`-type functions in pointblank, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is a character-type column or not.

**Usage**

```r
col_is_character(
 x,
 columns,
 actions = NULL,
 step_id = NULL,
```
\begin{verbatim}
label = NULL,
brief = NULL,
active = TRUE
)

expect_col_is_character(object, columns, threshold = 1)
test_col_is_character(object, columns, threshold = 1)

Arguments

x          A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with \texttt{create_agent()}. columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the \texttt{action_levels()} helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and \texttt{pointblank} will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of \texttt{columns} provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an \texttt{autobrief} is generated by the agent, using the language provided in \texttt{create_agent()}’s \texttt{lang} argument (which defaults to “en” or English). The \texttt{autobrief} incorporates details of the validation step so it’s often the preferred option in most cases (where a \texttt{label} might be better suited to succinctly describe the validation).
active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading \texttt{~} can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the \texttt{pointblank} function \texttt{has_columns()} can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., \texttt{~ . \%\%\% has_columns(vars(d, e))}). The default for active is TRUE.
\end{verbatim}
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names
If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Actions
Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when \( x \) is a table object because, otherwise, nothing happens. For the `col_is_*()`-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will stop()).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an agent. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_is_character()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_is_character()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_is_character(
 columns = vars(a),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The \`col_is_character\` step.",
 active = FALSE
)
```

YAML representation:

```yaml
steps:
 - col_is_character:
 columns: vars(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_is_character`' step.
 active: false
```

In practice, both of these will often be shorter as only the `columns` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.
Examples

For all examples here, we’ll use a simple table with a numeric column (a) and a character column (b).

```r
tbl <-
 dplyr::tibble(
 a = c(5, 7, 6, 5, 8, 7),
 b = LETTERS[1:6]
)

tbl
```

```
A tibble: 6 × 2
a b
<dbl> <chr>
1 5 A
2 7 B
3 6 C
4 5 D
5 8 E
6 7 F
```

We’ll use this table with the different function variants.

A: Using an agent with validation functions and then `interrogate()`:
Validate that column b has the character class.

```r
agent <-
 create_agent(tbl = tbl) %>%
 col_is_character(columns = vars(b)) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>%
 col_is_character(columns = vars(b)) %>%
 dplyr::slice(1:5)
```

```
A tibble: 5 × 2
a b
<dbl> <chr>
1 5 A
```
col_is_date

```r
2 7 B
3 6 C
4 5 D
5 8 E
```

C: Using the expectation function:

With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_col_is_character(tbl, columns = vars(b))
```

D: Using the test function:

With the `test_*()` form, we should get a single logical value returned to us.

```r
tbl %>% test_col_is_character(columns = vars(b))
[1] TRUE
```

Function ID

2-22

See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

<table>
<thead>
<tr>
<th>col_is_date</th>
<th>Do the columns contain R Date objects?</th>
</tr>
</thead>
</table>

Description

The `col_is_date()` validation function, the `expect_col_is_date()` expectation function, and the `test_col_is_date()` test function all check whether one or more columns in a table is of the R Date type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is a Date-type column or not.
Usage

```r
col_is_date(
 x,
 columns,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_is_date(object, columns, threshold = 1)
test_col_is_date(object, columns, threshold = 1)
```

Arguments

- **x**
  - A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an `agent` object of class `ptblank_agent` that is created with `create_agent()`.

- **columns**
  - The column (or a set of columns, provided as a character vector) to which this validation should be applied.

- **actions**
  - A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

- **step_id**
  - One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

- **label**
  - An optional label for the validation step. This label appears in the `agent` report and for the best appearance it should be kept short.

- **brief**
  - An optional, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the `agent`, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).

- **active**
  - A logical value indicating whether the validation step should be active. If the validation function is working with an `agent`, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no `agent`
involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d, e)))`. The default for `active` is `TRUE`.

- **object**: A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

- **threshold**: A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

### Value

For the validation function, the return value is either a `pointblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

### Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - PostgreSQL tables (using the `RPostgres::Postgres()` as driver)
  - MySQL tables (with `RMySQL::MySQL()`)
  - Microsoft SQL Server tables (via `odbc`)
  - BigQuery tables (using `bigquery::bigquery()`)
  - DuckDB tables (through `duckdb::duckdb()`)
  - SQLite (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

### Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.
Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_is_*()`-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will `stop()`).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_is_date()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_is_date()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_is_date(
 columns = vars(a),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_is_date()` step.",
 active = FALSE
)
```

YAML representation:

```yaml
steps:
 - col_is_date:
 columns: vars(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_is_date()` step.
 active: false
```

In practice, both of these will often be shorter as only the `columns` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is
acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Examples**

The `small_table` dataset in the package has a `date` column. The following examples will validate that that column is of the `Date` class.

```r
small_table
```

```r
A tibble: 13 × 8
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high
```

**A: Using an agent with validation functions and then `interrogate()`:**

Validate that the column `date` has the `Date` class.

```r
agent <-
create_agent(tbl = small_table) %>%
col_is_date(columns = vars(date)) %>%
interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

**B: Using the validation function directly on the data (no agent):**

This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
col_is_date(columns = vars(date)) %>%
dplyr::slice(1:5)
```
col_is_factor

Do the columns contain R factor objects?

The `col_is_factor()` validation function, the `expect_col_is_factor()` expectation function, and the `test_col_is_factor()` test function all check whether one or more columns in a table is of the factor type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is a factor-type column or not.
Usage

```r
col_is_factor(
 x,
 columns,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_is_factor(object, columns, threshold = 1)
```

```r
test_col_is_factor(object, columns, threshold = 1)
```

Arguments

- **x**: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an `agent` object of class `ptblank_agent` that is created with `create_agent()`.

- **columns**: The column (or a set of columns, provided as a character vector) to which this validation should be applied.

- **actions**: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

- **step_id**: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of `columns` provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

- **label**: An optional label for the validation step. This label appears in the `agent` report and for the best appearance it should be kept short.

- **brief**: An optional, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the `agent`, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).

- **active**: A logical value indicating whether the validation step should be active. If the validation function is working with an `agent`, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no `agent`
involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `.` (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d, e)))`. The default for `active` is `TRUE`.

**object**
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**
A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**
For the validation function, the return value is either a `pointblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Supported Input Tables**
The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - `PostgreSQL` tables (using the `RPostgres::Postgres()` as driver)
  - `MySQL` tables (with `RMySQL::MySQL()`)
  - `Microsoft SQL Server` tables (via `odbc`)
  - `BigQuery` tables (using `bigquery::bigquery()`)
  - `DuckDB` tables (through `duckdb::duckdb()`)
  - `SQLite` (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

**Column Names**
If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.
**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_is_*()`-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will `stop()`).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A **pointblank** agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()` or interrogate the target table (via `yaml_agent_interrogate()`). When `col_is_factor()` is represented in YAML (under the top-level `steps` key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_is_factor()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_is_factor(
 columns = vars(a),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_is_factor()` step.",
 active = FALSE
)
```

YAML representation:

```yaml
steps:
- col_is_factor:
 columns: vars(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_is_factor()` step.
 active: false
```

In practice, both of these will often be shorter as only the `columns` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is
acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

Let’s modify the `f` column in the `small_table` dataset so that the values are factors instead of having the character class. The following examples will validate that the `f` column was successfully mutated and now consists of factors.

```r
tbl <-
 small_table %>%
 dplyr::mutate(f = factor(f))

tbl
```

A: Using an agent with validation functions and then `interrogate()`:
Validate that the column `f` in the `tbl` object is of the factor class.

```r
agent <-
 create_agent(tbl = tbl) %>%
 col_is_factor(columns = vars(f)) %>%
 interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.
Do the columns contain integer values?
Description

The col_is_integer() validation function, the expect_col_is_integer() expectation function, and the test_col_is_integer() test function all check whether one or more columns in a table is of the integer type. Like many of the col_is_*()-type functions in pointblank, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is an integer-type column or not.

Usage

col_is_integer(
 x,
 columns,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_is_integer(object, columns, threshold = 1)

test_col_is_integer(object, columns, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.

actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief

An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the agent, using the language provided in `create_agent()`’s `lang` argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

active

A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% `has_columns(vars(d, e)))`. The default for `active` is TRUE.

object

A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl.spark`) that serves as the target table for the expectation function or the test function.

threshold

A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding *test* test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a *pointblank_agent* object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

* data frames (`data.frame`) and tibbles (`tbl_df`)
* Spark DataFrames (`tbl.spark`)
* the following database tables (`tbl_dbi`):
 * PostgreSQL tables (using the `RPostgres::Postgres()` as driver)
 * MySQL tables (with `RMySQL::MySQL()`)
 * Microsoft SQL Server tables (via `odbc`)
 * BigQuery tables (using `bigquery::bigquery()`)
 * DuckDB tables (through `duckdb::duckdb()`)
 * SQLite (with `RSQLite::SQLite()`)
Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_is_integer() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_is_integer() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_is_integer(
    columns = vars(a),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_is_integer()` step.",
    active = FALSE
  )
```

YAML representation:
steps:
- col_is_integer:
 columns: vars(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_is_integer()` step.
 active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all examples here, we’ll use a simple table with a character column (a) and a integer column (b).

```r
tbl <-
dplyr::tibble(
  a = letters[1:6],
  b = 2:7
)
tbl
```

```
## # A tibble: 6 × 2
##   a  b
## <chr> <int>
## 1 a   2
## 2 b   3
## 3 c   4
## 4 d   5
## 5 e   6
## 6 f   7
```

A: Using an agent with validation functions and then `interrogate()`:
Validate that column b has the integer class.

```r
agent <-
create_agent(tbl = tbl) %>%
col_is_integer(columns = vars(b)) %>%
interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.
B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>% col_is_integer(columns = vars(b))
```

```
## # A tibble: 6 × 2
## a b
## <chr> <int>
## 1 a 2
## 2 b 3
## 3 c 4
## 4 d 5
## 5 e 6
## 6 f 7
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_is_integer(tbl, columns = vars(b))
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
tbl %>% test_col_is_integer(columns = vars(b))
```

```
## [1] TRUE
```

Function ID

2-24

See Also

Description

The `col_is_logical()` validation function, the `expect_col_is_logical()` expectation function, and the `test_col_is_logical()` test function all check whether one or more columns in a table is of the logical (TRUE/FALSE) type. Like many of the `col_is_*()`-type functions in *pointblank*, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is an logical-type column or not.

Usage

```r
col_is_logical(
  x,
  columns,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)
```

```r
expect_col_is_logical(object, columns, threshold = 1)
```

```r
test_col_is_logical(object, columns, threshold = 1)
```

Arguments

- `x` A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an `agent` object of class `ptblank_agent` that is created with `create_agent()`.
- `columns` The column (or a set of columns, provided as a character vector) to which this validation should be applied.
- `actions` A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.
- `step_id` One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and *pointblank* will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . ~%% has_columns(vars(d, e))). The default for active is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - `PostgreSQL` tables (using the `RPostgres::Postgres()` as driver)
 - `MySQL` tables (with `RMySQL::MySQL()`)

```
50
```
- Microsoft SQL Server tables (via `odbc`)
- BigQuery tables (using `bigrquery::bigquery()`)
- DuckDB tables (through `duckdb::duckdb()`)
- SQLite (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_is_*()`-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will stop()).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A `pointblank` agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_is_logical()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_is_logical()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```
agent %>%
col_is_logical(
  columns = vars(a),
  actions = action_levels(warn_at = 0.1, stop_at = 0.2),
  label = "The \`col_is_logical\` step."
```

YAML:

```
- col_is_logical:
  columns: [a]
  warn_at: 0.1
  stop_at: 0.2
  label: "The `col_is_logical` step."
```
In practice, both of these will often be shorter as only the `columns` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package has an `e` column which has logical values. The following examples will validate that that column is of the logical class.

```r
small_table
## # A tibble: 13 × 8
## date_time date a b c d e f
## <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
## 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
## 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
## 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
## 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
## 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
## 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
## 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
## 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
## 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
## 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
## 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
## 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
## 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high
```

A: Using an agent with validation functions and then `interrogate()`:

Validate that the column `e` has the logical class.

```r
agent <-
create_agent(tbl = small_table) %>%
col_is_logical(columns = vars(e)) %>%
interrogate()
```
Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
small_table %>%
  col_is_logical(columns = vars(e)) %>%
dplyr::slice(1:5)
## # A tibble: 5 × 8
##   date_time         date    a     b   c    d  e  f
##    <dttm>        <date>   <int> <chr> <dbl> <dbl> <lgl> <chr>
## 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
## 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
## 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
## 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
## 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
```

C: Using the expectation function:

With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_is_logical(small_table, columns = vars(e))
```

D: Using the test function:

With the test_*() form, we should get a single logical value returned to us.

```r
small_table %>% test_col_is_logical(columns = vars(e))
## [1] TRUE
```

Function ID

2-25

See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
Description

The `col_is_numeric()` validation function, the `expect_col_is_numeric()` expectation function, and the `test_col_is_numeric()` test function all check whether one or more columns in a table is of the numeric type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is a numeric-type column or not.

Usage

```r
col_is_numeric(
  x,
  columns,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_col_is_numeric(object, columns, threshold = 1)

test_col_is_numeric(object, columns, threshold = 1)
```

Arguments

- **x**: A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an `agent` object of class `ptblank_agent` that is created with `create_agent()`.
- **columns**: The column (or a set of columns, provided as a character vector) to which this validation should be applied.
- **actions**: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.
- **step_id**: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief

An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
 - PostgreSQL tables (using the RPostgres::Postgres() as driver)
 - MySQL tables (with RMySQL::MySQL())
- Microsoft SQL Server tables (via `odbc`)
- BigQuery tables (using `bigrquery::bigquery()`)
- DuckDB tables (through `duckdb::duckdb()`)
- SQLite (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_is_*()`-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will `stop()`).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A `pointblank` agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`), or interrogate the target table (via `yaml_agent_interrogate()`). When `col_is_numeric()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_is_numeric()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_is_numeric(
columns = vars(a),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_is_numeric()` step."
)```

YAML representation:

```yaml
- col_is_numeric(
 columns = vars(a),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_is_numeric()` step."
)```
YAML representation:

steps:
 - col_is_numeric:
 columns: vars(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_is_numeric()` step.
 active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package has a d column that is known to be numeric. The following examples will validate that that column is indeed of the numeric class.

```r
small_table
```

A tibble: 13 × 8
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then `interrogate()`:

Validate that the column d has the numeric class.

```r
agent <-
create_agent(tbl = small_table) %>%
col_is_numeric(columns = vars(d)) %>%
interrogate()
```
Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
small_table %>%
  col_is_numeric(columns = vars(d)) %>%
dplyr::slice(1:5)
```

```r
## # A tibble: 5 × 8
## #  <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
## 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
## 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
## 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
## 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
## 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_is_numeric(small_table, columns = vars(d))
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
small_table %>% test_col_is_numeric(columns = vars(d))
```

```r
## [1] TRUE
```

Function ID
2-23

See Also
Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
Description

The `col_is_posix()` validation function, the `expect_col_is_posix()` expectation function, and the `test_col_is_posix()` test function all check whether one or more columns in a table is of the R POSIXct date-time type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an agent object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is a POSIXct-type column or not.

Usage

```r
col_is_posix(
  x,
  columns,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_col_is_posix(object, columns, threshold = 1)

test_col_is_posix(object, columns, threshold = 1)
```

Arguments

- **x**
 A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class `ptblank_agent` that is created with `create_agent()`.

- **columns**
 The column (or a set of columns, provided as a character vector) to which this validation should be applied.

- **actions**
 A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

- **step_id**
 One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label
An optional label for the validation step. This label appears in the *agent* report
and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided
here then an *autobrief* is generated by the *agent*, using the language provided
in *create_agent()*’s `lang` argument (which defaults to ”en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a *label* might be better suited to succinctly describe
the validation).

active
A logical value indicating whether the validation step should be active. If the
validation function is working with an *agent*, `FALSE` will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no *agent*
involvement), then any step with `active = FALSE` will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading `~` can be used with `. (serving as the input data table)
to evaluate to a single logical value. With this approach, the *pointblank* function
has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., `~ . %>%
has_columns(vars(d, e)))`. The default for `active` is `TRUE`.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_)
and the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding *testthat* test or evaluate to `TRUE`. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a *ptblank_agent* object or a table object (de-
pending on whether an agent object or a table was passed to `x`). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
 - *PostgreSQL* tables (using the RPostgres::Postgres() as driver)
 - *MySQL* tables (with RMySQL::MySQL())
- Microsoft SQL Server tables (via `odbc`)
- BigQuery tables (using `bigrquery::bigquery()`)
- DuckDB tables (through `duckdb::duckdb()`)
- SQLite (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_is_*()`-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will stop()).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A `pointblank` agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_is_posix()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_is_posix()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_is_posix(
    columns = vars(a),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_is_posix()` step."
  )
```
```
active = FALSE
)

YAML representation:

steps:
  - col_is_posix:
      columns: vars(a)
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The `col_is_posix()` step.
      active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package has a `date_time` column. The following examples will validate that that column is of the POSIXct and POSIXt classes.

```
small_table
```n
A: Using an agent with validation functions and then `interrogate()`:
Validate that the column `date_time` is indeed a date-time column.

```r
agent <-
 create_agent(tbl = small_table) %>%
 col_is_posix(columns = vars(date_time)) %>%
 interrogate()
```
Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

**B: Using the validation function directly on the data (no agent):**

This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
small_table %>%
 col_is_posix(columns = vars(date_time)) %>%
dplyr::slice(1:5)
```

```
A tibble: 5 x 8
A tibble: 10 × 8
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
```

**C: Using the expectation function:**

With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_is_posix(small_table, columns = vars(date_time))
```

**D: Using the test function:**

With the test_*() form, we should get a single logical value returned to us.

```r
small_table %>% test_col_is_posix(columns = vars(date_time))
```

```
[1] TRUE
```

**Function ID**

2-27

**See Also**

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
Description

A table column schema object, as can be created by col_schema(), is necessary when using the col_schema_match() validation function (which checks whether the table object under study matches a known column schema). The col_schema object can be made by carefully supplying the column names and their types as a set of named arguments, or, we could provide a table object, which could be of the data.frame, tbl_df, tbl_dbi, or tbl_spark varieties. There’s an additional option, which is just for validating the schema of a tbl_dbi or tbl_spark object: we can validate the schema based on R column types (e.g., "numeric", "character", etc.), SQL column types (e.g., "double", "varchar", etc.), or Spark SQL column types ("DoubleType", "StringType", etc.). This is great if we want to validate table column schemas both on the server side and when tabular data is collected and loaded into R.

Usage

col_schema(..., .tbl = NULL, .db_col_types = c("r", "sql"))

Arguments

... A set of named arguments where the names refer to column names and the values are one or more column types.

.tbl An option to use a table object to define the schema. If this is provided then any values provided to ... will be ignored. This can either be a table object, a table-prep formula. This can be a table object such as a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, a table-prep formula (~ <table reading code>) or a function (function() <table reading code>) can be used to lazily read in the table at interrogation time.

.db_col_types Determines whether the column types refer to R column types ("r") or SQL column types ("sql").

Examples

Create a simple table with two columns: one integer and the other character.

tbl <-
  dplyr::tibble(
    a = 1:5,
    b = letters[1:5]
  )

tbl
Create a column schema object that describes the columns and their types (in the expected order).

```r
col_schema <-
col_schema(
 a = "integer",
 b = "character"
)
```

validate that the schema object `schema_obj` exactly defines the column names and column types of the `tbl` table.

```r
agent <-
create_agent(tbl = tbl) %>%
col_schema_match(schema_obj) %>%
interrogate()
```

Determine if this validation step passed by using `all_passed()`.

```r
all_passed(agent)
[1] TRUE
```

We can alternatively create a column schema object from a `tbl_df` object.

```r
col_schema <-
col_schema(
 .tbl = dplyr::tibble(
 a = integer(0),
 b = character(0)
)
)
```
This should provide the same interrogation results as in the previous example.

```r
create_agent(tbl = tbl) %>%
 col_schema_match(schema_obj) %>%
 interrogate() %>%
 all_passed()
```

```
[1] TRUE
```

**Function ID**

13-1

**See Also**

Other Utility and Helper Functions: `affix_datetime()`, `affix_date()`, `from_github()`, `has_columns()`, `stop_if_not()`

---

**col_schema_match**  
*Do columns in the table (and their types) match a predefined schema?*

**Description**

The `col_schema_match()` validation function, the `expect_col_schema_match()` expectation function, and the `test_col_schema_match()` test function all work in conjunction with a `col_schema()` object (generated through the `col_schema()` function) to determine whether the expected schema matches that of the target table. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table.

The validation step or expectation operates over a single test unit, which is whether the schema matches that of the table (within the constraints enforced by the `complete`, `in_order`, and `is_exact` options). If the target table is a `tbl_dbi` or a `tbl.spark` object, we can choose to validate the column schema that is based on R column types (e.g., "numeric", "character", etc.), SQL column types (e.g., "double", "varchar", etc.), or Spark SQL types (e.g., "DoubleType", "StringType", etc.). That option is defined in the `col_schema()` function (it is the `.db_col_types` argument).

There are options to make schema checking less stringent (by default, this validation operates with highest level of strictness). With the `complete` option set to `FALSE`, we can supply a `col_schema` object with a partial inclusion of columns. Using `in_order` set to `FALSE` means that there is no requirement for the columns defined in the schema object to be in the same order as in the target table. Finally, the `is_exact` option set to `FALSE` means that all column classes/types don’t have to be provided for a particular column. It can even be `NULL`, skipping the check of the column type.
Usage

```r
col_schema_match(
 x,
 schema,
 complete = TRUE,
 in_order = TRUE,
 is_exact = TRUE,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
effect_col_schema_match(
 object,
 schema,
 complete = TRUE,
 in_order = TRUE,
 is_exact = TRUE,
 threshold = 1
)
```

```r
test_col_schema_match(
 object,
 schema,
 complete = TRUE,
 in_order = TRUE,
 is_exact = TRUE,
 threshold = 1
)
```

Arguments

- **x**: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with `create_agent()`.

- **schema**: A table schema of type col_schema which can be generated using the `col_schema()` function.

- **complete**: A requirement to account for all table columns in the provided schema. By default, this is TRUE and so that all column names in the target table must be present in the schema object. This restriction can be relaxed by using FALSE, where we can provide a subset of table columns in the schema.

- **in_order**: A stringent requirement for enforcing the order of columns in the provided schema. By default, this is TRUE and the order of columns in both the schema and the target table must match. By setting to FALSE, this strict order requirement is removed.
is_exact Determines whether the check for column types should be exact or even performed at all. For example, columns in R data frames may have multiple classes (e.g., a date-time column can have both the "POSIXct" and the "POSIXt" classes). If using is_exact == FALSE, the column type in the user-defined schema for a date-time value can be set as either "POSIXct" or "POSIXt" and pass validation (with this column, at least). This can be taken a step further and using NULL for a column type in the user-defined schema will skip the validation check of a column type. By default, is_exact is set to TRUE.

actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Supported Input Tables**

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop(s)).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.
YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_schema_match()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_schema_match()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_schema_match(
 schema = col_schema(
 a = "integer",
 b = "character"
),
 complete = FALSE,
 in_order = FALSE,
 is_exact = FALSE,
 actions = action_levels(stop_at = 1),
 label = "The \`col_schema_match\` step.",
 active = FALSE
)
```

YAML representation:

```yaml
steps:
 - col_schema_match:
 schema:
 a: integer
 b: character
 complete: false
 in_order: false
 is_exact: false
 actions:
 stop_count: 1.0
 label: The `col_schema_match` step.
 active: false
```

In practice, both of these will often be shorter as only the schema argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all examples here, we’ll use a simple table with two columns: one integer (a) and the other character (b). The following examples will validate that the table columns abides match a schema object as created by `col_schema()`.
Create a column schema object with the helper function `col_schema()` that describes the columns and their types (in the expected order).

```r
schema_obj <-
 col_schema(
 a = "integer",
 b = "character"
)
```

A: Using an agent with validation functions and then `interrogate()`:
Validate that the schema object `schema_obj` exactly defines the column names and column types. We’ll determine if this validation has a failing test unit (there is a single test unit governed by whether there is a match).

```r
agent <-
 create_agent(tbl = tbl) %>%
 col_schema_match(schema = schema_obj) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.
B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

```r
tbl %>% col_schema_match(schema = schema_obj)
```

## # A tibble: 5 x 2
## #  a  b
## # <int> <chr>
## # 1 1 a
## # 2 2 b
## # 3 3 c
## # 4 4 d
## # 5 5 e
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

```r
expect_col_schema_match(tbl, scheam = schema_obj)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
tbl %>% test_col_schema_match(schema = schema_obj)
```

[1] TRUE

Function ID

2·30

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is POSIX(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),
col_vals_gt(), col_vals_in_set(), col_vals_increasing(), col_vals_lte(), col_vals_lt(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()
Do column data lie between two specified values or data in other columns?

The `col_vals_between()` validation function, the `expect_col_vals_between()` expectation function, and the `test_col_vals_between()` test function all check whether column values in a table fall within a range. The range specified with three arguments: `left`, `right`, and `inclusive`. The `left` and `right` values specify the lower and upper bounds. The bounds can be specified as single, literal values or as column names given in `vars()`. The `inclusive` argument, as a vector of two logical values relating to `left` and `right`, states whether each bound is inclusive or not. The default is `c(TRUE, TRUE)`, where both endpoints are inclusive (i.e., `[left, right]`). For partially-unbounded versions of this function, we can use the `col_vals_lt()`, `col_vals_lte()`, `col_vals_gt()`, or `col_vals_gte()` validation functions. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_between(
  x, 
  columns, 
  left, 
  right, 
  inclusive = c(TRUE, TRUE), 
  na_pass = FALSE, 
  preconditions = NULL, 
  segments = NULL, 
  actions = NULL, 
  step_id = NULL, 
  label = NULL, 
  brief = NULL, 
  active = TRUE 
)

expect_col_vals_between( 
  object, 
  columns, 
  left, 
  right, 
  inclusive = c(TRUE, TRUE), 
  na_pass = FALSE, 
  preconditions = NULL, 
  threshold = 1
)```

test_col_vals_between(
    object,
    columns,
    left,
    right,
    inclusive = c(TRUE, TRUE),
    na_pass = FALSE,
    preconditions = NULL,
    threshold = 1
  )

Arguments

x  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns  The column (or a set of columns, provided as a character vector) to which this validation should be applied.
left  The lower bound for the range. The validation includes this bound value (if the first element in inclusive is TRUE) in addition to values greater than left. This can be a single value or a compatible column given in vars().
right  The upper bound for the range. The validation includes this bound value (if the second element in inclusive is TRUE) in addition to values lower than right. This can be a single value or a compatible column given in vars().
inclusive  A two-element logical value that indicates whether the left and right bounds should be inclusive. By default, both bounds are inclusive.
na_pass  Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
preconditions  An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.
segments  An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
actions  A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id  One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %% has_columns(vars(d, e))). The default for active is TRUE.

object
A data frame, tibble (tbl df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testresult or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
• the following database tables (tbl_dbi):
  – PostgreSQL tables (using the RPostgres::Postgres() as driver)
  – MySQL tables (with RMySQL::MySQL() )
  – Microsoft SQL Server tables (via odbc)
  – BigQuery tables (using bigquery::bigquery())
  – DuckDB tables (through duckdb::duckdb())
  – SQLite (with RSQLite::SQLite() )

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the ~ serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \( m \) columns multiplied by \( n \) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it's possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when \( x \) is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_between()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_between()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_between(
 columns = vars(a),
 left = 1,
 right = 2,
```

---

**col_vals_between**

if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \( m \) columns multiplied by \( n \) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when \( x \) is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_between()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_between()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_between(
 columns = vars(a),
 left = 1,
 right = 2,
```
inclusive = c(TRUE, FALSE),
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_between()` step.",
active = FALSE
}

YAML representation:

steps:
- col_vals_between:
  columns: vars(a)
  left: 1.0
  right: 2.0
  inclusive:
    - true
    - false
  na_pass: true
  preconditions: ~. %>% dplyr::filter(a < 10)
  segments: b ~ c("group_1", "group_2")
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
  label: The `col_vals_between()` step.
  active: false

In practice, both of these will often be shorter as only the columns, left, and right arguments require values. Arguments with default values won't be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The small_table dataset in the package has a column of numeric values in c (there are a few NAs in that column). The following examples will validate the values in that numeric column.

small_table

```r
A tibble: 13 × 8
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
```
A: Using an agent with validation functions and then `interrogate()`:

Validate that values in column `c` are all between 1 and 9. Because there are NA values, we’ll choose to let those pass validation by setting `na_pass = TRUE`.

```r
agent <-
 create_agent(tbl = small_table) %>%
 col_vals_between(
 columns = vars(c),
 left = 1, right = 9,
 na_pass = TRUE
) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
small_table %>%
 col_vals_between(
 columns = vars(c),
 left = 1, right = 9,
 na_pass = TRUE
) %>%
 dplyr::pull(c)
```

## [1] 3 8 3 NA 7 4 3 2 9 9 7 8 NA

C: Using the expectation function:

With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_col_vals_between(
 small_table, columns = vars(c),
 left = 1, right = 9,
 na_pass = TRUE
)
```
D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
small_table %>%
 test_col_vals_between(
 columns = vars(c),
 left = 1, right = 9,
 na_pass = TRUE
)
[1] TRUE
```

An additional note on the bounds for this function: they are inclusive by default (i.e., values of exactly 1 and 9 will pass). We can modify the inclusiveness of the upper and lower bounds with the inclusive option, which is a length-2 logical vector.

Testing with the upper bound being non-inclusive, we get FALSE since two values are 9 and they now fall outside of the upper (or right) bound.

```r
small_table %>%
 test_col_vals_between(
 columns = vars(c), left = 1, right = 9,
 inclusive = c(TRUE, FALSE),
 na_pass = TRUE
)
[1] FALSE
```

Function ID

2-7

See Also

The analogue to this function: `col_vals_not_between()`.

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
col_vals_decreasing

Are column data decreasing by row?

Description

The `col_vals_decreasing()` validation function, the `expect_col_vals_decreasing()` expectation function, and the `test_col_vals_decreasing()` test function all check whether column values in a table are decreasing when moving down a table. There are options for allowing NA values in the target column, allowing stationary phases (where consecutive values don’t change), and even on for allowing increasing movements up to a certain threshold. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_decreasing(
 x,
 columns,
 allow_stationary = FALSE,
 increasing_tol = NULL,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_vals_decreasing(
 object,
 columns,
 allow_stationary = FALSE,
 increasing_tol = NULL,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```

```r
test_col_vals_decreasing(
 object,
 columns,
 allow_stationary = FALSE,
 increasing_tol = NULL,
  ```
na_pass = FALSE,
preconditions = NULL,
threshold = 1
)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
allow_stationary An option to allow pauses in decreasing values. For example if the values for the test units are [85, 82, 82, 80, 77] then the third unit (82, appearing a second time) would be marked with fail when allow_stationary is FALSE (the default). Using allow_stationary = TRUE will result in all the test units in [85, 82, 82, 80, 77] to be marked with pass.
increasing_tol An optional threshold value that allows for movement of numerical values in the positive direction. By default this is NULL but using a numerical value with set the absolute threshold of positive travel allowed across numerical test units. Note that setting a value here also has the effect of setting allow_stationary to TRUE.
na_pass Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.
segments An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

**Column Names**

If providing multiple column names to `columns`, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

**Missing Values**

This validation function supports special handling of `NA` values. The `na_pass` argument will determine whether an `NA` value appearing in a test unit should be counted as a `pass` or a `fail`. The default of `na_pass = FALSE` means that any `NAs` encountered will accumulate failing test units.

**Preconditions**

Providing expressions as `preconditions` means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where `preconditions` is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

**Segments**

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column" and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \( m \) columns multiplied by \( n \) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when \( x \) is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an agent. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_decreasing()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_decreasing()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_decreasing(
 columns = vars(a),
 allow_stationary = TRUE,
 increasing_tol = 0.5,
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_vals_decreasing()` step."
)```
active = FALSE

YAML representation:

```
steps:
- col_vals_decreasing:
  columns: vars(a)
  allow_stationary: true
  increasing_tol: 0.5
  na_pass: true
  preconditions: ~. %>% dplyr::filter(a < 10)
  segments: b ~ c("group_1", "group_2")
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
  label: The `col_vals_decreasing()` step.
  active: false
```

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `game_revenue` dataset in the package has the column `session_start`, which contains date-time values. Let’s create a column of difftime values (in `time_left`) that describes the time remaining in the month relative to the session start.

```r
game_revenue_2 <-
game_revenue %>%
dplyr::mutate(
  time_left =
    lubridate::ymd_hms(
      "2015-02-01 00:00:00"
    ) - session_start
)
```

```r
game_revenue_2
```

```
# A tibble: 2,000 × 12
# player_id session_id session_start time item_type
# <chr> <chr> <dttm> <dttm> <chr>
# 1 ECPANOIXLZHF896 ECPANOIXLZ... 2015-01-01 01:31:03 2015-01-01 01:31:27 iap
# 2 ECPANOIXLZHF896 ECPANOIXLZ... 2015-01-01 01:31:03 2015-01-01 01:36:57 iap
# 3 ECPANOIXLZHF896 ECPANOIXLZ... 2015-01-01 01:31:03 2015-01-01 01:37:45 iap
```
Let's ensure that the "difftime" values in the new time_left column has values that are decreasing from top to bottom.

A: Using an agent with validation functions and then interrogate():

Validate that all "difftime" values in the column time_left are decreasing, and, allow for repeating values (allow_stationary will be set to TRUE).

```r
agent <-
col_vals_decreasing(
columns = vars(time_left),
allow_stationary = TRUE
)
interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
game_revenue_2 %>%
col_vals_decreasing(
columns = vars(time_left),
allow_stationary = TRUE
)dplyr::select(time_left) %>%
dplyr::distinct() %>%
dplyr::count()
```

C: Using the expectation function:

With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.


```r
col_vals_equal

effect_col_vals_decreasing(
    game_revenue_2,
    columns = vars(time_left),
    allow_stationary = TRUE
)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

game_revenue_2 %>%
  test_col_vals_decreasing(
    columns = vars(time_left),
    allow_stationary = TRUE
  )
## [1] TRUE

Function ID
2-14

See Also
The analogous function that moves in the opposite direction: col_vals_increasing().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(),
col_vals_gt(), col_vals_in_set(), col_vals_increasing(), col_vals_lte(), col_vals_lt(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()
Usage

col_vals_equal(
  x,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  segments = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_col_vals_equal(
  object,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

test_col_vals_equal(
  object,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl.spark), or, an agent object of class ptbblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
value A value used for this test of equality. This can be a single value or a compatible column given in vars(). Any column values equal to what is specified here will pass validation.
na_pass Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e)))). The default for active is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_...) and the test (test_...) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Supported Input Tables**

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - `PostgreSQL` tables (using `RPostgres::Postgres()` as driver)
  - `MySQL` tables (with `RMySQL::MySQL()`)
  - `Microsoft SQL Server` tables (via `odbc`)
  - `BigQuery` tables (using `bigquery::bigquery()`)
  - `DuckDB` tables (through `duckdb::duckdb()`)
  - `SQLite` (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

**Column Names**

If providing multiple column names to `columns`, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

**Missing Values**

This validation function supports special handling of NA values. The `na_pass` argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of `na_pass = FALSE` means that any NAs encountered will accumulate failing test units.

**Preconditions**

Providing expressions as `preconditions` means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an `agent`-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.
The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*( )-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.
YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()` or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_equal()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_equal()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_equal(
 columns = vars(a),
 value = 1,
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_vals_equal()` step."
 ,
 active = FALSE
)
```

YAML representation:

```yaml
steps:
 - col_vals_equal:
 columns: vars(a)
 value: 1.0
 na_pass: true
 preconditions: ~ . %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_equal()` step.
 active: false
```

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).
tbl <-
dplyr::tibble(
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 2, 2),
d = LETTERS[c(1:3, 5:7)],
e = LETTERS[c(1:6)],
f = LETTERS[c(1:6)]
)
tbl

## # A tibble: 6 × 6
## a b c d e f
## <dbl> <dbl> <dbl> <chr> <chr> <chr>
## 1 5 1 1 A A A
## 2 5 1 1 B B B
## 3 5 1 1 C C C
## 4 5 2 2 E D D
## 5 5 2 2 F E E
## 6 5 2 2 G F F

A: Using an agent with validation functions and then `interrogate()`:
Validate that values in column `a` are all equal to the value of 5. We’ll determine if this validation has any failing test units (there are 6 test units, one for each row).

agent <-
create_agent(tbl = tbl) %>%
col_vals_equal(columns = vars(a), value = 5) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

tbl %>%
col_vals_equal(columns = vars(a), value = 5) %>%
dplyr::pull(a)

## [1] 5 5 5 5 5 5

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

expect_col_vals_equal(tbl, columns = vars(a), value = 5)
col_vals_expr

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_col_vals_equal(tbl, columns = vars(a), value = 5)
## [1] TRUE

Function ID
2-3

See Also
The analogue to this function: col_vals_not_equal().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_numeric(), col_is_factor(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_expr(), col_vals_gte(),
col_vals_gt(), col_vals_in_set(), col_vals_increasing(), col_vals_lte(), col_vals_lt(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), specially(),
tbl_match()
expect_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)

test_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)

**Arguments**

- **x**: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
- **expr**: An expression to use for this validation. This can either be in the form of a call made with the expr() function or as a one-sided R formula (using a leading ~).
- **preconditions**: An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.
- **segments**: An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
- **actions**: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
- **step_id**: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
- **label**: An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
- **brief**: An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
- **active**: A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %% has_columns(vars(d, e))). The default for active is TRUE.

**object**
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**
A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**
For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Supported Input Tables**
The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

**Preconditions**
Providing expressions as preconditions means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.
The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.
YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_expr()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_expr()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_expr(
 expr = ~ a %% 1 == 0,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_vals_expr()` step."
)
```

YAML representation:

```
steps:
 - col_vals_expr:
 expr: ~a%%1 == 0
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_expr()` step.
 active: false
```

In practice, both of these will often be shorter as only the `expr` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).

```r
tbl <-
dplyr::tibble(
 a = c(1, 2, 1, 7, 8, 6),
 b = c(0, 0, 0, 1, 1, 1),
```

...
c = c(0.5, 0.3, 0.8, 1.4, 1.9, 1.2),
)

tbl

## # A tibble: 6 x 3
##    a   b   c
##  <dbl> <dbl> <dbl>
## 1     1     0   0.5
## 2     2     2   0.3
## 3     1     0   0.8
## 4     7     1   1.4
## 5     8     1   1.9
## 6     6     1   1.2

A: Using an agent with validation functions and then `interrogate()`:
Validate that values in column `a` are integer-like by using the R modulo operator and expecting 0. We’ll determine if this validation has any failing test units (there are 6 test units, one for each row).

```
agent <-
 create_agent(tbl = tbl) %>%
 col_vals_expr(expr = expr(a %% 1 == 0)) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```
tbl %>%
 col_vals_expr(expr = expr(a %% 1 == 0)) %>%
 dplyr::pull(a)
```

## [1] 1 2 1 7 8 6

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```
expect_col_vals_expr(tbl, expr = ~ a %% 1 == 0)
```

D: Using the test function:
With the `test_*()` form, we should get a single logical value returned to us.

```
test_col_vals_expr(tbl, expr = ~ a %% 1 == 0)
```
Variations:
We can do more complex things by taking advantage of the `case_when()` and `between()` functions (available for use in the `pointblank` package).

```r
tbl %>%
 test_col_vals_expr(expr = ~ case_when(
 b == 0 ~ a %>% between(0, 5) & c < 1,
 b == 1 ~ a > 5 & c >= 1
))
```

## [1] TRUE

If you only want to test a subset of rows, then the `case_when()` statement doesn’t need to be exhaustive. Any rows that don’t fall into the cases will be pruned (giving us less test units overall).

```r
tbl %>%
 test_col_vals_expr(expr = ~ case_when(
 b == 1 ~ a > 5 & c >= 1
))
```

## [1] TRUE

Function ID

2-19

See Also

These reexported functions (from `rlang` and `dplyr`) work nicely within `col_vals_expr()` and its variants: `rlang::expr()`, `dplyr::between()`, and `dplyr::case_when()`.

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

---

| col_vals_gt | Are column data greater than a fixed value or data in another column? |
Description

The `col_vals_gt()` validation function, the `expect_col_vals_gt()` expectation function, and the `test_col_vals_gt()` test function all check whether column values in a table are greater than a specified value (the exact comparison used in this function is `col_val > value`). The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_gt(
 x,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
effect_col_vals_gt(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```

```r
test_col_vals_gt(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```

Arguments

- `x` A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an `agent` object of class `ptblank_agent` that is created with `create_agent()`.
columns
The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

value
A value used for this comparison. This can be a single value or a compatible
column given in `vars()`. Any column values greater than what is specified here
will pass validation.

na_pass
Should any encountered NA values be considered as passing test units? This is
by default FALSE. Set to TRUE to give NAs a pass.

preconditions
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)` or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions
section for more information.

segments
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the Segments
section for more details on this.

actions
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the `action_levels()`
helper function.

step_id
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label
An optional label for the validation step. This label appears in the `agent` report
and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in `create_agent()`'s lang argument (which defaults to "en" or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a label might be better suited to succinctly describe
the validation).

active
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading `~` can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d, e)))`. The default for active is `TRUE`.

**object**

A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

**threshold**

A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to `1` meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond `1` indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between `0` and `1`) act as a proportional failure threshold, where `0.15` means that `15` percent of failing test units results in an overall test failure.

**Value**

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an `agent` object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Supported Input Tables**

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - `PostgreSQL` tables (using the `RPostgres::Postgres()` as driver)
  - `MySQL` tables (with `RMySQL::MySQL()`)  
  - `Microsoft SQL Server` tables (via `odbc`)
  - `BigQuery` tables (using `bigquery::bigquery()`) 
  - `DuckDB` tables (through `duckdb::duckdb()`) 
  - `SQLite` (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

**Column Names**

If providing multiple column names to `columns`, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.
**Missing Values**

This validation function supports special handling of NA values. The `na_pass` argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of `na_pass = FALSE` means that any NAs encountered will accumulate failing test units.

**Preconditions**

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

**Segments**

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()`
function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

BrieFS

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_vals_gt() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_gt() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_gt(
 columns = vars(a),
 value = 1,
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_vals_gt()` step.",
 active = FALSE
)
```

YAML representation:

```
steps:
- col_vals_gt:
 columns: vars(a)
 value: 1.0
 na_pass: true
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
```
stop_fraction: 0.2
label: The `col_vals_gt()` step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).

```r
tbl <-
 dplyr::tibble(
 a = c(5, 5, 5, 5, 5, 5),
 b = c(1, 1, 1, 2, 2, 2),
 c = c(1, 1, 1, 2, 3, 4),
 d = LETTERS[a],
 e = LETTERS[b],
 f = LETTERS[c]
)

tbl
```

```
 # A tibble: 6 × 6
 # a b c d e f
 # <dbl> <dbl> <dbl> <chr> <chr> <chr>
 # 1 5 1 1 E A A
 # 2 5 1 1 E A A
 # 3 5 1 1 E A A
 # 4 5 2 2 E B B
 # 5 5 2 3 E B C
 # 6 5 2 4 E B D
```

**A: Using an agent with validation functions and then `interrogate()`**:

Validate that values in column a are all greater than the value of 4. We’ll determine if this validation had any failing test units (there are 6 test units, one for each row).

```r
agent <-
 create_agent(tbl = tbl) %>%
 col_vals_gt(columns = vars(a), value = 4) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.
B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

tbl %>% col_vals_gt(columns = vars(a), value = 4)

## # A tibble: 6 × 6
## a b c d e f
## <dbl> <dbl> <chr> <chr> <chr>
## 1 5 1 1 E A A
## 2 5 1 1 E A A
## 3 5 1 1 E A A
## 4 5 2 2 E B B
## 5 5 2 3 E B C
## 6 5 2 4 E B D

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

expect_col_vals_gt(tbl, columns = vars(a), value = 4)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_col_vals_gt(tbl, columns = vars(a), value = 4)

## [1] TRUE

Function ID

2-6

See Also

The analogous function with a left-closed bound: col_vals_gte().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lte(), col_vals_lt(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()
**Description**

The `col_vals_gte()` validation function, the `expect_col_vals_gte()` expectation function, and the `test_col_vals_gte()` test function all check whether column values in a table are *greater than or equal to* a specified value (the exact comparison used in this function is `col_val >= value`). The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an *agent* object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_gte(
 x,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_vals_gte(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_gte(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
Arguments

x

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns

The column (or a set of columns, provided as a character vector) to which this validation should be applied.

value

A value used for this comparison. This can be a single value or a compatible column given in vars(). Any column values greater than or equal to what is specified here will pass validation.

na_pass

Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.

preconditions

An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

segments

An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief

An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with ~ (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl.spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_.) and the test (test_.) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl.spark)
- the following database tables (tbl.dbi):
 - PostgreSQL tables (using the RPostgres::Postgres() as driver)
 - MySQL tables (with RMySQL::MySQL())
 - Microsoft SQL Server tables (via odbc)
 - BigQuery tables (using bigquery::bigquery())
 - DuckDB tables (through duckdb::duckdb())
 - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names
If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Missing Values

This validation function supports special handling of NA values. The `na_pass` argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of `na_pass = FALSE` means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as `preconditions` means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where `preconditions` is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

Segments

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be `m` columns multiplied by `n` segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for `preconditions` and refer to those labels in `segments` without having to generate a separate version of the target table.
Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_gte()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_gte()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_gte(
  columns = vars(a),
  value = 1,
  na_pass = TRUE,
  preconditions = ~ . %>% dplyr::filter(a < 10),
  segments = b ~ c("group_1", "group_2"),
  actions = action_levels(warn_at = 0.1, stop_at = 0.2),
  label = "The `col_vals_gte()` step.",
  active = FALSE
)
```

YAML representation:

```yaml
steps:
- col_vals_gte:
  columns: vars(a)
  value: 1.0
  na_pass: true
  preconditions: ~. %>% dplyr::filter(a < 10)
```
segments: b ~ c("group_1", "group_2")

actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The \texttt{\textasciitilde{}\textasciitilde{}} step.
 active: false

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using \texttt{yaml_write()} (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the \texttt{yaml_agent_string()} function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).

```r
> tbl <-
    dplyr::tibble(
        a = c(5, 5, 5, 5, 5, 5),
        b = c(1, 1, 1, 2, 2, 2),
        c = c(1, 1, 1, 2, 3, 4),
        d = LETTERS[a],
        e = LETTERS[b],
        f = LETTERS[c]
    )

> tbl
```

```
## # A tibble: 6 × 6
##    a  b  c  d  e  f
##  <dbl> <dbl> <dbl> <chr> <chr> <chr>
## 1     5     1     1   E     A     A
## 2     5     1     1   E     A     A
## 3     5     1     1   E     A     A
## 4     5     2     2   E     B     B
## 5     5     2     3   E     B     C
## 6     5     2     4   E     B     D
```

A: Using an agent with validation functions and then \texttt{interrogate()}:

Validate that values in column a are all greater than or equal to the value of 5. We’ll determine if this validation has any failing test units (there are 6 test units, one for each row).

```r
> agent <-
    create_agent(tbl = tbl) %>%
    col_vals_gte(columns = vars(a), value = 5) %>%
    interrogate()
```
Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>% col_vals_gte(columns = vars(a), value = 5)
```

A tibble: 6 × 6
a b c d e f
<dbl> <dbl> <chr> <chr> <chr>
1 5 1 E A A
2 5 1 E A A
3 5 1 E A A
4 5 2 E B B
5 5 2 E B C
6 5 2 4 B D
```

**C: Using the expectation function:**
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_vals_gte(tbl, columns = vars(a), value = 5)
```

**D: Using the test function:**
With the test_*() form, we should get a single logical value returned to us.

```r
test_col_vals_gte(tbl, columns = vars(a), value = 5)
[1] TRUE
```

**Function ID**

2-5

**See Also**
The analogous function with a left-open bound: col_vals_gt().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_in_set(), col_vals_increasing(), col_vals_lte(), col_vals_lt(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()
col_vals_increasing  Are column data increasing by row?

Description

The `col_vals_increasing()` validation function, the `expect_col_vals_increasing()` expectation function, and the `test_col_vals_increasing()` test function all check whether column values in a table are increasing when moving down a table. There are options for allowing `NA` values in the target column, allowing stationary phases (where consecutive values don’t change), and even on for allowing decreasing movements up to a certain threshold. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_increasing(
  x,
  columns,
  allow_stationary = FALSE,
  decreasing_tol = NULL,
  na_pass = FALSE,
  preconditions = NULL,
  segments = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_col_vals_increasing(
  object,
  columns,
  allow_stationary = FALSE,
  decreasing_tol = NULL,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

test_col_vals_increasing(
  object,
  columns,
  allow_stationary = FALSE,
  decreasing_tol = NULL,
Arguments

x
   A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns
   The column (or a set of columns, provided as a character vector) to which this validation should be applied.

allow_stationary
   An option to allow pauses in decreasing values. For example if the values for the test units are [80, 82, 82, 85, 88] then the third unit (82, appearing a second time) would be marked with fail when allow_stationary is FALSE (the default). Using allow_stationary = TRUE will result in all the test units in [80, 82, 82, 85, 88] to be marked with pass.

decreasing_tol
   An optional threshold value that allows for movement of numerical values in the negative direction. By default this is NULL but using a numerical value with set the absolute threshold of negative travel allowed across numerical test units. Note that setting a value here also has the effect of setting allow_stationary to TRUE.

na_pass
   Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.

preconditions
   An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~. %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments
   An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
   A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
   One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label  An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief  An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active  A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object  A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold  A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value  For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables  The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
- DuckDB tables (through duckdb::duckdb())
- SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \( m \) columns multiplied by \( n \) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when \( x \) is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an agent. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_increasing()` is represented in YAML (under the top-level `steps` key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_increasing()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_increasing(
 columns = vars(a),
 allow_stationary = TRUE,
 decreasing_tol = 0.5,
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The ‘col_vals_increasing()‘ step."
)
```

YAML:

```
steps:
 - name: col_vals_increasing
 columns: a
 allow_stationary: true
 decreasing_tol: 0.5
 na_pass: true
 preconditions: a < 10
 segments: b ~ group_1, group_2
 actions: warn_at: 0.1, stop_at: 0.2
 label: The ‘col_vals_increasing()‘ step.
```
col_vals_increasing

    active = FALSE
)

YAML representation:

steps:
- col_vals_increasing:
  columns: vars(a)
  allow_stationary: true
  decreasing_tol: 0.5
  na_pass: true
  preconditions: ~. %>% dplyr::filter(a < 10)
  segments: b ~ c("group_1", "group_2")
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
    label: The `col_vals_increasing()` step.
  active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The game_revenue dataset in the package has the column session_start, which contains date-time values. Let’s ensure that this column has values that are increasing from top to bottom.

game_revenue

```r
A tibble: 2,000 × 11
$ player_id session_id session_start time item_type
<chr> <chr> <dttm> <dttm> <chr>
1 ECPANOIXLZHF896 ECPANOIXLZ. . . 2015-01-01 01:31:03 2015-01-01 01:31:27 iap
2 ECPANOIXLZHF896 ECPANOIXLZ. . . 2015-01-01 01:31:03 2015-01-01 01:36:57 iap
3 ECPANOIXLZHF896 ECPANOIXLZ. . . 2015-01-01 01:31:03 2015-01-01 01:37:45 iap
4 ECPANOIXLZHF896 ECPANOIXLZ. . . 2015-01-01 01:31:03 2015-01-01 01:42:33 ad
5 ECPANOIXLZHF896 ECPANOIXLZ. . . 2015-01-01 11:50:02 2015-01-01 11:55:20 ad
6 ECPANOIXLZHF896 ECPANOIXLZ. . . 2015-01-01 11:50:02 2015-01-01 12:08:56 ad
7 ECPANOIXLZHF896 ECPANOIXLZ. . . 2015-01-01 11:50:02 2015-01-01 12:14:08 ad
8 ECPANOIXLZHF896 ECPANOIXLZ. . . 2015-01-01 11:50:02 2015-01-01 12:21:44 ad
9 ECPANOIXLZHF896 ECPANOIXLZ. . . 2015-01-01 11:50:02 2015-01-01 12:24:20 ad
10 FXWUORGYNJAE271 FXWUORGYNJ. . . 2015-01-01 15:17:18 2015-01-01 15:19:36 ad
... with 1,990 more rows, and 6 more variables: item_name <chr>,
item_revenue <dbl>, session_duration <dbl>, start_day <date>,
acquisition <chr>, country <chr>
```
A: Using an agent with validation functions and then `interrogate()`:
Validate that all date-time values in the column `session_start` are increasing, and, allow for repeating values (`allow_stationary` will be set to `TRUE`). We’ll determine if this validation has any failing test units (there are 2000 test units).

```r
agent <-
 create_agent(tbl = game_revenue) %>%
 col_vals_increasing(
 columns = vars(session_start),
 allow_stationary = TRUE
) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
game_revenue %>%
 col_vals_increasing(
 columns = vars(session_start),
 allow_stationary = TRUE
) %>%
 dplyr::select(session_start) %>%
 dplyr::distinct() %>%
 dplyr::count()
```

## # A tibble: 1 x 1
##    n
##  <int>
## 1  618

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_col_vals_increasing(
 game_revenue,
 columns = vars(session_start),
 allow_stationary = TRUE
)
```

D: Using the test function:
With the `test_*()` form, we should get a single logical value returned to us.
col_vals_in_set

Are column data part of a specified set of values?

Description

The `col_vals_in_set()` validation function, the `expect_cols_equal()` expectation function, and the `test_cols_equal()` test function all check whether column values in a table are part of a specified set of values. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_in_set(
 x,
 columns,
 set,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
)```

See Also

The analogous function that moves in the opposite direction: `col_vals_decreasing()`.

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
brief = NULL,
active = TRUE
)

expect_col_vals_in_set(
 object,
 columns,
 set,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_in_set(object, columns, set, preconditions = NULL, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
set A vector of numeric or string-based elements, where column values found within this set will be considered as passing.
preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.
segments An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in `create_agent()`’s `lang` argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, *FALSE* will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% `has_columns(vars(d, e)))`. The default for `active` is *TRUE*.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding *testthat* test or evaluate to *TRUE*. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
 - *PostgreSQL* tables (using the RPostgres::Postgres() as driver)
 - *MySQL* tables (with RMySQL::MySQL())
 - *Microsoft SQL Server* tables (via odbc)
 - *BigQuery* tables (using bigquery::bigquery())
 - *DuckDB* tables (through duckdb::duckdb())
 - *SQLite* (with RSQLite::SQLite())
Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.
Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_in_set()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_in_set()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_in_set(
    columns = vars(a),
    set = c(1, 2, 3, 4),
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The \`col_vals_in_set\` step.",
    active = FALSE
)
```

YAML representation:

```yaml
steps:
- col_vals_in_set:
  columns: vars(a)
  set:
  - 1.0
  - 2.0
  - 3.0
```
- 4.0
preconditions: ~. `%>%` dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
label: The `col_vals_in_set()` step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package will be used to validate that column values are part of a given set.

```r
small_table
```

A: Using an agent with validation functions and then `interrogate()`:

Validate that values in column `f` are all part of the set of values containing `low`, `mid`, and `high`. We’ll determine if this validation has any failing test units (there are 13 test units, one for each row).

```r
agent <-
create_agent(tbl = small_table) %>%
col_vals_in_set(
  columns = vars(f), set = c("low", "mid", "high")
) %>%
interrogate()
```
Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
small_table %>%
  col_vals_in_set(
    columns = vars(f), set = c("low", "mid", "high")
  ) %>%
dplyr::pull(f) %>%
  unique()
## [1] "high" "low" "mid"
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_vals_in_set(
  small_table,
  columns = vars(f), set = c("low", "mid", "high")
)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
small_table %>%
  test_col_vals_in_set(
    columns = vars(f), set = c("low", "mid", "high")
  )
## [1] TRUE
```

Function ID

2.9

See Also

The analogue to this function: `col_vals_not_in_set()`.

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is POSIX()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
col_vals_lt

Are column data less than a fixed value or data in another column?

Description

The `col_vals_lt()` validation function, the `expect_col_vals_lt()` expectation function, and the `test_col_vals_lt()` test function all check whether column values in a table are less than a specified value (the exact comparison used in this function is `col_val < value`). The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_lt(x, columns, value, na_pass = FALSE, preconditions = NULL, segments = NULL, actions = NULL, step_id = NULL, label = NULL, brief = NULL, active = TRUE)

expect_col_vals_lt(object, columns, value, na_pass = FALSE, preconditions = NULL, threshold = 1)

test_col_vals_lt(object, columns, value, na_pass = FALSE, preconditions = NULL, threshold = 1)
```
Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
value A value used for this comparison. This can be a single value or a compatible column given in vars(). Any column values less than what is specified here will pass validation.
na_pass Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ col %>% dplyr::mutate(col = col + 10)`) or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.
segments An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
 - PostgreSQL tables (using the RPostgres::Postgres() as driver)
 - MySQL tables (with RMySQL::MySQL())
 - Microsoft SQL Server tables (via odbc)
 - BigQuery tables (using bigquery::bigquery())
 - DuckDB tables (through duckdb::duckdb())
 - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().
Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_vals_lt() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_lt() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_vals_lt(
    columns = vars(a),
    value = 1,
    na_pass = TRUE,
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_vals_lt()` step.",
    active = FALSE
  )
```

YAML representation:

```yaml
steps:
  - col_vals_lt:
      columns: vars(a)
      value: 1.0
      na_pass: true
      preconditions: ~. %>% dplyr::filter(a < 10)
      segments: b ~ c("group_1", "group_2")
      actions:
        warn_fraction: 0.1
```
stop_fraction: 0.2
label: The `col_vals_lt()` step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).

```r
tbl <-
dplyr::tibble(
  a = c(5, 5, 5, 5, 5, 5),
  b = c(1, 1, 1, 2, 2, 2),
  c = c(1, 1, 1, 2, 3, 4),
  d = LETTERS[a],
  e = LETTERS[b],
  f = LETTERS[c]
)
```

`tbl`

A: Using an agent with validation functions and then `interrogate()`:

Validate that values in column c are all less than the value of 5. We’ll determine if this validation has any failing test units (there are 6 test units, one for each row).

```r
agent <-
create_agent(tbl = tbl) %>%
col_vals_lt(columns = vars(c), value = 5) %>%
interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.
B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

```r
tbl %>%
  col_vals_lt(columns = vars(c), value = 5) %>%
  dplyr::pull(c)
## [1] 1 1 1 2 3 4
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

```r
expect_col_vals_lt(tbl, columns = vars(c), value = 5)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
test_col_vals_lt(tbl, columns = vars(c), value = 5)
## [1] TRUE
```

Function ID

2-1

See Also

The analogous function with a right-closed bound: `col_vals_lte()`.

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`,
`col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`,
`col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`,
`col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`,
`col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`,
`col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`,
`conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`,
`tbl_match()`
col_vals_lte

Are column data less than or equal to a fixed value or data in another column?

Description

The col_vals_lte() validation function, the expect_col_vals_lte() expectation function, and the test_col_vals_lte() test function all check whether column values in a table are less than or equal to a specified value (the exact comparison used in this function is \(\text{col_val} \leq \text{value} \)). The value can be specified as a single, literal value or as a column name given in vars(). The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_lte(
 \(x \),
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_vals_lte(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_lte(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
value A value used for this comparison. This can be a single value or a compatible column given in vars(). Any column values less than or equal to what is specified here will pass validation.
na_pass Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.
segments An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(varsd, e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
 - PostgreSQL tables (using the RPostgres::Postgres() as driver)
 - MySQL tables (with RMySQL::MySQL())
 - Microsoft SQL Server tables (via odbc)
 - BigQuery tables (using bigquery::bigquery())
 - DuckDB tables (through duckdb::duckdb())
 - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Missing Values

This validation function supports special handling of NA values. The `na_pass` argument will determine whether an NA value appearing in a test unit should be counted as a *pass* or a *fail*. The default of `na_pass = FALSE` means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as `preconditions` means **pointblank** will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using **dplyr** code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

Segments

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be `m` columns multiplied by `n` segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for `preconditions` and refer to those labels in `segments` without having to generate a separate version of the target table.
Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_lte()` is represented in YAML (under the top-level `steps` key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_lte()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_vals_lte(
    columns = vars(a),
    value = 1,
    na_pass = TRUE,
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_vals_lte()` step.",
    active = FALSE
  )
```

YAML representation:

```yaml
steps:
  - col_vals_lte:
      columns: vars(a)
      value: 1.0
      na_pass: true
      preconditions: ~. %>% dplyr::filter(a < 10)
```
segments: b ~ c("group_1", "group_2")
actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_lte` step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).

```
tbl <-
dplyr::tibble(
  a = c(5, 5, 5, 5, 5, 5),
  b = c(1, 1, 1, 2, 2, 2),
  c = c(1, 1, 1, 2, 3, 4),
  d = LETTERS[a],
  e = LETTERS[b],
  f = LETTERS[c]
)
tbl
```

```
## # A tibble: 6 × 6
##     a b  c  d  e  f
##  <dbl> <dbl> <dbl> <chr> <chr> <chr>
## 1     5   1     1   E   A   A
## 2     5   1     1   E   A   A
## 3     5   1     1   E   A   A
## 4     5   2     2   E   B   B
## 5     5   2     3   E   B   C
## 6     5   2     4   E   B   D
```

A: Using an agent with validation functions and then `interrogate()`:

Validate that values in column c are all less than or equal to the value of 4. We’ll determine if this validation has any failing test units (there are 6 test units, one for each row).

```
agent <-
create_agent(tbl = tbl) %>%
col_vals_lte(columns = vars(c), value = 4) %>%
interrogate()
```
Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>%
  col_vals_lte(columns = vars(c), value = 4) %>%
dplyr::pull(c)
```

```r
## [1] 1 1 1 2 3 4
```

C: Using the expectation function:

With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_vals_lte(tbl, columns = vars(c), value = 4)
```

D: Using the test function:

With the test_*() form, we should get a single logical value returned to us.

```r
test_col_vals_lte(tbl, columns = vars(c), value = 4)
```

```r
## [1] TRUE
```

Function ID

2-2

See Also

The analogous function with a right-open bound: `col_vals_lt()`.

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
col_vals_make_set Is a set of values entirely accounted for in a column of values?

Description

The `col_vals_make_set()` validation function, the `expect_col_vals_make_set()` expectation function, and the `test_col_vals_make_set()` test function all check whether set values are all seen at least once in a table column. A necessary criterion here is that no additional values (outside those defined in the set) should be seen (this requirement is relaxed in the `col_vals_make_subset()` validation function and in its expectation and test variants). The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of elements in the set plus a test unit reserved for detecting column values outside of the set (any outside value seen will make this additional test unit fail).

Usage

```r
# Validation function

col_vals_make_set(
  x,
  columns,
  set,
  preconditions = NULL,
  segments = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

# Expectation function

expect_col_vals_make_set(
  object,
  columns,
  set,
  preconditions = NULL,
  threshold = 1
)

# Test function

test_col_vals_make_set(
  object,
  columns,
  set,
  preconditions = NULL,
  threshold = 1
)
```
col_vals_make_set

Arguments

- **x**: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an *agent* object of class ptblank_agent that is created with create_agent()

- **columns**: The column (or a set of columns, provided as a character vector) to which this validation should be applied.

- **set**: A vector of elements that is expected to be equal to the set of unique values in the target column.

- **preconditions**: An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)` or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.

- **segments**: An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

- **actions**: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

- **step_id**: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

- **label**: An optional label for the validation step. This label appears in the *agent* report and for the best appearance it should be kept short.

- **brief**: An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in create_agent()’s `lang` argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).

- **active**: A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `. (serving as the input data table)
to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d, e)))`. The default for active is `TRUE`.

object

A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

threshold

A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - `PostgreSQL` tables (using the `RPostgres::Postgres()` as driver)
 - `MySQL` tables (with `RMySQL::MySQL()`)
 - `Microsoft SQL Server` tables (via `odbc`)
 - `BigQuery` tables (using `bigquery::bigquery()`)
 - `DuckDB` tables (through `duckdb::duckdb()`)
 - `SQLite` (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.
Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).
Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_vals_make_set() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_make_set() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_make_set(
  columns = vars(a),
  set = c(1, 2, 3, 4),
  preconditions = ~ . %>% dplyr::filter(a < 10),
  segments = b ~ c("group_1", "group_2"),
  actions = action_levels(warn_at = 0.1, stop_at = 0.2),
  label = "The \`col_vals_make_set\` step.",
  active = FALSE
)
```

YAML representation:

```yaml
steps:
- col_vals_make_set:
  columns: vars(a)
  set: [-1.0, -2.0, -3.0, -4.0]
  preconditions: ~ . %>% dplyr::filter(a < 10)
  segments: b ~ c("group_1", "group_2")
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
  label: The `col_vals_make_set` step.
  active: false
```

In practice, both of these will often be shorter as only the columns and set arguments require values. Arguments with default values won’t be written to YAML when using yaml_write() (though it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package will be used to validate that column values are part of a given set.

```
small_table
```

```
# A tibble: 13 × 8
   date_time date a b c d e f
   <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-ehg-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 10000. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high
```

A: Using an agent with validation functions and then `interrogate()`:

Validate that values in column `f` comprise the values of low, mid, and high, and, no other values. We’ll determine if this validation has any failing test units (there are 4 test units).

```
agent <-
  create_agent(tbl = small_table) %>%
  col_vals_make_set(
    columns = vars(f), set = c("low", "mid", "high")
  ) %>%
  interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```
small_table %>%
  col_vals_make_set(
    columns = vars(f), set = c("low", "mid", "high")
```

col_vals_make_subset

Is a set of values a subset of a column of values?

The col_vals_make_subset() validation function, the expect_col_vals_make_subset() expectation function, and the test_col_vals_make_subset() test function all check whether all set values are seen at least once in a table column. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of elements in the set.

Function ID

2-11

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(), col_vals_increasing(), col_vals_lte(), col_vals_lt(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()
col_vals_make_subset

Usage

```r
col_vals_make_subset(
x,  
columns,  
set,  
preconditions = NULL,  
segments = NULL,  
actions = NULL,  
step_id = NULL,  
label = NULL,  
brief = NULL,  
active = TRUE
)
```

```r
expect_col_vals_make_subset(
object,  
columns,  
set,  
preconditions = NULL,  
threshold = 1
)
```

```r
test_col_vals_make_subset(
object,  
columns,  
set,  
preconditions = NULL,  
threshold = 1
)
```

Arguments

- **x**: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with `create_agent()`.
- **columns**: The column (or a set of columns, provided as a character vector) to which this validation should be applied.
- **set**: A vector of elements that is expected to be a subset of the unique values in the target column.
- **preconditions**: An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . + 10`) or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.
- **segments**: An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the *Segments* section for more details on this.

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of `columns` provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the *agent* report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in `create_agent()`’s `lang` argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %% has_columns(vars(d, e))). The default for active is TRUE.

object
A data frame, tblble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding *testthat* test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.
Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - *PostgreSQL* tables (using the `RPostgres::Postgres()` as driver)
 - *MySQL* tables (with `RMySQL::MySQL()`)
 - *Microsoft SQL Server* tables (via `odbc`)
 - *BigQuery* tables (using `bigquery::bigquery()`)
 - *DuckDB* tables (through `duckdb::duckdb()`)
 - *SQLite* (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Preconditions

Providing expressions as preconditions means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).
Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when x is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_make_subset()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of `col_vals_make_subset()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_vals_make_subset(
    columns = vars(a),
    set = c(1, 2, 3, 4),
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The \`col_vals_make_subset\` step.",
    active = FALSE
  )
```

YAML representation:

```yaml
steps:
  - col_vals_make_subset:
      columns: vars(a)
      set:
        - 1.0
        - 2.0
        - 3.0
        - 4.0
      preconditions: ~ . %>% dplyr::filter(a < 10)
      segments: b ~ c("group_1", "group_2")
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The \`col_vals_make_subset\` step.
      active: false
```

In practice, both of these will often be shorter as only the columns and set arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package will be used to validate that column values are part of a given set.

```r
small_table

## # A tibble: 13 × 8
##       date_time     date     a     b     c     d     e     f
## <chr> <chr>      <dbl> <dbl>  <dbl> <dbl>  <dbl> <dbl>
## 1 2023-01-01 00:00:00 1.0  2.0  3.0  4.0  5.0  6.0  7.0
## 2 2023-01-01 00:00:00 1.0  2.0  3.0  4.0  5.0  6.0  7.0
## 3 2023-01-01 00:00:00 1.0  2.0  3.0  4.0  5.0  6.0  7.0
## 4 2023-01-01 00:00:00 1.0  2.0  3.0  4.0  5.0  6.0  7.0
## 5 2023-01-01 00:00:00 1.0  2.0  3.0  4.0  5.0  6.0  7.0
## 6 2023-01-01 00:00:00 1.0  2.0  3.0  4.0  5.0  6.0  7.0
## 7 2023-01-01 00:00:00 1.0  2.0  3.0  4.0  5.0  6.0  7.0
## 8 2023-01-01 00:00:00 1.0  2.0  3.0  4.0  5.0  6.0  7.0
## 9 2023-01-01 00:00:00 1.0  2.0  3.0  4.0  5.0  6.0  7.0
## 10 2023-01-01 00:00:00 1.0  2.0  3.0  4.0  5.0  6.0  7.0
## 11 2023-01-01 00:00:00 1.0  2.0  3.0  4.0  5.0  6.0  7.0
## 12 2023-01-01 00:00:00 1.0  2.0  3.0  4.0  5.0  6.0  7.0
## 13 2023-01-01 00:00:00 1.0  2.0  3.0  4.0  5.0  6.0  7.0
```
A: Using an agent with validation functions and then `interrogate()`:
Validate that the distinct set of values in column `f` contains at least the subset defined as `low` and `high` (the column actually has both of those and some `mid` values). We’ll determine if this validation has any failing test units (there are 2 test units, one per element in the set).

```r
agent <- 
  create_agent(tbl = small_table) %>%
  col_vals_make_subset(
    columns = vars(f), set = c("low", "high")
  ) %>%
  interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
small_table %>%
  col_vals_make_subset(
    columns = vars(f), set = c("low", "high")
  ) %>%
  dplyr::pull(f) %>%
  unique()
```

[1] "high" "low" "mid"

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_col_vals_make_subset(
```
col_vals_not_between

```
small_table,
columns = vars(f), set = c("low", "high")
)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```
small_table %>%
test_col_vals_make_subset(
  columns = vars(f), set = c("low", "high")
)
```

[1] TRUE

Function ID

2-12

See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

| col_vals_not_between | Do column data lie outside of two specified values or data in other columns? |

Description

The `col_vals_not_between()` validation function, the `expect_col_vals_not_between()` expectation function, and the `test_col_vals_not_between()` test function all check whether column values in a table do not fall within a range. The range specified with three arguments: left, right, and inclusive. The left and right values specify the lower and upper bounds. The bounds can be specified as single, literal values or as column names given in `vars()`. The inclusive argument, as a vector of two logical values relating to left and right, states whether each bound is inclusive or not. The default is `c(TRUE, TRUE)`, where both endpoints are inclusive (i.e., `[left, right]`). For partially-unbounded versions of this function, we can use the `col_vals_lt()`, `col_vals_lte()`, `col_vals_gt()`, or `col_vals_gte()` validation functions. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).
Usage

col_vals_not_between(
 x,
 columns,
 left,
 right,
 inclusive = c(TRUE, TRUE),
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_vals_not_between(
 object,
 columns,
 left,
 right,
 inclusive = c(TRUE, TRUE),
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_not_between(
 object,
 columns,
 left,
 right,
 inclusive = c(TRUE, TRUE),
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.

left, right The lower (or left) and upper (or right) boundary values for the range. These can be expressed as single values, compatible columns given in vars(), or a combination of both. By default, any column values greater than or equal to
col_vals_not_between

left and less than or equal to right will fail validation. The inclusivity of the bounds can be modified by the inclusive option.

inclusive A two-element logical value that indicates whether the left and right bounds should be inclusive. By default, both bounds are inclusive.

na_pass Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.

preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d, e))). The default for active is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_)
and the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
 - PostgreSQL tables (using the RPostgres::Postgres() as driver)
 - MySQL tables (with RMySQL::MySQL())
 - Microsoft SQL Server tables (via odbc)
 - BigQuery tables (using bigquery::bigquery())
 - DuckDB tables (through duckdb::duckdb())
 - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names
If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Missing Values
This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.
Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).
Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if \(x\) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when \(\text{brief} = \text{NULL}\) and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with \texttt{yaml_write()} and the resulting YAML can be used to regenerate an agent (with \texttt{yaml_read_agent()}) or interrogate the target table (via \texttt{yaml_agent_interrogate()}). When \texttt{col_vals_not_between()} is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of \texttt{col_vals_not_between()} as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_vals_not_between(
    columns = vars(a),
    left = 1,
    right = 2,
    inclusive = c(TRUE, FALSE),
    na_pass = TRUE,
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_vals_not_between()` step."
  ,
  active = FALSE
)
```

YAML representation:

```yaml
steps:
  - col_vals_not_between:
      columns: vars(a)
      left: 1.0
      right: 2.0
      inclusive:  
        - true
        - false
      na_pass: true
      preconditions:  
        %. %>% dplyr::filter(a < 10)
      segments: b ~ c("group_1", "group_2")
      actions:  
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The `col_vals_not_between()` step.
      active: false
```
In practice, both of these will often be shorter as only the columns, left, and right arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package has a column of numeric values in `c` (there are a few NAs in that column). The following examples will validate the values in that numeric column.

```
small_table
```

```
## # A tibble: 13 × 8
## date_time date a b c d e f
## <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
## 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
## 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
## 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
## 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
## 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
## 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
## 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
## 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
## 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. TRUE high
## 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. TRUE high
## 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
## 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
## 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high
```

A: Using an agent with validation functions and then `interrogate()`:

Validate that values in column `c` are all between 10 and 20. Because there are NA values, we’ll choose to let those pass validation by setting `na_pass = TRUE`. We’ll determine if this validation has any failing test units (there are 13 test units, one for each row).

```r
taget <-
create_agent(tbl = small_table) %>%
col_vals_not_between(
  columns = vars(c),
  left = 10, right = 20,
  na_pass = TRUE
) %>%
interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
small_table %>%
  col_vals_not_between(
    columns = vars(c),
    left = 10, right = 20,
    na_pass = TRUE
  ) %>%
dplyr::pull(c)
## [1] 3 8 3 NA 7 4 3 2 9 9 7 8 NA
```

C: Using the expectation function:

With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_col_vals_not_between(
  small_table, columns = vars(c),
  left = 10, right = 20,
  na_pass = TRUE
)
```

D: Using the test function:

With the `test_*()` form, we should get a single logical value returned to us.

```r
small_table %>%
  test_col_vals_not_between(
    columns = vars(c),
    left = 10, right = 20,
    na_pass = TRUE
  )
## [1] TRUE
```

An additional note on the bounds for this function: they are inclusive by default. We can modify the inclusiveness of the upper and lower bounds with the `inclusive` option, which is a length-2 logical vector.

In changing the lower bound to be 9 and making it non-inclusive, we get `TRUE` since although two values are 9 and they fall outside of the lower (or left) bound (and any values ‘not between’ count as passing test units).

```r
small_table %>%
  test_col_vals_not_between(
    columns = vars(c),
    left = 9, right = 20,
    inclusive = c(FALSE, TRUE),
    na_pass = TRUE
  )
## [1] TRUE
```
Function ID
2-8

See Also
The analogue to this function: \texttt{col_vals_between()}. Other validation functions: \texttt{col_count_match()}, \texttt{col_exists()}, \texttt{col_is_character()}, \texttt{col_is_date()}, \texttt{col_is_factor()}, \texttt{col_is_integer()}, \texttt{col_is_logical()}, \texttt{col_is_numeric()}, \texttt{col_is_posix()}, \texttt{col_schema_match()}, \texttt{col_vals_between()}, \texttt{col_vals_decreasing()}, \texttt{col_vals_equal()}, \texttt{col_vals_expr()}, \texttt{col_vals_gte()}, \texttt{col_vals_gt()}, \texttt{col_vals_in_set()}, \texttt{col_vals_increasing()}, \texttt{col_vals_lte()}, \texttt{col_vals_lt()}, \texttt{col_vals_make_set()}, \texttt{col_vals_make_subset()}, \texttt{col_vals_not_equal()}, \texttt{col_vals_not_in_set()}, \texttt{col_vals_not_null()}, \texttt{col_vals_null()}, \texttt{col_vals_regex()}, \texttt{col_vals_within_spec()}, \texttt{conjointly()}, \texttt{row_count_match()}, \texttt{rows_complete()}, \texttt{rows_distinct()}, \texttt{serially()}, \texttt{specially()}, \texttt{tbl_match()}

\begin{verbatim}
col_vals_not_equal
\end{verbatim}

\begin{verbatim}
col_vals_not_equal冀
Are column data not equal to a fixed value or data in another column?

Description
The \texttt{col_vals_not_equal()} validation function, the \texttt{expect_col_vals_not_equal()} expectation function, and the \texttt{test_col_vals_not_equal()} test function all check whether column values in a table \textit{are not} equal to a specified value. The validation function can be used directly on a data table or with an \texttt{agent} object (technically, a \texttt{ptblank_agent} object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage
\begin{verbatim}
col_vals_not_equal(
 x,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_vals_not_equal(
 object,
 columns,
)
\end{verbatim}
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1
)

test_col_vals_not_equal(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

Arguments

x
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns
The column (or a set of columns, provided as a character vector) to which this validation should be applied.

value
A value used for this test of inequality. This can be a single value or a compatible column given in vars(). Any column values not equal to what is specified here will pass validation.

na_pass
Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.

preconditions
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the agent, using the language provided in *create_agent()*’s `lang` argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `. (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . `%>%` has_columns(vars(d, e)))`. The default for `active` is `TRUE`.

object
A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - PostgreSQL tables (using the RPostgres::Postgres() as driver)
 - MySQL tables (with RMySQL::MySQL())
- Microsoft SQL Server tables (via `odbc`)
- BigQuery tables (using `bigquery::bigquery()`)
- DuckDB tables (through `duckdb::duckdb()`)
- SQLite (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Missing Values

This validation function supports special handling of `NA` values. The `na_pass` argument will determine whether an `NA` value appearing in a test unit should be counted as a `pass` or a `fail`. The default of `na_pass = FALSE` means that any `NAs` encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided `R` formula (using a leading `~`). In the formula representation, the `~` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_vals_not_equal() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_not_equal() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_not_equal(
columns = vars(a),
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The \code{col_vals_not_equal()} step."
)`
active = FALSE

YAML representation:

steps:
- col_vals_not_equal:
  columns: vars(a)
  value: 1.0
  na_pass: true
  preconditions: %. %>% dplyr::filter(a < 10)
  segments: b ~ c("group_1", "group_2")
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
    label: The `col_vals_not_equal()` step.
    active: false

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).

tbl <-
dplyr::tibble(
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 2, 2),
d = LETTERS[c(1:3, 5:7)],
e = LETTERS[c(1:6)],
f = LETTERS[c(1:6)]
)

tbl

## # A tibble: 6 × 6
##   a  b  c  d  e  f
##  <dbl> <dbl> <dbl> <chr> <chr> <chr>
## 1   5   1   1   A   A   A
## 2   5   1   1   B   B   B
## 3   5   1   1   C   C   C
## 4   5   2   2   E   D   D
## 5   5   2   2   F   E   E
## 6   5   2   2   G   F   F
A: Using an agent with validation functions and then `interrogate()`:
Validate that values in column `a` are all not equal to the value of 6. We’ll determine if this validation has any failing test units (there are 6 test units, one for each row).

```r
agent <-
 create_agent(tbl = tbl) %>%
 col_vals_not_equal(columns = vars(a), value = 6) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>%
 col_vals_not_equal(columns = vars(a), value = 6) %>%
 dplyr::pull(a)
```

## [1] 5 5 5 5 5 5

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_col_vals_not_equal(tbl, columns = vars(a), value = 6)
```

D: Using the test function:
With the `test_*()` form, we should get a single logical value returned to us.

```r
test_col_vals_not_equal(tbl, columns = vars(a), value = 6)
```

## [1] TRUE

Function ID

2-4

See Also

The analogue to this function: `col_vals_equal()`.

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
col_vals_not_in_set

Are data not part of a specified set of values?

Description

The `col_vals_not_in_set()` validation function, the `expect_col_vals_not_in_set()` expectation function, and the `test_col_vals_not_in_set()` test function all check whether column values in a table are not part of a specified set of values. The validation function can be used directly on a data table or with an agent object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_not_in_set(
 x,
 columns,
 set,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_vals_not_in_set(
 object,
 columns,
 set,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_not_in_set(
 object,
 columns,
 set,
 preconditions = NULL,
 threshold = 1
)
```

Arguments

- **x**: A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an agent object of class `ptblank_agent` that is created with `create_agent()`.
columns
The column (or a set of columns, provided as a character vector) to which this validation should be applied.

set
A vector of numeric or string-based elements, where column values found within this set will be considered as failing.

preconditions
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.
object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl.spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl.spark)
- the following database tables (tbl_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names
If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Preconditions
Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.
The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

**Segments**

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.
YAML

A **pointblank** agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()` or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_not_in_set()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_not_in_set()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_not_in_set(
 columns = vars(a),
 set = c(1, 2, 3, 4),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `\code{col_vals_not_in_set()}` step.",
 active = FALSE
)
```

YAML representation:

```yaml
steps:
- col_vals_not_in_set:
 columns: vars(a)
 set:
 - 1.0
 - 2.0
 - 3.0
 - 4.0
 preconditions: ~ . %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `\code{col_vals_not_in_set()}` step.
 active: false
```

In practice, both of these will often be shorter as only the `columns` and `set` arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The small_table dataset in the package will be used to validate that column values are not part of a given set.
A: Using an agent with validation functions and then interrogate():
Validate that values in column f contain none of the values lows, mids, and highs. We’ll determine if this validation has any failing test units (there are 13 test units, one for each row).

```r
agent <- create_agent(tbl = small_table) %>%
 col_vals_not_in_set(
 columns = vars(f), set = c("lows", "mids", "highs")
) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
small_table %>%
 col_vals_not_in_set(
 columns = vars(f), set = c("lows", "mids", "highs")
) %>%
 dplyr::pull(f) %>%
 unique()
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_vals_not_in_set(
 small_table,
 columns = vars(f), set = c("lows", "mids", "highs")
)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
small_table %>%
 test_col_vals_not_in_set(
 columns = vars(f), set = c("lows", "mids", "highs")
)
[1] TRUE
```

**Function ID**

2-10
See Also

The analogue to this function: `col_vals_in_set()`.

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is POSIX()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

---

**col_vals_not_null**  
Are column data not NULL/NA?

Description

The `col_vals_not_null()` validation function, the `expect_col_vals_not_null()` expectation function, and the `test_col_vals_not_null()` test function all check whether column values in a table are not NA values or, in the database context, not NULL values. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_not_null(
 x,
 columns,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)
```

```r
test_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)
```

Arguments

- **x**  
  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,  
  an agent object of class ptblank_agent that is created with `create_agent()`.
**columns** The column (or a set of columns, provided as a character vector) to which this validation should be applied.

**preconditions** An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the `Preconditions` section for more information.

**segments** An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the `Segments` section for more details on this.

**actions** A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

**step_id** One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label** An optional label for the validation step. This label appears in the `agent` report and for the best appearance it should be kept short.

**brief** An optional, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the `agent`, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).

**active** A logical value indicating whether the validation step should be active. If the validation function is working with an `agent`, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no `agent` involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for `active` is `TRUE`.

**object** A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.
threshold  A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.
The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

**Segments**

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when x is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.
YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_not_null()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_not_null()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_not_null(
 columns = vars(a),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_vals_not_null()` step.",
 active = FALSE
)
```

YAML representation:

```yaml
steps:
- col_vals_not_null:
 columns: vars(a)
 preconditions: ~ . %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_not_null()` step.
 active: false
```

In practice, both of these will often be shorter as only the `columns` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all examples here, we’ll use a simple table with four columns: a, b, c, and d.

```r
tbl <-
 dplyr::tibble(
 a = c(5, 7, 6, 5, 8),
 b = c(7, 1, 0, 0, 0),
 c = c(NA, NA, NA, NA, NA),
```
\[ d = c(35, 23, NA, NA, NA) \]

\[ \]

tbl

\[
\begin{array}{cccc}
\text{\# \# \# A tibble: 5 × 4} \\
\text{\# \#} & a & b & c & d \\
\# \# & \text{<dbl>} & \text{<dbl>} & \text{<lgl>} & \text{<dbl>} \\
\# 1 & 5 & 7 & NA & 35 \\
\# 2 & 7 & 1 & NA & 23 \\
\# 3 & 6 & 0 & NA & NA \\
\# 4 & 5 & 0 & NA & NA \\
\# 5 & 8 & 0 & NA & NA \\
\end{array}
\]

A: Using an **agent with validation functions** and then **interrogate()**:
Validate that all values in column \( b \) are **not** NA (they would be non-NULL in a database context, which isn’t the case here). We’ll determine if this validation has any failing test units (there are 5 test units, one for each row).

\[
\text{agent} <- \\
\text{create_agent(tbl = tbl) } \%\% \\
\text{col_vals_not_null(columns = vars(b)) } \%\% \\
\text{interrogate()}
\]

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no **agent**):
This way of using validation functions acts as a data filter. Data is passed through but should **stop()** if there is a single test unit failing. The behavior of side effects can be customized with the **actions** option.

\[
\text{tbl } \%\% \\
\text{col_vals_not_null(columns = vars(b)) } \%\% \\
\text{dplyr::pull(b)}
\]

\[
\begin{array}{c}
\text{\# \# [1] 7 1 0 0 0} \\
\end{array}
\]

C: Using the expectation function:
With the **expect_**\_\*() form, we would typically perform one validation at a time. This is primarily used in **testthat** tests.

\[
\text{expect_col_vals_not_null(tbl, columns = vars(b))}
\]

D: Using the test function:
With the **test_**\_\*() form, we should get a single logical value returned to us.

\[
\text{tbl } \%\% \text{ test_col_vals_not_null(columns = vars(b))}
\]

\[
\begin{array}{c}
\text{\# [1] TRUE} \\
\end{array}
\]
Function ID

2-16

See Also

The analogue to this function: `col_vals_null()`.

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is Logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

---

`col_vals_null`  
Are column data NULL/NA?

Description

The `col_vals_null()` validation function, the `expect_col_vals_null()` expectation function, and the `test_col_vals_null()` test function all check whether column values in a table are NA values or, in the database context, NULL values. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_null(  
  x,  
  columns,  
  preconditions = NULL,  
  segments = NULL,  
  actions = NULL,  
  step_id = NULL,  
  label = NULL,  
  brief = NULL,  
  active = TRUE  
)  

expect_col_vals_null(object, columns, preconditions = NULL, threshold = 1)  
test_col_vals_null(object, columns, preconditions = NULL, threshold = 1)
Arguments

x  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns  The column (or a set of columns, provided as a character vector) to which this validation should be applied.

preconditions  An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

segments  An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions  A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id  One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label  An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief  An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active  A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d, e)))`. The default for `active` is `TRUE`.

**object**
A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

**threshold**
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**
For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Supported Input Tables**
The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - `PostgreSQL` tables (using the `RPostgres::Postgres()` as driver)
  - `MySQL` tables (with `RMySQL::MySQL()`)
  - `Microsoft SQL Server` tables (via `odbc`)
  - `BigQuery` tables (using `bigrquery::bigquery()`)
  - `DuckDB` tables (through `duckdb::duckdb()`)
  - `SQLite` (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

**Column Names**
If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.
Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the ~ serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).
Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when \( \text{brief} = \text{NULL} \) and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with \texttt{yaml\_write()} and the resulting YAML can be used to regenerate an agent (with \texttt{yaml\_read\_agent()}) or interrogate the target table (via \texttt{yaml\_agent\_interrogate()}). When \texttt{col\_vals\_null()} is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of \texttt{col\_vals\_null()} as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_null(
 columns = vars(a),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The \`col_vals_null\` step.",
 active = FALSE
)
```

YAML representation:

```yaml
steps:
- col_vals_null:
 columns: vars(a)
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_null()` step.
 active: false
```

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using \texttt{yaml\_write()} (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the \texttt{yaml\_agent\_string()} function.
Examples

For all examples here, we’ll use a simple table with four columns: a, b, c, and d.

tbl <-
  dplyr::tibble(
    a = c( 5, 7, 6, 5, 8),
    b = c( 7, 1, 0, 0, 0),
    c = c(NA, NA, NA, NA, NA),
    d = c(35, 23, NA, NA, NA)
  )

tbl

## # A tibble: 5 × 4
## a b c d
## <dbl> <dbl> <lgl> <dbl>
## 1 5 7 NA 35
## 2 7 1 NA 23
## 3 6 0 NA NA
## 4 5 0 NA NA
## 5 8 0 NA NA

A: Using an agent with validation functions and then `interrogate()`:
Validate that all values in column c are NA (they would be NULL in a database context, which isn’t the case here). We’ll determine if this validation has any failing test units (there are 5 test units, one for each row).

agent <-
  create_agent(tbl = tbl) %>%
  col_vals_null(columns = vars(c)) %>%
  interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

tbl %>%
  col_vals_null(columns = vars(c)) %>%
  dplyr::pull(c)

## [1] NA NA NA NA NA

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.
The `col_vals_regex()` validation function, the `expect_col_vals_regex()` expectation function, and the `test_col_vals_regex()` test function all check whether column values in a table correspond to a regex matching expression. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_regex(
 x,
 columns, regex,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
)```
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
)

epect_col_vals_regex(
 object,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
threshold = 1
)

test_col_vals_regex(
 object,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
threshold = 1
)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
regex A regular expression pattern to test for a match to the target column. Any regex matches to values in the target columns will pass validation.
na_pass Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.
segments An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.
Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
 - PostgreSQL tables (using the RPostgres::Postgres() as driver)
 - MySQL tables (with RMySQL::MySQL())
 - Microsoft SQL Server tables (via odbc)
 - BigQuery tables (using bigquery::bigquery())
 - DuckDB tables (through duckdb::duckdb())
 - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).
Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, \(\text{vars(a_column)} \) will segment the target table in however many unique values are present in the column called \(\text{a_column} \). This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using \(\text{a_column} \sim c(\text{"group_1"}, \text{"group_2"}) \) will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \(m \) columns multiplied by \(n \) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when \(x \) is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if \(x \) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_vals_regex() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of `col_vals_regex()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_vals_regex(
    columns = vars(a),
    regex = "[0-9]-[a-z]{3}-[0-9]{3}",
    na_pass = TRUE,
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_vals_regex()` step.",
    active = FALSE
  )
```

YAML representation:

```yaml
steps:
  - col_vals_regex:
      columns: vars(a)
      regex: '^[0-9]-[a-z]{3}-[0-9]{3}$'
      na_pass: true
      preconditions: ~ . %>% dplyr::filter(a < 10)
      segments: b ~ c("group_1", "group_2")
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The `col_vals_regex()` step.
      active: false
```

In practice, both of these will often be shorter as only the `columns` and `regex` arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package has a character-based `b` column with values that adhere to a very particular pattern. The following examples will validate that that column abides by a regex pattern.

```r
small_table
```

```r
## # A tibble: 13 × 8
## date_time date   a    b    c    d    e    f
## <dttm>  <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
```
This is the regex pattern that will be used throughout:

```
pattern <- "[0-9]-[a-z]{3}-[0-9]{3}"
```

A: Using an agent with validation functions and then `interrogate()`:
Validate that all values in column `b` match the regex pattern. We’ll determine if this validation has any failing test units (there are 13 test units, one for each row).

```
agent <-
  create_agent(tbl = small_table) %>%
  col_vals_regex(columns = vars(b), regex = pattern) %>%
  interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```
small_table %>%
  col_vals_regex(columns = vars(b), regex = pattern) %>%
dplyr::slice(1:5)
```

```
C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

expect_col_vals_regex(small_table, columns = vars(b), regex = pattern)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>% test_col_vals_regex(columns = vars(b), regex = pattern)
## [1] TRUE

Function ID
2-17

See Also
Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(), col_vals_increasing(), col_vals_lte(), col_vals_lt(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
)

expect_col_vals_within_spec(
  object,
  columns,
  spec,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

test_col_vals_within_spec(
  object,
  columns,
  spec,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

Arguments

x  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns  The column (or a set of columns, provided as a character vector) to which this validation should be applied.
spec  A specification string. Examples are "email", "url", and "postal[USA]". All options are explained in the Specifications section.
na_pass  Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
preconditions  An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.
segments  An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
actions  A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

step_id  One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label  An optional label for the validation step. This label appears in the `agent` report and for the best appearance it should be kept short.

brief  An optional, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the `agent`, using the language provided in `create_agent()`’s `lang` argument (which defaults to "en" or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).

active  A logical value indicating whether the validation step should be active. If the validation function is working with an `agent`, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no `agent` involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `.` (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d, e)))`. The default for `active` is `TRUE`.

object  A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

threshold  A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.
Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - PostgreSQL tables (using the `RPostgres::Postgres()` as driver)
  - MySQL tables (with `RMySQL::MySQL()`)
  - Microsoft SQL Server tables (via `odbc`)
  - BigQuery tables (using `bigrquery::bigquery()`)
  - DuckDB tables (through `duckdb::duckdb()`)
  - SQLite (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Specifications

A specification type must be used with the `spec` argument. This is a character-based keyword that corresponds to the type of data in the specified columns. The following keywords can be used:

- "isbn": The International Standard Book Number (ISBN) is a unique numerical identifier for books, pamphlets, educational kits, microforms, and digital/electronic publications. The specification has been formalized in ISO 2108. This keyword can be used to validate 10- or 13-digit ISBNs.
- "VIN": A vehicle identification number (VIN) is a unique code (which includes a serial number) used by the automotive industry to identify individual motor vehicles, motorcycles, scooters, and mopeds as stipulated by ISO 3779 and ISO 4030.
- "postal_code[<country_code>]": A postal code (also known as postcodes, PIN, or ZIP codes, depending on region) is a series of letters, digits, or both (sometimes including spaces/punctuation) included in a postal address to aid in sorting mail. Because the coding varies by country, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1 alpha-3) formats needs to be supplied along with the keywords (e.g., for postal codes in Germany, "postal_code[DE]" or "postal_code[DEU]" can be used). The keyword alias "zip" can be used for US ZIP codes.
- "credit_card": A credit card number can be validated and this check works across a large variety of credit type issuers (where card numbers are allocated in accordance with ISO/IEC 7812). Numbers can be of various lengths (typically, they are of 14-19 digits) and the key validation performed here is the usage of the Luhn algorithm.
- "iban[<country_code>]": The International Bank Account Number (IBAN) is a system of identifying bank accounts across different countries for the purpose of improving cross-border transactions. IBAN values are validated through conversion to integer values and performing a basic mod-97 operation (as described in ISO 7064) on them. Because the length and coding varies by country, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1 alpha-3) formats needs to be supplied along with the keywords (e.g., for IBANs in Germany, "iban[DE]" or "iban[DEU]" can be used).
• "swift": Business Identifier Codes (also known as SWIFT-BIC, BIC, or SWIFT code) are defined in a standard format as described by ISO 9362. These codes are unique identifiers for both financial and non-financial institutions. SWIFT stands for the Society for Worldwide Interbank Financial Telecommunication. These numbers are used when transferring money between banks, especially important for international wire transfers.

• "phone", "email", "url", "ipv4", "ipv6", "mac": Phone numbers, email addresses, Internet URLs, IPv4 or IPv6 addresses, and MAC addresses can be validated with their respective keywords. These validations use regex-based matching to determine validity.

Only a single spec value should be provided per function call.

Column Names
If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Missing Values
This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions
Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments
By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \(m\) columns multiplied by \(n\) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when \(x\) is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \(x\) is an agent. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A `pointblank` agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_within_spec()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_within_spec()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_within_spec(
 columns = vars(a),
 spec = "email",
 na_pass = TRUE,
```

YAML:

```yaml
- steps:
 - col_vals_within_spec:
 columns: vars(a)
 spec: "email"
 na_pass: TRUE
```
preconditions = ~ . %>% dplyr::filter(b < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_within_spec()` step.",
active = FALSE
)

YAML representation:

steps:
  - col_vals_within_spec:
      columns: vars(a)
      spec: email
      na_pass: true
      preconditions: ~. %>% dplyr::filter(b < 10)
      segments: b ~ c("group_1", "group_2")
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The `col_vals_within_spec()` step.
      active: false

In practice, both of these will often be shorter as only the columns and spec arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The specifications dataset in the package has columns of character data that correspond to each of the specifications that can be tested. The following examples will validate that the email_addresses column has 5 correct values (this is true if we get a subset of the data: the first five rows).

```r
spec_slice <- specifications[1:5,]

spec_slice
```

```
A tibble: 5 × 12
isbn_numbers vin_numbers zip_codes credit_card_num... iban_austria swift_numbers
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 978 1 85715... 4UZAANDH85... 99553 34000000000009 AT582774098... RBOSGGSX
2 978-1-84159... JM1BL15S59A... 36264 378734493671000 AT220332087... RZTIAT22263
3 978 1 84159... 1GCEK14R3W... 71660 670344444444449 AT328650112... BCEEULULL
4 978 1 85715... 2B7JB21Y0X... 85225 6703000000000... AT193357281... MARKDEFF
5 978 1 85715... 4UZAANDH85... 90309 4035501000000008 AT535755326... GENODEF1JEV
with 6 more variables: phone_numbers <chr>, email_addresses <chr>,
urls <chr>, ipv4_addresses <chr>, ipv6_addresses <chr>, mac_addresses <chr>
```
A: Using an agent with validation functions and then `interrogate()`:
Validate that all values in the column `email_addresses` are correct. We’ll determine if this validation has any failing test units (there are 5 test units, one for each row).

```r
agent <-
 create_agent(tbl = spec_slice) %>%
 col_vals_within_spec(
 columns = vars(email_addresses),
 spec = "email"
) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
spec_slice %>%
 col_vals_within_spec(
 columns = vars(email_addresses),
 spec = "email"
) %>%
 dplyr::select(email_addresses)
```

```r
A tibble: 5 × 1
email_addresses
#1 <chr>
#2 test@test.com
#3 mail+mail@example.com
#4 mail.email@e.test.com
#5 abcddefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ@letters-in-local.org
01234567890@numbers-in-local.net
```

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_col_vals_within_spec(
 spec_slice,
 columns = vars(email_addresses),
 spec = "email"
)
```

D: Using the test function:
With the `test_*()` form, we should get a single logical value returned to us.


```r
spec_slice %>%
test_col_vals_within_spec(
 columns = vars(email_addresses),
 spec = "email"
)

[1] TRUE
```

**Function ID**

2-18

**See Also**

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

---

**conjointly**

*Perform multiple rowwise validations for joint validity*

**Description**

The `conjointly()` validation function, the `expect_conjointly()` expectation function, and the `test_conjointly()` test function all check whether test units at each index (typically each row) all pass multiple validations. We can use validation functions that validate row units (the `col_vals_*()` series), check for column existence (`col_exists()`), or validate column type (the `col_is_*()` series). Because of the imposed constraint on the allowed validation functions, the ensemble of test units are either comprised rows of the table (after any common preconditions have been applied) or are single test units (for those functions that validate columns).

Each of the functions used in a `conjointly()` validation step (composed using multiple validation function calls) ultimately perform a rowwise test of whether all sub-validations reported a *pass* for the same test units. In practice, an example of a joint validation is testing whether values for column `a` are greater than a specific value while adjacent values in column `b` lie within a specified range. The validation functions to be part of the conjoint validation are to be supplied as one-sided R formulas (using a leading `~`, and having a `. stand in as the data object). The validation function can be used directly on a data table or with an *agent* object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table.
Usage

conjointly(
  x,
  ...,  
  .list = list2(...),
  preconditions = NULL,
  segments = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_conjointly(
  object,
  ...,  
  .list = list2(...),
  preconditions = NULL,
  threshold = 1
)

test_conjointly(
  object,
  ...,  
  .list = list2(...),
  preconditions = NULL,
  threshold = 1
)

Arguments

x  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

...  A collection one-sided formulas that consist of validation functions that validate row units (the col_vals_*() series), column existence (col_exists()), or column type (the col_is_*() series). An example of this is ~ col_vals_gte(., vars(a), 5.5), ~ col_vals_not_null(., vars(b).

.list  Allows for the use of a list as an input alternative to ....

preconditions  An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments  An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

**actions**
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

**step_id**
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

**brief**
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

**object**
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.
Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names in any of the supplied validation steps, the result will be an expansion of sub-validation steps to that number of column names. Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Preconditions

Providing expressions as preconditions means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

Segments

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \( m \) columns multiplied by \( n \) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the `action_levels()`
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, noth-
ing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or
`action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be
automatically generated.

**YAML**

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can
be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via
`yaml_agent_interrogate()`). When `conjointly()` is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of `conjointly()` as a validation step is expressed in R
code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 conjointly(
 ~ col_vals_lt(., columns = vars(a), value = 8),
 ~ col_vals_gt(., columns = vars(c), value = vars(a)),
 ~ col_vals_not_null(., columns = vars(b)),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `conjointly()` step."
 , active = FALSE
)
```

YAML representation:

```yaml
steps:
 ~ conjointly:
 fns:
```
- `~col_vals_lt(., columns = vars(a), value = 8)`
- `~col_vals_gt(., columns = vars(c), value = vars(a))`
- `~col_vals_not_null(., columns = vars(b))`

preconditions: `. %>% dplyr::filter(a < 10)`
segments: `b ~ c("group_1", "group_2")`
actions:
  - `warn_fraction: 0.1`
  - `stop_fraction: 0.2`
  - `label: The `conjointly()` step.`
active: false

In practice, both of these will often be shorter as only the expressions for validation steps are necessary. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all examples here, we’ll use a simple table with three numeric columns (a, b, and c). This is a very basic table but it’ll be more useful when explaining things later.

```r
tbl <-
 dplyr::tibble(
 a = c(5, 2, 6),
 b = c(3, 4, 6),
 c = c(9, 8, 7)
)

tbl
```

```
A tibble: 3 x 3
a b c
<dbl> <dbl> <dbl>
#1 5 3 9
#2 2 4 8
#3 6 6 7
```

A: Using an agent with validation functions and then `interrogate()`:
Validate a number of things on a row-by-row basis using validation functions of the `col_vals*` type (all have the same number of test units): (1) values in `a` are less than 8, (2) values in `c` are greater than the adjacent values in `a`, and (3) there aren’t any NA values in `b`. We’ll determine if this validation has any failing test units (there are 3 test units, one for each row).

```r
agent <-
 create_agent(tbl = tbl) %>%
 conjointly(
 `~ col_vals_lt(., columns = vars(a), value = 8)`,
 `~ col_vals_gt(., columns = vars(c), value = vars(a))`,
)
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

What’s going on? Think of there being three parallel validations, each producing a column of TRUE or FALSE values (pass or fail) and line them up side-by-side, any rows with any FALSE values results in a conjoint fail test unit.

**B: Using the validation function directly on the data (no agent):**
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>%
conjointly(
 ~ col_vals_lt(. , columns = vars(a) , value = 8),
 ~ col_vals_gt(. , columns = vars(c) , value = vars(a)),
 ~ col_vals_not_null(. , columns = vars(b))
)
```

```r
A tibble: 3 x 3
a b c
<dbl> <dbl> <dbl>
1 5 3 9
2 2 4 8
3 6 6 7
```

**C: Using the expectation function:**
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_conjointly(
 tbl,
 ~ col_vals_lt(. , columns = vars(a) , value = 8),
 ~ col_vals_gt(. , columns = vars(c) , value = vars(a)),
 ~ col_vals_not_null(. , columns = vars(b))
)
```

**D: Using the test function:**
With the test_*() form, we should get a single logical value returned to us.

```r
tbl %>%
 test_conjointly(
 ~ col_vals_lt(. , columns = vars(a) , value = 8),
 ~ col_vals_gt(. , columns = vars(c) , value = vars(a)),
 ~ col_vals_not_null(. , columns = vars(b))
)

[1] TRUE
Function ID
2-34

See Also
Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

create_agent

Create a pointblank agent object

Description

The create_agent() function creates an agent object, which is used in a data quality reporting workflow. The overall aim of this workflow is to generate useful reporting information for assessing the level of data quality for the target table. We can supply as many validation functions as the user wishes to write, thereby increasing the level of validation coverage for that table. The agent assigned by the create_agent() call takes validation functions (e.g., col_vals_between(), rows_distinct(), etc.), which translate to discrete validation steps (each one is numbered and will later provide its own set of results). This process is known as developing a validation plan.

The validation functions, when called on an agent, are merely instructions up to the point the interrogate() function is called. That kicks off the process of the agent acting on the validation plan and getting results for each step. Once the interrogation process is complete, we can say that the agent has intel. Calling the agent itself will result in a reporting table. This reporting of the interrogation can also be accessed with the get_agent_report() function, where there are more reporting options.

Usage

create_agent(
 tbl = NULL,
 tbl_name = NULL,
 label = NULL,
 actions = NULL,
 end_fns = NULL,
 embed_report = FALSE,
 lang = NULL,
 locale = NULL,
 read_fn = NULL
)
create_agent

Arguments

tbl The input table. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, an expression can be supplied to serve as instructions on how to retrieve the target table at interrogation-time. There are two ways to specify an association to a target table: (1) as a table-prep formula, which is a right-hand side (RHS) formula expression (e.g., `~ {<table reading code>}`), or (2) as a function (e.g., `function() {<table reading code>}`).
tbl_name A optional name to assign to the input table object. If no value is provided, a name will be generated based on whatever information is available. This table name will be displayed in the header area of the agent report generated by printing the `agent` or calling `get_agent_report()`.
lable An optional label for the validation plan. If no value is provided, a label will be generated based on the current system time. Markdown can be used here to make the label more visually appealing (it will appear in the header area of the agent report).
actions A option to include a list with threshold levels so that all validation steps can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function. Should an action levels list be used for a specific validation step, the default set specified here will be overridden.
end_fns A list of expressions that should be invoked at the end of an interrogation. Each expression should be in the form of a one-sided R formula, so overall this construction should be used: `end_fns = list(~<R statements>, ~<R statements>, ...)`. An example of a function included in `pointblank` that can be sensibly used here is `email_blast()`, which sends an email of the validation report (based on a sending condition).
embed_report An option to embed a `gt`-based validation report into the `ptblank_agent` object. If FALSE (the default) then the table object will be not generated and available with the `agent` upon returning from the interrogation.
lang The language to use for automatic creation of briefs (short descriptions for each validation step) and for the `agent` report (a summary table that provides the validation plan and the results from the interrogation). By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").
locale An optional locale ID to use for formatting values in the `agent` report summary table according the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").
read_fn The `read_fn` argument is deprecated. Instead, supply a table-prep formula or function to `tbl1`.

Value

A `ptblank_agent` object.
Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - PostgreSQL tables (using the `RPostgres::Postgres()` as driver)
 - MySQL tables (with `RMySQL::MySQL()`)
 - Microsoft SQL Server tables (via `odbc`)
 - BigQuery tables (using `bigquery::bigquery()`)
 - DuckDB tables (through `duckdb::duckdb()`)
 - SQLite (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

The Use of an Agent for Validation Is Just One Option of Several

There are a few validation workflows and using an *agent* is the one that provides the most options. It is probably the best choice for assessing the state of data quality since it yields detailed reporting, has options for further exploration of root causes, and allows for granular definition of actions to be taken based on the severity of validation failures (e.g., emailing, logging, etc.).

Different situations, however, call for different validation workflows. You use validation functions (the same ones you would with an *agent*) directly on the data. This acts as a sort of data filter in that the input table will become output data (without modification), but there may be warnings, errors, or other side effects that you can define if validation fails. Basically, instead of this

```r
create_agent(tbl = small_table) %>% rows_distinct() %>% interrogate()
```

you would use this:

```r
small_table %>% rows_distinct()
```

This results in an error (with the default failure threshold settings), displaying the reason for the error in the console. Notably, the data is not passed through.

We can use variants of the validation functions, the *test* (`test_*()`) and *expectation* (`expect_*()`) versions, directly on the data for different workflows. The first returns to us a logical value. So this

```r
small_table %>% test_rows_distinct()
```

returns FALSE instead of an error.

In a unit testing scenario, we can use *expectation* functions exactly as we would with `testthat`’s library of `expect_*()` functions:

```r
small_table %>% expect_rows_distinct()
```

This test of `small_table` would be counted as a failure.
The Agent Report

While printing an agent (a ptblank_agent object) will display its reporting in the Viewer, we can alternatively use the get_agent_report() function to take advantage of other options (e.g., overriding the language, modifying the arrangement of report rows, etc.), and to return the report as independent objects. For example, with the display_table = TRUE option (the default), get_agent_report() will return a ptblank_agent_report object. If display_table is set to FALSE, we'll get a data frame back instead.

Exporting the report as standalone HTML file can be accomplished by using the export_report() function. This function can accept either the ptblank_agent object or the ptblank_agent_report as input. Each HTML document written to disk in this way is self-contained and easily viewable in a web browser.

Data Products Obtained from an Agent

A very detailed list object, known as an x-list, can be obtained by using the get_agent_x_list() function on the agent. This font of information can be taken as a whole, or, broken down by the step number (with the i argument).

Sometimes it is useful to see which rows were the failing ones. By using the get_data_extracts() function on the agent, we either get a list of tibbles (for those steps that have data extracts) or one tibble if the validation step is specified with the i argument.

The target data can be split into pieces that represent the 'pass' and 'fail' portions with the get_sundered_data() function. A primary requirement is an agent that has had interrogate() called on it. In addition, the validation steps considered for this data splitting need to be those that operate on values down a column (e.g., the col_vals_*() functions or conjointly()). With these in-consideration validation steps, rows with no failing test units across all validation steps comprise the 'pass' data piece, and rows with at least one failing test unit across the same series of validations constitute the 'fail' piece.

If we just need to know whether all validations completely passed (i.e., all steps had no failing test units), the all_passed() function could be used on the agent. However, in practice, it’s not often the case that all data validation steps are free from any failing units.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). Here is an example of how a complex call of create_agent() is expressed in R code and in the corresponding YAML representation.

R statement:

```r
create_agent(
  tbl = ~ small_table,
  tbl_name = "small_table",
  label = "An example.",
  actions = action_levels(
    warn_at = 0.10,
    stop_at = 0.25,
    notify_at = 0.35,
```

YAML:

```
- tbl: ~ small_table
- tbl_name: "small_table"
- label: "An example."
- actions:
  warnings:
    warn_at: 0.10
    stop_at: 0.25
    notify_at: 0.35
```
fns = list(notify = ~ email_blast(x,
 to = "joe_public@example.com",
 from = "pb_notif@example.com",
 msg_subject = "Table Validation",
 credentials = blastula::creds_key(id = "smtp2go")
),
 end_fns = list(
 ~ beepr::beep(2),
 ~ Sys.sleep(1)
),
 embed_report = TRUE,
 lang = "fr",
 locale = "fr_CA"
)

YAML representation:

type: agent
tbl: ~small_table
tbl_name: small_table
label: An example.
lang: fr
locale: fr_CA
actions:
 warn_fraction: 0.1
 stop_fraction: 0.25
 notify_fraction: 0.35
fns:
 notify: ~email_blast(x, to = "joe_public@example.com",
 from = "pb_notif@example.com",
 msg_subject = "Table Validation",
 credentials = blastula::creds_key(id = "smtp2go")
)
end_fns:
 ~beepr::beep(2)
 ~Sys.sleep(1)
embed_report: true
steps: []

In practice, this YAML file will be shorter since arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). The only requirement for writing the YAML representation
of an agent is having tbl specified as table-prep formula.

What typically follows this chunk of YAML is a steps part, and that corresponds to the addition
of validation steps via validation functions. Help articles for each validation function have a YAML
section that describes how a given validation function is translated to YAML.
Should you need to preview the transformation of an agent to YAML (without any committing anything to disk), use the `yaml_agent_string()` function. If you already have a .yml file that holds an agent, you can get a glimpse of the R expressions that are used to regenerate that agent with `yaml_agent_show_exprs()`.

Writing an Agent to Disk

An agent object can be written to disk with the `x_write_disk()` function. This can be useful for keeping a history of validations and generating views of data quality over time. Agents are stored in the serialized RDS format and can be easily retrieved with the `x_read_disk()` function.

It’s recommended that table-prep formulas are supplied to the `tbl` argument of `create_agent()`. In this way, when an agent is read from disk through `x_read_disk()`, it can be reused to access the target table (which may change, hence the need to use an expression for this).

Combining Several Agents in a multiagent Object

Multiple agent objects can be part of a multiagent object, and two functions can be used for this: `create_multiagent()` and `read_disk_multiagent()`. By gathering multiple agents that have performed interrogations in the past, we can get a multiagent report showing how data quality evolved over time. This use case is interesting for data quality monitoring and management, and, the reporting (which can be customized with `get_multiagent_report()`) is robust against changes in validation steps for a given target table.

Examples

Creating an agent, adding a validation plan, and interrogating:

Let’s walk through a data quality analysis of an extremely small table. It’s actually called `small_table` and we can find it as a dataset in this package.

```r
## # A tibble: 13 × 8
## #  date_time date a b c d e f
## # <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
## 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
## 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
## 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
## 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
## 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
## 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
## 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
## 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
## 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
## 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
## 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
## 12 2016-01-28 02:51:00 2016-01-28 7 6-dmx-010 8 108. FALSE low
## 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

We ought to think about what’s tolerable in terms of data quality so let’s designate proportional failure thresholds to the warn, stop, and notify states using `action_levels()`.

```
Now create a pointblank agent object and give it the al object (which serves as a default for all validation steps which can be overridden). The static thresholds provided by al will make the reporting a bit more useful. We also provide a target table and we’ll use pointblank::small_table.

```r
agent <-
create_agent(
  tbl = pointblank::small_table,
  tbl_name = "small_table",
  label = "`create_agent()` example.",
  actions = al
)
```

Then, as with any agent object, we can add steps to the validation plan by using as many validation functions as we want, then, we use `interrogate()` to actually perform the validations and gather intel.

```r
agent <-
agent %>%
col_exists(columns = vars(date, date_time)) %>%
col_vals_regex(
  columns = vars(b),
  regex = "[0-9]-[a-z]{3}-[0-9]{3}"
) %>%
rows_distinct() %>%
col_vals_gt(columns = vars(d), value = 100) %>%
col_vals_lte(columns = vars(c), value = 5) %>%
col_vals_between(
  columns = vars(c),
  left = vars(a), right = vars(d),
  na_pass = TRUE
) %>%
interrogate()
```

The agent object can be printed to see the validation report in the Viewer.

```r
agent
```

If we want to make use of more report display options, we can alternatively use the `get_agent_report()` function.

```r
report <-
get_agent_report(
  agent = agent,
  arrange_by = "severity",
  title = "Validation of `small_table`"
)
Post-interrogation operations:
We can use the agent object with a variety of functions to get at more of the information collected during interrogation.

We can see from the validation report that Step 4 (which used the `rows_distinct()` validation function) had two test units, corresponding to duplicated rows, that failed. We can see those rows with `get_data_extracts()`.

```r
agent %>% get_data_extracts(i = 4)
```

```
A tibble: 2 x 8
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-20 04:30:00 2016-01-20 3 5-bce-6. . . 9 838. FALSE high
2 2016-01-20 04:30:00 2016-01-20 3 5-bce-6. . . 9 838. FALSE high
```

We can get an x-list for the entire validation process (7 steps), or, just for the 4th step with `get_agent_x_list()`.

```r
xl_step_4 <- agent %>% get_agent_x_list(i = 4)
```

And then we can peruse the different parts of the list. Let’s get the fraction of test units that failed.

```r
xl_step_4$f_failed
#> [1] 0.15385
```

An x-list not specific to any step will have way more information and a slightly different structure. See `help(get_agent_x_list)` for more info.

**Function ID**

1-2

**See Also**

Other Planning and Prep: `action_levels()`, `create_informant()`, `db_tbl()`, `draft_validation()`, `file_tbl()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `tbl_store()`, `validate_rmd()`
create_informant

Create a pointblank informant object

Description

The `create_informant()` function creates an informant object, which is used in an information management workflow. The overall aim of this workflow is to record, collect, and generate useful information on data tables. We can supply any information that is useful for describing a particular data table. The informant object created by the `create_informant()` function takes information-focused functions: `info_columns()`, `info_tabular()`, `info_section()`, and `info_snippet()`.

The `info_*()` series of functions allows for a progressive build up of information about the target table. The `info_columns()` and `info_tabular()` functions facilitate the entry of info text that concerns the table columns and the table proper; the `info_section()` function allows for the creation of arbitrary sections that can have multiple subsections full of additional info text. The system allows for dynamic values culled from the target table by way of `info_snippet()`, for getting named text extracts from queries, and the use of `<snippet_name>` in the info text. To make the use of `info_snippet()` more convenient for common queries, a set of `snip_*()` functions are provided in the package (`snip_list()`, `snip_stats()`, `snip_lowest()`, and `snip_highest()`) though you are free to use your own expressions.

Because snippets need to query the target table to return fragments of info text, the `incorporate()` function needs to be used to initiate this action. This is also necessary for the informant to update other metadata elements such as row and column counts. Once the incorporation process is complete, snippets and other metadata will be updated. Calling the informant itself will result in a reporting table. This reporting can also be accessed with the `get_informant_report()` function, where there are more reporting options.

Usage

```r
create_informant(
 tbl = NULL,
 tbl_name = NULL,
 label = NULL,
 agent = NULL,
 lang = NULL,
 locale = NULL,
 read_fn = NULL
)
```

Arguments

- `tbl` The input table. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, an expression can be supplied to serve as instructions on how to retrieve the target table at incorporation-time. There are two ways to specify an association to a target table: (1) as a table-prep formula, which is a right-hand side (RHS) formula expression (e.g., `~ { <table reading code>}`), or (2) as a function (e.g., `function() { <table reading code>}`).
tbl_name A optional name to assign to the input table object. If no value is provided, a name will be generated based on whatever information is available.

label An optional label for the information report. If no value is provided, a label will be generated based on the current system time. Markdown can be used here to make the label more visually appealing (it will appear in the header area of the information report).

agent A pointblank agent object. The table from this object can be extracted and used in the new informant instead of supplying a table in tbl.

lang The language to use for the information report (a summary table that provides all of the available information for the table. By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

locale An optional locale ID to use for formatting values in the information report according the locale's rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").

read_fn The read_fn argument is deprecated. Instead, supply a table-prep formula or function to tbl.

Value

A ptblank_informant object.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl.spark)
- the following database tables (tbl.dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).
YAML

A pointblank informant can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an informant (with `yaml_read_informant()`) or perform the ‘incorporate’ action using the target table (via `yaml_informant_incorporate()`). Here is an example of how a complex call of `create_informant()` is expressed in R code and in the corresponding YAML representation.

R statement:

```r
create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example.",
 lang = "fr",
 locale = "fr_CA"
)
```

YAML representation:

```yaml
type: informant
tbl: ~small_table
tbl_name: small_table
info_label: An example.
lang: fr
locale: fr_CA
table:
 name: small_table
 _columns: 8
 _rows: 13.0
 _type: tbl_df
columns:
 date_time:
 _type: POSIXct, POSIXt
date:
 _type: Date
a:
 _type: integer
b:
 _type: character
c:
 _type: numeric
d:
 _type: numeric
e:
 _type: logical
f:
 _type: character
```
The generated YAML includes some top-level keys where type and tbl are mandatory, and, two metadata sections: table and columns. Keys that begin with an underscore character are those that are updated whenever incorporate() is called on an informant. The table metadata section can have multiple subsections with info text. The columns metadata section can similarly have multiple subsections, so long as they are children to each of the column keys (in the above YAML example, date_time and date are column keys and they match the table’s column names). Additional sections can be added but they must have key names on the top level that don’t duplicate the default set (i.e., type, table, columns, etc. are treated as reserved keys).

Writing an Informant to Disk

An informant object can be written to disk with the x_write_disk() function. Informants are stored in the serialized RDS format and can be easily retrieved with the x_read_disk() function.

It’s recommended that table-prep formulas are supplied to the tbl argument of create_informant(). In this way, when an informant is read from disk through x_read_disk(), it can be reused to access the target table (which may changed, hence the need to use an expression for this).

Examples

Let’s walk through how we can generate some useful information for a really small table. It’s actually called small_table and we can find it as a dataset in this package.

```r
small_table
```

Create a pointblank informant object with create_informant() and the small_table dataset.

```r
informant <-
create_informant(
 tbl = pointblank::small_table,
 tbl_name = "small_table",
 label = "\`create_informant()\` example."
)
```
This function creates some information without any extra help by profiling the supplied table object. It adds the COLUMNS section with stubs for each of the target table’s columns. We can use the info_columns() or info_columns_from_tbl() to provide descriptions for each of the columns. The informant object can be printed to see the information report in the Viewer.

informant

If we want to make use of more report display options, we can alternatively use the get_informant_report() function.

```r
report <-
 get_informant_report(
 informant,
 title = "Data Dictionary for 'small_table'"
)
```

Function ID

1-3

See Also

Other Planning and Prep: action_levels(), create_agent(), db_tbl(), draft_validation(), file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

---

**create_multiagent**  

declare_multiagent, Create a pointblank multiagent object

Description

Multiple agents can be part of a single object called the multiagent. This can be useful when gathering multiple agents that have performed interrogations in the past (perhaps saved to disk with x_write_disk()). When be part of a multiagent, we can get a report that shows how data quality evolved over time. This can be of interest when it’s important to monitor data quality and even the evolution of the validation plan itself. The reporting table, generated by printing a ptblank_multiagent object or by using the get_multiagent_report() function, is, by default, organized by the interrogation time and it automatically recognizes which validation steps are equivalent across interrogations.

Usage

create_multiagent(..., lang = NULL, locale = NULL)
create_multiagent

Arguments

... One or more `pointblank` agent objects.

`lang` The language to use for any reporting that will be generated from the multiagent. (e.g., individual agent reports, multiagent reports, etc.). By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

`locale` An optional locale ID to use for formatting values in the reporting outputs according the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").

Value

A `ptblank_multiagent` object.

Examples

For the example below, we’ll use two different, yet simple tables.

First, `tbl_1`:

```r
tbl_1 <-
dplyr::tibble(
 a = c(5, 5, 5, 5, 5, 5),
 b = c(1, 1, 1, 2, 2, 2),
 c = c(1, 1, 1, 2, 3, 4),
 d = LETTERS[a],
 e = LETTERS[b],
 f = LETTERS[c]
)
tbl_1
```

```
A tibble: 6 × 6
a b c d e f
<dbl> <dbl> <dbl> <chr> <chr> <chr>
1 5 1 5 E A A
2 5 1 1 E A A
3 5 1 2 E B B
4 5 2 3 E B C
5 5 2 4 E B D
6 5 2 2 E B D
```

And next, `tbl_2`:
tbl_2 <-
dplyr::tibble(
  a = c(5, 7, 6, 5, 8, 7),
  b = LETTERS[1:6]
)

## # A tibble: 6 × 2
## a b
## <dbl> <chr>
## 1 5 A
## 2 7 B
## 3 6 C
## 4 5 D
## 5 8 E
## 6 7 F

Next, we’ll create two different agents, each interrogating a different table.

First up, is agent_1:

agent_1 <-
create_agent(
  tbl = tbl_1,
  tbl_name = "tbl_1",
  label = "Example table 1."
)
%>%
col_vals_gt(columns = vars(a), value = 4)
%>%
interrogate()

Then, agent_2:

agent_2 <-
create_agent(
  tbl = tbl_2,
  tbl_name = "tbl_2",
  label = "Example table 2."
)
%>%
col_is_character(columns = vars(b))
%>%
interrogate()

Now, we’ll combine the two agents into a multiagent with the create_multiagent() function.
Printing the "ptblank_multiagent" object displays the multiagent report with its default options (i.e., a 'long' report view).

multiagent <- create_multiagent(agent_1, agent_2)

multiagent
To take advantage of more display options, we could use the `get_multiagent_report()` function. The added functionality there allows for a 'wide' view of the data (useful for monitoring validations of the same table over repeated interrogations), the ability to modify the title of the multiagent report, and a means to export the report to HTML (via `export_report()`).

**Function ID**

10-1

**See Also**

Other The multiagent: `get_multiagent_report()`, `read_disk_multiagent()`

---

**db_tbl**

*Get a table from a database*

**Description**

If your target table is in a database, the `db_tbl()` function is a handy way of accessing it. This function simplifies the process of getting a tbl_dbi object, which usually involves a combination of building a connection to a database and using the `dplyr::tbl()` function with the connection and the table name (or a reference to a table in a schema). You can use `db_tbl()` as the basis for obtaining a database table for the tbl parameter in `create_agent()` or `create_informant()`. Another great option is supplying a table-prep formula involving `db_tbl()` to `tbl_store()` so that you have access to database tables though single names via a table store.

The username and password are supplied through environment variable names. If desired, values for the username and password can be supplied directly by enclosing such values in `I()`.

**Usage**

```r
db_tbl(
 table,
 dbtype,
 dbname = NULL,
 host = NULL,
 port = NULL,
 user = NULL,
 password = NULL,
 bq_project = NULL,
 bq_dataset = NULL,
 bq_billing = bq_project
)
```
Arguments

**table**
The name of the table, or, a reference to a table in a schema (two-element vector with the names of schema and table). Alternatively, this can be supplied as a data table to copy into an in-memory database connection. This only works if: (1) the db is chosen as either "sqlite" or "duckdb", (2) the dbname was is set to "::memory::", and (3) the object supplied to table is a data frame or a tibble object.

**dbtype**
Either an appropriate driver function (e.g., RPostgres::Postgres()) or a short-name for the database type. Valid names are: "postgresql", "postgres", or "pgsql" (PostgreSQL, using the RPostgres::Postgres() driver function); "mysql" (MySQL, using RMySQL::MySQL()); bigquery or bq (BigQuery, using bigquery::bigquery()); "duckdb" (DuckDB, using duckdb::duckdb()); and "sqlite" (SQLite, using RSQLite::SQLite()).

**dbname**
The database name.

**host, port**
The database host and optional port number.

**user, password**
The environment variables used to access the username and password for the database. Enclose in `I()` when using literal username or password values.

**bq_project, bq_dataset, bq_billing**
If accessing a table from a BigQuery data source, there's the requirement to provide the table's associated project (`bq_project`) and dataset (`bq_dataset`) names. By default, the project to be billed will be the same as the one provided for `bq_project` but the `bq_billing` argument can be changed to reflect a different BigQuery project.

Value

A `tbl_dbi` object.

Examples

**Obtaining in-memory database tables:**
You can use an in-memory database table and by supplying it with an in-memory table. This works with the DuckDB database and the key thing is to use `dbname = "::memory::"` in the `db_tbl()` call.

```r
small_table_duckdb <-
 db_tbl(
 table = small_table,
 dbtype = "duckdb",
 dbname = "::memory::"
)

small_table_duckdb
Source: table<small_table> [?? x 8]
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bc... 3 3423. TRUE
2 2016-01-04 12:00:00 2016-01-04 2 1-bc... 3 3423. TRUE
```

# # Source: table<small_table> [?? x 8]
# # Database: duckdb_connection
The in-memory option also works using the SQLite database. The only change required is setting the `dbtype` to "sqlite":

```r
small_table_sqlite <-
db_tbl(
 table = small_table,
 dbtype = "sqlite",
 dbname = "::memory:"
)
```

It's also possible to obtain a table from a remote file and shove it into an in-memory database. For this, we can use the all-powerful `file_tbl()` + `db_tbl()` combo.

```r
all_revenue_large_duckdb <-
db_tbl(
 table = file_tbl(
 file = from_github(
 file = "sj_all_revenue_large.rds",
 repo = "rich-iannone/intendo",
 subdir = "data-large"
)
)
)
all_revenue_large_duckdb

Source: table<sj_all_revenue_large.rds> [?? x 11]
Database: duckdb_connection
player_id session_id session_start time
<chr> <chr> <dttm> <dttm>
1 IRZKSAOYIJME796 IRZKSAOYIJM. . . 2015-01-01 00:18:41 2015-01-01 00:18:53
2 CJVYRASDZTXO674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:13:07
3 CJVYRASDZTXO674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:23:37
4 CJVYRASDZTXO674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:24:37
5 CJVYRASDZTXO674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:31:01
6 CJVYRASDZTXO674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:31:43
7 CJVYRASDZTXO674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:36:01
8 ECPANOIXLZHF896 ECPANOIXLZH. . . 2015-01-01 01:31:03 2015-01-01 01:31:27
9 ECPANOIXLZHF896 ECPANOIXLZH. . . 2015-01-01 01:31:03 2015-01-01 01:36:57
10 ECPANOIXLZHF896 ECPANOIXLZH. . . 2015-01-01 01:31:03 2015-01-01 01:37:45
... with more rows, and 7 more variables: item_type <chr>,
item_name <chr>, item_revenue <dbl>, session_duration <dbl>,
start_day <date>, acquisition <chr>, country <chr>

And that’s really it.

Obtaining remote database tables:

For remote databases, we have to specify quite a few things but it’s a one-step process nonetheless. Here’s an example that accesses the rna table (in the RNA Central public database) using `db_tbl()`.

```r
rna_db_tbl <-
  db_tbl(
    table = "rna",
    dbtype = "postgres",
    dbname = "pfmegrnargs",
    host = "hh-pgsql-public.ebi.ac.uk",
    port = 5432,
    user = I("reader"),
    password = I("NWDMCE5dip1jRrp")
  )
```

```
rna_db_tbl
```

Source: table<rna> [?? x 9]
Database: postgres
[reader@hh-pgsql-public.ebi.ac.uk:5432/pfmegrnargs]
id upi timestamp userstamp crc64 len seq_short
<int64> <chr> <dttm> <chr> <chr> <int> <chr>
1 25222431 URS00... 2019-12-02 13:26:46 rnacen E65C... 521 AGAGTTTG...
2 25222432 URS00... 2019-12-02 13:26:46 rnacen 6B91... 520 AGAGTTTG...
3 25222433 URS00... 2019-12-02 13:26:46 rnacen 03B8... 257 TACGTAGG...
4 25222434 URS00... 2019-12-02 13:26:46 rnacen E925... 533 AGGGTTTG...
5 25222435 URS00... 2019-12-02 13:26:46 rnacen C2D0... 504 GACGAACG...
6 25222436 URS00... 2019-12-02 13:26:46 rnacen 03B8... 257 TACGTAGG...
7 25222437 URS00... 2019-12-02 13:26:46 rnacen E65C... 521 AGAGTTTG...
8 25222438 URS00... 2019-12-02 13:26:46 rnacen 4228... 556 AAAACATC...
9 25222439 URS00... 2019-12-02 13:26:46 rnacen B7CC... 515 AGGGTTTG...
10 25222440 URS00... 2019-12-02 13:26:46 rnacen 03B8... 406 ATTAACAG...
... with more rows, and 2 more variables: seq_long <chr>, md5 <chr>

You’d normally want to use the names of environment variables (envvars) to more securely access the appropriate username and password values when connecting to a DB. Here are all the necessary inputs:

```r
example_db_tbl <-
  db_tbl(
    table = "<table_name>",
    dbtype = "<database_type_shortname>",
    dbname = "<database_name>",
    host = "<connection_url>",
    port = "<connection_port>",
    user = "<DB_USER_NAME>",
    password = "<DB_PASSWORD>"
  )
```

Environment variables can be created by editing the user .Renviron file and the usethis::edit_r_environ() function makes this pretty easy to do.

DB table access and prep via the table store:

Using table-prep formulas in a centralized table store can make it easier to work with DB tables in pointblank. Here’s how to generate a table store with two named entries for table preparations involving the tbl_store() and db_tbl() functions.

```r
store <-
  tbl_store(
    small_table_duck ~ db_tbl(
      table = pointblank::small_table,
      dbtype = "duckdb",
      dbname = ":memory:";
    ),
    small_high_duck ~ {{ small_table_duck }} %>%
      dplyr::filter(f == "high")
  )
```

Now it’s easy to obtain either of these tables via tbl_get(). We can reference the table in the store by its name (given to the left of the ~).
tbl_get(tbl = "small_table_duck", store = store)

Source: table<pointblank::small_table> [8 x 8]
Database: duckdb_connection
date_time date a b c d e
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-. . . 8 10000. TRUE
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-. . . 3 2343. TRUE
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-. . . NA 3892. FALSE
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-. . . 7 284. TRUE
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-. . . 4 3291. TRUE
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-. . . 3 843. TRUE
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-. . . 2 1036. FALSE
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE
. . . with more rows, and 1 more variable: f <chr>

The second table in the table store is a mutated version of the first. It’s just as easily obtainable via tbl_get():

tbl_get(tbl = "small_high_duck", store = store)

Source: lazy query [8 x 8]
Database: duckdb_connection
date_time date a b c d e
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE
2 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE
3 2016-01-15 18:46:00 2016-01-15 7 1-knw-903 3 843. TRUE
4 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE
5 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE
6 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE
. . . with more rows, and 1 more variable: f <chr>

The table-prep formulas in the store object could also be used in functions with a tbl argument (like create_agent() and create_informant()). This is accomplished most easily with the tbl_source() function.

agent <-
create_agent(
 tbl = ~ tbl_source(
 tbl = "small_table_duck",
 store = tbls
)
)

informant <-
create_informant(
 tbl = ~ tbl_source(
 tbl = "small_high_duck",
 store = tbls
)
)
deactivate_steps

 store = tbls
)
)

Function ID

1-6

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), draft_validation(),
file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

deactivate_steps Deactivate one or more of an agent’s validation steps

Description

Should the deactivation of one or more validation steps be necessary after creation of the validation
plan for an agent, the deactivate_steps() function will be helpful for that. This has the same
effect as using the active = FALSE option (active is an argument in all validation functions) for
the selected validation steps. Please note that this directly edits the validation step, wiping out any
function that may have been defined for whether the step should be active or not.

Usage

devivate_steps(agent, i = NULL)

Arguments

agent An agent object of class ptblank_agent.
i The validation step number, which is assigned to each validation step in the
order of definition.

Value

A ptblank_agent object.

Function ID

9-6

See Also

For the opposite behavior, use the activate_steps() function.

Other Object Ops: activate_steps(), export_report(), remove_steps(), set_tbl(), x_read_disk(),
x_write_disk()
Examples

```r
# Create an agent that has the
# `small_table` object as the
# target table, add a few
# validation steps, and then use
# `interrogate`
agent_1 <-
create_agent(
tbl = small_table,
tbl_name = "small_table",
label = "An example."
) %>%
col_exists(columns = vars(date)) %>%
col_vals_regex(
columns = vars(b),
regex = "[0-9-][a-z][0-9][0-9]"
) %>%
interrogate()

# The second validation step is
# now being reconsidered and may
# be either phased out or improved
# upon; in the interim period it
# was decided that the step should
# be deactivated for now
agent_2 <-
agent_1 %>%
deactivate_steps(i = 2) %>%
interrogate()
```

draft_validation

Draft a starter pointblank validation .R/.Rmd file with a data table

Description

Generate a draft validation plan in a new .R or .Rmd file using an input data table. Using this workflow, the data table will be scanned to learn about its column data and a set of starter validation steps (constituting a validation plan) will be written. It’s best to use a data extract that contains at least 1000 rows and is relatively free of spurious data.

Once in the file, it’s possible to tweak the validation steps to better fit the expectations to the particular domain. While column inference is used to generate reasonable validation plans, it is difficult to infer the acceptable values without domain expertise. However, using `draft_validation()` could get you started on floor 10 of tackling data quality issues and is in any case better than starting with an empty code editor view.
draft_validation

Usage

draft_validation(
 tbl,
 tbl_name = NULL,
 file_name = tbl_name,
 path = NULL,
 lang = NULL,
 output_type = c("R", "Rmd"),
 add_comments = TRUE,
 overwrite = FALSE,
 quiet = FALSE
)

Arguments

tbl The input table. This can be a data frame, tibble, a tbl_dbi object, or a tbl_spark object.
tbl_name A optional name to assign to the input table object. If no value is provided, a name will be generated based on whatever information is available. This table name will be displayed in the header area of the agent report generated by printing the agent or calling get_agent_report()file_name An optional name for the .R or .Rmd file. This should be a name without an extension. By default, this is taken from the tbl_name but if nothing is supplied for that, the name will contain the text “draft_validation_” followed by the current date and time.
path A path can be specified here if there shouldn’t be an attempt to place the generated file in the working directory.
lang The language to use when creating comments for the automatically-generated validation steps. By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").
output_type An option for choosing what type of output should be generated. By default, this is an .R script ("R") but this could alternatively be an R Markdown document ("Rmd").
add_comments Should there be comments that explain the features of the validation plan in the generated document? By default, this is TRUE.
overwrite Should a file of the same name be overwritten? By default, this is FALSE.
quiet Should the function not inform when the file is written? By default this is FALSE.

Value

Invisibly returns TRUE if the file has been written.
Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
 - PostgreSQL tables (using the RPostgres::Postgres() as driver)
 - MySQL tables (with RMySQL::MySQL())
 - Microsoft SQL Server tables (via odbc)
 - BigQuery tables (using bigquery::bigquery())
 - DuckDB tables (through duckdb::duckdb())
 - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Examples

Let’s draft a validation plan for the dplyr::storms dataset.

dplyr::storms

```r
# A tibble: 11,859 × 13
#  name year month day hour lat long status category wind pressure
## <chr> <dbl> <dbl> <int> <dbl> <dbl> <chr> <ord> <int> <int> <int> <int>
# 1 Amy 1975 6 27 0 27.5 -79 tropical d... -1  25  1013
# 2 Amy 1975 6 27 6 28.5 -79 tropical d... -1  25  1013
# 3 Amy 1975 6 27 12 29.5 -79 tropical d... -1  25  1013
# 4 Amy 1975 6 27 18 30.5 -79 tropical d... -1  25  1013
# 5 Amy 1975 6 28 0 31.5 -78.8 tropical d... -1  25  1012
# 6 Amy 1975 6 28 6 32.4 -78.7 tropical d... -1  25  1012
# 7 Amy 1975 6 28 12 33.3 -78 tropical d... -1  25  1011
# 8 Amy 1975 6 28 18 34 -77 tropical d... -1  30  1006
# 9 Amy 1975 6 29 0 34.4 -75.8 tropical s... 0  35  1004
#10 Amy 1975 6 29 6 34 -74.8 tropical s... 0  40  1002
# ... with 11,849 more rows, and 2 more variables:
# #  tropicalstorm_force_diameter <int>, hurricane_force_diameter <int>
```

The draft_validation() function creates an .R file by default. Using just the defaults with dplyr::storms will yield the "dplyr__storms.R" file in the working directory. Here are the contents of the file:

```r
library(pointblank)

agent <-
create_agent(
  tbl = ~ dplyr::storms,
)
actions = action_levels(
    warn_at = 0.05,
    stop_at = 0.10
),
tbl_name = "dplyr::storms",
label = "Validation plan generated by \code{draft_validation()} ."
) 

# Expect that column `name` is of type: character
col_is_character(
    columns = vars(name)
) 

# Expect that column `year` is of type: numeric
col_is_numeric(
    columns = vars(year)
) 

# Expect that values in `year` should be between `1975` and `2020`
col_vals_between(
    columns = vars(year),
    left = 1975,
    right = 2020
) 

# Expect that column `month` is of type: numeric
col_is_numeric(
    columns = vars(month)
) 

# Expect that values in `month` should be between `1` and `12`
col_vals_between(
    columns = vars(month),
    left = 1,
    right = 12
) 

# Expect that column `day` is of type: integer
col_is_integer(
    columns = vars(day)
) 

# Expect that values in `day` should be between `1` and `31`
col_vals_between(
    columns = vars(day),
    left = 1,
    right = 31
) 

# Expect that column `hour` is of type: numeric
col_is_numeric(
    columns = vars(hour)
) 

# Expect that values in `hour` should be between `0` and `23`
col_vals_between(
    columns = vars(hour),
left = 0,
right = 23
)

# Expect that column `lat` is of type: numeric
col_is_numeric(
  columns = vars(lat)
)

# Expect that values in `lat` should be between `-90` and `90`
col_vals_between(
  columns = vars(lat),
  left = -90,
  right = 90
)

# Expect that column `long` is of type: numeric
col_is_numeric(
  columns = vars(long)
)

# Expect that values in `long` should be between `-180` and `180`
col_vals_between(
  columns = vars(long),
  left = -180,
  right = 180
)

# Expect that column `status` is of type: character
col_is_character(
  columns = vars(status)
)

# Expect that column `category` is of type: factor
col_is_factor(
  columns = vars(category)
)

# Expect that column `wind` is of type: integer
col_is_integer(
  columns = vars(wind)
)

# Expect that values in `wind` should be between `10` and `160`
col_vals_between(
  columns = vars(wind),
  left = 10,
  right = 160
)

# Expect that column `pressure` is of type: integer
col_is_integer(
  columns = vars(pressure)
)

# Expect that values in `pressure` should be between `882` and `1022`
col_vals_between(
  columns = vars(pressure),
left = 882,
right = 1022
) %>%
# Expect that column `tropicalstorm_force_diameter` is of type: integer
col_is_integer(
columns = vars(tropicalstorm_force_diameter)
) %>%
# Expect that values in `tropicalstorm_force_diameter` should be between `0` and `870`
col_vals_between(
columns = vars(tropicalstorm_force_diameter),
left = 0,
right = 870,
na_pass = TRUE
) %>%
# Expect that column `hurricane_force_diameter` is of type: integer
col_is_integer(
columns = vars(hurricane_force_diameter)
) %>%
# Expect that values in `hurricane_force_diameter` should be between `0` and `300`
col_vals_between(
columns = vars(hurricane_force_diameter),
left = 0,
right = 300,
na_pass = TRUE
) %>%
# Expect entirely distinct rows across all columns
rows_distinct() %>%
# Expect that column schemas match
col_schema_match(
schema = col_schema(
  name = "character",
  year = "numeric",
  month = "numeric",
  day = "integer",
  hour = "numeric",
  lat = "numeric",
  long = "numeric",
  status = "character",
  category = c("ordered", "factor"),
  wind = "integer",
  pressure = "integer",
  tropicalstorm_force_diameter = "integer",
  hurricane_force_diameter = "integer"
)
) %>%
interrogate()
This is runnable as is, and the promise is that the interrogation should produce no failing test units. After execution, we get the following validation report:

All of the expressions in the resulting file constitute just a rough approximation of what a validation plan should be for a dataset. Certainly, the value ranges in the emitted `col_vals_between()` may not be realistic for the wind column and may require some modification (the provided left and right values are just the limits of the provided data). However, note that the lat and long (latitude and longitude) columns have acceptable ranges (providing the limits of valid lat/lon values). This is thanks to `pointblank`'s column inference routines, which is able to understand what certain columns contain.

For an evolving dataset that will experience changes (either in the form of revised data and addition/deletion of rows or columns), the emitted validation will serve as a good first step and changes can more easily be made since there is a foundation to build from.

**Function ID**

1-11

**See Also**

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `db_tbl()`, `file_tbl()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `tbl_store()`, `validate_rmd()`

---

**email_blast**

Conditionally send email during interrogation

**Description**

The `email_blast()` function is useful for sending an email message that explains the result of a `pointblank` validation. It is powered by the `blastula` and `glue` packages. This function should be invoked as part of the end_fns argument of `create_agent()`. It’s also possible to invoke `email_blast()` as part of the fns argument of the `action_levels()` function (i.e., to send multiple email messages at the granularity of different validation steps exceeding failure thresholds).

To better get a handle on emailing with `email_blast()`, the analogous `email_create()` function can be used with a `pointblank` agent object.

**Usage**

```r
email_blast(
 x,
 to,
 from,
 credentials = NULL,
 msg_subject = NULL,
 msg_header = NULL,
 msg_body = stock_msg_body(),
 msg_footer = stock_msg_footer(),
 send_condition = ~TRUE %in% x$notify
)
```
Arguments

- **x**: A reference to the x-list object prepared internally by the agent. This version of the x-list is the same as that generated via `get_agent_x_list(<agent>)` except this version is internally generated and hence only available in an internal evaluation context.

- **to, from**: The email addresses for the recipients and of the sender.

- **credentials**: A credentials list object that is produced by either of the `blastula::creds()`, `blastula::creds_anonymous()`, `blastula::creds_key()`, or `blastula::creds_file()` functions. Please refer to the `blastula` documentation for information on how to use these functions.

- **msg_subject**: The subject line of the email message.

- **msg_header, msg_body, msg_footer**: Content for the header, body, and footer components of the HTML email message.

- **send_condition**: An expression that should evaluate to a logical vector of length 1. If evaluated as **TRUE** then the email will be sent, if **FALSE** then that won’t happen. The expression can use x-list variables (e.g., `x$notify`, `x$type`, etc.) and all of those variables can be explored using the `get_agent_x_list()` function. The default expression is `~ TRUE %in% x$notify`, which results in **TRUE** if there are any **TRUE** values in the `x$notify` logical vector (i.e., any validation step that results in a ‘notify’ state).

YAML

A **pointblank** agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`), or interrogate the target table (via `yaml_agent_interrogate()`). Here is an example of how the use of `email_blast()` inside the `end_fns` argument of `create_agent()` is expressed in R code and in the corresponding YAML representation.

**R statement:**

```r
create_agent(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example.",
 actions = al,
 end_fns = list(~ email_blast(
 x,
 to = "joe_public@example.com",
 from = "pb_notif@example.com",
 msg_subject = "Table Validation",
 credentials = blastula::creds_key(
 id = "smtp2go"
)
)
)
)```

YAML representation:

```yaml
create_agent(
  tbl = ~ small_table,
  tbl_name = "small_table",
  label = "An example.",
  actions = al,
  end_fns = list(~
    email_blast(
      x,
      to = "joe_public@example.com",
      from = "pb_notif@example.com",
      msg_subject = "Table Validation",
      credentials = blastula::creds_key(
        id = "smtp2go"
      )
    )
  )
)
```
YAML representation:

```yaml
type: agent
tbl: ~small_table
tbl_name: small_table
label: An example.
lang: en
locale: en
actions:
  warn_count: 1.0
  notify_count: 2.0
end_fns: ~email_blast(x, to = "joe_public@example.com",
  from = "pb_notif@example.com", msg_subject = "Table Validation",
  credentials = blastula::creds_key(id = "smtp2go"),
  )
embed_report: true
steps:
  - col_vals_gt:
      columns: vars(a)
      value: 1.0
  - col_vals_lt:
      columns: vars(a)
      value: 7.0
```

Examples

For the example provided here, we’ll use the included `small_table` dataset. We are also going to create an `action_levels()` list object since this is useful for demonstrating an emailing scenario. It will have absolute values for the warn and notify states (with thresholds of 1 and 2 ’fail’ units, respectively, for the two states).

```r
al <-
  action_levels(
    warn_at = 1,
    notify_at = 2
  )
```

Validate that values in column `a` from `small_tbl` are always greater than 1 (with the `col_vals_gt()` validation function), and, that values in `a` or are always less than 7.

The `email_blast()` function call is used in a list given to the `end_fns` argument of `create_agent()`. The `email_blast()` call itself has a `send_condition` argument that determines whether or not an email will be sent. By default this is set to `~ TRUE %in% x$notify`. Let’s unpack this a bit. The variable `x` is a list (we call it an `x-list`) and it will be populated with elements pertaining to the agent.
After interrogation, and only if action levels were set for the notify state, \(x \texttt{\$notify} \) will be present as a logical vector where the length corresponds to the number of validation steps. Thus, if any of those steps entered the notify state (here, it would take two or more failing test units, per step, for that to happen), then the statement as a whole is TRUE and the email of the interrogation report will be sent. Here is the complete set of statements for the creation of an agent, the addition of validation steps, and the interrogation of data in small_table:

```r
agent <-
create_agent(
  tbl = small_table,
  tbl_name = "small_table",
  label = "An example.",
  actions = al,
  end_fns = list(~ email_blast(
    x,
    to = "a_person@example.com",
    from = "pb_notif@example.com",
    msg_subject = "Table Validation",
    credentials = blastula::creds_key(id = "smtp2go"),
    send_condition = ~ TRUE %in% x\$notify
  )
)
) %>%
col_vals_gt(vars(a), value = 1) %>%
col_vals_lt(vars(a), value = 7) %>%
interrogate()
```

The reason for the ~ present in the statements:

- ~ email_blast(...) and
- ~ TRUE %in% x\$notify

is because this defers evocation of the emailing functionality (and also defers evaluation of the send_condition value) until interrogation is complete (with interrogate()).

Function ID

4-1

See Also

Other Emailing: `email_create()`, `stock_msg_body()`, `stock_msg_footer()`
email_create

Create an email object from a **pointblank** agent

Description

The `email_create()` function produces an email message object that could be sent using the **blastula** package. By supplying a **pointblank** agent, a **blastula** email_message message object will be created and printing it will make the HTML email message appear in the Viewer.

Usage

```r
e/email_create(
  x,
  msg_header = NULL,
  msg_body = stock_msg_body(),
  msg_footer = stock_msg_footer()
)
```

Arguments

- `x` **A pointblank agent.**
- `msg_header`, `msg_body`, `msg_footer` **Content for the header, body, and footer components of the HTML email message.**

Value

A blastula email_message object.

Examples

For the example provided here, we’ll use the included `small_table` dataset. We are also going to create an `action_levels()` list object since this is useful for demonstrating an emailing scenario. It will have absolute values for the warn and notify states (with thresholds of 1 and 2 ’fail’ units, respectively, for the two states).

```r
al <- action_levels(
  warn_at = 1,
  notify_at = 2
)
```

In a workflow that involves an agent object, we can make use of the `end_fns` argument and programmatically email the report with the **email_blast()** function. However, an alternate workflow that is demonstrated here is to produce the email object directly. This provides the flexibility to send the email outside of the **pointblank** API. The `email_create()` function lets us do this with an agent object. We can then view the HTML email just by printing `email_object`. It should appear in the Viewer.
email_object <-
create_agent(
 tbl = small_table,
 tbl_name = "small_table",
 label = "An example.",
 actions = al
) %>%
col_vals_gt(vars(a), value = 1) %>%
col_vals_lt(vars(a), value = 7) %>%
interrogate() %>%
email_create()

email_object

Function ID

4-2

See Also

Other Emailing: email_blast(), stock_msg_body(), stock_msg_footer()

export_report

Export an agent, informant, multiagent, or table scan to HTML

Description

The agent, informant, multiagent, and the table scan object can be easily written as HTML with export_report(). Furthermore, any report objects from the agent, informant, and multiagent (generated using get_agent_report(), get_informant_report(), and get_multiagent_report()) can be provided here for HTML export. Each HTML document written to disk is self-contained and easily viewable in a web browser.

Usage

```r
export_report(x, filename, path = NULL, quiet = FALSE)
```

Arguments

- **x**
 - An agent object of class ptblank_agent, an informant of class ptblank_informant, a multiagent of class ptblank_multiagent, a table scan of class ptblank_tbl_scan, or, customized reporting objects (ptblank_agent_report, ptblank_informant_report, ptblank_multiagent_report.wide, ptblank_multiagent_report.long).
- **filename**
 - The filename to create on disk for the HTML export of the object provided. It’s recommended that the extension ".html" is included.
- **path**
 - An optional path to which the file should be saved (this is automatically combined with filename).
- **quiet**
 - Should the function not inform when the file is written? By default this is FALSE.
export_report

Value

Invisibly returns TRUE if the file has been written.

Examples

A: Writing an agent report as HTML:

Let's go through the process of (1) developing an agent with a validation plan (to be used for the
data quality analysis of the small_table dataset), (2) interrogating the agent with the \texttt{interrogate()} function, and (3) writing the agent and all its intel to a file.

Creating an \texttt{action_levels} object is a common workflow step when creating a pointblank agent.

We designate failure thresholds to the warn, stop, and notify states using \texttt{action_levels()}.

\begin{verbatim}
al <-
 action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
)
\end{verbatim}

Now create a pointblank agent object and give it the \texttt{al} object (which serves as a default for all validation steps which can be overridden). The data will be referenced in the \texttt{tbl} argument with a leading `~`.

\begin{verbatim}
agent <-
 create_agent(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "\texttt{\textbackslash export_report()}",
 actions = al
)
\end{verbatim}

As with any agent object, we can add steps to the validation plan by using as many validation functions as we want. Then, we \texttt{interrogate()}.

\begin{verbatim}
agent <-
 agent %>%
 col_exists(columns = vars(date, date_time)) %>%
 col_vals_regex(
 columns = vars(b),
 regex = "[0-9]-[a-z]{3}-[0-9]{3}"
) %>%
 rows_distinct() %>%
 col_vals_gt(columns = vars(d), value = 100) %>%
 col_vals_lte(columns = vars(c), value = 5) %>%
 interrogate()
\end{verbatim}

The agent report can be written to an HTML file with \texttt{export_report()}.

\begin{verbatim}
export_report(
 agent,
 filename = "agent-small_table.html"
)
\end{verbatim}
If you’re consistently writing agent reports when periodically checking data, we could make use of `affix_date()` or `affix_datetime()` depending on the granularity you need. Here’s an example that writes the file with the format: "<filename>-YYYY-mm-dd_HH-MM-SS.html".

```r
export_report(
  agent,
  filename = affix_datetime(
    "agent-small_table.html"
  )
)
```

B: Writing an informant report as HTML:

Let’s go through the process of (1) creating an informant object that minimally describes the `small_table` dataset, (2) ensuring that data is captured from the target table using the `incorporate()` function, and (3) writing the informant report to HTML.

Create a pointblank informant object with `create_informant()` and the `small_table` dataset. Use `incorporate()` so that info snippets are integrated into the text.

```r
informant <-
  create_informant(
    tbl = ~ small_table,
    tbl_name = "small_table",
    label = "\`export_report()\"
  ) %>%
  info_snippet(
    snippet_name = "high_a",
    fn = snip_highest(column = "a")
  ) %>%
  info_snippet(
    snippet_name = "low_a",
    fn = snip_lowest(column = "a")
  ) %>%
  info_columns(
    columns = vars(a),
    info = "From \{low_a\} to \{high_a\}." 
  ) %>%
  info_columns(
    columns = starts_with("date"),
    info = "Time-based values." 
  ) %>%
  info_columns(
    columns = "date",
    info = "The date part of `date_time`." 
  ) %>%
  incorporate()
```

The informant report can be written to an HTML file with `export_report()`. Let’s do this with `affix_date()` so the filename has a datestamp.

```r
export_report(
  file = affix_date("agent-small_table.html")
)
```
C: Writing a table scan as HTML:
We can get a report that describes all of the data in the storms dataset.

```r
tbl_scan <- scan_data(tbl = dplyr::storms)
```

The table scan object can be written to an HTML file with `export_report()`.

```r
export_report(
  tbl_scan,
  filename = "tbl_scan-storms.html"
)
```

Function ID

9-3

See Also

Other Object Ops: `activate_steps()`, `deactivate_steps()`, `remove_steps()`, `set_tbl()`, `x_read_disk()`, `x_write_disk()`

file_tbl

Get a table from a local or remote file

Description

If your target table is in a file, stored either locally or remotely, the `file_tbl()` function can make it possible to access it in a single function call. Compatible file types for this function are: CSV (.csv), TSV (.tsv), RDA (.rda), and RDS (.rds) files. This function generates an in-memory tbl_df object, which can be used as a target table for `create_agent()` and `create_informant()`. Another great option is supplying a table-prep formula involving `file_tbl()` to `tbl_store()` so that you have access to tables based on flat files though single names via a table store.

In the remote data use case, we can specify a URL starting with `http://`, `https://`, etc., and ending with the file containing the data table. If data files are available in a GitHub repository then we can use the `from_github()` function to specify the name and location of the table data in a repository.

Usage

```r
file_tbl(file, type = NULL, ..., keep = FALSE, verify = TRUE)
```
Arguments

- **file**: The complete file path leading to a compatible data table either in the user system or at a http://, https://, ftp://, or ftps:// URL. For a file hosted in a GitHub repository, a call to the `from_github()` function can be used here.

- **type**: The file type. This is normally inferred by file extension and is by default NULL to indicate that the extension will dictate the type of file reading that is performed internally. However, if there is no extension (and valid extensions are .csv, .tsv, .rda, and .rds), we can provide the type as either of csv, tsv, rda, or rds.

- **...**: Options passed to `readr`'s `read_csv()` or `read_tsv()` function. Both functions have the same arguments and one or the other will be used internally based on the file extension or an explicit value given to type.

- **keep**: In the case of a downloaded file, should it be stored in the working directory (keep = TRUE) or should it be downloaded to a temporary directory? By default, this is FALSE.

- **verify**: If TRUE (the default) then a verification of the data object having the `data.frame` class will be carried out.

Value

A tbl_df object.

Examples

Producing tables from CSV files:

A local CSV file can be obtained as a tbl object by supplying a path to the file and some CSV reading options (the ones used by `readr::read_csv()`) to the `file_tbl()` function. For this example we could obtain a path to a CSV file in the pointblank package with `system.file()`.

```r
csv_path <-
  system.file( 
    "data_files", "small_table.csv", 
    package = "pointblank"
  )
```

Then use that path in `file_tbl()` with the option to specify the column types in that CSV.

```r
tbl <-
  file_tbl( 
    file = csv_path, 
    col_types = "TDdcddlc"
  )
```

```r
tbl
## # A tibble: 13 × 8
## date_time    date    a    b    c    d    e    f
## <dttm> <date> <dbl> <chr> <dbl> <dbl> <lgl> <chr>
##<omitted>
```
Now that we have a ‘tbl’ object that is a tibble it could be introduced to create_agent() for validation.

agent <- create_agent(tbl = tbl)

A different strategy is to provide the data-reading function call directly to create_agent():

agent <-
create_agent(
tbl = ~ file_tbl(
 file = system.file(
 "data_files", "small_table.csv",
 package = "pointblank"
),
 col_types = "TDdcddlc"
),
 col_vals_gt(columns = vars(a), value = 0)
)

All of the file-reading instructions are encapsulated in the tbl expression (with the leading ~) so the agent will always obtain the most recent version of the table (and the logic can be translated to YAML, for later use).

Producing tables from files on GitHub:

A CSV can be obtained from a public GitHub repo by using the from_github() helper function. Let’s create an agent a supply a table-prep formula that gets the same CSV file from the GitHub repository for the pointblank package.

agent <-
create_agent(
tbl = ~ file_tbl(
 file = from_github(
 file = "inst/data_files/small_table.csv",
 repo = "rich-iannone/pointblank"
),
 col_types = "TDdcddlc"
),
 col_vals_gt(columns = vars(a), value = 0)
)
agent

This interrogated the data that was obtained from the remote source file, and, there’s nothing to clean up (by default, the downloaded file goes into a system temp directory).

File access, table creation, and prep via the table store:

Using table-prep formulas in a centralized table store can make it easier to work with tables from disparate sources. Here’s how to generate a table store with two named entries for table preparations involving the `tbl_store()` and `file_tbl()` functions.

```r
store <-
  tbl_store(
    small_table_file ~ file_tbl(
      file = system.file(
        "data_files", "small_table.csv",
        package = "pointblank"
      ),
      col_types = "TDdcddlc"
    ),
    small_high_file ~ {{ small_table_file }} %>%
      dplyr::filter(f == "high"
    )
  )
```

Now it’s easy to access either of these tables via `tbl_get()`. We can reference the table in the store by its name (given to the left of the `~`).

```r
tbl_get(tbl = "small_table_file", store = store)
```

```r
# A tibble: 13 × 8
# date_time    date    a    b  c    d    e  f
# <dttm> <date> <dbl> <chr> <dbl> <dbl> <lgl> <chr>
# 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd- . . . TRUE high
# 2 2016-01-04 00:32:00 2016-01-04 3 5-egh- . . . TRUE low
# 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg- . . . TRUE high
# 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo- . . . NA 3892. FALSE mid
# 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm- . . . 7 284. TRUE low
# 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe- . . . 4 3291. TRUE mid
# 7 2016-01-15 18:46:00 2016-01-15 7 1-knw- . . . 3 843. TRUE high
# 8 2016-01-17 11:27:00 2016-01-17 4 5-boe- . . . 2 1036. FALSE low
# 9 2016-01-20 04:30:00 2016-01-20 3 5-bce- . . . 9 838. FALSE high
# 10 2016-01-20 04:30:00 2016-01-20 3 5-bce- . . . 9 838. FALSE high
# 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx- . . . 7 834. TRUE low
# 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx- . . . 8 108. FALSE low
# 13 2016-01-30 11:23:00 2016-01-30 1 3-dka- . . . NA 2230. TRUE high
```
The second table in the table store is a mutated version of the first. It’s just as easily obtainable via `tbl_get()`:

```r
tbl_get(tbl = "small_high_file", store = store)
```

A tibble: 6 × 8
date_time date a b c d e f
<dttm> <date> <dbl> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
3 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
4 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
5 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
6 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high
```

The table-prep formulas in the store object could also be used in functions with a `tbl` argument (like `create_agent()` and `create_informant()`). This is accomplished most easily with the `tbl_source()` function.

```r
agent <-
create_agent(
 tbl = ~ tbl_source(
 tbl = "small_table_file",
 store = store
)
)

informant <-
create_informant(
 tbl = ~ tbl_source(
 tbl = "small_high_file",
 store = store
)
)
```

**Function ID**

1-7

**See Also**

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `db_tbl()`, `draft_validation()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `tbl_store()`, `validate_rmd()`
**from_github**  
Specify a file for download from GitHub

Description

The `from_github()` function is helpful for generating a valid URL that points to a data file in a public GitHub repository. This function can be used in the file argument of the `file_tbl()` function or anywhere else where GitHub URLs for raw user content are needed.

Usage

```r
from_github(file, repo, subdir = NULL, default_branch = "main")
```

Arguments

- **file**: The name of the file to target in a GitHub repository. This can be a path leading to and including the file. This is combined with any path given in `subdir`.
- **repo**: The GitHub repository address in the format `username/repo[/subdir][@ref|#pull|@*release]`.  
- **subdir**: A path string representing a subdirectory in the GitHub repository. This is combined with any path components included in `file`.
- **default_branch**: The name of the default branch for the repo. This is usually "main" (the default used here).

Value

A character vector of length 1 that contains a URL.

Function ID

13-6

See Also

Other Utility and Helper Functions: `affix_datetime()`, `affix_date()`, `col_schema()`, `has_columns()`, `stop_if_not()`

Examples

```r
A valid URL to a data file in GitHub can be obtained from the HEAD of the default branch
from_github(
file = "inst/data_files/small_table.csv",
repo = "rich-iannone/pointblank"
)

The path to the file location can be supplied fully or partially to `subdir`
from_github(
```
# file = "small_table.csv",
# repo = "rich-iannone/pointblank",
# subdir = "inst/data_files"
# )

# We can use the first call in combination with
# `file_tbl()` and `create_agent()`; this
# supplies a table-prep formula that gets
# a CSV file from the GitHub repository for the
# pointblank package
# agent <-
# create_agent(
#   tbl = ~ file_tbl(
#     file = from_github(
#       file = "inst/data_files/small_table.csv",
#       repo = "rich-iannone/pointblank"
#     ),
#     col_types = "TDdcddlc"
#   )
# ) %>%
# col_vals_gt(vars(a), 0) %>%
# interrogate()

# The `from_github()` helper function is
# pretty powerful and can get at lots of
# different files in a repository

# A data file from GitHub can be obtained from
# a commit at release time
# from_github(
#   file = "inst/extdata/small_table.csv",
#   repo = "rich-iannone/pointblank@v0.2.1"
# )

# A file may also be obtained from a repo at the
# point in time of a specific commit (partial or
# full SHA-1 hash for the commit can be used)
# from_github(
#   file = "data-raw/small_table.csv",
#   repo = "rich-iannone/pointblank@e04a71"
# )

# A file may also be obtained from an
# *open* pull request
# from_github(
#   file = "data-raw/small_table.csv",
#   repo = "rich-iannone/pointblank#248"
# )
Description

This table is a subset of the sj_all_revenue table from the intendo data package. It’s the first 2,000 rows from that table where revenue records range from 2015-01-01 to 2015-01-21.

Usage

game_revenue

Format

A tibble with 2,000 rows and 11 variables:

player_id  A character column with unique identifiers for each user/player.

session_id  A character column that contains unique identifiers for each player session.

session_start  A date-time column that indicates when the session (containing the revenue event) started.

time  A date-time column that indicates exactly when the player purchase (or revenue event) occurred.

item_type  A character column that provides the class of the item purchased.

item_name  A character column that provides the name of the item purchased.

item_revenue  A numeric column with the revenue amounts per item purchased.

session_duration  A numeric column that states the length of the session (in minutes) for which the purchase occurred.

start_day  A Date column that provides the date of first login for the player making a purchase.

acquisition  A character column that provides the method of acquisition for the player.

country  A character column that provides the probable country of residence for the player.

Function ID

14-4

See Also

Other Datasets: game_revenue_info, small_table_sqlite(), small_table, specifications

Examples

# Here is a glimpse at the data
# available in 'game_revenue'
dplyr::glimpse(game_revenue)
game_revenue_info  
*A table with metadata for the game_revenue dataset*

**Description**

This table contains metadata for the game_revenue table. The first column (named column) provides the column names from game_revenue. The second column (info) contains descriptions for each of the columns in that dataset. This table is in the correct format for use in the `info_columns_from_tbl()` function.

**Usage**

`game_revenue_info`

**Format**

A tibble with 11 rows and 2 variables:

- **column**  A character column with unique identifiers for each user/player.
- **info**  A character column that contains unique identifiers for each player session.

**Function ID**

14-5

**See Also**

Other Datasets: `game_revenue`, `small_table_sqlite()`, `small_table`, `specifications`

**Examples**

```r
Here is a glimpse at the data
available in 'game_revenue_info'
dplyr::glimpse(game_revenue_info)
```

---

get_agent_report  
*Get a summary report from an agent*
Description

We can get an informative summary table from an agent by using the `get_agent_report()` function. The table can be provided in two substantially different forms: as a `gt` based display table (the default), or, as a tibble. The amount of fields with intel is different depending on whether or not the agent performed an interrogation (with the `interrogate()` function). Basically, before `interrogate()` is called, the agent will contain just the validation plan (however many rows it has depends on how many validation functions were supplied a part of that plan). Post-interrogation, information on the passing and failing test units is provided, along with indicators on whether certain failure states were entered (provided they were set through actions). The display table variant of the agent report, the default form, will have the following columns:

- `i` (unlabeled): the validation step number.
- `STEP`: the name of the validation function used for the validation step,
- `COLUMNS`: the names of the target columns used in the validation step (if applicable).
- `VALUES`: the values used in the validation step, where applicable; this could be as literal values, as column names, an expression, etc.
- `TBL`: indicates whether any there were any changes to the target table just prior to interrogation. A rightward arrow from a small circle indicates that there was no mutation of the table. An arrow from a circle to a purple square indicates that preconditions were used to modify the target table. An arrow from a circle to a half-filled circle indicates that the target table has been segmented.
- `EVAL`: a symbol that denotes the success of interrogation evaluation for each step. A checkmark indicates no issues with evaluation. A warning sign indicates that a warning occurred during evaluation. An explosion symbol indicates that evaluation failed due to an error. Hover over the symbol for details on each condition.
- `UNITS`: the total number of test units for the validation step
- `PASS`: on top is the absolute number of passing test units and below that is the fraction of passing test units over the total number of test units.
- `FAIL`: on top is the absolute number of failing test units and below that is the fraction of failing test units over the total number of test units.
- `W, S, N`: indicators that show whether the warn, stop, or notify states were entered; unset states appear as dashes, states that are set with thresholds appear as unfilled circles when not entered and filled when thresholds are exceeded (colors for W, S, and N are amber, red, and blue)
- `EXT`: a column that provides buttons to download data extracts as CSV files for row-based validation steps having failing test units. Buttons only appear when there is data to collect.

The small version of the display table (obtained using `size = "small"`) omits the `COLUMNS`, `TBL`, and `EXT` columns. The width of the small table is 575px; the standard table is 875px wide.

The `ptblank_agent_report` can be exported to a standalone HTML document with the `export_report()` function.

If choosing to get a tibble (with `display_table = FALSE`), it will have the following columns:

- `i`: the validation step number.
- `type`: the name of the validation function used for the validation step.
• columns: the names of the target columns used in the validation step (if applicable).
• values: the values used in the validation step, where applicable; for a `conjointly()` validation step, this is a listing of all sub-validations.
• precon: indicates whether any there are any preconditions to apply before interrogation and, if so, the number of statements used.
• active: a logical value that indicates whether a validation step is set to "active" during an interrogation.
• eval: a character value that denotes the success of interrogation evaluation for each step. A value of "OK" indicates no issues with evaluation. The "WARNING" value indicates a warning occurred during evaluation. The "ERROR" VALUES indicates that evaluation failed due to an error. With "W+E" both warnings and an error occurred during evaluation.
• units: the total number of test units for the validation step.
• n_pass: the number of passing test units.
• f_pass: the fraction of passing test units.
• W, S, N: logical value stating whether the warn, stop, or notify states were entered. Will be NA for states that are unset.
• extract: an integer value that indicates the number of rows available in a data extract. Will be NA if no extract is available.

Usage

```r
get_agent_report(
 agent,
 arrange_by = c("i", "severity"),
 keep = c("all", "fail_states"),
 display_table = TRUE,
 size = "standard",
 title = ":default:";
 lang = NULL,
 locale = NULL
)
```

Arguments

- `agent`: An agent object of class `ptblank_agent`.
- `arrange_by`: A choice to arrange the report table rows by the validation step number ("i", the default), or, to arrange in descending order by severity of the failure state (with "severity").
- `keep`: An option to keep "all" of the report's table rows (the default), or, keep only those rows that reflect one or more "fail_states".
- `display_table`: Should a display table be generated? If TRUE (the default), and if the `gt` package is installed, a display table for the report will be shown in the Viewer. If FALSE, or if `gt` is not available, then a tibble will be returned.
- `size`: The size of the display table, which can be either "standard" (the default) or "small". This only applies to a display table (where `display_table = TRUE`).
get_agent_report  259

title  Options for customizing the title of the report. The default is the keyword "::default:" which produces generic title text that refers to the pointblank package in the language governed by the lang option. Another keyword option is "::tbl_name:“, and that presents the name of the table as the title for the report. If no title is wanted, then the "::none:" keyword option can be used. Aside from keyword options, text can be provided for the title and glue::glue() calls can be used to construct the text string. If providing text, it will be interpreted as Markdown text and transformed internally to HTML. To circumvent such a transformation, use text in I() to explicitly state that the supplied text should not be transformed.

lang  The language to use for automatic creation of briefs (short descriptions for each validation step) and for the agent report (a summary table that provides the validation plan and the results from the interrogation). By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl"). This lang option will override any previously set language setting (e.g., by the create_agent() call).

locale  An optional locale ID to use for formatting values in the agent report summary table according the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES"). This locale option will override any previously set locale value (e.g., by the create_agent() call).

Value

A ptblank_agent_report object if display_table = TRUE or a tibble if display_table = FALSE.

Examples

For the example here, we’ll use a simple table with a single numerical column a.

```r
tbl <- dplyr::tibble(a = c(5, 7, 8, 5))

tbl
```

```
A tibble: 4 × 1
a
<dbl>
1 5
2 7
3 8
4 5
```

Let’s create an agent and validate that values in column a are always greater than 4.
agent <-
create_agent(
  tbl = tbl,
  tbl_name = "small_table",
  label = "An example."
) %>%
col_vals_gt(columns = vars(a), value = 4) %>%
interrogate()

We can get a tibble-based report from the agent by using get_agent_report() with display_table = FALSE.

agent %>% get_agent_report(display_table = FALSE)

## # A tibble: 1 × 14
##   i     type columns values precon active eval units n_pass
##   <int> <chr> <chr> <chr> <chr> <lgl> <chr> <dbl> <dbl>
## 1     1   col_va... a     4   NA   TRUE   OK    4    4
## # ... with 5 more variables: f_pass <dbl>, W <lgl>, S <lgl>,
## # N <lgl>, extract <int>

The full-featured display-table-based report can be viewed by printing the agent object, but, we can get a "ptblank_agent_report" object returned to us when using display_table = TRUE (the default for get_agent_report).

report <- get_agent_report(agent)

report

What can you do with the report object? Print it at will wherever, and, it can serve as an input to the export_report() function.

However, the better reason to use get_agent_report() over just printing the agent for display-table purposes is to make use of the different display options.

The agent report as a gt display table comes in two sizes: "standard" (the default, 875px wide) and "small" (575px wide). Let’s take a look at the smaller-sized version of the report.

small_report <-
get_agent_report(
  agent = agent,
  size = "small"
)

small_report

We can use our own title by supplying it to the title argument, or, use a special keyword like ":tbl_name:" to get the table name (set in the create_agent() call) as the title.
report_title <- get_agent_report(agent, title = "tbl_name:"

report_title

There are more options! You can change the language of the display table with the lang argument (this overrides the language set in create_agent()), validation steps can be rearranged using the arrange_by argument, and we can also apply some filtering with the keep argument in get_agent_report().

Function ID

6-2

See Also

Other Interrogate and Report: interrogate()

get_agent_x_list

Get the agent’s x-list

Description

The agent’s x-list is a record of information that the agent possesses at any given time. The x-list will contain the most complete information after an interrogation has taken place (before then, the data largely reflects the validation plan). The x-list can be constrained to a particular validation step (by supplying the step number to the i argument), or, we can get the information for all validation steps by leaving i unspecified. The x-list is indeed an R list object that contains a veritable cornucopia of information.

For an x-list obtained with i specified for a validation step, the following components are available:

- **time_start**: the time at which the interrogation began (POSIXct [0 or 1])
- **time_end**: the time at which the interrogation ended (POSIXct [0 or 1])
- **label**: the optional label given to the agent (chr [1])
- **tbl_name**: the name of the table object, if available (chr [1])
- **tbl_src**: the type of table used in the validation (chr [1])
- **tbl_src_details**: if the table is a database table, this provides further details for the DB table (chr [1])
- **tbl**: the table object itself
- **col_names**: the table’s column names (chr [ncol(tbl)])
- **col_types**: the table’s column types (chr [ncol(tbl)])
- **i**: the validation step index (int [1])
- **type**: the type of validation, value is validation function name (chr [1])
- **columns**: the columns specified for the validation function (chr [variable length])
• values: the values specified for the validation function (mixed types [variable length])
• briefs: the brief for the validation step in the specified lang (chr [1])
• eval_error, eval_warning: indicates whether the evaluation of the step function, during interrogation, resulted in an error or a warning (lgl [1])
• capture_stack: a list of captured errors or warnings during step-function evaluation at interrogation time (list [1])
• n: the number of test units for the validation step (num [1])
• n_passed, n_failed: the number of passing and failing test units for the validation step (num [1])
• f_passed: the fraction of passing test units for the validation step, n_passed / n (num [1])
• f_failed: the fraction of failing test units for the validation step, n_failed / n (num [1])
• warn, stop, notify: a logical value indicating whether the level of failing test units caused the corresponding conditions to be entered (lgl [1])
• lang: the two-letter language code that indicates which language should be used for all briefs, the agent report, and the reporting generated by the scan_data() function (chr [1])

If i is unspecified (i.e., not constrained to a specific validation step) then certain length-one com-
ponents in the x-list will be expanded to the total number of validation steps (these are: i, type,
columns, values, briefs, eval_error, eval_warning, capture_stack, n, n_passed, n_failed, f_passed, f_failed, warn, stop, and notify). The x-list will also have additional components when i is NULL, which are:

• report_object: a gt table object, which is also presented as the default print method for a ptblank_agent
• email_object: a blastula email_message object with a default set of components
• report_html: the HTML source for the report_object, provided as a length-one character vector
• report_html_small: the HTML source for a narrower, more condensed version of report_object, provided as a length-one character vector; The HTML has inlined styles, making it more suit-
table for email message bodies

Usage

get_agent_x_list(agent, i = NULL)

Arguments

agent An agent object of class ptblank_agent.
i The validation step number, which is assigned to each validation step in the order of invocation. If NULL (the default), the x-list will provide information for all validation steps. If a valid step number is provided then x-list will have information pertaining only to that step.

Value

A list object.
Examples

Create a simple data frame with a column of numerical values.

tbl <- dplyr::tibble(a = c(5, 7, 8, 5))

tbl

## # A tibble: 4 × 1
## a
## <dbl>
## 1 5
## 2 7
## 3 8
## 4 5

Create an action_levels() list with fractional values for the warn, stop, and notify states.

al <-
    action_levels(
        warn_at = 0.2,
        stop_at = 0.8,
        notify_at = 0.345
    )

Create an agent (giving it the tbl and the al objects), supply two validation step functions, then interrogate.

agent <-
    create_agent(
        tbl = tbl,
        actions = al
    )%>%
    col_vals_gt(columns = vars(a), value = 7)%>%
    col_is_numeric(columns = vars(a))%>%
    interrogate()

Get the f_passed component of the agent x-list.

x <- get_agent_x_list(agent)

x$f_passed

#> [1] 0.25 1.00

Function ID

8-1

See Also

Other Post-interrogation: all_passed(), get_data_extracts(), get_sundered_data(), write_testthat_file()
get_data_extracts

Collect data extracts from a validation step

Description

In an agent-based workflow (i.e., initiating with `create_agent()`), after interrogation with `interrogate()`, we can extract the row data that didn’t pass row-based validation steps with the `get_data_extracts()` function. There is one discrete extract per row-based validation step and the amount of data available in a particular extract depends on both the fraction of test units that didn’t pass the validation step and the level of sampling or explicit collection from that set of units. These extracts can be collected programmatically through `get_data_extracts()` but they may also be downloaded as CSV files from the HTML report generated by the agent’s print method or through the use of `get_agent_report()`.

The availability of data extracts for each row-based validation step depends on whether `extract_failed` is set to `TRUE` within the `interrogate()` call (it is by default). The amount of `fail` rows extracted depends on the collection parameters in `interrogate()`, and the default behavior is to collect up to the first 5000 `fail` rows.

Row-based validation steps are based on those validation functions of the form `col_vals_*()` and also include `conjointly()` and `rows_distinct()`. Only functions from that combined set of validation functions can yield data extracts.

Usage

`get_data_extracts(agent, i = NULL)`

Arguments

- `agent` An agent object of class `ptblank_agent`. It should have had `interrogate()` called on it, such that the validation steps were carried out and any sample rows from non-passing validations could potentially be available in the object.
- `i` The validation step number, which is assigned to each validation step by `pointblank` in the order of definition. If `NULL` (the default), all data extract tables will be provided in a list object.

Value

A list of tables if `i` is not provided, or, a standalone table if `i` is given.

Examples

Create a series of two validation steps focused on testing row values for part of the `small_table` object. Use `interrogate()` right after that.

```r
agent <-
create_agent(
 tbl = small_table %>%
...```
Using `get_data_extracts()` with its defaults returns of a list of tables, where each table is named after the validation step that has an extract available.

```r
agent %>% get_data_extracts()
```

```r
# A tibble: 6 x 6
##     a     b     c     d     e     f
##  <int> <chr>  <dbl>  <dbl>  <lgl>  <chr>
## 1     8     3-ldm-038   7   284.  TRUE   low
## 2     7     1-knw-093   3  843.   TRUE   high
## 3     3     5-bce-642   9  838. FALSE  high
## 4     3     5-bce-642   9  838. FALSE  high
## 5     4     2-dmx-010   7  834.  TRUE   low
## 6     2     7-dmx-010   8  108.  FALSE  low
```

We can get an extract for a specific step by specifying it in the `i` argument. Let’s get the failing rows from the first validation step (the `col_vals_gt()` one).

```r
agent %>% get_data_extracts(i = 1)
```

```r
# A tibble: 6 x 6
##     a     b     c     d     e     f
##  <int> <chr>  <dbl>  <dbl>  <lgl>  <chr>
## 1     8     3-ldm-038   7   284.  TRUE   low
## 2     7     1-knw-093   3  843.   TRUE   high
## 3     3     5-bce-642   9  838. FALSE  high
## 4     3     5-bce-642   9  838. FALSE  high
## 5     4     2-dmx-010   7  834.  TRUE   low
## 6     2     7-dmx-010   8  108.  FALSE  low
```
Function ID

8-2

See Also

Other Post-interrogation: `all_passed()`, `get_agent_x_list()`, `get_sundered_data()`, `write_testthat_file()`

`get_informant_report`
Get a table information report from an informant object

Description

We can get a table information report from an informant object that's generated by the `create_informant()` function. The report is provided as a `gt` based display table. The amount of information shown depends on the extent of that added via the use of the `info_*()` functions or through direct editing of a `pointblank` YAML file (an informant can be written to `pointblank` YAML with `yaml_write(informant = <informant>, ...)`).

Usage

```r
get_informant_report(
  informant,
  size = "standard",
  title = ":default:",
  lang = NULL,
  locale = NULL
)
```

Arguments

- `informant`
 An informant object of class `ptblank_informant`.
- `size`
 The size of the display table, which can be either "standard" (the default, with a width of 875px), "small" (width of 575px), or, a pixel- or percent-based width of your choosing (supply an integer value for the width in pixels, or values with "px" or "%" appended, like "75%", "500px", etc.).
- `title`
 Options for customizing the title of the report. The default is the keyword ":default:" which produces generic title text that refers to the `pointblank` package in the language governed by the `lang` option. Another keyword option is ":tbl_name:" and is appended, like "75%", "500px", etc.).

To circumvent such a transformation, use text in `I()` to explicitly state that the supplied text should not be transformed.
get_informant_report

lang

The language to use for the information report. By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl"). This lang option will override any previously set language setting (e.g., by the create_informant() call).

locale

An optional locale ID to use for formatting values in the information report summary table according the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES"). This locale option will override any previously set locale value (e.g., by the create_informant() call).

Value

A gt table object.

Function ID

7-2

See Also

Other Incorporate and Report: incorporate()

Examples

Generate an informant object using # the `small_table` dataset informant <- create_informant(small_table)

This function creates some information # without any extra help by profiling # the supplied table object; it adds # the sections 'table' and columns' and # we can print the object to see the # table information report

Alternatively, we can get the same report # by using `get_informant_report()` report <- get_informant_report(informant) class(report)
get_multiagent_report
Get a summary report using multiple agents

Description

We can get an informative summary table from a collective of agents by using the `get_multiagent_report()` function. Information from multiple agent can be provided in three very forms: (1) the Long Display (stacked reports), (2) the Wide Display (a comparison report), (3) as a tibble with packed columns.

Usage

```r
get_multiagent_report(
  multiagent,
  display_table = TRUE,
  display_mode = c("long", "wide"),
  title = ":default:",
  lang = NULL,
  locale = NULL
)
```

Arguments

- **multiagent**
 A multiagent object of class `ptblank_multiagent`.

- **display_table**
 Should a display table be generated? If `TRUE` (the default) a display table for the report will be shown in the Viewer. If `FALSE` then a tibble will be returned.

- **display_mode**
 If we are getting a display table, should the agent data be presented in a "long" or "wide" form? The default is "long" but when comparing multiple runs where the target table is the same it might be preferable to choose "wide".

- **title**
 Options for customizing the title of the report when `display_table = TRUE`. The default is the keyword ":default:" which produces generic title text. If no title is wanted, then the ":none:" keyword option can be used. Another keyword option is ":tbl_name:" , and that presents the name of the table as the title for the report (this can only be used when `display_mode = "long"`). Aside from keyword options, text can be provided for the title and `glue::glue()` calls can be used to construct the text string. If providing text, it will be interpreted as Markdown text and transformed internally to HTML. To circumvent such a transformation, use text in `I()` to explicitly state that the supplied text should not be transformed.

- **lang**
 The language to use for the long or wide report forms. By default, NULL will preserve any language set in the component reports. The following options will force the same language across all component reports: English ("en"), French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").
An optional locale ID to use for formatting values in the long or wide report forms (according the locale’s rules). Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES"). This locale option will override any previously set locale values.

Value

A gt table object if display_table = TRUE or a tibble if display_table = FALSE.

The Long Display

When displayed as "long" the multiagent report will stack individual agent reports in a single document in the order of the agents in the multiagent object.

Each validation plan (possibly with interrogation info) will be provided and the output for each is equivalent to calling `get_agent_report()` on each of the agents within the multiagent object.

The Wide Display

When displayed as "wide" the multiagent report will show data from individual agents as columns, with rows standing as validation steps common across the agents.

Each validation step is represented with an icon (standing in for the name of the validation function) and the associated SHA1 hash. This is a highly trustworthy way for ascertaining which validation steps are effectively identical across interrogations. This way of organizing the report is beneficial because different agents may have used different steps and we want to track the validation results where the validation step doesn’t change but the target table does (i.e., new rows are added, existing rows are updated, etc.).

The single table from this display mode will have the following columns:

- **STEP**: the SHA1 hash for the validation step, possibly shared among several interrogations.
- **subsequent columns**: each column beyond **STEP** represents a separate interrogation from an **agent** object. The time stamp for the completion of each interrogation is shown as the column label.

Examples

Let’s walk through several theoretical data quality analyses of an extremely small table. that table is called `small_table` and we can find it as a dataset in this package.

```
small_table
```

```r
# A tibble: 13 × 8

# date_time date a b c d e f
# <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
# 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
# 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
# 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
```
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

To set failure limits and signal conditions, we designate proportional failure thresholds to the warn, stop, and notify states using `action_levels()`.

```r
al <- action_levels(
  warn_at = 0.05,
  stop_at = 0.10,
  notify_at = 0.20
)
```

We will create four different agents and have slightly different validation steps in each of them. In the first, `agent_1`, eight different validation steps are created and the agent will interrogate the `small_table`.

```r
agent_1 <- create_agent(
  tbl = small_table,
  label = "An example.",
  actions = al
) %>%
col_vals_gt(
  columns = vars(date_time),
  value = vars(date),
  na_pass = TRUE
) %>%
col_vals_gt(
  columns = vars(b),
  value = vars(g),
  na_pass = TRUE
) %>%
rows_distinct() %>%
col_vals_equal(
  columns = vars(d),
  value = vars(d),
  na_pass = TRUE
) %>%
col_vals_between(
```

The second agent, agent_2, retains all of the steps of agent_1 and adds two more (the last of which is inactive).

agent_2 <-
agent_1 %>%
col_exists(columns = vars(date, date_time)) %>%
col_vals_regex(
 columns = vars(b),
 regex = "[0-9]-[a-z]{3}-[0-9]{3}",
 active = FALSE
) %>%
interrogate()

The third agent, agent_3, adds a single validation step, removes the fifth one, and deactivates the first.

agent_3 <-
agent_2 %>%
col_vals_in_set(
 columns = vars(f),
 set = c("low", "mid", "high")
) %>%
remove_steps(i = 5) %>%
deactivate_steps(i = 1) %>%
interrogate()

The fourth and final agent, agent_4, reactivates steps 1 and 10, and removes the sixth step.

agent_4 <-
agent_3 %>%
activate_steps(i = 1) %>%
activate_steps(i = 10) %>%
remove_steps(i = 6) %>%
interrogate()

While all the agents are slightly different from each other, we can still get a combined report of them by creating a `multiagent`.
Calling `multiagent` in the console prints the multiagent report. But we can generate a "ptblank_multiagent_report" object with the `get_multiagent_report()` function and specify options for layout and presentation.

By default, `get_multiagent_report()` gives you a long report with agent reports being stacked. Think of this "long" option as the serial mode of agent reports. However if we want to view interrogation results of the same table over time, the wide view may be preferable. In this way we can see whether the results of common validation steps improved or worsened over consecutive interrogations of the data.

```r
report_wide <-
  get_multiagent_report(
    multiagent,
    display_mode = "wide"
  )

report_wide
```

Function ID

10-3

See Also

Other The multiagent: `create_multiagent()`, `read_disk_multiagent()`

`get_sundered_data`
Sunder the data, splitting it into 'pass' and 'fail' pieces

Description

Validation of the data is one thing but, sometimes, you want to use the best part of the input dataset for something else. The `get_sundered_data()` function works with an agent object that has intel (i.e., post `interrogate()`) and gets either the 'pass' data piece (rows with no failing test units across all row-based validation functions), or, the 'fail' data piece (rows with at least one failing test unit across the same series of validations). As a final option, we can have emit all the data with a new column (called `.pb_combined`) which labels each row as passing or failing across validation steps. These labels are "pass" and "fail" by default but their values can be easily customized.
Usage

```r
get_sundered_data(
  agent,
  type = c("pass", "fail", "combined"),
  pass_fail = c("pass", "fail"),
  id_cols = NULL
)
```

Arguments

- **agent**: An agent object of class `ptblank_agent`. It should have had `interrogate()` called on it, such that the validation steps were actually carried out.
- **type**: The desired piece of data resulting from the splitting. Options for returning a single table are "pass" (the default) and "fail". Each of these options return a single table with, in the "pass" case, only the rows that passed across all validation steps (i.e., had no failing test units in any part of a row for any validation step), or, the complementary set of rows in the "fail" case. Providing `NULL` returns both of the split data tables in a list (with the names of "pass" and "fail"). The option "combined" applies a categorical (pass/fail) label (settable in the `pass_fail` argument) in a new `.pb_combined` flag column. For this case the ordering of rows is fully retained from the input table.
- **pass_fail**: A vector for encoding the flag column with 'pass' and 'fail' values when `type = "combined"`. The default is `c("pass", "fail")` but other options could be `c(TRUE, FALSE), c(1, 0),` or `c(1L, 0L)`.
- **id_cols**: An optional specification of one or more identifying columns. When taken together, we can count on this single column or grouping of columns to distinguish rows. If the table undergoing validation is not a data frame or tibble, then columns need to be specified for `id_cols`.

Details

There are some caveats to sundering. The validation steps considered for this splitting has to be of the row-based variety (e.g., the `col_vals_*()` functions or `conjointly()` but not `rows_distinct()`). Furthermore, validation steps that experienced evaluation issues during interrogation are not considered, and, validation steps where `active = FALSE` will be disregarded. The collection of validation steps that fulfill the above requirements for sundering are termed in-consideration validation steps.

If using any preconditions for validation steps, we must ensure that all in-consideration validation steps use the same specified preconditions function. Put another way, we cannot split the target table using a collection of in-consideration validation steps that use different forms of the input table.

Value

A list of table objects if `type` is `NULL`, or a single table if a `type` is given.
Examples

Create a series of two validation steps focused on testing row values for part of the small_table object. Then, use \texttt{interrogate()} to put the validation plan into action.

```r
agent <-
create_agent(
  tbl = small_table %>%
    dplyr::select(a:f),
  label = "get_sundered_data()"
) %>%
col_vals_gt(columns = vars(d), value = 1000) %>%
col_vals_between(
  columns = vars(c),
  left = vars(a), right = vars(d),
  na_pass = TRUE
) %>%
interrogate()
```

Get the sundered data piece that contains only rows that passed both validation steps (the default piece). This yields 5 of 13 total rows.

```r
agent %>% get_sundered_data()
```

```
## # A tibble: 5 × 6
##   a  b          c    d  e    f
##  <int> <chr>     <dbl> <gg> <chr>
## 1    2 1-bcd-345  3423. TRUE high
## 2    3 5-egh-163 10000. TRUE low
## 3    2 5-jdo-903  NA   3892. FALSE mid
## 4    4 2-dhe-923  3291. TRUE mid
## 5    1 3-dka-303  2230. TRUE high
```

Get the complementary data piece: all of those rows that failed either of the two validation steps. This yields 8 of 13 total rows.

```r
agent %>% get_sundered_data(type = "fail")
```

```
## # A tibble: 8 × 6
##   a  b          c    d  e    f
##  <int> <chr>     <dbl> <gg> <chr>
## 1    6 8-kdg-938  2343. TRUE high
## 2    8 3-ldm-038  7284. TRUE low
## 3    7 1-knw-093  843. TRUE high
## 4    4 5-boe-639  1036. FALSE low
## 5    3 5-bce-642  838. FALSE high
## 6    3 5-bce-642  838. FALSE high
## 7    4 2-dmx-010  834. TRUE low
## 8    2 7-dmx-010  108. FALSE low
```
We can get all of the input data returned with a flag column (called .pb_combined). This is done by using type = "combined" and that rightmost column will contain "pass" and "fail" values.

```r
agent %>% get_sundered_data(type = "combined")
```

```
## # A tibble: 13 × 7
## #  a b c d e f .pb_combined
## <int> <chr> <dbl> <dbl> <lgl> <chr> <chr>
## 1 2 1-bcd-345 3 3423. TRUE high pass
## 2 3 5-egh-163 8 10000. TRUE low pass
## 3 6 8-kdg-938 3 2343. TRUE high fail
## 4 2 5-jdo-903 NA 3892. FALSE mid pass
## 5 8 3-ldm-038 7 284. TRUE low fail
## 6 4 2-dhe-923 4 3291. TRUE mid pass
## 7 7 1-knw-093 3 843. TRUE high fail
## 8 4 5-boe-639 2 1036. FALSE low fail
## 9 3 5-bce-642 9 838. FALSE high fail
## 10 3 5-bce-642 9 838. FALSE high fail
## 11 4 2-dmx-010 7 834. TRUE low fail
## 12 2 7-dmx-010 8 108. FALSE low fail
## 13 1 3-dka-303 NA 2230. TRUE high pass
```

We can change the "pass" or "fail" text values to another type of coding with the pass_fail argument. One possibility is TRUE/FALSE.

```r
agent %>%
  get_sundered_data(
    type = "combined",
    pass_fail = c(TRUE, FALSE)
  )
```

```
## # A tibble: 13 × 7
## #  a b c d e f .pb_combined
## <int> <chr> <dbl> <dbl> <lgl> <chr> <lgl>
## 1 2 1-bcd-345 3 3423. TRUE high TRUE
## 2 3 5-egh-163 8 10000. TRUE low TRUE
## 3 6 8-kdg-938 3 2343. TRUE high FALSE
## 4 2 5-jdo-903 NA 3892. FALSE mid TRUE
## 5 8 3-ldm-038 7 284. TRUE low FALSE
## 6 4 2-dhe-923 4 3291. TRUE mid TRUE
## 7 7 1-knw-093 3 843. TRUE high FALSE
## 8 4 5-boe-639 2 1036. FALSE low FALSE
## 9 3 5-bce-642 9 838. FALSE high FALSE
## 10 3 5-bce-642 9 838. FALSE high FALSE
## 11 4 2-dmx-010 7 834. TRUE low FALSE
## 12 2 7-dmx-010 8 108. FALSE low FALSE
## 13 1 3-dka-303 NA 2230. TRUE high TRUE
```

...and using 0 and 1 might be worthwhile in some situations.
agent %>%
 get_sundered_data(
 type = "combined",
 pass_fail = 0:1
)

A tibble: 13 × 7
a b c d e f .pb_combined
<int> <chr> <dbl> <dbl> <lgl> <chr> <int>
1 2 1-bcd-345 3 3423. TRUE high 0
2 3 5-egh-163 8 10000. TRUE low 0
3 6 8-kdg-938 3 2343. TRUE high 1
4 2 5-jdo-903 NA 3892. FALSE mid 0
5 8 3-ldm-038 7 284. TRUE low 1
6 4 2-dhe-923 4 3291. TRUE mid 0
7 7 1-knw-093 3 843. TRUE high 1
8 4 5-boe-639 2 1036. FALSE low 1
9 3 5-bce-642 9 838. FALSE high 1
10 3 5-bce-642 9 838. FALSE high 1
11 4 2-dmx-010 7 834. TRUE low 1
12 2 7-dmx-010 8 108. FALSE low 1
13 1 3-dka-303 NA 2230. TRUE high 0

Function ID
8-3

See Also
Other Post-interrogation: all_passed(), get_agent_x_list(), get_data_extracts(), write_testthat_file()

get_tt_param

Get a parameter value from a summary table

Description

The `get_tt_param()` function can help you to obtain a single parameter value from a summary table generated by the `tt_*()` functions `tt_summary_stats()`, `tt_string_info()`, `tt_tbl_dims()`, or `tt_tbl_colnames()`. The following parameters are to be used depending on the input tbl:

- from `tt_summary_stats()`: "min", "p05", "q_1", "med", "q_3", "p95", "max", "iqr", "range"
- from `tt_string_info()`: "length_mean", "length_min", "length_max"
- from `tt_tbl_dims()`: "rows", "columns"
- from `tt_tbl_colnames()`: any integer present in the .param. column

The `tt_summary_stats()` and `tt_string_info()` functions will generate summary tables with columns that mirror the numeric and character columns in their input tables, respectively. For that reason, a column name must be supplied to the `column` argument in `get_tt_param()`.
get_tt_param

Usage

```r
get_tt_param(tbl, param, column = NULL)
```

Arguments

- **tbl**: A summary table generated by either of the `tt_summary_stats()`, `tt_string_info()`, `tt_tbl_dims()`, or `tt_tbl_colnames()` functions.

- **param**: The parameter name associated to the value that is to be gotten. These parameter names are always available in the first column (`.param.`) of a summary table obtained by `tt_summary_stats()`, `tt_string_info()`, `tt_tbl_dims()`, or `tt_tbl_colnames()`.

- **column**: The column in the summary table for which the data value should be obtained. This must be supplied for summary tables generated by `tt_summary_stats()` and `tt_string_info()` (the `tt_tbl_dims()` and `tt_tbl_colnames()` functions always generate a two-column summary table).

Examples

Get summary statistics for the first quarter of the `game_revenue` dataset that’s included in the `pointblank` package.

```r
stats_tbl <-
  game_revenue %>%
  tt_time_slice(slice_point = 0.25) %>%
  tt_summary_stats()

stats_tbl
```

```
# A tibble: 9 × 3
#  .param. item_revenue session_duration
#  <chr>     <dbl>        <dbl>
# 1 min      0.02         5.1
# 2 p05      0.03         11
# 3 q_1      0.08         17.2
# 4 med      0.28         28.3
# 5 q_3      1.37         32
# 6 p95      40.0         37.1
# 7 max      143.         41
# 8 iqr      1.28         14.8
# 9 range    143.         35.9
```

Sometimes you need a single value from the table generated by the `tt_summary_stats()` function. For that, we can use the `get_tt_param()` function. So if we wanted to test whether the maximum session duration during the rest of the time period (the remaining 0.75) is never higher than that of the first quarter of the year, we can supply a value from `stats_tbl` to `test_col_vals_lte()`:

```r
game_revenue %>%
```

```
```
```r
tt_time_slice(
  slice_point = 0.25,
  keep = "right"
) %>%
test_col_vals_lte(
  columns = vars(session_duration),
  value = get_tt_param(
    tbl = stats_tbl,
    param = "max",
    column = "session_duration"
  )
)
```

```r
## [1] TRUE
```

Function ID

12-7

See Also

Other Table Transformers: `tt_string_info()`, `tt_summary_stats()`, `tt_tbl_colnames()`, `tt_tbl_dims()`, `tt_time_shift()`, `tt_time_slice()`

has_columns

Determine if one or more columns exist in a table

Description

This utility function can help you easily determine whether a column of a specified name is present in a table object. This function works well enough on a table object but it can also be used as part of a formula in any validation function's active argument. Using `active = ~ . %>% has_columns("column_1")` means that the validation step will be inactive if the target table doesn’t contain a column named `column_1`. We can also use multiple columns in `vars()` so having `active = ~ . %>% has_columns(vars(column_1, column_2))` in a validation step will make it inactive at `interrogate()` time unless the columns `column_1` and `column_2` are both present.

Usage

`has_columns(x, columns)`

Arguments

- `x` The table object.
- `columns` One or more column names that are to be checked for existence in the table `x`.
Value

A length-1 logical vector.

Examples

The `small_table` dataset in the package has the columns `date_time`, `date`, and the `a` through `f` columns.

```r
small_table
```

```r
## A tibble: 13 x 8
## date_time date a b c d e f
## <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
## 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
## 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
## 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
## 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
## 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
## 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
## 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
## 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
## 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
## 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
## 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
## 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
## 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high
```

With `has_columns()` we can check for column existence by using it directly on the table. A column name can be verified as present by using it in double quotes.

```r
small_table %>% has_columns(columns = "date")
```

```r
## [1] TRUE
```

Multiple column names can be supplied. The following is TRUE because both columns are present in `small_table`.

```r
small_table %>% has_columns(columns = c("a", "b"))
```

```r
## [1] TRUE
```

It's possible to supply column names in `vars()` as well:

```r
small_table %>% has_columns(columns = vars(a, b))
```

```r
## [1] TRUE
```
Because column h isn’t present, this returns FALSE (all specified columns need to be present to obtain TRUE).

```
small_table %>% has_columns(columns = vars(a, h))
```

[1] FALSE

The `has_columns()` function can be useful in expressions that involve the target table, especially if it is uncertain that the table will contain a column that’s involved in a validation.

In the following agent-based validation, the first two steps will be ‘active’ because all columns checked for in the expressions are present. The third step becomes inactive because column j isn’t there (without the active statement there we would get an evaluation failure in the agent report).

```r
agent <-
  create_agent(
    tbl = small_table,
    tbl_name = "small_table"
  )
  col_vals_gt(
    columns = vars(c), value = vars(a),
    active = ~ . %>% has_columns(vars(a, c))
  )
  col_vals_lt(
    columns = vars(h), value = vars(d),
    preconditions = ~ . %>% dplyr::mutate(h = d - a),
    active = ~ . %>% has_columns(vars(a, d))
  )
  col_is_character(
    columns = vars(j),
    active = ~ . %>% has_columns("j")
  )
  interrogate()
```

Through the agent’s x-list, we can verify that no evaluation error (any evaluation at all, really) had occurred. The third value, representative of the third validation step, is actually NA instead of FALSE because the step became inactive.

```
x_list <- get_agent_x_list(agent = agent)
x_list$eval_warning
```

[1] FALSE FALSE NA

Function ID

13-2
incorporate

See Also

Other Utility and Helper Functions: `affix_datetime()`, `affix_date()`, `col_schema()`, `from_github()`, `stop_if_not()`

incorporate
Given an informant object, update and incorporate table snippets

Description

When the `informant` object has a number of snippets available (by using `info_snippet()` and the strings to use them (by using the `info_*()` functions and `{<snippet_name>}` in the text elements), the process of incorporating aspects of the table into the info text can occur by using the `incorporate()` function. After that, the information will be fully updated (getting the current state of table dimensions, re-rendering the info text, etc.) and we can print the `informant` object or use the `get_informant_report()` function to see the information report.

Usage

```r
incorporate(informant)
```

Arguments

- `informant`
 An informant object of class `ptblank_informant`.

Value

A `ptblank_informant` object.

Examples

Take the `small_table` and assign it to `changing_table` (we'll modify it later):

```r
changing_table <- small_table
```

`changing_table`

```r
## A tibble: 13 × 8
## #  date_time  date  a     b       c     d     e    f
## #  <dttm>    <date> <int> <chr>   <dbl> <dbl> <lgl> <chr>
## 1 2016-01-04 11:00:00 2016-01-04 2-1bcd-345 3 3423. TRUE high
## 2 2016-01-04 00:32:00 2016-01-04 3-5egh-163 8 10000. TRUE low
## 3 2016-01-05 13:32:00 2016-01-05 6-8kdg-938 3 2343. TRUE high
## 4 2016-01-06 17:23:00 2016-01-06 2-5jdo-903 NA 3892. FALSE mid
## 5 2016-01-09 12:36:00 2016-01-09 8-3ldm-038 7 284. TRUE low
## 6 2016-01-11 06:15:00 2016-01-11 4-2dhe-923 7 3291. TRUE mid
## 7 2016-01-15 18:46:00 2016-01-15 7-1knw-093 3 843. TRUE high
## 8 2016-01-17 11:27:00 2016-01-17 4-5boe-639 2 1036. FALSE low
```
Use `create_informant()` to generate an informant object with `changing_table` given to the `tbl` argument with a leading `~` (ensures that the table will be fetched each time it is needed, instead of being statically stored in the object). We'll add two snippets with `info_snippet()`, add information with the `info_columns()` and `info_section()` functions and then use `incorporate()` to work the snippets into the info text.

```r
informant <-
    create_informant(
        tbl = ~ changing_table,
        tbl_name = "changing_table",
        label = "informant() example"
    ) %>%
    info_snippet(
        snippet_name = "row_count",
        fn = ~ . %>% nrow()
    ) %>%
    info_snippet(
        snippet_name = "col_count",
        fn = ~ . %>% ncol()
    ) %>%
    info_columns(
        columns = vars(a),
        info = "In the range of 1 to 10. ((SIMPLE))"
    ) %>%
    info_columns(
        columns = starts_with("date"),
        info = "Time-based values (e.g., ‘Sys.time()’)."
    ) %>%
    info_columns(
        columns = "date",
        info = "The date part of ‘date_time’. ((CALC))"
    ) %>%
    info_section(
        section_name = "rows",
        row_count = "There are {row_count} rows available."
    ) %>%
    incorporate()

We can print the resulting object to see the information report.

```r
informant
```
changing_table <-
  dplyr::bind_rows(changing_table, changing_table) %>%
  dplyr::mutate(h = a + c)

Using incorporate() will cause the snippets to be reprocessed and accordingly the content of the report will be updated to keep up with the current state of the changing_table.

informant <- informant %>% incorporate()

When printed again, we'll also see that the row and column counts in the header have been updated to reflect the new dimensions of the target table. Furthermore, the info text in the ROWS section has updated text ("There are 26 rows available.").

Function ID
7-1

See Also
Other Incorporate and Report: get_informant_report()

info_columns

Add information that focuses on aspects of a data table’s columns

Description
Upon creation of an informant object (with the create_informant() function), there are two sections containing properties: (1) 'table' and (2) 'columns'. The 'columns' section is initialized with the table’s column names and their types (as _type). Beyond that, it is useful to provide details about the nature of each column and we can do that with the info_columns() function. A single column (or multiple columns) is targeted, and then a series of named arguments (in the form entry_name = "The *info text*.") serves as additional information for the column or columns.

Usage
info_columns(x, columns, ..., .add = TRUE)

Arguments
- **x**: An informant object of class ptblank_informant.
- **columns**: The column or set of columns to focus on. Can be defined as a column name in quotes (e.g., "<column_name>"), one or more column names in vars() (e.g., vars(<column_name>)), or with a select helper (e.g., starts_with("date").
Information entries as a series of named arguments. The names refer to subsection titles within `COLUMN -> <COLUMN_NAME>` and the RHS contains the info text (informational text that can be written as Markdown and further styled with Text Tricks).

.add

Should new text be added to existing text? This is `TRUE` by default; setting to `FALSE` replaces any existing text for a property.

Value

A `ptblank_informant` object.

Info Text

The info text that's used for any of the `info_*()` functions readily accepts Markdown formatting, and, there are a few Text Tricks that can be used to spice up the presentation. Markdown links written as `<link url>` or `[link text](link url)` will get nicely-styled links. Any dates expressed in the ISO-8601 standard with parentheses, "(2004-12-01)", will be styled with a font variation (monospaced) and underlined in purple. Spans of text can be converted to label-style text by using: (1) double parentheses around text for a rectangular border as in `((label text))`, or (2) triple parentheses around text for a rounded-rectangular border like `(((label text)))`.

CSS style rules can be applied to spans of info text with the following form:
`[[ info text ]]<<CSS style rules>>`

As an example of this in practice suppose you'd like to change the color of some text to red and make the font appear somewhat thinner. A variation on the following might be used:

"This is a [[factor]]<<color: red; font-weight: 300;>> value."

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

- `color: <a color value>;` (text color)
- `background-color: <a color value>;` (the text’s background color)
- `text-decoration: (overline | line-through | underline);`
- `text-transform: (uppercase | lowercase | capitalize);`
- `letter-spacing: <a +/- length value>;`
- `word-spacing: <a +/- length value>;`
- `font-style: (normal | italic | oblique);`
- `font-weight: (normal | bold | 100-900);`
- `font-variant: (normal | bold | 100-900);`
- `border: <a color value> <a length value> (solid | dashed | dotted);`

In the above examples, 'length value' refers to a CSS length which can be expressed in different units of measure (e.g., 12px, 1em, etc.). Some lengths can be expressed as positive or negative values (e.g., for letter-spacing). Color values can be expressed in a few ways, the most common being in the form of hexadecimal color values or as CSS color names.
YAML

A pointblank informant can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an informant (with `yaml_read_informant()` or perform the 'incorporate' action using the target table (via `yaml_informant_incorporate()`). The way that information on table columns is represented in YAML works like this: *info text* goes into subsections of YAML keys named for the columns, which are themselves part of the top-level columns key. Here is an example of how several calls of `info_columns()` are expressed in R code and how the result corresponds to the YAML representation.

```r
R statement
informant %>%
 info_columns(
 columns = "date_time",
 info = "*info text* 1."
) %>%
 info_columns(
 columns = "date",
 info = "*info text* 2."
) %>%
 info_columns(
 columns = "item_count",
 info = "*info text* 3. Statistics: {snippet_1}."
) %>%
 info_columns(
 columns = vars(date, date_time),
 info = "UTC time."
)

YAML representation

- name: columns:
 - name: date_time:
 _type: POSIXct, POSIXt
 info: '*info text* 1. UTC time.'
 - name: date:
 _type: Date
 info: '*info text* 2. UTC time.'
 - name: item_count:
 _type: integer
 info: '*info text* 3. Statistics: {snippet_1}.'
```

Subsections represented as column names are automatically generated when creating an informant. Within these, there can be multiple subsections used for holding *info text* on each column. The subsections used across the different columns needn’t be the same either, the only commonality that should be enforced is the presence of the _type key (automatically updated at every `incorporate()` invocation).

It’s safest to use single quotation marks around any *info text* if directly editing it in a YAML file. Note that Markdown formatting and *info snippet* placeholders (shown here as `{snippet_1}`, see `info_snippet()` for more information) are preserved in the YAML. The Markdown to HTML
conversion is done when printing an informant (or invoking `get_informant_report()` on an informant) and the processing of snippets (generation and insertion) is done when using the `incorporate()` function. Thus, the source text is always maintained in the YAML representation and is never written in processed form.

Examples

Create a pointblank informant object with `create_informant()`. We can specify a tbl with the ~ followed by a statement that gets the small_table dataset.

```r
informant <-
 create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
)
```

We can add info text to describe the table with the various info_*() functions. In this example, we'll use `info_columns()` multiple times to describe some of the columns in the small_table dataset. Note here that info text calls are additive to the existing content inside of the various subsections (i.e., the text will be appended and won't overwrite existing if it lands in the same area).

```r
informant <-
 informant %>%
 info_columns(
 columns = vars(a),
 info = "In the range of 1 to 10. ((SIMPLE))"
) %>%
 info_columns(
 columns = starts_with("date"),
 info = "Time-based values (e.g., `Sys.time()`)."
) %>%
 info_columns(
 columns = "date",
 info = "The date part of `date_time`. ((CALC))"
)
```

Upon printing the informant object, we see the additions made to the 'Columns' section.

```r
informant
```

Function ID

3-2

See Also

Other Information Functions: `info_columns_from_tbl()`, `info_section()`, `info_snippet()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_lowest()`, `snip_stats()`
info_columns_from_tbl  Add column information from another data table

Description

The `info_columns_from_tbl()` function is a wrapper around the `info_columns()` function and is useful if you wish to apply *info text* to columns where that information already exists in a data frame (or in some form that can readily be coaxed into a data frame). The form of the input `tbl` (the one that contains column metadata) has a few basic requirements:

- the data frame must have two columns
- both columns must be of class character
- the first column should contain column names and the second should contain the *info text*

Each column that matches across tables (i.e., the `tbl` and the target table of the informant) will have a new entry for the "info" property. Empty or missing info text will be pruned from `tbl`.

Usage

`info_columns_from_tbl(x, tbl, .add = TRUE)`

Arguments

- `x`  
  An informant object of class `ptblank_informant`.

- `tbl`  
  The two-column data frame which contains metadata about the target table in the informant object.

- `.add`  
  Should new text be added to existing text? This is `TRUE` by default; setting to `FALSE` replaces any existing text for the "info" property.

Value

A `ptblank_informant` object.

Examples

Create a pointblank informant object with `create_informant()`. We can specify a `tbl` with the `~` followed by a statement that gets the `game_revenue` dataset.

```r
informant <- create_informant(
 tbl = ~ game_revenue,
 tbl_name = "game_revenue",
 label = "An example."
)
```

We can add *info text* to describe the data in the various columns of the table by using `info_columns()` or information in another table (with `info_columns_from_tbl()`). Here, we'll do the latter. The `game_revenue_info` dataset is included in `pointblank` and it contains metadata for `game_revenue`.  

```r
```
info_columns_from_tbl

```r
A tibble: 11 × 2
column info
<chr> <chr>
1 player_id A character column with unique identifiers for each user...
2 session_id A character column that contains unique identifiers for e...
3 session_start A date-time column that indicates when the session contain...
4 time A date-time column that indicates exactly when the player p...
5 item_type A character column that provides the class of the item pu...
6 item_name A character column that provides the name of the item pur...
7 item_revenue A numeric column with the revenue amounts per item purcha...
8 session_duration A numeric column that states the length of the session (i...
9 start_day A Date column that provides the date of first login for t...
10 acquisition A character column that provides the method of acquisitio...
11 country A character column that provides the probable country of...

The `info_columns_from_tbl()` function takes a table object where the first column has the column names and the second contains the `info text`.

```r
ingformant <-
  informant %>%
  info_columns_from_tbl(tbl = game_revenue_info)
```

Upon printing the `informant` object, we see the additions made to the 'Columns' section by the `info_columns_from_tbl(tbl = game_revenue_info)` call.

```
ingformant
```

We can continue to add more `info text` to describe the columns since the process is additive. The `info_columns_from_tbl()` function populates the `info` subsection and any calls of `info_columns()` that also target a `info` subsection will append text. Here, we’ll add content for the `item_revenue` and `acquisition` columns and view the updated report.

```r
informant <-
  informant %>%
  info_columns(
    columns = "item_revenue",
    info = "Revenue reported in USD."
  ) %>%
  info_columns(
    columns = "acquisition",
    top_list = "{top5_aq}"  
  ) %>%
  info_snippet(
    snippet_name = "top5_aq",
    fn = snip_list(column = "acquisition")
  ) %>%
  incorporate()
```

```
ingformant
```
Function ID

3-3

See Also

The `info_columns()` function, which allows for manual entry of info text.

Other Information Functions: `info_columns()`, `info_section()`, `info_snippet()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_lowest()`, `snip_stats()`

info_section

Add information that focuses on some key aspect of the data table

Description

While the `info_tabular()` and `info_columns()` functions allow us to add/modify info text for specific sections, the `info_section()` makes it possible to add sections of our own choosing and the information that make sense for those sections. Define a `section_name` and provide a series of named arguments (in the form `entry_name = "The *info text*."`) to build the informational content for that section.

Usage

```r
info_section(x, section_name, ...)
```

Arguments

- `x` An informant object of class `ptblank_informant`.
- `section_name` The name of the section for which this information pertains.
- `...` Information entries as a series of named arguments. The names refer to subsection titles within the section defined as `section_name` and the RHS is the `info text` (informational text that can be written as Markdown and further styled with Text Tricks).

Value

A `ptblank_informant` object.

Info Text

The `info text` that's used for any of the `info_*()` functions readily accepts Markdown formatting, and, there are a few Text Tricks that can be used to spice up the presentation. Markdown links written as `< link url >` or `[link text](link url)` will get nicely-styled links. Any dates expressed in the ISO-8601 standard with parentheses, "(2004-12-01)", will be styled with a font variation (monospaced) and underlined in purple. Spans of text can be converted to label-style text by using: (1) double parentheses around text for a rectangular border as in `((label text))`, or (2) triple parentheses around text for a rounded-rectangular border like `(((label text)))`.

CSS style rules can be applied to spans of *info text* with the following form:

```
[[ info text ]]<< CSS style rules >>
```

As an example of this in practice suppose you’d like to change the color of some text to red and make the font appear somewhat thinner. A variation on the following might be used:

“This is a [[factor]]<<color: red; font-weight: 300;>> value.”

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

- `color: <a color value>;` (text color)
- `background-color: <a color value>;` (the text’s background color)
- `text-decoration: (overline | line-through | underline);`
- `text-transform: (uppercase | lowercase | capitalize);`
- `letter-spacing: <a +/- length value>;`
- `word-spacing: <a +/- length value>;`
- `font-style: (normal | italic | oblique);`
- `font-weight: (normal | bold | 100-900);`
- `font-variant: (normal | bold | 100-900);`
- `border: <a color value> <a length value> (solid | dashed | dotted);`

In the above examples, ‘length value’ refers to a CSS length which can be expressed in different units of measure (e.g., 12px, 1em, etc.). Some lengths can be expressed as positive or negative values (e.g., for `letter-spacing`). Color values can be expressed in a few ways, the most common being in the form of hexadecimal color values or as CSS color names.

YAML

A *pointblank* informant can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an informant (with `yaml_read_informant()`) or perform the ‘incorporate’ action using the target table (via `yaml_informant_incorporate()`). Extra sections (i.e., neither the table nor the columns sections) can be generated and filled with *info text* by using one or more calls of `info_section()`. This is how it is expressed in both R code and in the YAML representation.

```r
# R statement
informant %>%
  info_section(
    section_name = "History",
    Changes = "
    - Change 1
    - Change 2
    - Change 3",
    `Last Update` = "(2020-10-23) at 3:28 PM."
  )
  info_section(
    section_name = "Additional Notes",
    `Notes 1` = "Notes with a {snippet}.",
    `Notes 2` = "**Bold notes**."
  )
```
Subsections represented as column names are automatically generated when creating an informant. Within each of the top-level sections (i.e., History and Additional Notes) there can be multiple subsections used for holding info text.

It's safest to use single quotation marks around any info text if directly editing it in a YAML file. Note that Markdown formatting and info snippet placeholders (shown here as {snippet}) are preserved in the YAML. The Markdown to HTML conversion is done when printing an informant (or invoking get_informant_report() on an informant) and the processing of snippets (generation and insertion) is done when using the incorporate() function. Thus, the source text is always maintained in the YAML representation and is never written in processed form.

Examples

Create a pointblank informant object with create_informant(). We can specify a tbl with the ~ followed by a statement that gets the small_table dataset.

```r
informant <-
create_informant(
  tbl = ~ small_table,
  tbl_name = "small_table",
  label = "An example."
)
```

An informant typically has the 'Table' and 'Columns' sections. We can also create entirely different sections (that follow these) with their own properties using the info_section() function. Let's create a subsection in the report called "Notes" and add text to two parts of that: "creation" and "usage".

```r
informant <-
informant %>%
info_section(
  section_name = "Notes",
  creation = "Dataset generated on (2020-01-15). ",
  usage = "\nsmall_table %>% dplyr::glimpse\n"
)
Upon printing the informant object, we see the addition of the 'Notes' section and its own information.

informant

Function ID

3-4

See Also

Other Information Functions: info_columns_from_tbl(), info_columns(), info_snippet(), info_tabular(), snip_highest(), snip_list(), snip_lowest(), snip_stats()
Value

A ptblank_informant object.

Snip functions provided in pointblank

For convenience, there are several snip_() functions provided in the package that work on column data from the informant’s target table. These are:

- snip_list(): get a list of column categories
- snip_stats(): get an inline statistical summary
- snip_lowest(): get the lowest value from a column
- snip_highest(): get the highest value from a column

As it’s understood what the target table is, only the column in each of these functions is necessary for obtaining the resultant text.

YAML

A pointblank informant can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an informant (with yaml_read_informant()) or perform the ‘incorporate’ action using the target table (via yaml_informant_incorporate()). Snippets are stored in the YAML representation and here is how they are expressed in both R code and in the YAML output (showing both the meta_snippets and columns keys to demonstrate their relationship here).

```r
R statement
informant %>%
 info_columns(
 columns = "date_time",
 `Latest Date` = "The latest date is {latest_date}") %>%
 info_snippet(
 snippet_name = "latest_date",
 fn = ~ . %>% dplyr::pull(date) %>% max(na.rm = TRUE)
) %>%
 incorporate()

YAML representation
meta_snippets:
 latest_date: ~ . %>% dplyr::pull(date) %>% max(na.rm = TRUE)
...
columns:
 date_time:
 _type: POSIXct, POSIXt
 Latest Date: The latest date is {latest_date}.
 date:
 _type: Date
 item_count:
 _type: integer
```
Examples

Take the small_table dataset included in `pointblank` and assign it to test_table. We’ll modify it later.

test_table <- small_table

Generate an informant object, add two snippets with `info_snippet()`, add information with some other `info_*()` functions and then `incorporate()` the snippets into the info text. The first snippet will be made with the expression `~ . %>% nrow()` (giving us the number of rows in the dataset) and the second uses the `snip_highest()` function with column `a` (giving us the highest value in that column).

```r
informant <-
create_informant(
 tbl = ~ test_table,
 tbl_name = "test_table",
 label = "An example."
) %>%
info_snippet(
 snippet_name = "row_count",
 fn = ~ . %>% nrow()
) %>%
info_snippet(
 snippet_name = "max_a",
 fn = snip_highest(column = "a")
) %>%
info_columns(
 columns = vars(a),
 info = "In the range of 1 to {max_a}. ((SIMPLE))"
) %>%
info_columns(
 columns = starts_with("date"),
 info = "Time-based values (e.g., `Sys.time()`)."
) %>%
info_columns(
 columns = "date",
 info = "The date part of `date_time`. ((CALC))"
) %>%
info_section(
 section_name = "rows",
 row_count = "There are {row_count} rows available."
) %>%
incorporate()
```

We can print the informant object to see the information report.

```r
informant
```
Let's modify test_table with some **dplyr** to give it more rows and an extra column.

```r
test_table <-
dplyr::bind_rows(test_table, test_table) %>%
dplyr::mutate(h = a + c)
```

Using **incorporate()** on the informant object will cause the snippets to be reprocessed, and, the info text to be updated.

```r
informant <- informant %>% incorporate()

informant
```

**Function ID**

3-5

**See Also**

Other Information Functions: `info_columns_from_tbl()`, `info_columns()`, `info_section()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_lowest()`, `snip_stats()`

---

**info_tabular**

*Add information that focuses on aspects of the data table as a whole*

**Description**

When an **informant** object is created with the `create_informant()` function, it has two starter sections: (1) 'table' and (2) 'columns'. The 'table' section should contain a few properties upon creation, such as the supplied table name (name) and table dimensions (as _columns and _rows). We can add more table-based properties with the `info_tabular()` function. By providing a series of named arguments (in the form `entry_name = "The *info text*."`), we can add more information that makes sense for describing the table as a whole.

**Usage**

```r
info_tabular(x, ...)
```

**Arguments**

- **x**: An informant object of class `ptblank_informant`.
- **...**: Information entries as a series of named arguments. The names refer to subsection titles within the TABLE section and the values are the **info text** (informational text that can be written as Markdown and further styled with **Text Tricks**).

**Value**

A `ptblank_informant` object.
Info Text

The info text that’s used for any of the info_*() functions readily accepts Markdown formatting, and, there are a few Text Tricks that can be used to spic up the presentation. Markdown links written as `<link url>` or `[link text](link url)` will get nicely-styled links. Any dates expressed in the ISO-8601 standard with parentheses, “(2004-12-01)”, will be styled with a font variation (monospaced) and underlined in purple. Spans of text can be converted to label-style text by using: (1) double parentheses around text for a rectangular border as in `((label text))`, or (2) triple parentheses around text for a rounded-rectangular border like `(((label text)))`. CSS style rules can be applied to spans of info text with the following form: `[[info text]]<<CSS style rules>>

As an example of this in practice suppose you’d like to change the color of some text to red and make the font appear somewhat thinner. A variation on the following might be used:

“This is a [[factor]]<<color: red; font-weight: 300;>> value.”

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

- color: <a color value>; (text color)
- background-color: <a color value>; (the text’s background color)
- text-decoration: (overline | line-through | underline);
- text-transform: (uppercase | lowercase | capitalize);
- letter-spacing: <a +/- length value>;
- word-spacing: <a +/- length value>;
- font-style: (normal | italic | oblique);
- font-weight: (normal | bold | 100-900);
- font-variant: (normal | bold | 100-900);
- border: <a color value> <a length value> (solid | dashed | dotted);

In the above examples, ‘length value’ refers to a CSS length which can be expressed in different units of measure (e.g., 12px, 1em, etc.). Some lengths can be expressed as positive or negative values (e.g., for letter-spacing). Color values can be expressed in a few ways, the most common being in the form of hexadecimal color values or as CSS color names.

YAML

A pointblank informant can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an informant (with `yaml_read_informant()`) or perform the ‘incorporate’ action using the target table (via `yaml_informant_incorporate()`). When info_tabular() is represented in YAML, info text goes into subsections of the top-level table key. Here is an example of how a call of info_tabular() is expressed in R code and in the corresponding YAML representation.

R statement:

```r
informant %>%
 info_tabular(
 section_1 = "*info text* 1."
)
```

YAML:

```yaml
- section_1: "*info text* 1."
```
YAML representation:

```yaml
table:
 _columns: 23
 _rows: 205.0
 _type: tbl_df
 section_1: 'INFO text 1.'
 section_2: 'INFO text 2 and {snippet_1}'
```

Subsection titles as defined in `info_tabular()` can be set in backticks if they are not syntactically correct as an argument name without them (e.g., when using spaces, hyphens, etc.).

It’s safest to use single quotation marks around any `info text` if directly editing it in a YAML file. Note that Markdown formatting and `info snippet` placeholders (shown here as `{snippet_1}`, see `info_snippet()` for more information) are preserved in the YAML. The Markdown to HTML conversion is done when printing an informant (or invoking `get_informant_report()` on an `informant`) and the processing of snippets (generation and insertion) is done when using the `incorporate()` function. Thus, the source text is always maintained in the YAML representation and is never written in processed form.

Examples

Create a pointblank informant object with `create_informant()`. We can specify a tbl with the `~` followed by a statement that gets the `small_table` dataset.

```r
informant <- create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
)
```

We can add `info text` to describe the table with the various `info_*()` functions. In this example, we’ll use `info_tabular()` to generally describe the `small_table` dataset.

```r
informant %>%
 info_tabular(
 'Row Definition' = "A row has randomized values.",
 Source = c(
 "- From the **pointblank** package.",
 "- [https://rich-iannone.github.io/pointblank/]()"
)
)
```

Upon printing the informant object, we see the additions made to the 'Table' section of the report.

```r
informant
```
interrogate

Given an agent that has a validation plan, perform an interrogation

Description

When the agent has all the information on what to do (i.e., a validation plan which is a series of validation steps), the interrogation process can occur according its plan. After that, the agent will have gathered intel, and we can use functions like `get_agent_report()` and `all_passed()` to understand how the interrogation went down.

Usage

```r
interrogate(
 agent,
 extract_failed = TRUE,
 get_first_n = NULL,
 sample_n = NULL,
 sample_frac = NULL,
 sample_limit = 5000
)
```

Arguments

- **agent**: An agent object of class `ptblank_agent` that is created with `create_agent()`.
- **extract_failed**: An option to collect rows that didn’t pass a particular validation step. The default is `TRUE` and further options allow for fine control of how these rows are collected.
- **get_first_n**: If the option to collect non-passing rows is chosen, there is the option here to collect the first n rows here. Supply the number of rows to extract from the top of the non-passing rows table (the ordering of data from the original table is retained).
- **sample_n**: If the option to collect non-passing rows is chosen, this option allows for the sampling of n rows. Supply the number of rows to sample from the non-passing rows table. If n is greater than the number of non-passing rows, then all the rows will be returned.
- **sample_frac**: If the option to collect non-passing rows is chosen, this option allows for the sampling of a fraction of those rows. Provide a number in the range of 0 and 1. The number of rows to return may be extremely large (and this is especially when querying remote databases), however, the `sample_limit` option will apply a hard limit to the returned rows.
sample_limit A value that limits the possible number of rows returned when sampling non-passing rows using the sample_frac option.

Value
A ptblank_agent object.

Examples
Create a simple table with two columns of numerical values.

```r
tbl <-
dplyr::tibble(
 a = c(5, 7, 6, 5, 8, 7),
 b = c(7, 1, 0, 0, 0, 3)
)

tbl
```

Validate that values in column a from tbl are always less than 5. Using interrogate() carries out the validation plan and completes the whole process.

```r
agent <-
 create_agent(
 tbl = tbl,
 label = "interrogate() example"
) %>%
 col_vals_gt(columns = vars(a), value = 5) %>%
 interrogate()

We can print the resulting object to see the validation report.

```r
agent
```

Function ID
6-1

See Also
Other Interrogate and Report: get_agent_report()
log4r_step

Enable logging of failure conditions at the validation step level

Description

The log4r_step() function can be used as an action in the action_levels() function (as a list component for the fns list). Place a call to this function in every failure condition that should produce a log (i.e., warn, stop, notify). Only the failure condition with the highest severity for a given validation step will produce a log entry (skipping failure conditions with lower severity) so long as the call to log4r_step() is present.

Usage

log4r_step(x, message = NULL, append_to = "pb_log_file")

Arguments

x
A reference to the x-list object prepared by the agent. This version of the x-list is the same as that generated via get_agent_x_list(<agent>, i = <step>) except this version is internally generated and hence only available in an internal evaluation context.

message
The message to use for the log entry. When not provided, a default glue string is used for the messaging. This is dynamic since the internal glue::glue() call occurs in the same environment as x, the x-list that's constrained to the validation step. The default message, used when message = NULL is the glue string "Step {x$i} exceeded the {level} failure threshold (f_failed = {x$f_failed}) ['{x$type}']". As can be seen, a custom message can be crafted that uses other elements of the x-list with the {x$<component>} construction.

append_to
The file to which log entries at the warn level are appended. This can alternatively be one or more log4r appenders.

Value

Nothing is returned however log files may be written in very specific conditions.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). Here is an example of how log4r_step() can be expressed in R code (within action_levels(), itself inside create_agent()) and in the corresponding YAML representation.

R statement:

create_agent(
 tbl = ~ small_table,
)
YAML representation:

type: agent
tbl: small_table
tbl_name: small_table
label: An example.
lang: en
locale: en
actions:
 warn_count: 1.0
 fns:
 warn: log4r_step(x, append_to = "example_log")
steps: []

Should you need to preview the transformation of an agent to YAML (without any committing anything to disk), use the yaml_agent_string() function. If you already have a .yml file that holds an agent, you can get a glimpse of the R expressions that are used to regenerate that agent with yaml_agent_show_exprs().

Examples

For the example provided here, we'll use the included small_table dataset. We are also going to create an action_levels() list object since this is useful for demonstrating a logging scenario. It will have a threshold for the warn state, and, an associated function that should be invoked whenever the warn state is entered. Here, the function call with log4r_step() will be invoked whenever there is one failing test unit.

al <- action_levels(
 warn_at = 1,
 fns = list(
 warn = ~ log4r_step(
 x, append_to = "example_log"
)
)
)
Within the `action_levels()`-produced object, it's important to match things up: notice that `warn_at` is given a threshold and the list of functions given to `fns` has a `warn` component.

Printing `al` will show us the settings for the `action_levels` object:

```
# -- The `action_levels` settings
# WARN failure threshold of 1 test units.
# \fns\ ~ log4r_step(x, append_to = "example_log")
```

Let's create an agent with `small_table` as the target table. We'll apply the `action_levels` object created above as `al`, add two validation steps, and then `interrogate()` the data.

```
agent <-
create_agent(
  tbl = ~ small_table,
  tbl_name = "small_table",
  label = "An example.",
  actions = al
)
%>%
col_vals_gt(columns = vars(d), 300) %>%
col_vals_in_set(columns = vars(f), c("low", "high")) %>%
interrogate()
```

From the agent report, we can see that both steps have yielded warnings upon interrogation (i.e., filled yellow circles in the W column).

What's not immediately apparent is that when entering the `warn` state in each validation step during interrogation, the `log4r_step()` function call was twice invoked! This generated an "example_log" file in the working directory (since it was not present before the interrogation) and log entries were appended to the file. Here are the contents of the file:

```
WARN [2022-06-28 10:06:01] Step 1 exceeded the WARN failure threshold (f_failed = 0.15385) ['col_vals_gt']
WARN [2022-06-28 10:06:01] Step 2 exceeded the WARN failure threshold (f_failed = 0.15385) ['col_vals_in_set']
```

Function ID

5-1
read_disk_multiagent Read pointblank agents stored on disk as a multiagent

Description

An *agent* or *informant* can be written to disk with the `x_write_disk()` function. While useful for later retrieving the stored agent with `x_read_disk()` it’s also possible to read a series of on-disk agents with the `read_disk_multiagent()` function, which creates a `ptblank_multiagent` object. A *multiagent* object can also be generated via the `create_multiagent()` function but is less convenient to use if one is just using agents that have been previous written to disk.

Usage

```r
read_disk_multiagent(filenames = NULL, pattern = NULL, path = NULL)
```

Arguments

- `filenames` The names of files (holding *agent* objects) that were previously written by `x_write_disk()`.
- `pattern` A regex pattern for accessing saved-to-disk *agent* files located in a directory (specified in the `path` argument).
- `path` A path to a collection of files. This is either optional in the case that files are specified in `filenames` (the path combined with all filenames), or, required when providing a `pattern` for file names.

Value

A `ptblank_multiagent` object.

Function ID

10-2

See Also

Other The multiagent: `create_multiagent()`, `get_multiagent_report()`
Description

Validation steps can be removed from an agent object through use of the remove_steps() function. This is useful, for instance, when getting an agent from disk (via the x_read_disk() function) and omitting one or more steps from the agent’s validation plan. Please note that when removing validation steps all stored data extracts will be removed from the agent.

Usage

remove_steps(agent, i = NULL)

Arguments

agent
An agent object of class ptblank_agent.

i
The validation step number, which is assigned to each validation step in the order of definition. If NULL (the default) then step removal won’t occur by index.

Value

A ptblank_agent object.

Function ID

9.7

See Also

Instead of removal, the deactivate_steps() function will simply change the active status of one or more validation steps to FALSE (and activate_steps() will do the opposite).

Other Object Ops: activate_steps(), deactivate_steps(), export_report(), set_tbl(), x_read_disk(), x_write_disk()

Examples

Create an agent that has the
'small_table' object as the
target table, add a few
validation steps, and then use
'interrogate()'
agent_1 <-
create_agent(
 tbl = small_table,
 tbl_name = "small_table",
 label = "An example."
The second validation step has been determined to be unneeded and is to be removed; this can be done by using `remove_steps()` with the agent object:

```r
agent_2 <- agent_1 %>%
  remove_steps(i = 2) %>%
  interrogate()
```

Description

The `rows_complete()` validation function, the `expect_rows_complete()` expectation function, and the `test_rows_complete()` test function all check whether rows contain any NA/NULL values (optionally constrained to a selection of specified columns). The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. As a validation step or as an expectation, this will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

We can specify the constraining column names in quotes, in `vars()`, and with the following `tidyselect` helper functions: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Usage

```r
rows_complete(
  x, 
  columns = NULL, 
  preconditions = NULL, 
  segments = NULL, 
  actions = NULL, 
  step_id = NULL, 
  label = NULL, 
  brief = NULL, 
  active = TRUE 
)
```
expect_rows_complete(
 object,
 columns = NULL,
 preconditions = NULL,
 threshold = 1
)

test_rows_complete(object, columns = NULL, preconditions = NULL, threshold = 1)

Arguments

x
A data frame, tibble \((\text{tbl} _\text{df} \text{ or } \text{tbl} _\text{dbi})\), Spark DataFrame \((\text{tbl} _\text{spark})\), or, an agent object of class ptblank_agent that is created with create_agent().

columns
The column (or a set of columns, provided as a character vector) to which this validation should be applied.

preconditions
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . \%>% dplyr::mutate(col = col + 10)` or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.

segments
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
 - PostgreSQL tables (using the RPostgres::Postgres() as driver)
 - MySQL tables (with RMySQL::MySQL())
 - Microsoft SQL Server tables (via odbc)
 - BigQuery tables (using bigquery::bigquery())
 - DuckDB tables (through duckdb::duckdb())
 - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).
Preconditions

Providing expressions as preconditions means **pointblank** will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using **dplyr** code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the **action_levels()** function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. Using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).
Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `rows_complete()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `rows_complete()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  rows_complete(
    columns = vars(a, b),
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The rows_complete() step.",
    active = FALSE
  )
```

YAML representation:

```yaml
steps:
  - rows_complete:
      columns: vars(a, b)
      preconditions: ~. %>% dplyr::filter(a < 10)
      segments: b ~ c("group_1", "group_2")
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The rows_complete() step.
      active: false
```

In practice, both of these will often be shorter. A value for `columns` is only necessary if checking for unique values across a subset of columns. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.
Examples

Create a simple table with three columns of numerical values.

tbl <-
dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = c(7, 1, 0, 0, 8, 3),
c = c(1, 1, 1, 3, 3, 3)
)
tbl

A tibble: 6 × 3
a b c
<dbl> <dbl> <dbl>
1 5 7 1
2 7 1 1
3 6 0 1
4 5 0 3
5 8 8 3
6 7 3 3

A: Using an agent with validation functions and then `interrogate()`:
Validate that when considering only data in columns a and b, there are only complete rows (i.e., all rows have no `NA` values).

agent <-
create_agent(tbl = tbl) %>%
 rows_complete(columns = vars(a, b)) %>%
 interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

tbl %>%
 rows_complete(columns = vars(a, b)) %>%
 dplyr::pull(a)

[1] 5 7 6 5 8 7

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.
expect_rows_complete(tbl, columns = vars(a, b))

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
## [1] TRUE
```

Function ID

2-21

See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`,
`col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`,
`col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`,
`col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`,
`col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`,
`col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`,
`col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_distinct()`,
`serially()`, `specially()`, `tbl_match()`

<table>
<thead>
<tr>
<th>rows_distinct</th>
<th>Are row data distinct?</th>
</tr>
</thead>
</table>

Description

The `rows_distinct()` validation function, the `expect_rows_distinct()` expectation function,
and the `test_rows_distinct()` test function all check whether row values (optionally constrained
to a selection of specified columns) are, when taken as a complete unit, distinct from all other units
in the table. The validation function can be used directly on a data table or with an `agent` object
(technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used
with a data table. As a validation step or as an expectation, this will operate over the number of test
units that is equal to the number of rows in the table (after any preconditions have been applied).

We can specify the constraining column names in quotes, in `vars()`, and with the following `tidyselect`
helper functions: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Usage

```r
rows_distinct(
  x,
  columns = NULL,
  preconditions = NULL,
  segments = NULL,
  actions = NULL,
  step_id = NULL,
)```
```r
label = NULL,
brev = NULL,
active = TRUE
)
expect_rows_distinct(
 object,
 columns = NULL,
 preconditions = NULL,
 threshold = 1
)

test_rows_distinct(object, columns = NULL, preconditions = NULL, threshold = 1)
```

### Arguments

- **x**: A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an `agent` object of class `ptblank_agent` that is created with `create_agent()`.
- **columns**: The column (or a set of columns, provided as a character vector) to which this validation should be applied.
- **preconditions**: An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)` or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.
- **segments**: An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
- **actions**: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.
- **step_id**: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of `columns` provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
- **label**: An optional label for the validation step. This label appears in the `agent` report and for the best appearance it should be kept short.
- **brief**: An optional, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the `agent`, using the language provided.
in `create_agent()`’s lang argument (which defaults to "en" or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).

**active**

A logical value indicating whether the validation step should be active. If the validation function is working with an `agent`, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no `agent` involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d, e)))`. The default for `active` is `TRUE`.

**object**

A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

**threshold**

A simple failure threshold value for use with the expectation (`expect_`) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Supported Input Tables**

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).
Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. Using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).
**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an *agent*. If that’s the case, *brief* the agent with some text that fits. Don’t worry if you don’t want to do it. The *autobrief* protocol is kicked in when \( \text{brief} = \text{NULL} \) and a simple brief will then be automatically generated.

**YAML**

A **pointblank** agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `rows_distinct()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `rows_distinct()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```
agent %>%
 rows_distinct(
 columns = vars(a, b),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The \`rows_distinct\` step.",
 active = FALSE
)
```

YAML representation:

```
steps:
- rows_distinct:
 columns: vars(a, b)
 preconditions: ~ . %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `rows_distinct` step.
 active: false
```

In practice, both of these will often be shorter. A value for `columns` is only necessary if checking for unique values across a subset of columns. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.
Examples

Create a simple table with three columns of numerical values.

tbl <-
dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = c(7, 1, 0, 0, 8, 3),
c = c(1, 1, 1, 3, 3, 3)
)

## # A tibble: 6 × 3
## a  b  c
## <dbl> <dbl> <dbl>
## 1 5  7  1
## 2 7  1  1
## 3 6  0  1
## 4 5  0  3
## 5 8  8  3
## 6 7  3  3

A: Using an agent with validation functions and then `interrogate()`:
Validate that when considering only data in columns a and b, there are no duplicate rows (i.e., all rows are distinct).

agent <-
  create_agent(tbl = tbl) %>%
  rows_distinct(columns = vars(a, b)) %>%
  interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>%
 rows_distinct(columns = vars(a, b)) %>%
dplyr::pull(a)
```

## [1] 5 7 6 5 8 7

C: Using the expectation function:
With the `expect_`() form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.
D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_rows_distinct(tbl, columns = vars(a, b))
## [1] TRUE

Function ID
2-20

See Also
Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `serially()`, `specially()`, `tbl_match()`

---

**row_count_match**

Does the row count match that of a different table?

**Description**

The `row_count_match()` validation function, the `expect_row_count_match()` expectation function, and the `test_row_count_match()` test function all check whether the row count in the target table matches that of a comparison table. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. As a validation step or as an expectation, there is a single test unit that hinges on whether the row counts for the two tables are the same (after any preconditions have been applied).

**Usage**

```r
row_count_match(
 x,
 count,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
)```
expect_row_count_match(
 object,
 count,
 preconditions = NULL,
 threshold = 1,
 tbl_compare = NULL
)

test_row_count_match(
 object,
 count,
 preconditions = NULL,
 threshold = 1,
 tbl_compare = NULL
)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl.spark), or, an agent object of class ptblank_agent that is created with create_agent().

count Either a literal value for the number of rows, or, a table to compare against the target table in terms of row count values. If supplying a comparison table, it can either be a table object such as a data frame, a tibble, a tbl_dbi object, or a tbl.spark object. Alternatively, a table-prep formula (~ <table reading code>) or a function (function() <table reading code>) can be used to lazily read in the comparison table at interrogation time.

preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL,
and **pointblank** will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

An optional label for the validation step. This label appears in the *agent* report and for the best appearance it should be kept short.

brief

An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in *create_agent()*’s lang argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function *has_columns()* can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d, e)))`. The default for active is TRUE.

tbl_compare

The *tbl_compare* argument is deprecated. Instead, use *count*.

object

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

A simple failure threshold value for use with the expectation (*expect_*.) and the test (*test_*.) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding *testthat* test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a *ptblank_agent* object or a table object (depending on whether an agent object or a table was passed to *x*). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
• Spark DataFrames (tbl_spark)
• the following database tables (tbl_dbi):
 – *PostgreSQL* tables (using the RPostgres::Postgres() as driver)
 – *MySQL* tables (with RMySQL::MySQL())
 – *Microsoft SQL Server* tables (via odbc)
 – *BigQuery* tables (using bigquery::bigquery())
 – *DuckDB* tables (through duckdb::duckdb())
 – *SQLite* (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that this particular validation requires some operation on the target table before the row count comparison takes place. Using preconditions can be useful at times since since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed. Alternatively, a function could instead be supplied.

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.
Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. Using `action_levels(warn_at = 0.1)` or `action_levels(stop_at = 0.2)` are good choices depending on the situation (the first produces a warning, the other `stop()`s).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`)) or interrogate the target table (via `yaml_agent_interrogate()`). When `row_count_match()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `row_count_match()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  row_count_match(
    count = ~ file_tbl(
      file = from_github(
        file = "sj_all_revenue_large.rds",
        repo = "rich-iannone/intendo",
        subdir = "data-large"
      ),
    ),
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `row_count_match()` step.,"
    active = FALSE
  )
```

YAML representation:

```yaml
steps:
  - row_count_match:
    count: ~ file_tbl(
      file = from_github(
```
In practice, both of these will often be shorter. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

Create a simple table with three columns and four rows of values.

```r
tbl <-
dplyr::tibble(
an = c(5, 7, 6, 5),
b = c(7, 1, 0, 0),
c = c(1, 1, 1, 3)
)
tbl
```

Create a second table which is quite different but has the same number of rows as `tbl`.

```r
tbl_2 <-
dplyr::tibble(
e = c("a", NA, "a", "c"),
f = c(2.6, 1.2, 0, NA)
)
tbl_2
```
A: Using an agent with validation functions and then `interrogate()`:
Validate that the count of rows in the target table (`tbl`) matches that of the comparison table (`tbl_2`).

```r
agent <- create_agent(tbl = tbl) %>%
    row_count_match(count = tbl_2) %>%
    interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
tbl %>% row_count_match(count = tbl_2)
```

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_row_count_match(tbl, count = tbl_2)
```

D: Using the test function:
With the `test_*()` form, we should get a single logical value returned to us.

```r
tbl %>% test_row_count_match(count = 4)
```

Function ID

2-31
See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

scan_data

Thoroughly scan a table to better understand it

Description

Generate an HTML report that scours the input table data. Before calling up an *agent* to validate the data, it’s a good idea to understand the data with some level of precision. Make this the initial step of a well-balanced *data quality reporting* workflow. The reporting output contains several sections to make everything more digestible, and these are:

Overview Table dimensions, duplicate row counts, column types, and reproducibility information

Variables A summary for each table variable and further statistics and summaries depending on the variable type

Interactions A matrix plot that shows interactions between variables

Correlations A set of correlation matrix plots for numerical variables

Missing Values A summary figure that shows the degree of missingness across variables

Sample A table that provides the head and tail rows of the dataset

The resulting object can be printed to make it viewable in the RStudio Viewer. It’s also a "shiny.tag.list" object and so can be integrated in R Markdown HTML output or in Shiny applications. If you need the output HTML, it’s to export that to a file with the `export_report()` function.

Usage

```r
scan_data(
  tbl,
  sections = "OVICMS",
  navbar = TRUE,
  width = NULL,
  lang = NULL,
  locale = NULL
)
```
Scan Data

Arguments

- **tbl**: The input table. This can be a data frame, tibble, a tbl_dbi object, or a tbl_spark object.

- **sections**: The sections to include in the finalized Table Scan report. A string with key characters representing section names is required here. The default string is "OVICMS" wherein each letter stands for the following sections in their default order: "O": "overview"; "V": "variables"; "I": "interactions"; "C": "correlations"; "M": "missing"; and "S": "sample". This string can be comprised of less characters and the order can be changed to suit the desired layout of the report. For tbl_dbi and tbl_spark objects supplied to tbl, the "interactions" and "correlations" sections are currently excluded.

- **navbar**: Should there be a navigation bar anchored to the top of the report page? By default this is TRUE.

- **width**: An optional fixed width (in pixels) for the HTML report. By default, no fixed width is applied.

- **lang**: The language to use for label text in the report. By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

- **locale**: An optional locale ID to use for formatting values in the report according the locale's rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").

Value

A tblblank_tbl_scan object.

Examples

Get an HTML document that describes all of the data in the dplyr::storms dataset.

```r
tbl_scan <- scan_data(tbl = dplyr::storms)
```

Function ID

1-1

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(), draft_validation(), file_tbl(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()
serially() validation function allows for a series of tests to run in sequence before either culminating in a final validation step or simply exiting the series. This construction allows for pre-testing that may make sense before a validation step. For example, there may be situations where it’s vital to check a column type before performing a validation on the same column (since having the wrong type can result in an evaluation error for the subsequent validation). Another serial workflow might entail having a bundle of checks in a prescribed order and, if all pass, then the goal of this testing has been achieved (e.g., checking if a table matches another through a series of increasingly specific tests).

A series as specified inside serially() is composed with a listing of calls, and we would draw upon test functions (T) to describe tests and optionally provide a finalizing call with a validation function (V). The following constraints apply:

- there must be at least one test function in the series (T -> V is good, V is not)
- there can only be one validation function call, V; it’s optional but, if included, it must be placed at the end (T -> T -> V is good, these sequences are bad: (1) T -> V -> T, (2) T -> T -> V -> V)
- a validation function call (V), if included, mustn’t itself yield multiple validation steps (this may happen when providing multiple columns or any segments)

Here’s an example of how to arrange expressions:

```r
~ test_col_exists(., columns = vars(count)),
~ test_col_is_numeric(., columns = vars(count)),
~ col_vals_gt(., columns = vars(count), value = 2)
```

This series concentrates on the column called `count` and first checks whether the column exists, then checks if that column is numeric, and then finally validates whether all values in the column are greater than 2.

Note that in the above listing of calls, the . stands in for the target table and is always necessary here. Also important is that all test_*() functions have a threshold argument that is set to 1 by default. Should you need to bump up the threshold value it can be changed to a different integer value (as an absolute threshold of failing test units) or a decimal value between 0 and 1 (serving as a fractional threshold of failing test units).

Usage

```r
serially(
  x,
  ...
  .list = list2(...),
  preconditions = NULL,
)```
actions = NULL, 
step_id = NULL, 
label = NULL, 
b brief = NULL, 
active = TRUE
)
expect_serially(
  object, 
  ..., 
  .list = list2(...), 
  preconditions = NULL, 
  threshold = 1
)

test_serially(
  object, 
  ..., 
  .list = list2(...), 
  preconditions = NULL, 
  threshold = 1
)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

... A collection one-sided formulas that consist of test_*() function calls (e.g., test_col_vals_between(), etc.) arranged in sequence of intended interrogation order. Typically, validations up until the final one would have some threshold value set (default is 1) for short circuiting within the series. A finishing validation function call (e.g., col_vals_increasing(), etc.) can optionally be inserted at the end of the series, serving as a validation step that only undergoes interrogation if the prior tests adequately pass. An example of this is ~ test_column_exists(. , vars(a)), ~ col_vals_not_null(. , vars(a)).

.list Allows for the use of a list as an input alternative to ....

preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
  - *PostgreSQL* tables (using the RPostgres::Postgres() as driver)
  - *MySQL* tables (with RMySQL::MySQL())
  - *Microsoft SQL Server* tables (via odbc)
  - *BigQuery* tables (using bigquery::bigquery())
  - *DuckDB* tables (through duckdb::duckdb())
  - *SQLite* (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

**Column Names**

If providing multiple column names in any of the supplied validation steps, the result will be an expansion of sub-validation steps to that number of column names. Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

**Preconditions**

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).
Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when \( \text{brief} = \text{NULL} \) and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with \texttt{yaml_write()} and the resulting YAML can be used to regenerate an agent (with \texttt{yaml_read_agent()})) or interrogate the target table (via \texttt{yaml_agent_interrogate()}). When \texttt{serially()} is represented in YAML (under the top-level \texttt{steps} key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of \texttt{serially()} as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 serially(
 ~ col_vals_lt(., columns = vars(a), value = 8),
 ~ col_vals_gt(., columns = vars(c), value = vars(a)),
 ~ col_vals_not_null(., columns = vars(b)),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `serially()` step."
 active = FALSE
)
```

YAML representation:

```yaml
steps:
 - serially:
 fns:
 - ~col_vals_lt(., columns = vars(a), value = 8)
 - ~col_vals_gt(., columns = vars(c), value = vars(a))
 - ~col_vals_not_null(., vars(b))
 preconditions: ~. %>% dplyr::filter(a < 10)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `serially()` step.
 active: false
```

In practice, both of these will often be shorter as only the expressions for validation steps are necessary. Arguments with default values won’t be written to YAML when using \texttt{yaml_write()} (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the \texttt{yaml_agent_string()} function.
Examples

For all examples here, we’ll use a simple table with three numeric columns (a, b, and c). This is a very basic table but it’ll be more useful when explaining things later.

tbl <-
dplyr::tibble(
a = c(5, 2, 6),
b = c(6, 4, 9),
c = c(1, 2, 3)
)
tbl

## # A tibble: 3 x 3
## a b c
## <dbl> <dbl> <dbl>
## 1 5 6 1
## 2 2 4 2
## 3 6 9 3

A: Using an agent with validation functions and then `interrogate()`:
The `serially()` function can be set up to perform a series of tests and then perform a validation (only if all tests pass). Here, we are going to (1) test whether columns a and b are numeric, (2) check that both don’t have any NA values, and (3) perform a finalizing validation that checks whether values in b are greater than values in a. We’ll determine if this validation has any failing test units (there are 4 tests and a final validation).

agent_1 <-
create_agent(tbl = tbl) %>%
serially(
~ test_col_is_numeric(., columns = vars(a, b)),
~ test_col_vals_not_null(., columns = vars(a, b)),
~ col_vals_gt(., columns = vars(b), value = vars(a))
) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

What’s going on? All four of the tests passed and so the final validation occurred. There were no failing test units in that either!
The final validation is optional and so here is a variation where only the serial tests are performed.

agent_2 <-
create_agent(tbl = tbl) %>%
serially(
~ test_col_is_numeric(., columns = vars(a, b)),
~ test_col_vals_not_null(., columns = vars(a, b))
) %>%
interrogate()
Everything is good here too:

**B: Using the validation function directly on the data (no agent):**

This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>%
 serially(
 ~ test_col_is_numeric(.[, columns = vars(a, b)],
 ~ test_col_vals_not_null(.[, columns = vars(a, b)],
 ~ col_vals_gt(.[, columns = vars(b), value = vars(a)]
)

A tibble: 3 × 3
a b c
<dbl> <dbl> <dbl>
1 5 6 1
2 2 4 2
3 6 9 3
```

**C: Using the expectation function:**

With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_serially(
 tbl, ~ test_col_is_numeric(.[, columns = vars(a, b)],
 ~ test_col_vals_not_null(.[, columns = vars(a, b)],
 ~ col_vals_gt(.[, columns = vars(b), value = vars(a)]
)
```

**D: Using the test function:**

With the test_*() form, we should get a single logical value returned to us.

```r
tbl %>%
 test_serially(
 ~ test_col_is_numeric(.[, columns = vars(a, b)],
 ~ test_col_vals_not_null(.[, columns = vars(a, b)],
 ~ col_vals_gt(.[, columns = vars(b), value = vars(a)]
)

[1] TRUE
```

**Function ID**

2-35
See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `specially()`, `tbl_match()`

Description

Setting a data table to an agent or an informant with `set_tbl()` replaces any associated table (a data frame, a tibble, objects of class `tbl_dbi` or `tbl.spark`).

Usage

```r
set_tbl(x, tbl, tbl_name = NULL, label = NULL)
```

Arguments

- `x`: An agent object of class `ptblank_agent`, or, an informant of class `ptblank_informant`.
- `tbl`: The input table for the agent or the informant. This can be a data frame, a tibble, a `tbl_dbi` object, or a `tbl.spark` object. Alternatively, an expression can be supplied to serve as instructions on how to retrieve the target table at interrogation- or incorporation-time. There are two ways to specify an association to a target table: (1) as a table-prep formula, which is a right-hand side (RHS) formula expression (e.g., `~ { <table reading code>}`), or (2) as a function (e.g., `function() { <table reading code>}`).
- `tbl_name`: A optional name to assign to the new input table object. If no value is provided, a name will be generated based on whatever information is available.
- `label`: An optional label for the validation plan. If no value is provided then any existing label will be retained.

Examples

Set proportional failure thresholds to the warn, stop, and notify states using `action_levels()`.

```r
al <- action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
) ```
Create an agent that has `small_table` set as the target table via `tbl`. Apply the actions, add some validation steps and then interrogate the data.

```r
tag_agent <- create_agent(
  tbl = small_table,
  tbl_name = "small_table",
  label = "An example.",
  actions = al
) %>%
col_exists(columns = vars(date, date_time)) %>%
col_vals_regex(
  columns = vars(b),
  regex = "[0-9]-[a-z][3]-[0-9][3]"
) %>%
rows_distinct() %>%
interrogate()
```

Replace the agent’s association to `small_table` with a mutated version of it (one that removes duplicate rows). Then, interrogate the new target table.

```r
agent_2 <-
tag_agent %>%
set_tbl(
  tbl = small_table %>% dplyr::distinct()
) %>%
interrogate()
```

Function ID

9-4

See Also

Other Object Ops: `activate_steps()`, `deactivate_steps()`, `export_report()`, `remove_steps()`, `x_read_disk()`, `x_write_disk()`

small_table

A small table that is useful for testing

Description

This is a small table with a few different types of columns. It’s probably just useful when testing the functions from `pointblank`. Rows 9 and 10 are exact duplicates. The c column contains two `NA` values.
small_table_sqlite

Usage
small_table

Format
A tibble with 13 rows and 8 variables:

- **date_time** A date-time column (of the POSIXct class) with dates that correspond exactly to those in the date column. Time values are somewhat randomized but all 'seconds' values are 00.
- **date** A Date column with dates from 2016-01-04 to 2016-01-30.
- **a** An integer column with values ranging from 1 to 8.
- **b** A character column with values that adhere to a common pattern.
- **c** An integer column with values ranging from 2 to 9. Contains two NA values.
- **d** A numeric column with values ranging from 108 to 10000.
- **e** A logical column.
- **f** A character column with "low", "mid", and "high" values.

Function ID
14-1

See Also
Other Datasets: game_revenue_info, game_revenue, small_table_sqlite(), specifications

Examples

```r
# Here is a glimpse at the data
# available in `small_table`
dplyr::glimpse(small_table)
```

small_table_sqlite An SQLite version of the small_table dataset

Description
The small_table_sqlite() function creates an SQLite, tbl_dbi version of the small_table dataset. A requirement is the availability of the DBI and RSQLite packages. These packages can be installed by using install.packages("DBI") and install.packages("RSQLite").

Usage
small_table_sqlite()
Function ID

14-2

See Also

Other Datasets: `game_revenue_info`, `game_revenue`, `small_table`, `specifications`

Examples

```r
# Use `small_table_sqlite()` to
# create an SQLite version of the
# `small_table` table
#
# small_table_sqlite <- small_table_sqlite()
```

snip_highest
A fn for info_snippet(): get the highest value from a column

Description

The `snip_highest()` function can be used as an `info_snippet()` function (i.e., provided to `fn`) to get the highest numerical, time value, or alphabetical value from a column in the target table.

Usage

```r
snip_highest(column)
```

Arguments

- **column**
The name of the column that contains the target values.

Value

A formula needed for `info_snippet()`’s `fn` argument.

Examples

Generate an informant object, add a snippet with `info_snippet()` and `snip_highest()` (giving us a method to get the highest value in column `a`); define a location for the snippet result in `{ }` and then `incorporate()` the snippet into the info text. Note here that the order of the `info_columns()` and `info_snippet()` calls doesn’t matter.

```r
informant <-
  create_informant(
    tbl = ~ small_table,
    tbl_name = "small_table",
    label = "An example."
```
We can print the informant object to see the information report.

```
informant

Function ID
3-9

See Also
Other Information Functions: info_columns_from_tbl(), info_columns(), info_section(), info_snippet(), info_tabular(), snip_list(), snip_lowest(), snip_stats()
```

Description

The `snip_list()` function can be used as an `info_snippet()` function (i.e., provided to `fn`) to get a catalog list from a table column. You can limit the items in that list with the `limit` value.

Usage

```
snip_list(
  column,
  limit = 5,
  sorting = c("inorder", "infreq", "inseq"),
  reverse = FALSE,
  sep = ",",
  and_or = NULL,
  oxford = TRUE,
  as_code = TRUE,
  quot_str = NULL,
  lang = NULL
)
```
Arguments

- **column**: The name of the column that contains the target values.
- **limit**: A limit of items put into the generated list. The returned text will state the remaining number of items beyond the limit. By default, the limit is 5.
- **sorting**: A keyword used to designate the type of sorting to use for the list. The three options are "inordr" (the default), "infreq", and "inseq". With "inordr", distinct items are listed in the order in which they first appear. Using "infreq" orders the items by the decreasing frequency of each item. The "inseq" option applies an alphanumeric sorting to the distinct list items.
- **reverse**: An option to reverse the ordering of list items. By default, this is FALSE but using TRUE will reverse the items before applying the limit.
- **sep**: The separator to use between list items. By default, this is a comma.
- **and_or**: The type of conjunction to use between the final and penultimate list items (should the item length be below the limit value). If NULL (the default) is used, then the 'and' conjunction will be used. Alternatively, the following keywords can be used: "and", "or", or an empty string (for no conjunction at all).
- **oxford**: Whether to use an Oxford comma under certain conditions. By default, this is TRUE.
- **as_code**: Should each list item appear in a 'code font' (i.e., as monospaced text)? By default this is TRUE. Using FALSE keeps all list items in the same font as the rest of the information report.
- **quot_str**: An option for whether list items should be set in double quotes. If NULL (the default), the quotation marks are mainly associated with list items derived from character or factor values; numbers, dates, and logical values won't have quotation marks. We can explicitly use quotations (or not) with either TRUE or FALSE here.
- **lang**: The language to use for any joining words (from the and_or option) or additional words in the generated list string. By default, NULL will use whichever lang setting is available in the parent informant object (this is settable in the create_informant() lang argument). If specified here as an override, the language options are English ("en"), French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

Value

A formula needed for info_snippet()'s fn argument.

Examples

Generate an informant object, add a snippet with info_snippet() and snip_list() (giving us a method to get a distinct list of column values for column f). Define a location for the snippet result in {} and then incorporate() the snippet into the info text. Note here that the order of the info_columns() and info_snippet() calls doesn't matter.
informant <-
 create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
) %>%
 info_columns(
 columns = "f",
 `Items` = "This column contains \{values_f\}."
) %>%
 info_snippet(
 snippet_name = "values_f",
 fn = snip_list(column = "f")
) %>%
 incorporate()

We can print the informant object to see the information report.

informant

Function ID

3-6

See Also

Other Information Functions: info_columns_from_tbl(), info_columns(), info_section(),
info_snippet(), info_tabular(), snip_highest(), snip_lowest(), snip_stats()

snip_lowest

A fn for info_snippet(): get the lowest value from a column

Description

The `snip_lowest()` function can be used as an `info_snippet()` function (i.e., provided to `fn`) to get the lowest numerical, time value, or alphabetical value from a column in the target table.

Usage

```
snip_lowest(column)
```

Arguments

- **column**: The name of the column that contains the target values.

Value

A formula needed for `info_snippet()`'s `fn` argument.
Examples

Generate an informant object, add a snippet with `info_snippet()` and `snip_lowest()` (giving us a method to get the lowest value in column a). Define a location for the snippet result in `{ }` and then incorporate() the snippet into the info text. Note here that the order of the `info_columns()` and `info_snippet()` calls doesn't matter.

```r
informant <-
  create_informant(
    tbl = ~ small_table,
    tbl_name = "small_table",
    label = "An example."
  ) %>%
  info_columns(
    columns = "a",
    `Lowest Value` = "Lowest value is {lowest_a}.”
  ) %>%
  info_snippet(
    snippet_name = "lowest_a",
    fn = snip_lowest(column = "a")
  ) %>%
  incorporate()
```

We can print the informant object to see the information report.

`informant`

Function ID

3-8

See Also

Other Information Functions: `info_columns_from_tbl()`, `info_columns()`, `info_section()`, `info_snippet()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_stats()`

snip_stats

A fn for `info_snippet()`: get an inline statistical summary

Description

The `snip_stats()` function can be used as an `info_snippet()` function (i.e., provided to `fn`) to produce a five- or seven-number statistical summary. This inline summary works well within a paragraph of text and can help in describing the distribution of numerical values in a column.

For a given column, three different types of inline statistical summaries can be provided:

1. a five-number summary ("5num"): minimum, Q1, median, Q3, maximum
2. a seven-number summary ("7num"): P2, P9, Q1, median, Q3, P91, P98
3. Bowley’s seven-figure summary ("bowley"): minimum, P10, Q1, median, Q3, P90, maximum
Usage

```r
snip_stats(column, type = c("5num", "7num", "bowley"))
```

Arguments

- `column`
 The name of the column that contains the target values.

- `type`
 The type of summary. By default, the "5num" keyword is used to generate a five-number summary. Two other options provide seven-number summaries: "7num" and "bowley".

Value

A formula needed for `info_snippet()`'s `fn` argument.

Examples

Generate an informant object, add a snippet with `info_snippet()` and `snip_stats()` (giving us a method to get some summary stats for column d). Define a location for the snippet result in `{ }` and then `incorporate()` the snippet into the info text. Note here that the order of the `info_columns()` and `info_snippet()` calls doesn’t matter.

```r
informant <-
  create_informant(
    tbl = ~ small_table,
    tbl_name = "small_table",
    label = "An example."
  ) %>%
  info_columns(
    columns = "d",
    Stats = "Stats (fivenum): {stats_d}."
  ) %>%
  info_snippet(
    snippet_name = "stats_d",
    fn = snip_stats(column = "d")
  ) %>%
  incorporate()
```

We can print the `informant` object to see the information report.

```r
informant
```

Function ID

3-7

See Also

Other Information Functions: `info_columns_from_tbl()`, `info_columns()`, `info_section()`, `info_snippet()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_lowest()`
specially
Perform a specialized validation with a user-defined function

Description

The `specially()` validation function allows for custom validation with a function that you provide. The major proviso for the provided function is that it must either return a logical vector or a table where the final column is logical. The function will operate on the table object, or, because you can do whatever you like, it could also operate on other types of objects. To do this, you can transform the input table in `preconditions` or inject an entirely different object there. During interrogation, there won’t be any checks to ensure that the data is a table object.

Usage

```r
specially(
  x, 
  fn, 
  preconditions = NULL, 
  actions = NULL, 
  step_id = NULL, 
  label = NULL, 
  brief = NULL, 
  active = TRUE
)

expect_specially(object, fn, preconditions = NULL, threshold = 1)

test_specially(object, fn, preconditions = NULL, threshold = 1)
```

Arguments

- **x**
 A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an `agent` object of class `ptblank_agent` that is created with `create_agent()`.

- **fn**
 A function that performs the specialized validation on the data. It must either return a logical vector or a table where the last column is a logical column.

- **preconditions**
 An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the `Preconditions` section for more information.

- **actions**
 A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

- **step_id**
 One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has.columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has.columns(vars(d, e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way. Within specially(), because this function is special, there won’t be internal checking as to whether the preconditions-based output is a table.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::filter(a < 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When specially() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of specially() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  specially(
    fn = function(x) { ... },
    preconditions = ~ . %>% dplyr::filter(a < 10),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `\(\text{specially()}\)` step.",
    active = FALSE
  )
```
YAML representation:

```yaml
steps:
  - specially:
      fn: function(x) { ... }
      preconditions: ~. %>% dplyr::filter(a < 10)
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
        label: The `specially()` step.
      active: false
```

In practice, both of these will often be shorter as only the expressions for validation steps are necessary. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all examples here, we’ll use a simple table with three numeric columns (a, b, and c). This is a very basic table but it’ll be more useful when explaining things later.

```r
tbl <-
  dplyr::tibble(
    a = c(5, 2, 6),
    b = c(3, 4, 6),
    c = c(9, 8, 7)
  )

tbl
```

```r
## # A tibble: 3 × 3
##   a   b   c
##  <dbl> <dbl> <dbl>
## 1    5    3    9
## 2    2    4    8
## 3    6    6    7
```

A: Using an agent with validation functions and then `interrogate()`:

Validate that the target table has exactly three rows. This single validation with `specially()` has 1 test unit since the function executed on `x` (the target table) results in a logical vector with a length of 1. We’ll determine if this validation has any failing test units (there is 1 test unit).

```r
agent <-
  create_agent(tbl = tbl) %>%
  specially(fn = function(x) nrow(x) == 3) %>%
  interrogate()
```
Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
tbl %>% specially(fn = function(x) nrow(x) == 3)
```

```r
# A tibble: 3 x 3
## # A tibble: 3 × 3
##   a b c
##  <dbl> <dbl> <dbl>
## 1 5 3 9
## 2 2 4 8
## 3 6 6 7
```

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_specially(tbl, fn = function(x) nrow(x) == 3)
```

D: Using the test function:
With the `test_*()` form, we should get a single logical value returned to us.

```r
tbl %>% test_specially(fn = function(x) nrow(x) == 3)
```

```r
## [1] TRUE
```

Variations:
We can do more complex things with `specially()` and its variants.

Check the class of the target table.

```r
tbl %>%
test_specially(
  fn = function(x) {
    inherits(x, "data.frame")
  })
```

```r
## [1] TRUE
```

Check that the number of rows in the target table is less than `small_table`.

```r
tbl %>%
test_specially(
  fn = function(x) {
    nrow(x) < nrow(small_table)
  })
```

```r
## [1] TRUE
```
[1] TRUE

Check that all numbers across all numeric column are less than 10.

```r
tbl %>%
  test_specially(
    fn = function(x) {
      x %>%
        dplyr::select(where(is.numeric)) %>%
        unlist()
      ) < 10
    }
  )
```

[1] TRUE

Check that all values in column `c` are greater than `b` and greater than `a` (in each row) and always less than 10. This creates a table with the new column `d` which is a logical column (that is used as the evaluation of test units).

```r
tbl %>%
  test_specially(
    fn = function(x) {
      x %>%
        dplyr::mutate(
          d = c > b & c > a & c < 10
        )
    }
  )
```

[1] TRUE

Check that the `game_revenue` table (which is not the target table) has exactly 2000 rows.

```r
tbl %>%
  test_specially(
    fn = function(x) {
      nrow(game_revenue) == 2000
    }
  )
```

[1] TRUE

Function ID

2-36

See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_in_range()`, `col_vals_is()`, `col_vars_exist()`, `col_vars_is()`, `col_vars_match()`, `col_vars_str_match()`.
Specifications

A table containing data pertaining to various specifications

Description

The specifications dataset is useful for testing the `col vals within spec()`, `test col vals within spec()`, and `expect col vals within spec()` functions. For each column, holding character values for different specifications, rows 1-5 contain valid values, the 6th row is an NA value, and the final two values (rows 7 and 8) are invalid. Different specification (spec) keywords apply to each of columns when validating with any of the aforementioned functions.

Usage

```r
specifications
```

Format

A tibble with 8 rows and 12 variables:

- **isbn_numbers** ISBN-13 numbers; can be validated with the "isbn" specification.
- **vin_numbers** VIN numbers (identifiers for motor vehicles); can be validated with the "vin" specification.
- **zip_codes** Postal codes for the U.S.; can be validated with the "postal[USA]" specification or its "zip" alias.
- **credit_card_numbers** Credit card numbers; can be validated with the "credit_card" specification or the "cc" alias.
- **iban_austria** IBAN numbers for Austrian accounts; can be validated with the "iban[AUT]" specification.
- **swift_numbers** Swift-BIC numbers; can be validated with the "swift" specification.
- **phone_numbers** Phone numbers; can be validated with the "phone" specification.
- **email_addresses** Email addresses; can be validated with the "email" specification.
- **urls** URLs; can be validated with the "url" specification.
- **ipv4_addresses** IPv4 addresses; can be validated with the "ipv4" specification.
- **ipv6_addresses** IPv6 addresses; can be validated with the "ipv6" specification.
- **mac_addresses** MAC addresses; can be validated with the "mac" specification.

Function ID

14-3
stock_msg_body

See Also

Other Datasets: `game_revenue_info`, `game_revenue`, `small_table_sqlite()`, `small_table`

Examples

```r
# Here is a glimpse at the data
# available in `specifications`
dplyr::glimpse(specifications)
```

stock_msg_body

Provide simple email message body components: body

Description

The stock_msg_body() function simply provides some stock text for an email message sent via `email_blast()` or obtained as a standalone object through `email_create()`.

Usage

```r
stock_msg_body()
```

Value

Text suitable for the `msg_body` argument of `email_blast()` and `email_create()`.

Function ID

4-3

See Also

Other Emailing: `email_blast()`, `email_create()`, `stock_msg_footer()`

stock_msg_footer

Provide simple email message body components: footer

Description

The stock_msg_footer() function simply provides some stock text for an email message sent via `email_blast()` or obtained as a standalone object through `email_create()`.

Usage

```r
stock_msg_footer()
```
Value

Text suitable for the msg_footer argument of `email_blast()` and `email_create()`.

Function ID

4.4

See Also

Other Emailing: `email_blast()`, `email_create()`, `stock_msg_body()`

stop_if_not

The next generation of stopifnot()-type functions: stop_if_not()

Description

This is stopifnot() but with a twist: it works well as a standalone, replacement for stopifnot() but is also customized for use in validation checks in R Markdown documents where `pointblank` is loaded. Using `stop_if_not()` in a code chunk where the `validate = TRUE` option is set will yield the correct reporting of successes and failures whereas stopifnot() does not.

Usage

`stop_if_not()`

Arguments

...

R expressions that should each evaluate to (a logical vector of all) TRUE.

Value

NULL if all statements in ... are TRUE.

Function ID

13-5

See Also

Other Utility and Helper Functions: `affix_datetime()`, `affix_date()`, `col_schema()`, `from_github()`, `has_columns()`
Examples

```r
# This checks whether the number of
# rows in `small_table` is greater
# than 10
stop_if_not(nrow(small_table) > 10)

# This will stop for sure: there
# isn't a `time` column in `small_table`
# (but there are the `date_time` and
# `date` columns)
# stop_if_not("time" %in% colnames(small_table))

# You're not bound to using tabular
# data here, any statements that
# evaluate to logical vectors will work
stop_if_not(1 < 20:25 - 18)
```

tbl_get

Obtain a materialized table via a table store

Description

The `tbl_get()` function gives us the means to materialize a table that has an entry in a table store (i.e., a table-prep formula with a unique name). The table store that is used for this can be in the form of a `tbl_store` object (created with the `tbl_store()` function) or an on-disk YAML representation of a table store (created by using `yaml_write()` with a `tbl_store` object).

Should you want a table-prep formula from a table store to use as a value for `tbl` (in `create_agent()`, `create_informant()`, or `set_tbl()`), then have a look at the `tbl_source()` function.

Usage

```r
tbl_get(tbl, store = NULL)
```

Arguments

- `tbl`
 The table to retrieve from a table store. This table could be identified by its name (e.g., `tbl = "large_table"`) or by supplying a reference using a subset (with `$`) of the `tbl_store` object (e.g., `tbl = store$large_table`). If using the latter method then nothing needs to be supplied to `store`.

- `store`
 Either a table store object created by the `tbl_store()` function or a path to a table store YAML file created by `yaml_write()`.

Value

A table object.
Examples

Define a `tbl_store` object by adding several table-prep formulas in `tbl_store()`.

```r
store <-
  tbl_store(
    small_table_duck ~ db_tbl(
      table = small_table,
      dbname = "::memory:",
      dbtype = "duckdb"
    ),
    ~ db_tbl(
      table = "rna",
      dbname = "pfmegnargs",
      dbtype = "postgres",
      host = "hh-pgsql-public.ebi.ac.uk",
      port = 5432,
      user = I("reader"),
      password = I("NWDMCE5xdiPjRrp")
    ),
    sml_table ~ pointblank::small_table
  )
```

Once this object is available, we can access the tables named: "small_table_duck", "rna", and "sml_table". Let's check that the "rna" table is accessible through `tbl_get()`:

```r
tbl_get(
  tbl = "rna",
  store = store
)
```

An alternative method for getting the same table materialized is by using `$` to get the formula of choice from `tbls` and passing that to `tbl_get()`. The benefit of this is that we can use autocompletion to show us what’s available in the table store (i.e., appears after typing the `$`).
store$small_table_duck %>% tbl_get()

Source: table<small_table> [?? x 8]
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
... with more rows

Function ID

1-10

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(), draft_validation(), file_tbl(), scan_data(), tbl_source(), tbl_store(), validate_rmd()

tbl_match

Does the target table match a comparison table?

description

The tbl_match() validation function, the expect_tbl_match() expectation function, and the test_tbl_match() test function all check whether the target table’s composition matches that of a comparison table. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl.spark). As a validation step or as an expectation, there is a single test unit that hinges on whether the two tables are the same (after any preconditions have been applied).

Usage

tbl_match(
 x,
 tbl_compare,
 preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
)

expect_tbl_match(object, tbl_compare, preconditions = NULL, threshold = 1)

test_tbl_match(object, tbl_compare, preconditions = NULL, threshold = 1)

Arguments

x
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

tbl_compare
A table to compare against the target table. This can either be a table object, a table-prep formula. This can be a table object such as a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, a table-prep formula (~ <table reading code>) or a function(function() <table reading code>) can be used to lazily read in the table at interrogation time.

preconditions
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with \(. \) (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., \~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to \(x \)). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that this particular validation requires some operation on the target table before the comparison takes place. Using preconditions can be useful at times since since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading \~). In the formula representation, the \. \ serves as the input data table to be transformed. Alternatively, a function could instead be supplied.
Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When tbl_match() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of tbl_match() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:
agent %>%
 tbl_match(
 tbl_compare = ~ file_tbl(
 file = from_github(
 file = "sj_all_revenue_large.rds",
 repo = "rich-iannone/intendo",
 subdir = "data-large"
),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `tbl_match()` step.",
 active = FALSE
),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `tbl_match()` step.",
 active = FALSE
)

YAML representation:

steps:
 - tbl_match:
 tbl_compare: ~ file_tbl(
 file = from_github(
 file = "sj_all_revenue_large.rds",
 repo = "rich-iannone/intendo",
 subdir = "data-large"
),
 preconditions: ~ . %>% dplyr::filter(a < 10),
 segments: b ~ c("group_1", "group_2"),
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `tbl_match()` step.
 active: false
)

In practice, both of these will often be shorter. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

Create a simple table with three columns and four rows of values.

tbl <-
dplyr::tibble(
 a = c(5, 7, 6, 5),
 b = c(7, 1, 0, 0),
 c = c(2, 4, 3, 0))
c = c(1, 1, 1, 3)
}

tbl

A tibble: 4 × 3
a b c
<dbl> <dbl> <dbl>
1 5 7 1
2 7 1 1
3 6 0 1
4 5 0 3

Create a second table which is the same as tbl.

tbl_2 <-
dplyr::tibble(
a = c(5, 7, 6, 5),
b = c(7, 1, 0, 0),
c = c(1, 1, 1, 3)
)

tbl_2

A tibble: 4 × 3
a b c
<dbl> <dbl> <dbl>
1 5 7 1
2 7 1 1
3 6 0 1
4 5 0 3

A: Using an agent with validation functions and then `interrogate()`:
Validate that the target table (tbl) and the comparison table (tbl_2) are equivalent in terms of content.

agent <-
 create_agent(tbl = tbl) %>%
 tbl_match(tbl_compare = tbl_2) %>%
 interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.
tbl %>% tbl_match(tbl_compare = tbl_2)

A tibble: 4 × 3
a b c
<dbl> <dbl> <dbl>
1 5 7 1
2 7 1 1
3 6 0 1
4 5 0 3

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

`expect_tbl_match(tbl, tbl_compare = tbl_2)`

D: Using the test function:
With the `test_*()` form, we should get a single logical value returned to us.

`tbl %>% test_tbl_match(tbl_compare = tbl_2)`

[1] TRUE

Function ID
2-33

See Also
Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`

tbl_source

Obtain a table-prep formula from a table store

Description

The `tbl_source()` function provides a convenient means to access a table-prep formula from either a `tbl_store` object or a table store YAML file (which can be created with the `yaml_write()` function). A call to `tbl_source()` is most useful as an input to the `tbl` argument of `create_agent()`, `create_informant()`, or `set_tbl()`.

Should you need to obtain the table itself (that is generated via the table-prep formula), then the `tbl_get()` function should be used for that.
Usage

tbl_source(tbl, store = NULL)

Arguments

tbl
 The table name associated with a table-prep formula. This is part of the table store. This table could be identified by its name (e.g., tbl = "large_table") or by supplying a reference using a subset (with $) of the tbl_store object (e.g., tbl = store$large_table). If using the latter method then nothing needs to be supplied to store.

store
 Either a table store object created by the tbl_store() function or a path to a table store YAML file created by yaml_write().

Value
 A table-prep formula.

Examples

Let’s create a tbl_store object by giving two table-prep formulas to tbl_store().

```r
store <-
tbl_store(  
  small_table_duck ~ db_tbl(  
    table = small_table,  
    dbname = "::memory:",  
    dbtype = "duckdb"  
  ),  
  sml_table ~ pointblank::small_table  
)
```

We can pass a table-prep formula to create_agent() via tbl_source(), add some validation steps, and interrogate the table shortly thereafter.

```r
agent_1 <-
create_agent(  
  tbl = ~ tbl_source("sml_table", store),  
  label = "tbl_source() example",  
  actions = action_levels(warn_at = 0.10)  
)  
%>%
col_exists(columns = vars(date, date_time))  
%>%
interrogate()
```

The agent_1 object can be printed to see the validation report in the Viewer.

```r
agent_1
```
The tbl_store object can be transformed to YAML with the `yaml_write()` function. The following statement writes the tbl_store.yml file by default (but a different name could be used with the filename argument):

```
yaml_write(store)
```

Let’s modify the agent’s target to point to the table labeled as "sml_table" in the YAML representation of the tbl_store.

```
agent_2 <-
  agent_1 %>%
  set_tbl(
    ~ tbl_source(
      tbl = "sml_table",
      store = "tbl_store.yml"
    )
  )
```

We can likewise write the agent to a YAML file with `yaml_write()` (writes to agent-sml_table.yml by default but the filename allows for any filename you want).

```
yaml_write(agent_2)
```

Now that both the agent and the associated table store are present as on-disk YAML, interrogations can be done by using `yaml_agent_interrogate()`.

```
agent <- yaml_agent_interrogate(filename = "agent-sml_table.yml")
```

Function ID

1-9

See Also

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `db_tbl()`, `draft_validation()`, `file_tbl()`, `scan_data()`, `tbl_get()`, `tbl_store()`, `validate_rmd()`
Description

It can be useful to set up all the data sources you need and just draw from them when necessary. This upfront configuration with `tbl_store()` lets us define the methods for obtaining tabular data from mixed sources (e.g., database tables, tables generated from flat files, etc.) and provide identifiers for these data preparation procedures.

What results from this work is a convenient way to materialize tables with `tbl_get()`. We can also get any table-prep formula from the table store with `tbl_source()`. The content of a table-prep formulas can involve reading a table from a location, or, it can involve data transformation. One can imagine scenarios where we might (1) procure several mutated variations of the same source table, (2) generate a table using disparate data sources, or (3) filter the rows of a database table according to the system time. Another nice aspect of organizing table-prep formulas in a single object is supplying it to the `tbl` argument of `create_agent()` or `create_informant()` via $ notation (e.g., `create_agent(tbl = <tbl_store>$<name>)`) or with `tbl_source()` (e.g., `create_agent(tbl = ~ tbl_source("<name>", <tbl_store>))`).

Usage

`tbl_store(..., .list = list2(...), .init = NULL)`

Arguments

`...` Expressions that contain table-prep formulas and table names for data retrieval. Two-sided formulas (e.g, `<LHS> ~ <RHS>`) are to be used, where the left-hand side is an identifier and the right-hand contains a statement that obtains a table (i.e., the table-prep formula). If the LHS is omitted then an identifier will be generated for you.

`.list` Allows for the use of a list as an input alternative to `...`.

`.init` We can optionally provide an initialization statement (in a one-sided formula) that should be executed whenever any of tables in the table store are obtained. This is useful, for instance, for including a `library()` call that can be executed before any table-prep formulas in `...`.

Value

A `tbl_store` object that contains table-prep formulas.

YAML

A `pointblank` table store can be written to YAML with `yaml_write()` and the resulting YAML can be used in several ways. The ideal scenario is to have pointblank agents and informants also in YAML form. This way the agent and informant can refer to the table store YAML (via `tbl_source()`), and, the processing of both agents and informants can be performed with `yaml_agent_interrogate()` and `yaml_informant_incorporate()`. With the following R code, a table store with two table-prep formulas is generated and written to YAML (if no filename is given then the YAML is written to "tbl_store.yml").

R statement for generating the "tbl_store.yml" file:
tbl_store(
 tbl_duckdb ~ db_tbl(small_table, dbname = "memory:", dbtype = "duckdb"),
 sml_table_high ~ small_table %>% dplyr::filter(f == "high"),
 .init = ~ library(tidyverse)
) %>%
yaml_write()

YAML representation ("tbl_store.yml"):

type: tbl_store
tbls:
 tbl_duckdb: ~ db_tbl(small_table, dbname = "memory:", dbtype = "duckdb")
 sml_table_high: ~ small_table %>% dplyr::filter(f == "high")
init: ~library(tidyverse)

This is useful when you want to get fresh pulls of prepared data from a source materialized in an R session (with the tbl_get() function. For example, the sml_table_high table can be obtained by using tbl_get("sml_table_high", "tbl_store.yml"). To get an agent to check this prepared data periodically, then the following example with tbl_source() will be useful:

R code to generate agent that checks sml_table_high and writing the agent to YAML:

create_agent(
 tbl = ~ tbl_source("sml_table_high", "tbl_store.yml"),
 label = "An example that uses a table store.",
 actions = action_levels(warn_at = 0.10)
) %>%
col_exists(vars(date, date_time)) %>%
write_yaml()

The YAML representation ("agent-sml_table_high.yml"):

tbl: ~ tbl_source("sml_table_high", "tbl_store.yml")
tbl_name: sml_table_high
label: An example that uses a table store.
actions:
 warn_fraction: 0.1
locale: en
steps:
 ~ col_exists:
 columns: vars(date, date_time)

Now, whenever the sml_table_high table needs to be validated, it can be done with yam_agent_interrogate() (e.g., yam_agent_interrogate("agent-sml_table_high.yml").
Examples

Creating an in-memory table store and adding table-prep formulas:
The table store provides a way to get the tables we need fairly easily. Think of an identifier for
the table you’d like and then provide the code necessary to obtain that table. Then repeat as many
times as you like!
Here we’ll define two tables that can be materialized later: tbl_duckdb (an in-memory DuckDB
database table with pointblank’s small_table dataset) and sml_table_high (a filtered version
of tbl_duckdb):

store_1 <-
tbl_store(
 tbl_duckdb ~
 db_tbl(
 pointblank::small_table,
 dbname = "":memory:",
 dbtype = "duckdb"
),
 sml_table_high ~
 db_tbl(
 pointblank::small_table,
 dbname = "":memory:",
 dbtype = "duckdb"
) %>%
 dplyr::filter(f == "high")
)

We can see what’s in the table store store_1 by printing it out:

store_1

-- The table_store table-prep formulas
1 tbl_duckdb // ~ db_tbl(pointblank::small_table, dbname = ":memory:"),
2 sml_table_high // ~ db_tbl(pointblank::small_table, dbname = ":memory:"),

It’s good to check that the tables can be obtained without error. We can do this with the tbl_get()
function. With that function, we need to supply the given name of the table-prep formula (in
quotes) and the table store object.

tbl_get(tbl = "tbl_duckdb", store = store_1)

Source: table<pointblank::small_table> [?? x 8]
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
We can shorten the `tbl_store()` statement with some syntax that `pointblank` provides. The `sml_table_high` table-prep is simply a transformation of `tbl_duckdb`, so we can use `{{ tbl_duckdb }}` in place of the repeated statement. Additionally, we can provide a `library()` call to the `.init` argument of `tbl_store()` so that `dplyr` is available (thus allowing us to use `filter(...)` instead of `dplyr::filter(...)`). Here is the revised `tbl_store()` call:

```r
store_2 <-
  tbl_store(
    tbl_duckdb ~
      db_tbl(
        pointblank::small_table,
        dbname = "::memory::",
        dbtype = "duckdb"
      ),
    sml_table_high ~
      {{ tbl_duckdb }} %>%
      filter(f == "high"),
      .init = ~ library(tidyverse)
  )
```

Printing the table store `store_2` now shows that we used an `.init` statement:

```r
store_2
```

We can shorten the `tbl_store()` statement with some syntax that `pointblank` provides. The `sml_table_high` table-prep is simply a transformation of `tbl_duckdb`, so we can use `{{ tbl_duckdb }}` in place of the repeated statement. Additionally, we can provide a `library()` call to the `.init` argument of `tbl_store()` so that `dplyr` is available (thus allowing us to use `filter(...)` instead of `dplyr::filter(...)`). Here is the revised `tbl_store()` call:

```r
store_2 <-
  tbl_store(
    tbl_duckdb ~
      db_tbl(
        pointblank::small_table,
        dbname = "::memory::",
        dbtype = "duckdb"
      ),
    sml_table_high ~
      {{ tbl_duckdb }} %>%
      filter(f == "high"),
      .init = ~ library(tidyverse)
  )
```

Printing the table store `store_2` now shows that we used an `.init` statement:

```r
store_2
```
Checking again with `tbl_get()` should provide the same tables as before:

```r
tbl_get(tbl = "tbl_duckdb", store = store_2)
```

Using a table store in a data validation workflow:

Define a `tbl_store` object by adding table-prep formulas inside the `tbl_store()` call.

```r
store_3 <- tbl_store(
  small_table_duck ~ db_tbl(
    table = small_table,
    dbname = "",memory:"
    dbtype = "duckdb"
  ),
  ~ db_tbl(
    table = "rna",
    dbname = "pfgmegrnargs",
    dbtype = "postgres",
    host = "hh-pgsql-public.ebi.ac.uk",
  )
)
```
Let's get a summary of what's in the table store \texttt{store_3} through printing:

\begin{verbatim}
store_3
-- The table store_3 table-prep formulas
1 small_table_duck // ~ db_tbl(table = small_table, dbname = \\
":memory:", dbtype = "duckdb")
2 rna // ~db_tbl(table = "rna", dbname = "pfmegrnargs", dbtype = \\
"postgres", host = "hh-pgsql-public.ebi.ac.uk", port = 5432, user = \\
I("reader"), password = I("NWDMCE5xdipIjRrp"))
3 all_revenue // ~ db_tbl(table = file_tbl(file = from_github(file = \\
"sj_all_revenue_large.rds", repo = "rich-iannone/intendo", subdir = \\
"data-large"), dbname = ":memory:", dbtype = "duckdb")
4 sml_table // ~ pointblank::small_table

Once this object is available, you can check that the table of interest is produced to your specification with the \texttt{tbl_get()} function.

\begin{verbatim}
tbl_get(
 tbl = "small_table_duck",
 store = store_3
)
Source: table<small_table> [?? x 8]
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <chr>
1 2016-01-04 11:08:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
\end{verbatim}
\end{verbatim}
Another way to get the same table materialized is by using `$` to get the entry of choice for `tbl_get()`.

```r
store_3$small_table_duck %>% tbl_get()
```

Creating an agent is easy when all table-prep formulas are encapsulated in a `tbl_store` object. Use `$` notation to pass the appropriate procedure for reading a table to the `tbl` argument.

```r
agent_1 <- create_agent(
  tbl = store_3$small_table_duck
)
```

There are other ways to use the table store to assign a target table to an agent, like using the `tbl_source()` function (which extracts the table-prep formula from the table store).

```r
agent_2 <- create_agent(
  tbl = ~ tbl_source(
    tbl = "small_table_duck",
    store = store_3
  )
)
```

Writing a table store to a YAML file:
The table store can be moved to YAML with `yaml_write` and the `tbl_source()` call could then refer to that on-disk table store. Let's do that YAML conversion.

```r
yaml_write(store_3)
```
The above writes the `tbl_store.yml` file (by not providing a filename this default filename is chosen).

It can be convenient to read table-prep formulas from a YAML file that’s a table store. To achieve this, we can modify the `tbl_source()` statement in the `create_agent()` call so that `store` refers to the on-disk YAML file.

```r
agent_3 <-
create_agent(
  tbl = ~ tbl_source(
    tbl = "small_table_duck",
    store = "tbl_store.yml"
  )
)
```

Function ID

1-8

See Also

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `db_tbl()`, `draft_validation()`, `file_tbl()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `validate_rmd()`

tt_string_info

Table Transformer: obtain a summary table for string columns

Description

With any table object, you can produce a summary table that is scoped to string-based columns. The output summary table will have a leading column called `.param.` with labels for each of the three rows, each corresponding to the following pieces of information pertaining to string length:

1. Mean String Length ("length_mean")
2. Minimum String Length ("length_min")
3. Maximum String Length ("length_max")

Only string data from the input table will generate columns in the output table. Column names from the input will be used in the output, preserving order as well.

Usage

```r
tt_string_info(tbl)
```

Arguments

- `tbl` A table object to be used as input for the transformation. This can be a data frame, a tibble, a `tbl_dbi` object, or a `tbl_spark` object.
Value

A tibble object.

Examples

Get string information for the string-based columns in the `game_revenue` dataset that is included in the `pointblank` package.

```r
tt_string_info(tbl = game_revenue)
```

```r
# A tibble: 3 × 7
## .param. player_id session_id item_type item_name acquisition country
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 length_mean 15 24 2.22 7.35 7.97 8.53
## 2 length_min 15 24 2 5 5 5
## 3 length_max 15 24 3 11 14 14
```

Ensure that `player_id` and `session_id` values always have the same fixed numbers of characters (15 and 24, respectively) throughout the table.

```r
tt_string_info(tbl = game_revenue) %>%
  col_vals_equal(
    columns = vars(player_id),
    value = 15
  )
```

```r
# A tibble: 3 × 7
## .param. player_id session_id item_type item_name acquisition country
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 length_mean 15 24 2.22 7.35 7.97 8.53
## 2 length_min 15 24 2 5 5 5
## 3 length_max 15 24 3 11 14 14
```

We see data, and not an error, so both validations were successful!

Let’s use a `tt_string_info()`-transformed table with the `test_col_vals_lte()` to check that the maximum string length in column `f` of the `small_table` dataset is no greater than 4.

```r
tt_string_info(tbl = small_table) %>%
  test_col_vals_lte(
    columns = vars(f),
    value = 4
  ),
```

```r
## [1] TRUE
```
Function ID

12-2

See Also

Other Table Transformers: `get_tt_param()`, `tt_summary_stats()`, `tt_tbl_colnames()`, `tt_tbl_dims()`, `tt_time_shift()`, `tt_time_slice()`

tt_summary_stats
Table Transformer: obtain a summary stats table for numeric columns

Description

With any table object, you can produce a summary table that is scoped to the numeric column values. The output summary table will have a leading column called ".param." with labels for each of the nine rows, each corresponding to the following summary statistics:

1. Minimum ("min")
2. 5th Percentile ("p05")
3. 1st Quartile ("q_1")
4. Median ("med")
5. 3rd Quartile ("q_3")
6. 95th Percentile ("p95")
7. Maximum ("max")
8. Interquartile Range ("iqr")
9. Range ("range")

Only numerical data from the input table will generate columns in the output table. Column names from the input will be used in the output, preserving order as well.

Usage

```
tt_summary_stats(tbl)
```

Arguments

- `tbl`
 A table object to be used as input for the transformation. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object.

Value

A tibble object.
Examples

Get summary statistics for the game_revenue dataset that is included in the pointblank package.

tt_summary_stats(tbl = game_revenue)

```r
## # A tibble: 9 × 3
## # .param. item_revenue session_duration
## <chr> <dbl> <dbl>
## 1 min 0 3.2
## 2 p05 0.02 8.2
## 3 q_1 0.09 18.5
## 4 med 0.38 26.5
## 5 q_3 1.25 33.8
## 6 p95 22.0 39.5
## 7 max 143. 41
## 8 iqr 1.16 15.3
## 9 range 143. 37.8
```

Table transformers work great in conjunction with validation functions. Let’s ensure that the maximum revenue for individual purchases in the game_revenue table is less than $150.

```r
tt_summary_stats(tbl = game_revenue) %>%
  col_vals_lt(
    columns = vars(item_revenue),
    value = 150,
    segments = .param. ~ "max"
  )
```

```r
## # A tibble: 9 × 3
## # .param. item_revenue session_duration
## <chr> <dbl> <dbl>
## 1 min 0 3.2
## 2 p05 0.02 8.2
## 3 q_1 0.09 18.5
## 4 med 0.38 26.5
## 5 q_3 1.25 33.8
## 6 p95 22.0 39.5
## 7 max 143. 41
## 8 iqr 1.16 15.3
## 9 range 143. 37.8
```

We see data, and not an error, so the validation was successful!

Let’s do another: for in-app purchases in the game_revenue table, check that the median revenue is somewhere between $8 and $12.

```r
game_revenue %>%
  dplyr::filter(item_type == "iap") %>%
```

```r
```
We can get more creative with this transformer. Why not use a transformed table in a validation plan? While performing validations of the game_revenue table with an agent we can include the same revenue check as above by using `tt_summary_stats()` in the preconditions argument. This transforms the target table into a summary table for the validation step. The final step of the transformation in preconditions is a `dplyr::filter()` step that isolates the row of the median statistic.

```r
agent <-
create_agent(
  tbl = game_revenue,
  tbl_name = "game_revenue",
  label = "tt_summary_stats() example."
)
) %>%
  rows_complete() %>%
  rows_distinct() %>%
  col_vals_between(
    columns = vars(item_revenue),
    left = 8, right = 12,
    preconditions = ~ . %>%
      dplyr::filter(item_type == "iap") %>%
      tt_summary_stats() %>%
      dplyr::filter(.param. == "med")
  ) %>%
  interrogate()
```
Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report. Take note of the final step (STEP 3) as it shows the entry that corresponds to the `col_vals_between()` validation step that uses the summary stats table as its target.

Function ID

12-1

See Also

Other Table Transformers: `get_tt_param()`, `tt_string_info()`, `tt_tbl_colnames()`, `tt_tbl_dims()`, `tt_time_shift()`, `tt_time_slice()`

tt_tbl_colnames

Table Transformer: get a table’s column names

Description

With any table object, you can produce a summary table that contains table’s column names. The output summary table will have two columns and as many rows as there are columns in the input table. The first column is the ".param." column, which is an integer-based column containing the indices of the columns from the input table. The second column, "value", contains the column names from the input table.

Usage

```r
tt_tbl_colnames(tbl)
```

Arguments

- `tbl` A table object to be used as input for the transformation. This can be a data frame, a tibble, a `tbl_dbi` object, or a `tbl_spark` object.

Value

A tibble object.

Examples

Get the column names of the `game_revenue` dataset that is included in the `pointblank` package.

```r
tt_tbl_colnames(tbl = game_revenue)
```

```r
## # A tibble: 11 × 2
##   .param. value
##       <int> <chr>
## 1       1 player_id
## 2       2 session_id
```
3 session_start
4 time
5 item_type
6 item_name
7 item_revenue
8 session_duration
9 start_day
10 acquisition
11 country

This output table is useful when you want to validate the column names of the table. Here, we check that game_revenue table, included in the pointblank package, has certain column names present with test_col_vals_make_subset().

```r
tt_tbl_colnames(tbl = game_revenue) %>%
  test_col_vals_make_subset(
    columns = vars(value),
    set = c("acquisition", "country")
  )
```

[1] TRUE

We can check to see whether the column names in the specifications table are all less than 15 characters in length. For this, we would use the combination of tt_tbl_colnames(), then tt_string_info(), and finally test_col_vals_lt() to perform the test.

```r
specifications %>%
  tt_tbl_colnames() %>%
  tt_string_info() %>%
  test_col_vals_lt(
    columns = vars(value),
    value = 15
  )
```

[1] FALSE

This returned FALSE and this is because the column name credit_card_numbers is 16 characters long.

Function ID

12-4

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_summary_stats(), tt_tbl_dims(), tt_time_shift(), tt_time_slice()
Table Transformer: get the dimensions of a table

Description
With any table object, you can produce a summary table that contains nothing more than the table's dimensions: the number of rows and the number of columns. The output summary table will have two columns and two rows. The first is the ".param." column with the labels "rows" and "columns"; the second column, "value", contains the row and column counts.

Usage
```
tt_tbl_dims(tbl)
```

Arguments
- `tbl` A table object to be used as input for the transformation. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object.

Value
A tibble object.

Examples
Get the dimensions of the `game_revenue` dataset that is included in the `pointblank` package.

```
tt_tbl_dims(tbl = game_revenue)
```

```
# A tibble: 2 x 2
#  .param. value
#  <chr> <int>
# 1 rows  2000
# 2 columns 11
```

This output table is useful when a table validation depends on its dimensions. Here, we check that `game_revenue` has at least 1500 rows.

```
tt_tbl_dims(tbl = game_revenue) %>%
  dplyr::filter(.param. == "rows") %>%
  test_col_vals_gt(
    columns = vars(value),
    value = 1500
  )
```

```
[1] TRUE
```
We can check `small_table` to ensure that number of columns is less than 10.

```r
tt_tbl_dims(tbl = small_table) %>%
dplyr::filter(.param. == "columns") %>%
test_col_vals_lt(
  columns = vars(value),
  value = 10
)
```

[1] TRUE

Function ID

12-3

See Also

Other Table Transformers: `get_tt_param()`, `tt_string_info()`, `tt_summary_stats()`, `tt_tbl_colnames()`, `tt_time_shift()`, `tt_time_slice()`

tt_time_shift

Table Transformer: shift the times of a table

Description

With any table object containing date or date-time columns, these values can be precisely shifted with `tt_time_shift()` and specification of the time shift. We can either provide a string with the time shift components and the shift direction (like "-4y 10d") or a `difftime` object (which can be created via `lubridate` expressions or by using the `base::difftime()` function).

Usage

```r
> tt_time_shift(tbl, time_shift = "0y 0m 0d 0H 0M 0S")
```

Arguments

- `tbl` A table object to be used as input for the transformation. This can be a data frame, a tibble, a `tbl_dbi` object, or a `tbl_spark` object.
- `time_shift` Either a character-based representation that specifies the time difference by which all time values in time-based columns will be shifted, or a `difftime` object. The character string is constructed in the format "0y 0m 0d 0H 0M 0S" and individual time components can be omitted (i.e., "1y 5d" is a valid specification of shifting time values ahead one year and five days). Adding a "-" at the beginning of the string (e.g., "-2y") will shift time values back.
Details

The `time_shift` specification cannot have a higher time granularity than the least granular time column in the input table. Put in simpler terms, if there are any date-based based columns (or just a single date-based column) then the time shifting can only be in terms of years, months, and days. Using a `time_shift` specification of "20d 6H" in the presence of any dates will result in a truncation to "20d". Similarly, a `difftime` object will be altered in the same circumstances, however, the object will resolved to an exact number of days through rounding.

Value

A data frame, a tibble, a tbl_dbi object, or a tbl_spark object depending on what was provided as tbl.

Examples

Let's use the `game_revenue` dataset, included in the `pointblank` package, as the input table for the first demo. It has entries in the first 21 days of 2015 and we'll move all of the date and date-time values to the beginning of 2021 with the `tt_time_shift()` function and the "6y" `time_shift` specification.

```r
tt_time_shift(
  tbl = game_revenue,
  time_shift = "6y"
)
```

A tibble: 2,000 × 11

player_id session_id session_start time item_type
<chr> <chr> <dttm> <dttm> <chr>
1 ECPANOIXLZHF896 ECPANOIXLZ. . . 2021-01-01 01:31:03 2021-01-01 01:31:27 iap
2 ECPANOIXLZHF896 ECPANOIXLZ. . . 2021-01-01 01:31:03 2021-01-01 01:36:57 iap
3 ECPANOIXLZHF896 ECPANOIXLZ. . . 2021-01-01 01:31:03 2021-01-01 01:37:45 iap
4 ECPANOIXLZHF896 ECPANOIXLZ. . . 2021-01-01 01:31:03 2021-01-01 01:42:33 ad
5 ECPANOIXLZHF896 ECPANOIXLZ. . . 2021-01-01 11:50:02 2021-01-01 11:55:20 ad
6 ECPANOIXLZHF896 ECPANOIXLZ. . . 2021-01-01 11:50:02 2021-01-01 12:08:56 ad
7 ECPANOIXLZHF896 ECPANOIXLZ. . . 2021-01-01 11:50:02 2021-01-01 12:14:08 ad
8 ECPANOIXLZHF896 ECPANOIXLZ. . . 2021-01-01 11:50:02 2021-01-01 12:21:44 ad
9 ECPANOIXLZHF896 ECPANOIXLZ. . . 2021-01-01 11:50:02 2021-01-01 12:24:20 ad
#10 FXWUORGYNAE271 FXWUORGYNJA. . . 2021-01-01 15:17:18 2021-01-01 15:19:36 ad
... with 1,990 more rows, and 6 more variables: item_name <chr>,

item_revenue <dbl>, session_duration <dbl>, start_day <date>,

acquisition <chr>, country <chr>
```

Keeping only the date, time and a-f columns of `small_table`, also included in the package, shift the times back 2 days and 12 hours with the "-2d 12H" specification.

```r
small_table %>%
dplyr::select(-date) %>%
tt_time_shift("-2d 12H")
```
### tt_time_slice

#### Description

With any table object containing date, date-time columns, or a mixture thereof, any one of those columns can be used to effectively slice the data table in two with a slice_point: and you get to choose which of those slices you want to keep. The slice point can be defined in several ways. One method involves using a decimal value between 0 and 1, which defines the slice point as the time instant somewhere between the earliest time value (at 0) and the latest time value (at 1). Another way of defining the slice point is by supplying a time value, and the following input types are accepted: (1) an ISO 8601 formatted time string (as a date or a date-time), (2) a POSIXct time, or (3) a Date object.

#### Usage

```r
tt_time_slice(
 tbl,
 time_column = NULL,
 slice_point = 0,
 keep = c("left", "right"),
 arrange = FALSE
)
```
Arguments

tbl A table object to be used as input for the transformation. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object.
time_column The time-based column that will be used as a basis for the slicing. If no time column is provided then the first one found will be used.
slice_point The location on the time_column where the slicing will occur. This can either be a decimal value from 0 to 1, an ISO 8601 formatted time string (as a date or a date-time), a POSIXct time, or a Date object.
keep Which slice should be kept? The "left" side (the default) contains data rows that are earlier than the slice_point and the "right" side will have rows that are later.
arrange Should the slice be arranged by the time_column? This may be useful if the input tbl isn’t ordered by the time_column. By default, this is FALSE and the original ordering is retained.

Details

There is the option to arrange the table by the date or date-time values in the time_column. This ordering is always done in an ascending manner. Any NA/NULL values in the time_column will result in the corresponding rows can being removed (no matter which slice is retained).

Value

A data frame, a tibble, a tbl_dbi object, or a tbl_spark object depending on what was provided as tbl.

Examples

Let’s use the game_revenue dataset, included in the pointblank package, as the input table for the first demo. It has entries in the first 21 days of 2015 and we’ll elect to get all of the records where the time values are strictly for the first 15 days of 2015. The keep argument has a default of "left" so all rows where the time column is less than "2015-01-16 00:00:00" will be kept.

```r
tt_time_slice(
 tbl = game_revenue,
 time_column = "time",
 slice_point = "2015-01-16"
)
```

## A tibble: 1,208 × 11
## #  player_id session_id session_start time item_type
## # <chr> <chr> <dttm> <dttm> <chr>
## 1 ECPANOIXLZF896 ECPANOIXLZ... 2015-01-01 01:31:03 2015-01-01 01:31:27 iap
## 2 ECPANOIXLZF896 ECPANOIXLZ... 2015-01-01 01:31:03 2015-01-01 01:36:57 iap
## 3 ECPANOIXLZF896 ECPANOIXLZ... 2015-01-01 01:31:03 2015-01-01 01:37:45 iap
## 4 ECPANOIXLZF896 ECPANOIXLZ... 2015-01-01 01:31:03 2015-01-01 01:42:33 ad
Omit the first 25% of records from `small_table`, also included in the package, with a fractional slice point of 0.25 on the basis of a timeline that begins at 2016-01-04 11:00:00 and ends at 2016-01-30 11:23:00.

```r
small_table %>%
tt_time_slice(
 slice_point = 0.25,
 keep = "right"
)
```

## A tibble: 8 × 8

<table>
<thead>
<tr>
<th>date_time</th>
<th>date</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-01-11 06:15:00</td>
<td>2016-01-11</td>
<td>4</td>
<td>2-dhe-923</td>
<td>4</td>
<td>3291. TRUE</td>
<td>mid</td>
<td></td>
</tr>
<tr>
<td>2016-01-15 18:46:00</td>
<td>2016-01-15</td>
<td>7</td>
<td>1-knw-093</td>
<td>3</td>
<td>843. TRUE</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>2016-01-17 11:27:00</td>
<td>2016-01-17</td>
<td>4</td>
<td>5-boe-639</td>
<td>2</td>
<td>1036. FALSE</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>2016-01-20 04:30:00</td>
<td>2016-01-20</td>
<td>3</td>
<td>5-bce-642</td>
<td>9</td>
<td>838. FALSE</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>2016-01-20 04:30:00</td>
<td>2016-01-20</td>
<td>3</td>
<td>5-bce-642</td>
<td>9</td>
<td>838. FALSE</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>2016-01-26 20:07:00</td>
<td>2016-01-26</td>
<td>4</td>
<td>2-dmx-010</td>
<td>7</td>
<td>834. TRUE</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>2016-01-28 02:51:00</td>
<td>2016-01-28</td>
<td>2</td>
<td>7-dmx-010</td>
<td>8</td>
<td>108. FALSE</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>2016-01-30 11:23:00</td>
<td>2016-01-30</td>
<td>1</td>
<td>3-dka-303</td>
<td>NA</td>
<td>2230. TRUE</td>
<td>high</td>
<td></td>
</tr>
</tbody>
</table>

**Function ID**

12-6

**See Also**

Other Table Transformers: `get_tt_param()`, `tt_string_info()`, `tt_summary_stats()`, `tt_tbl_colnames()`, `tt_tbl_dims()`, `tt_time_shift()`
**Description**

The validate_rmd() function sets up a framework for validation testing within specialized validation code chunks inside an R Markdown document. To enable this functionality, validate_rmd() should be called early within an R Markdown document code chunk (preferably in the setup chunk) to signal that validation should occur within specific code chunks. The validation code chunks require the validate = TRUE option to be set. Using pointblank validation functions on data in these marked code chunks will flag overall failure if the stop threshold is exceeded anywhere. All errors are reported in the validation code chunk after rendering the document to HTML, where a centered status button either indicates success or the number of overall failures. Clicking the button reveals the otherwise hidden validation statements and their error messages (if any).

**Usage**

```r
validate_rmd(summary = TRUE, log_to_file = NULL)
```

**Arguments**

- `summary` If TRUE (the default), then there will be a leading summary of all validations in the rendered R Markdown document. With FALSE, this element is not shown.
- `log_to_file` An option to log errors to a text file. By default, no logging is done but TRUE will write log entries to "validation_errors.log" in the working directory. To both enable logging and to specify a file name, include a path to a log file of the desired name.

**Function ID**

1-4

**See Also**

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(), draft_validation(), file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store()

---

**write_testthat_file**  
*Transform a pointblank agent to a testthat test file*

**Description**

With a pointblank agent, we can write a testthat test file and opt to place it in the testthat/tests if it is available in the project path (we can specify an alternate path as well). This works by transforming the validation steps to a series of expect_*() calls inside individual testthat::test_that() statements.

A major requirement for using write_testthat_file() on an agent is the presence of an expression that can retrieve the target table. Typically, we might supply a table-prep formula, which is a formula that can be invoked to obtain the target table (e.g., tbl = ~ pointblank::small_table). This user-supplied statement will be used by write_testthat_file() to generate a table-loading
write_testthat_file

statement at the top of the new testthat test file so that the target table is available for each of the testthat::test_that() statements that follow. If an agent was not created using a table-prep formula set for the tbl, it can be modified via the set_tbl() function.

Thresholds will be obtained from those applied for the stop state. This can be set up for a pointblank agent by passing an action_levels object to the actions argument of create_agent() or the same argument of any included validation function. If stop thresholds are not available, then a threshold value of 1 will be used for each generated expect_() statement in the resulting testthat test file.

There is no requirement that the agent first undergo interrogation with interrogate(). However, it may be useful as a dry run to interactively perform an interrogation on the target data before generating the testthat test file.

Usage

write_testthat_file(
  agent,
  name = NULL,
  path = NULL,
  overwrite = FALSE,
  skips = NULL,
  quiet = FALSE
)

Arguments

agent An agent object of class ptblank_agent.
name An optional name for the testthat test file. This should be a name without extension and without the leading “test-” text. If nothing is supplied, the name will be derived from the tbl_name in the agent. If that’s not present, a generic name will be used.
path A path can be specified here if there shouldn’t be an attempt to place the file in testthat/tests.
overwrite Should a testthat file of the same name be overwritten? By default, this is FALSE.
skips This is an optional vector of test-skipping keywords modeled after the testthat skip_on_() functions. The following keywords can be used to include skip_on_() statements: "cran" (testthat::skip_on_cran()), "travis" (testthat::skip_on_travis()), "appveyor" (testthat::skip_on_appveyor()), "ci" (testthat::skip_on_ci()), "covr" (testthat::skip_on_covr()), "bioc" (testthat::skip_on_bioc()). There are keywords for skipping tests on certain operating systems and all of them will insert a specific testthat::skip_on_os() call. These are "windows" (skip_on_os("windows")), "mac" (skip_on_os("mac")), "linux" (skip_on_os("linux")), and "solaris" (skip_on_os("solaris")). These calls will be placed at the top of the generated testthat test file.
quiet Should the function not inform when the file is written? By default this is FALSE.
Details

Tests for inactive validation steps will be skipped with a clear message indicating that the reason for skipping was due to the test not being active. Any inactive validation steps can be forced into an active state by using the `activate_steps()` on an agent (the opposite is possible with the `deactivate_steps()` function).

The `testthat` package comes with a series of `skip_on_*()` functions which conveniently cause the test file to be skipped entirely if certain conditions are met. We can quickly set any number of these at the top of the `testthat` test file by supplying keywords as a vector to the `skips` option of `write_testthat_file()`. For instance, setting `skips = c("cran", "windows")` will add the `testthat` `skip_on_cran()` and `skip_on_os("windows")` statements, meaning that the generated test file won’t run on a CRAN system or if the system OS is Windows.

Here is an example of `testthat` test file output ("test-small_table.R"):

```r
Generated by pointblank
tbl <- small_table
test_that("column 'date_time' exists", {
 expect_col_exists(
 tbl,
 columns = vars(date_time),
 threshold = 1
)
})

test_that("values in 'c' should be <= '5'", {
 expect_col_vals_lte(
 tbl,
 columns = vars(c),
 value = 5,
 threshold = 0.25
)
})
```

This was generated by the following set of R statements:

```r
library(pointblank)
agent <-
 create_agent(
 tbl = ~ small_table,
 actions = action_levels(stop_at = 0.25)
) %>%
 col_exists(vars(date_time)) %>%
```

write_testthat_file
write_testthat_file

```
col_vals_lte(vars(c), value = 5)
write_testthat_file(
 agent = agent,
 name = "small_table",
 path = "."
)
```

**Value**

Invisibly returns TRUE if the testthat file has been written.

**Examples**

**Creating a testthat file from an agent:**

Let’s walk through a data quality analysis of an extremely small table. It’s actually called small_table and we can find it as a dataset in this package.

```r
small_table
```

<table>
<thead>
<tr>
<th>date_time</th>
<th>date</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-01-04</td>
<td>2016-01-04</td>
<td>2</td>
<td>1-bcd-345</td>
<td>3</td>
<td>3423.</td>
<td>TRUE</td>
<td>high</td>
</tr>
<tr>
<td>2016-01-04</td>
<td>2016-01-04</td>
<td>3</td>
<td>5-ehg-163</td>
<td>8</td>
<td>10000.</td>
<td>TRUE</td>
<td>low</td>
</tr>
<tr>
<td>2016-01-05</td>
<td>2016-01-05</td>
<td>6</td>
<td>8-kdg-938</td>
<td>3</td>
<td>2343.</td>
<td>TRUE</td>
<td>high</td>
</tr>
<tr>
<td>2016-01-06</td>
<td>2016-01-06</td>
<td>2</td>
<td>5-jdo-903</td>
<td>NA</td>
<td>3892.</td>
<td>FALSE</td>
<td>mid</td>
</tr>
<tr>
<td>2016-01-09</td>
<td>2016-01-09</td>
<td>8</td>
<td>3-ldm-038</td>
<td>7</td>
<td>284.</td>
<td>TRUE</td>
<td>low</td>
</tr>
<tr>
<td>2016-01-11</td>
<td>2016-01-11</td>
<td>4</td>
<td>2-dhe-923</td>
<td>4</td>
<td>3291.</td>
<td>TRUE</td>
<td>mid</td>
</tr>
<tr>
<td>2016-01-15</td>
<td>2016-01-15</td>
<td>7</td>
<td>1-knw-093</td>
<td>3</td>
<td>843.</td>
<td>TRUE</td>
<td>high</td>
</tr>
<tr>
<td>2016-01-17</td>
<td>2016-01-17</td>
<td>4</td>
<td>5-boe-639</td>
<td>2</td>
<td>1036.</td>
<td>FALSE</td>
<td>low</td>
</tr>
<tr>
<td>2016-01-20</td>
<td>2016-01-20</td>
<td>3</td>
<td>5-bce-642</td>
<td>9</td>
<td>838.</td>
<td>FALSE</td>
<td>high</td>
</tr>
<tr>
<td>2016-01-20</td>
<td>2016-01-20</td>
<td>3</td>
<td>5-bce-642</td>
<td>9</td>
<td>838.</td>
<td>FALSE</td>
<td>high</td>
</tr>
<tr>
<td>2016-01-26</td>
<td>2016-01-26</td>
<td>4</td>
<td>2-dmx-010</td>
<td>7</td>
<td>834.</td>
<td>TRUE</td>
<td>low</td>
</tr>
<tr>
<td>2016-01-28</td>
<td>2016-01-28</td>
<td>2</td>
<td>7-dmx-010</td>
<td>8</td>
<td>108.</td>
<td>FALSE</td>
<td>low</td>
</tr>
<tr>
<td>2016-01-30</td>
<td>2016-01-30</td>
<td>1</td>
<td>3-dka-303</td>
<td>NA</td>
<td>2230.</td>
<td>TRUE</td>
<td>high</td>
</tr>
</tbody>
</table>

Creating an action_levels object is a common workflow step when creating a pointblank agent. We designate failure thresholds to the warn, stop, and notify states using action_levels().

```r
al <-
 action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
)
```

A pointblank agent object is now created and the al object is provided to the agent. The static thresholds provided by the al object make reports a bit more useful after interrogation.
agent <-
create_agent(
  tbl = ~ small_table,
  label = "An example.",
  actions = al
)
%>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(
  vars(b),
  regex = "[0-9]-[a-z][0-9]{3}"%
) %>%
col_vals_gt(vars(d), value = 100) %>%
col_vals_lte(vars(c), value = 5) %>%
interrogate()

This agent and all of the checks can be transformed into a testthat file with `write_testthat_file()`. The stop thresholds will be ported over to the `expect_*()` functions in the new file.

```r
write_testthat_file(
 agent = agent,
 name = "small_table",
 path = "."
)
```

The above code will generate a file with the name "test-small_table.R". The path was specified with "." so the file will be placed in the working directory. If you’d like to easily add this new file to the tests/testthat directory then `path = NULL` (the default) will makes this possible (this is useful during package development).

What’s in the new file? This:

```r
Generated by pointblank
tbl <- small_table
test_that("column 'date' exists", {
 expect_col_exists(
 tbl,
 columns = vars(date),
 threshold = 1
)
})
test_that("column 'date_time' exists", {
 expect_col_exists(
 tbl,
 columns = vars(date_time),
 threshold = 1
)
})
```
test_that("values in `b` should match the regular expression: `[0-9]-[a-z]{3}-[0-9]{3}\", { 
  expect_col_vals_regex(
    tbl,
    columns = vars(b),
    regex = "[0-9]-[a-z]{3}-[0-9]{3}\",
    threshold = 0.25
  )
})

test_that("values in `d` should be > `100\", { 
  expect_col_vals_gt(
    tbl,
    columns = vars(d),
    value = 100,
    threshold = 0.25
  )
})

test_that("values in `c` should be <= `5\", { 
  expect_col_vals_lte(
    tbl,
    columns = vars(c),
    value = 5,
    threshold = 0.25
  )
})

Using an agent stored on disk as a YAML file:

An agent on disk as a YAML file can be made into a testthat file. The "agent-small_table.yml" file is available in the pointblank package and the path can be obtained with system.file().

```
 system.file(
 "yaml", "agent-small_table.yml",
 package = "pointblank"
)
```

Writing the testthat file into the working directory is much the same as before but we're reading the agent from disk this time. It's a read and write combo, really. Again, we are choosing to write the file to the working directory by using path = ".".

```
 write_testthat_file(
 agent = yaml_read_agent(yml_file),
 name = "from_agent_yaml",
)
```
x_read_disk

Function ID
8-5

See Also
Other Post-interrogation: `all_passed()`, `get_agent_x_list()`, `get_data_extracts()`, `get_sundered_data()`

---

Description
An agent, informant, multiagent, or table scan that has been written to disk (with `x_write_disk()`) can be read back into memory with the `x_read_disk()` function. For an agent or an informant object that has been generated in this way, it may not have a data table associated with it (depending on whether the keep_tbl option was `TRUE` or `FALSE` when writing to disk) but it should still be able to produce reporting (by printing the agent or informant to the console or using `get_agent_report()`/`get_informant_report()`). An agent will return an x-list with `get_agent_x_list()` and yield any available data extracts with `get_data_extracts()`. Furthermore, all of an agent’s validation steps will still be present (along with results from the last interrogation).

Usage
```
x_read_disk(filename, path = NULL, quiet = FALSE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The name of a file that was previously written by <code>x_write_disk()</code>.</td>
</tr>
<tr>
<td>path</td>
<td>An optional path to the file (combined with <code>filename</code>).</td>
</tr>
<tr>
<td>quiet</td>
<td>Should the function not inform when the file is read? By default this is <code>FALSE</code>.</td>
</tr>
</tbody>
</table>

Details

Should a written-to-disk agent or informant possess a table-prep formula or a specific in-memory table we could use the `interrogate()` or `incorporate()` function again. For a data quality reporting workflow, it is useful to `interrogate()` target tables that evolve over time. While the same validation steps will be used, more can be added before calling `interrogate()`. For an information management workflow with an informant object, using `incorporate()` will update aspects of the reporting such as table dimensions, and info snippets/text will be regenerated.

Value

Either a `ptblank_agent`, `ptblank_informant`, or a `ptblank_tbl_scan` object.
Examples

A: Reading an agent from disk:
The process of developing an agent and writing it to disk with the `x_write_disk()` function is explained in that function’s documentation. Suppose we have such a written file that’s named "agent-small_table.rds", we could read that to a new agent object with `x_read_disk()`.

```r
agent <- x_read_disk("agent-small_table.rds")
```

B: Reading an informant from disk:
If there is an informant written to disk via `x_write_disk()` and it’s named "informant-small_table.rds". We could read that to a new informant object with `x_read_disk()`.

```r
informant <- x_read_disk("informant-small_table.rds")
```

C: Reading a multiagent from disk:
The process of creating a multiagent and writing it to disk with the `x_write_disk()` function is shown in that function’s documentation. Should we have such a written file called "multiagent-small_table.rds", we could read that to a new multiagent object with `x_read_disk()`.

```r
multiagent <- x_read_disk("multiagent-small_table.rds")
```

D: Reading a table scan from disk:
If there is a table scan written to disk via `x_write_disk()` and it’s named "tbl_scan-storms.rds", we could read it back into R with `x_read_disk()`.

```r
tbl_scan <- x_read_disk("tbl_scan-storms.rds")
```

Function ID

9-2

See Also

Other Object Ops: `activate_steps()`, `deactivate_steps()`, `export_report()`, `remove_steps()`, `set_tbl()`, `x_write_disk()`

---

Writing an agent, informant, multiagent, or table scan to disk with `x_write_disk()` can be useful for keeping data validation intel or table information close at hand for later retrieval (with `x_read_disk()`). By default, any data table that the agent or informant may have held before being committed to disk will be expunged (not applicable to any table scan since they never hold a table object). This behavior can be changed by setting `keep_tbl` to TRUE but this only works in the case where the table is not of the tbl_dbi or the tbl_spark class.
Usage

```r
x_write_disk(
 x,
 filename,
 path = NULL,
 keep_tbl = FALSE,
 keep_extracts = FALSE,
 quiet = FALSE
)
```

Arguments

- **x**: An *agent* object of class `ptblank_agent`, an *informant* of class `ptblank_informant`, or an table scan of class `ptblank_tbl_scan`.
- **filename**: The filename to create on disk for the *agent*, *informant*, or table scan.
- **path**: An optional path to which the file should be saved (this is automatically combined with `filename`).
- **keep_tbl**: An option to keep a data table that is associated with the *agent* or *informant* (which is the case when the *agent*, for example, is created using `create_agent(tbl = <data table, ...)`). The default is `FALSE` where the data table is removed before writing to disk. For database tables of the class `tbl_dbi` and for Spark DataFrames (`tbl_spark`) the table is always removed (even if `keep_tbl` is set to `TRUE`).
- **keep_extracts**: An option to keep any collected extract data for failing rows. Only applies to *agent* objects. By default, this is `FALSE` (i.e., extract data is removed).
- **quiet**: Should the function *not* inform when the file is written? By default this is `FALSE`.

Details

It is recommended to set up a table-prep formula so that the *agent* and *informant* can access refreshed data after being read from disk through `x_read_disk()`. This can be done initially with the `tbl` argument of `create_agent()`/`create_informant()` by passing in a table-prep formula or a function that can obtain the target table when invoked. Alternatively, we can use the `set_tbl()` with a similarly crafted `tbl` expression to ensure that an *agent* or *informant* can retrieve a table at a later time.

Value

Invisibly returns `TRUE` if the file has been written.

Examples

**A: Writing an agent to disk:**

Let’s go through the process of (1) developing an agent with a validation plan (to be used for the data quality analysis of the `small_table` dataset), (2) interrogating the agent with the `interrogate()` function, and (3) writing the agent and all its intel to a file.

Creating an `action_levels` object is a common workflow step when creating a pointblank agent.

We designate failure thresholds to the `warn`, `stop`, and `notify` states using `action_levels()`.
Now, let's create a pointblank agent object and give it the `al` object (which serves as a default for all validation steps which can be overridden). The data will be referenced in the `tbl` argument with a leading `-`.

```r
agent <-
 create_agent(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "x_write_disk()",
 actions = al
)
```

Then, as with any agent object, we can add steps to the validation plan by using as many validation functions as we want. After that, use `interrogate()`.

```r
agent <-
 agent %>%
 col_exists(columns = vars(date, date_time)) %>%
 col_vals_regex(
 columns = vars(b),
 regex = "^[0-9]-[a-z]{3}-[0-9]{2}$"
) %>%
 rows_distinct() %>%
 col_vals_gt(columns = vars(d), value = 100) %>%
 col_vals_lte(columns = vars(c), value = 5)
 %>%
 interrogate()
```

The agent can be written to a file with the `x_write_disk()` function.

```r
x_write_disk(
 agent,
 filename = "agent-small_table.rds"
)
```

We can read the file back as an agent with the `x_read_disk()` function and we'll get all of the intel along with the restored agent.

If you're consistently writing agent reports when periodically checking data, we could make use of the `affix_date()` or `affix_datetime()` depending on the granularity you need. Here's an example that writes the file with the format: "<filename>-YYYY-mm-dd_HH-MM-SS.rds".

```r
x_write_disk(
 agent,
 filename = affix_datetime("agent-small_table.rds"

)}
```
B: Writing an informant to disk:
Let’s go through the process of (1) creating an informant object that minimally describes the `small_table` dataset, (2) ensuring that data is captured from the target table using the `incorporate()` function, and (3) writing the informant to a file.

Create a pointblank informant object with `create_informant()` and the `small_table` dataset. Use `incorporate()` so that info snippets are integrated into the text.

```r
informant <-
 create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "\`x_write_disk()" %>%
 info_snippet(
 snippet_name = "high_a",
 fn = snip_highest(column = "a") %>%
 info_snippet(
 snippet_name = "low_a",
 fn = snip_lowest(column = "a") %>%
 info_columns(
 columns = vars(a),
 info = "From \{low_a\} to \{high_a\}."
) %>%
 info_columns(
 columns = starts_with("date"),
 info = "Time-based values."
) %>%
 info_columns(
 columns = "date",
 info = "The date part of \`date_time`."
) %>%
 incorporate()
)
```

The informant can be written to a file with `x_write_disk()`. Let’s do this with `affix_date()` so that the filename has a datestamp.

```r
x_write_disk(
 informant,
 filename = affix_date(
 "informant-small_table.rds"
)
)
```

We can read the file back into a new informant object (in the same state as when it was saved) by using `x_read_disk()`.

C: Writing a multiagent to disk:
Let’s create one more pointblank agent object, provide it with some validation steps, and `interrogate()`.
agent_b <-
create_agent(
  tbl = ~ small_table,
  tbl_name = "small_table",
  label = "'x_write_disk()'",
  actions = al
) %>%
col_vals_gt(
  columns = vars(b),
  value = vars(g),
  na_pass = TRUE,
  label = "b > g"
) %>%
col_is_character(
  columns = vars(b, f),
  label = "Verifying character-type columns"
) %>%
interrogate()

Now we can combine the earlier agent object with the newer agent_b to create a multiagent.

multiagent <- create_multiagent(agent, agent_b)

The multiagent can be written to a file with the x_write_disk() function.

x_write_disk(
  multiagent,
  filename = "multiagent-small_table.rds"
)

We can read the file back as a multiagent with the x_read_disk() function and we’ll get all of
the constituent agents and their associated intel back as well.

D: Writing a table scan to disk:
We can get a report that describes all of the data in the storms dataset.

tbl_scan <- scan_data(tbl = dplyr::storms)

The table scan object can be written to a file with x_write_disk().

x_write_disk(
  tbl_scan,
  filename = "tbl_scan-storms.rds"
)

Function ID
9-1

See Also
Other Object Ops: activate_steps(), deactivate_steps(), export_report(), remove_steps(),
set_tbl(), x_read_disk()
yaml_agent_interrogate

Get an agent from pointblank YAML and interrogate()

Description

The `yaml_agent_interrogate()` function operates much like the `yaml_read_agent()` function (reading a pointblank YAML file and generating an agent with a validation plan in place). The key difference is that this function takes things a step further and interrogates the target table (defined by table-prep formula that is required in the YAML file). The additional auto-invocation of `interrogate()` uses the default options of that function. As with `yaml_read_agent()` the agent is returned except, this time, it has intel from the interrogation.

Usage

```
yaml_agent_interrogate(filename, path = NULL)
```

Arguments

- `filename`: The name of the YAML file that contains fields related to an agent.
- `path`: An optional path to the YAML file (combined with `filename`).

Value

A pointblank_agent object.

Examples

There’s a YAML file available in the `pointblank` package that’s also called ”agent-small_table.yml”. The path for it can be accessed through `system.file()`:

```
yml_file_path <-
system.file(
 "yaml", "agent-small_table.yml",
 package = "pointblank"
)
```

The YAML file can be read as an agent with a pre-existing validation plan by using the `yaml_read_agent()` function.

```
agent <- yaml_read_agent(filename = yml_file_path)
```

This particular agent is using `~ tbl_source("small_table", "tbl_store.yml")` to source the table-prep from a YAML file that holds a table store (can be seen using `yaml_agent_string(agent = agent)`). Let’s put that file in the working directory (the `pointblank` package has the corresponding YAML file):
As can be seen from the validation report, no interrogation was yet performed. Saving an agent to YAML will remove any traces of interrogation data and serve as a plan for a new interrogation on the same target table. We can either follow this up with with `interrogate()` and get an agent with intel, or, we can interrogate directly from the YAML file with `yaml_agent_interrogate()`:

```r
agent <- yaml_agent_interrogate(filename = yml_file_path)

agent
```

**Function ID**

11-4

**See Also**

Other pointblank YAML: `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_exec()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

---

### `yaml_agent_show_exprs`  Display validation expressions using pointblank YAML

**Description**

The `yaml_agent_show_exprs()` function follows the specifications of a `pointblank` YAML file to generate and show the `pointblank` expressions for generating the described validation plan. The expressions are shown in the console, providing an opportunity to copy the statements and extend as needed. A `pointblank` YAML file can itself be generated by using the `yaml_write()` function with a pre-existing `agent`, or, it can be carefully written by hand.

**Usage**

```r
yaml_agent_show_exprs(filename, path = NULL)
```

**Arguments**

- `filename`  The name of the YAML file that contains fields related to an `agent`.
- `path`  An optional path to the YAML file (combined with `filename`).
Examples

Let’s create a validation plan for the data quality analysis of the small_table dataset. We need an agent and its table-prep formula enables retrieval of the target table.

```r
agent <-
create_agent(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "A simple example with the \texttt{small_table}.",
 actions = action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
)
) %>%
col_exists(columns = vars(date, date_time)) %>%
col_vals_regex(
 columns = vars(b),
 regex = "\[0-9\]-[a-z]\{3\}-[0-9]\{3\}"
) %>%
rows_distinct() %>%
col_vals_gt(columns = vars(d), value = 100) %>%
col_vals_lte(columns = vars(c), value = 5)
```

The agent can be written to a pointblank YAML file with `yaml_write()`.

```r
yaml_write(
 agent = agent,
 filename = "agent-small_table.yml"
)
```

At a later time, the YAML file can be read into a new agent with the `yaml_read_agent()` function.

```r
agent <- yaml_read_agent(filename = "agent-small_table.yml")
```

agent

To get a sense of which expressions are being used to generate the new agent, we can use `yaml_agent_show_exprs()`.

```r
yaml_agent_show_exprs(filename = "agent-small_table.yml")
```

```r
create_agent(
 tbl = ~small_table,
 actions = action_levels(
 warn_at = 0.1,
 stop_at = 0.25,
 notify_at = 0.35
)
) %>%
col_exists(columns = vars(date, date_time)) %>%
col_vals_regex(
 columns = vars(b),
 regex = "\[0-9\]-[a-z]\{3\}-[0-9]\{3\}"
) %>%
rows_distinct() %>%
col_vals_gt(columns = vars(d), value = 100) %>%
col_vals_lte(columns = vars(c), value = 5)
```
Function ID

11-6

See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_string()`, `yaml_exec()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

---

**yaml_agent_string**

*Display pointblank YAML using an agent or a YAML file*

**Description**

With **pointblank YAML**, we can serialize an agent’s validation plan (with `yaml_write()`), read it back later with a new agent (with `yaml_read_agent()`), or perform an interrogation on the target data table directly with the YAML file (with `yaml_agent_interrogate()`). The `yaml_agent_string()` function allows us to inspect the YAML generated by `yaml_write()` in the console, giving us a look at the YAML without needing to open the file directly. Alternatively, we can provide an `agent` to the `yaml_agent_string()` and view the YAML representation of the validation plan without needing to write the YAML to disk beforehand.

**Usage**

```r
yaml_agent_string(agent = NULL, filename = NULL, path = NULL, expanded = FALSE)
```
Arguments

agent  An agent object of class ptblank_agent. If an object is provided here, then filename must not be provided.

filename The name of the YAML file that contains fields related to an agent. If a file name is provided here, then agent object must not be provided in agent.

path An optional path to the YAML file (combined with filename).

expanded Should the written validation expressions for an agent be expanded such that tidyselect and vars() expressions for columns are evaluated, yielding a validation function per column? By default, this is FALSE so expressions as written will be retained in the YAML representation.

Examples

There’s a YAML file available in the pointblank package that’s called "agent-small_table.yml". The path for it can be accessed through system.file():

```r
yml_file_path <-
 system.file(
 "yaml", "agent-small_table.yml",
 package = "pointblank"
)
```

We can view the contents of the YAML file in the console with the yaml_agent_string() function.

```r
yaml_agent_string(filename = yml_file_path)
```

type: agent
tbl: ~ tbl_source("small_table", "tbl_store.yml")
tbl_name: small_table
label: A simple example with the `small_table`.
lang: en
locale: en
actions:
  warn_fraction: 0.1
  stop_fraction: 0.25
  notify_fraction: 0.35
steps:
- col_exists:
  columns: vars(date)
- col_exists:
  columns: vars(date_time)
- col_vals_regex:
  columns: vars(b)
  regex: '/[0-9]-[a-z]{3}-[0-9]{3}/'
- rows_distinct:
  columns: ~
- col_vals_gt:
Incidentally, we can also use `yaml_agent_string()` to print YAML in the console when supplying an agent object as the input. This can be useful for previewing YAML output just before writing it to disk with `yaml_write()`.

**Function ID**

11-5

**See Also**

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_exec()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

---

**yaml_exec**  
Execute all agent and informant YAML tasks

**Description**

The `yaml_exec()` function takes all relevant pointblank YAML files in a directory and executes them. Execution involves interrogation of agents for YAML agents and incorporation of informants for YAML informants. Under the hood, this uses `yaml_agent_interrogate()` and `yaml_informant_incorporate()` and then `x_write_disk()` to save the processed objects to an output directory. These written artifacts can be read in at any later time with the `x_read_disk()` function or the `read_disk_multiagent()` function. This is useful when data in the target tables are changing and the periodic testing of such tables is part of a data quality monitoring plan.

The output RDS files are named according to the object type processed, the target table, and the date-time of processing. For convenience and modularity, this setup is ideal when a table store YAML file (typically named “tbl_store.yml” and produced via the `tbl_store()` and `yaml_write()` workflow) is available in the directory, and when table-prep formulas are accessed by name through `tbl_source()`.

A typical directory of files set up for execution in this way might have the following contents:

- a "tbl_store.yml" file for holding table-prep formulas (created with `tbl_store()` and written to YAML with `yaml_write()`)
- one or more YAML agent files to validate tables (ideally using `tbl_source()`)
- one or more YAML informant files to provide refreshed metadata on tables (again, using `tbl_source()` to reference table preparations is ideal)
- an output folder (default is "output") to save serialized versions of processed agents and informants
Minimal example files of the aforementioned types can be found in the `pointblank` package through the following `system.file()` calls:

- `system.file("yaml", "agent-small_table.yml", package = "pointblank")`
- `system.file("yaml", "informant-small_table.yml", package = "pointblank")`
- `system.file("yaml", "tbl_store.yml", package = "pointblank")`

The directory itself can be accessed using `system.file("yaml", package = "pointblank")`.

**Usage**

```r
yaml_exec(
 path = NULL,
 files = NULL,
 write_to_disk = TRUE,
 output_path = file.path(path, "output"),
 keep_tbl = FALSE,
 keep_extracts = FALSE
)
```

**Arguments**

- **path**
  The path that contains the YAML files for agents and informants.

- **files**
  A vector of YAML files to use in the execution workflow. By default, `yaml_exec()` will attempt to process every valid YAML file in `path` but supplying a vector here limits the scope to the specified files.

- **write_to_disk**
  Should the execution workflow include a step that writes output files to disk? This internally calls `x_write_disk()` to write RDS files and uses the base filename of the agent/informant YAML file as part of the output filename, appending the date-time to the basename.

- **output_path**
  The output path for any generated output files. By default, this will be a subdirectory of the provided `path` called "output".

- **keep_tbl, keep_extracts**
  For agents, the table may be kept if it is a data frame object (databases tables will never be pulled for storage) and `extracts`, collections of table rows that failed a validation step, may also be stored. By default, both of these options are set to `FALSE`.

**Value**

Invisibly returns a named vector of file paths for the input files that were processed; file output paths (for wherever writing occurred) are given as the names.

**Function ID**

11-8
See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

Examples

```r
if (interactive()) {
 # The 'yaml' directory that is
 # accessible in the package through
 # `system.file()` contains the files
 # 1. 'agent-small_table.yml'
 # 2. 'informant-small_table.yml'
 # 3. 'tbl_store.yml'

 # There are references in YAML files
 # 1 & 2 to the table store YAML file,
 # so, they all work together cohesively

 # Let's process the agent and the
 # informant YAML files with 'yaml_exec();
 # and we'll specify the working directory
 # as the place where the output RDS files
 # are written

 output_dir <- getwd()

 yaml_exec(
 path = system.file(
 "yaml", package = "pointblank"
),
 output = output_dir
)

 # This generates two RDS files in the
 # working directory: one for the agent
 # and the other for the informant; each
 # of them are automatically time-stamped
 # so that periodic execution can be
 # safely carried out without risk of
 # overwriting
}
```

Description

The `yaml_informant_incorporate()` function operates much like the `yaml_read_informant()` function (reading a `pointblank` YAML file and generating an `informant` with all information in place). The key difference is that this function takes things a step further and incorporates aspects from the the target table (defined by table-prep formula that is required in the YAML file). The additional auto-invocation of `incorporate()` uses the default options of that function. As with `yaml_read_informant()` the informant is returned except, this time, it has been updated with the latest information from the target table.

Usage

```r
yaml_informant_incorporate(filename, path = NULL)
```

Arguments

- `filename`: The name of the YAML file that contains fields related to an `informant`.
- `path`: An optional path to the YAML file (combined with `filename`).

Value

A `ptblank_informant` object.

Examples

There’s a YAML file available in the `pointblank` package that’s called "informant-small_table.yml". The path for it can be accessed through `system.file()`:

```r
yml_file_path <-
 system.file(
 "yaml", "informant-small_table.yml",
 package = "pointblank"
)
```

The YAML file can be read as an informant by using the `yaml_informant_incorporate()` function. If you expect metadata to change with time, it’s best to use `yaml_informant_incorporate()` instead of `yaml_read_informant()` since the former will go the extra mile and perform `incorporate()` in addition to the reading.

```r
informant <- yaml_informant_incorporate(filename = yml_file_path)
```

As can be seen from the information report, the available table metadata was restored and reported. If the metadata were to change with time, that would be updated as well.

Function ID

11-7
yamI_read_agent

See Also

Other pointblank YAML: `yamI_agent_interrogate()`, `yamI_agent_show_exprs()`, `yamI_agent_string()`, `yamI_exec()`, `yamI_read_agent()`, `yamI_read_informant()`, `yamI_write()`

---

yamI_read_agent  \hspace{1em} \textit{Read a pointblank YAML file to create an agent object}

Description

With `yamI_read_agent()` we can read a pointblank YAML file that describes a validation plan to be carried out by an agent (typically generated by the `yamI_write()` function. What's returned is a new agent with that validation plan, ready to interrogate the target table at will (using the table-prep formula that is set with the tbl argument of `create_agent()`). The agent can be given more validation steps if needed before using `interrogate()` or taking part in any other agent ops (e.g., writing to disk with outputs intact via `x_write_disk()`) or again to pointblank YAML with `yamI_write()`.

To get a picture of how `yamI_read_agent()` is interpreting the validation plan specified in the pointblank YAML, we can use the `yamI_agent_show_exprs()` function. That function shows us (in the console) the pointblank expressions for generating the described validation plan.

Usage

\begin{verbatim}
yaml_read_agent(filename, path = NULL)
\end{verbatim}

Arguments

- `filename` The name of the YAML file that contains fields related to an agent.
- `path` An optional path to the YAML file (combined with filename).

Value

A pointblank_agent object.

Examples

There's a YAML file available in the pointblank package that's also called "agent-small_table.yml". The path for it can be accessed through `system.file()`:

\begin{verbatim}
yml_file_path <-
  system.file(
    "yaml", "agent-small_table.yml",
    package = "pointblank"
  )
\end{verbatim}

The YAML file can be read as an agent with a pre-existing validation plan by using the `yaml_read_agent()` function.
agent <- yaml_read_agent(filename = yml_file_path)

agent

This particular agent is using ~ tbl_source("small_table", "tbl_store.yml") to source the table-prep from a YAML file that holds a table store (can be seen using yaml_agent_string(agent = agent)). Let’s put that file in the working directory (the pointblank package has the corresponding YAML file):

yml_tbl_store_path <-
  system.file(
    "yaml", "tbl_store.yml",
    package = "pointblank"
  )

file.copy(from = yml_tbl_store_path, to = ".")

As can be seen from the validation report, no interrogation was yet performed. Saving an agent to YAML will remove any traces of interrogation data and serve as a plan for a new interrogation on the same target table. We can either follow this up with with interrogate() and get an agent with intel, or, we can interrogate directly from the YAML file with yaml_agent_interrogate():

agent <- yaml_agent_interrogate(filename = yml_file_path)

agent

Function ID

11-2

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(), yaml_exec(), yaml_informant_incorporate(), yaml_read_informant(), yaml_write()

---

yaml_read_informant Read a pointblank YAML file to create an informant object

Description

With yaml_read_informant() we can read a pointblank YAML file that describes table information (typically generated by the yaml_write() function. What’s returned is a new informant object with the information intact. The informant object can be given more information through use of the info_*() functions.

Usage

yaml_read_informant(filename, path = NULL)
Arguments

filename  The name of the YAML file that contains fields related to an informant.
path     An optional path to the YAML file (combined with filename).

Value

A pointblank_informant object.

Examples

There’s a YAML file available in the pointblank package that’s called “informant-small_table.yml”. The path for it can be accessed through system.file():

```r
yml_file_path <-
 system.file(
 "yaml", "informant-small_table.yml",
 package = "pointblank"
)
```

The YAML file can be read as an informant by using the yaml_read_informant() function.

```r
informant <- yaml_read_informant(filename = yml_file_path)
informant
```

As can be seen from the information report, the available table metadata was restored and reported. If you expect metadata to change with time, it might be beneficial to use incorporate() to query the target table. Or, we can perform this querying directly from the YAML file with yaml_informant_incorporate().

Function ID

11-3

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(), yaml_exec(), yaml_informant_incorporate(), yaml_read_agent(), yaml_write()
**yaml_write**

*Write pointblank objects to YAML files*

**Description**

With `yaml_write()` we can take different **pointblank** objects (these are the `ptblank_agent`, `ptblank_informant`, and `tbl_store`) and write them to YAML. With an **agent**, for example, `yaml_write()` will write that everything that is needed to specify an **agent** and its validation plan to a YAML file. With YAML, we can modify the YAML markup if so desired, or, use as is to create a new agent with the `yaml_read_agent()` function. That **agent** will have a validation plan and is ready to `interrogate()` the data. We can go a step further and perform an interrogation directly from the YAML file with the `yaml_agent_interrogate()` function. That returns an agent with intel (having already interrogated the target data table). An **informant** object can also be written to YAML with `yaml_write()`.

One requirement for writing an **agent** or an **informant** to YAML is that we need to have a table-prep formula specified (it’s an R formula that is used to read the target table when `interrogate()` or `incorporate()` is called). This option can be set when using `create_agent()`/`create_informant()` or with `set_tbl()` (useful with an existing agent or informant object).

**Usage**

```r
yaml_write(
 ...,
 .list = list2(...),
 filename = NULL,
 path = NULL,
 expanded = FALSE,
 quiet = FALSE
)
```

**Arguments**

- **...** Any mix of **pointblank** objects such as the **agent** (`ptblank_agent`), the **informant** (`ptblank_informant`), or the table store (`tbl_store`). The agent and informant can be combined into a single YAML file (so long as both objects refer to the same table). A table store cannot be combined with either an agent or an informant so it must undergo conversion alone.

- **.list** Allows for the use of a list as an input alternative to ....

- **filename** The name of the YAML file to create on disk. It is recommended that either the `.yaml` or `.yml` extension be used for this file. If not provided then default names will be used ("tbl_store.yml") for a table store and the other objects will get default naming to the effect of "<object>-<tbl_name>.yml".

- **path** An optional path to which the YAML file should be saved (combined with filename).
expanded
Should the written validation expressions for an agent be expanded such that tidyselect and vars() expressions for columns are evaluated, yielding a validation function per column? By default, this is FALSE so expressions as written will be retained in the YAML representation.

quiet
Should the function not inform when the file is written? By default this is FALSE.

Value
Invisibly returns TRUE if the YAML file has been written.

Examples
Writing an agent object to a YAML file:
Let’s go through the process of developing an agent with a validation plan. We’ll use the small_table dataset in the following examples, which will eventually offload the developed validation plan to a YAML file.

small_table

```
A tibble: 13 × 8
date_time date a b c d e f
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-lmd-038 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

Creating an action_levels object is a common workflow step when creating a pointblank agent. We designate failure thresholds to the warn, stop, and notify states using action_levels().

```
al <- action_levels(
  warn_at = 0.10,
  stop_at = 0.25,
  notify_at = 0.35
)
```

Now let’s create the agent and pass it the al object (which serves as a default for all validation steps which can be overridden). The data will be referenced in tbl with a leading ~ and this is a requirement for writing to YAML since the preparation of the target table must be self contained.
agent <-
create_agent(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "A simple example with the \texttt{small_table}.",
 actions = al
)

Then, as with any agent object, we can add steps to the validation plan by using as many validation functions as we want.

agent <-
agent %>%
col_exists(columns = vars(date, date_time)) %>%
col_vals_regex(
 columns = vars(b),
 regex = "[0-9]-[a-z]{3}-[0-9]{3}"
) %>%
rows_distinct() %>%
col_vals_gt(columns = vars(d), value = 100) %>%
col_vals_lte(columns = vars(c), value = 5)

The agent can be written to a pointblank-readable YAML file with the \texttt{yaml_write()} function. Here, we’ll use the filename "agent-small_table.yml" and, after writing, the YAML file will be in the working directory:

\texttt{yaml_write(agent, filename = "agent-small_table.yml")}

We can view the YAML file in the console with the \texttt{yaml_agent_string()} function.

\texttt{yaml_agent_string(filename = "agent-small_table.yml")}

type: agent
tbl: ~small_table
tbl_name: small_table
label: A simple example with the `small_table`.
lang: en
locale: en
actions:
 warn_fraction: 0.1
 stop_fraction: 0.25
 notify_fraction: 0.35
steps:
- col_exists:
 columns: vars(date, date_time)
- col_vals_regex:
 columns: vars(b)
 regex: '[0-9]-[a-z]{3}-[0-9]{3}'
- rows_distinct:
 columns: ~
- col_vals_gt:
Incidentally, we can also use `yaml_agent_string()` to print YAML in the console when supplying an agent as the input. This can be useful for previewing YAML output just before writing it to disk with `yaml_write()`.

Reading an agent object from a YAML file:

There’s a YAML file available in the `pointblank` package that’s also called "agent-small_table.yml". The path for it can be accessed through `system.file()`:

```r
yml_file_path <-
  system.file(
    "yaml", "agent-small_table.yml",
    package = "pointblank"
  )
```

The YAML file can be read as an agent with a pre-existing validation plan by using the `yaml_read_agent()` function.

```r
agent <- yaml_read_agent(filename = yml_file_path)
```

This particular agent is using `~ tbl_source("small_table", "tbl_store.yml")` to source the table-prep from a YAML file that holds a table store (can be seen using `yaml_agent_string(agent = agent)`). Let’s put that file in the working directory (the `pointblank` package has the corresponding YAML file):

```r
yml_tbl_store_path <-
  system.file(
    "yaml", "tbl_store.yml",
    package = "pointblank"
  )
```

```r
file.copy(from = yml_tbl_store_path, to = ".")
```

As can be seen from the validation report, no interrogation was yet performed. Saving an agent to YAML will remove any traces of interrogation data and serve as a plan for a new interrogation on the same target table. We can either follow this up with `interrogate()` and get an agent with intel, or, we can interrogate directly from the YAML file with `yaml_agent_interrogate()`:

```r
agent <- yaml_agent_interrogate(filename = yml_file_path)
```

Writing an informant object to a YAML file:

Let’s walk through how we can generate some useful information for a really small table. We can create an informant object with `create_informant()` and we’ll again use the `small_table` dataset.
informant <-
 create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "A simple example with the 'small_table'."
)

Then, as with any informant object, we can add info text to the using as many info_*() functions as we want.

informant <-
 informant %>%
 info_columns(
 columns = vars(a),
 info = "In the range of 1 to 10. (SIMPLE)"
) %>%
 info_columns(
 columns = starts_with("date"),
 info = "Time-based values (e.g., 'Sys.time()')."
) %>%
 info_columns(
 columns = "date",
 info = "The date part of 'date_time'. (CALC)"
)

The informant can be written to a pointblank-readable YAML file with the yaml_write() function. Here, we'll use the filename "informant-small_table.yml" and, after writing, the YAML file will be in the working directory:

yaml_write(informant, filename = "informant-small_table.yml")

We can inspect the YAML file in the working directory and expect to see the following:

type: informant
tbl: ~small_table
tbl_name: small_table
info_label: A simple example with the 'small_table'.
lang: en
locale: en
table:
 name: small_table
 _columns: 8
 _rows: 13.0
 _type: tbl_df
columns:
 date_time:
 _type: POSIXct, POSIXt
info: Time-based values (e.g., 'Sys.time()').
date:
 _type: Date
info: Time-based values (e.g., 'Sys.time()'). The date part of 'date_time'. (CALC)
Reading an informant object from a YAML file:
There's a YAML file available in the `pointblank` package that's also called "informant-small_table.yml". The path for it can be accessed through `system.file()`:

```r
yml_file_path <- system.file(
  "yaml", "informant-small_table.yml",
  package = "pointblank"
)
```

The YAML file can be read as an informant by using the `yaml_read_informant()` function.

```r
informant <- yaml_read_informant(filename = yml_file_path)
```

As can be seen from the information report, the available table metadata was restored and reported. If you expect metadata to change with time, it might be beneficial to use `incorporate()` to query the target table. Or, we can perform this querying directly from the YAML file with `yaml_informant_incorporate()`:

```r
informant <- yaml_informant_incorporate(filename = yml_file_path)
```

There will be no apparent difference in this particular case since `small_data` is a static table with no alterations over time. However, using `yaml_informant_incorporate()` is good practice since this refreshing of data will be important with real-world datasets.

Function ID

11-1

See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_exec()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`
Index

* Datasets
 - game_revenue, 255
 - game_revenue_info, 256
 - small_table, 334
 - small_table_sqlite, 335
 - specifications, 348
* Emailing
 - email_blast, 240
 - email_create, 244
 - stock_msg_body, 349
 - stock_msg_footer, 349
* Incorporate and Report
 - get_informant_report, 266
 - incorporate, 281
* Information Functions
 - info_columns, 283
 - info_columns_from_tbl, 287
 - info_section, 289
 - info_snippet, 292
 - info_tabular, 295
 - snip_highest, 336
 - snip_list, 337
 - snip_lowest, 339
 - snip_stats, 340
* Interrogate and Report
 - get_agent_report, 256
 - interrogate, 298
* Logging
 - log4r_step, 300
* Object Ops
 - activate_steps, 9
 - deactivate_steps, 233
 - export_report, 245
 - remove_steps, 304
 - set_tbl, 333
 - x_read_disk, 388
 - x_write_disk, 389
* Planning and Prep
 - action_levels, 4
 - create_agent, 212
 - create_informant, 220
 - db_tbl, 227
 - draft_validation, 234
 - file_tbl, 248
 - scan_data, 324
 - tbl_get, 351
 - tbl_source, 359
 - tbl_store, 361
 - validate_rmd, 381
* Post-interrogation
 - all_passed, 16
 - get_agent_x_list, 261
 - get_data_extracts, 264
 - get_sundered_data, 272
 - write_testthat_file, 382
* Table Transformers
 - get_tt_param, 276
 - tt_string_info, 369
 - tt_summary_stats, 371
 - tt_tbl_colnames, 374
 - tt_tbl_dims, 376
 - tt_time_shift, 377
 - tt_time_slice, 379
* The multiagent
 - create_multiagent, 224
 - get_multiagent_report, 268
 - read_disk_multiagent, 303
* Utility and Helper Functions
 - affix_date, 10
 - affix_datetime, 13
 - col_schema, 64
 - from_github, 253
 - has_columns, 278
 - stop_if_not, 350
* datasets
 - game_revenue, 255
 - game_revenue_info, 256
 - small_table, 334
specifications, 348
* pointblank YAML
 yaml_agent_interrogate, 394
 yaml_agent_show_exprs, 395
 yaml_agent_string, 397
 yaml_exec, 399
 yaml_informant_incorporate, 401
 yaml_read_agent, 403
 yaml_read_informant, 404
 yaml_write, 406
* validation functions
 col_count_match, 17
 col_exists, 23
 col_is_character, 28
 col_is_date, 33
 col_is_factor, 38
 col_is_integer, 43
 col_is_logical, 49
 col_is_numeric, 54
 col_is_posix, 59
 col_schema_match, 66
 col_vals_between, 73
 col_vals_decreasing, 81
 col_vals_equal, 88
 col_vals_expr, 95
 col_vals_gt, 101
 col_vals_gte, 109
 col_vals_in_set, 123
 col_vals_increasing, 116
 col_vals_lt, 130
 col_vals_lte, 137
 col_vals_make_set, 144
 col_vals_make_subset, 150
 col_vals_not_between, 157
 col_vals_not_equal, 165
 col_vals_not_in_set, 172
 col_vals_not_null, 178
 col_vals_null, 184
 col_vals_regex, 190
 col_vals_within_spec, 197
conjointly, 205
row_count_match, 317
rows_complete, 305
rows_distinct, 311
serially, 326
specially, 342
tbl_match, 353
action_levels, 4, 219, 224, 233, 240, 252, 325, 353, 361, 369, 382
activate_steps, 9, 233, 248, 304, 334, 389, 393
activate_steps(), 233, 304, 384
affix_date, 10, 15, 66, 253, 281, 350
affix_date(), 12, 15, 247, 391, 392
affix_datetime, 12, 13, 66, 253, 281, 350
affix_datetime(), 12, 15, 391
all_passed, 16, 263, 266, 276, 388
all_passed(), 215, 298
base::difftime(), 377
base::strptime(), 11, 13
blastula::creds(), 241
blastula::creds_anonymous(), 241
blastula::creds_file(), 241
blastula::creds_key(), 241

 col_exists(), 205, 206
 col_is_date, 23, 28, 33, 33, 43, 48, 53, 58, 63, 72, 80, 88, 95, 101, 108, 115, 123, 129, 136, 143, 150, 157, 165,

col_vals_equal(), 171

col_schema, 12, 15, 64, 253, 281, 350

col_schema_match_match, 64

col_vals_between(), 165, 212, 240, 374

col_vals_decreasing(), 123

INDEX
INDEX

115, 123, 129, 136, 143, 144, 157, 165, 171, 178, 184, 190, 197, 205, 212, 311, 317, 324, 333, 348, 359

col_vals_make_subset(), 144
col_vals_not_between(), 80
col_vals_not_equal(), 95
col_vals_not_in_set(), 129
col_vals_not_null(), 190
col_vals_null(), 184
col_vals_regex(), 184

col_vals_within_spec(), 348

conjointly(), 215, 258, 264, 273
create_agent, 9, 212, 224, 233, 240, 252, 325, 353, 361, 369, 382
create_informant, 9, 219, 220, 233, 240, 252, 325, 353, 361, 369, 382
create_multiagent, 224, 272, 303
create_multiagent(), 217, 303
db_tbl, 9, 219, 224, 227, 240, 252, 325, 353, 361, 369, 382
deactivate_steps, 9, 233, 248, 304, 334, 389, 393
deactivate_steps(), 9, 304, 384
dplyr::between(), 101
dplyr::case_when(), 101
draft_validation, 9, 219, 224, 233, 234, 252, 325, 353, 361, 369, 382
e-mail_blast, 240, 245, 349, 350
e-mail_blast(), 213, 244, 349, 350
e-mail_create, 243, 244, 349, 350
e-mail_create(), 240, 349, 350
expect_col_count_match(col_count_match), 17
expect_col_exists (col_exists), 23
expect_col_is_character
 (col_is_character), 28
expect_col_is_date (col_is_date), 33
expect_col_is_factor (col_is_factor), 38
expect_col_is_integer (col_is_integer), 43
expect_col_is_logical (col_is_logical), 49
expect_col_is_numeric (col_is_numeric), 54
expect_col_is_posix (col_is_posix), 59
expect_col_schema_match
 (col_schema_match), 66
expect_col_vals_between
 (col_vals_between), 73
expect_col_vals_decreasing
 (col_vals_decreasing), 81
expect_col_vals_equal (col_vals_equal), 88
expect_col_vals_expr (col_vals_expr), 95
expect_col_vals_gt (col_vals_gt), 101
expect_col_vals_gte (col_vals_gte), 109
expect_col_vals_in_set
 (col_vals_in_set), 123
expect_col_vals_increasing
 (col_vals_increasing), 116
expect_col_vals_lt (col_vals_lt), 130
expect_col_vals_lte (col_vals_lte), 137
expect_col_vals_make_set
 (col_vals_make_set), 144
expect_col_vals_make_subset
 (col_vals_make_subset), 150
expect_col_vals_not_between
 (col_vals_not_between), 157
expect_col_vals_not_equal
 (col_vals_not_equal), 165
expect_col_vals_not_in_set
 (col_vals_not_in_set), 172
expect_col_vals_not_null
 (col_vals_not_null), 178
expect_col_vals_null (col_vals_null), 184
expect_col_vals_regex (col_vals_regex), 190
expect_col_vals_within_spec
 (col_vals_within_spec), 197
expect_conjointly (conjointly), 205
expect_row_count_match
 (row_count_match), 215
expect_rows_complete (rows_complete),
 233
expect_rows_distinct (rows_distinct),
 304
expect_serially (serially), 334
expect_specially (specially), 342
expect_tbl_match (tbl_match), 353
export_report, 9, 223, 245, 304, 334, 389,
 393
export_report(), 215, 227, 257, 260, 263
file_tbl, 9, 219, 224, 233, 240, 248, 325,
 353, 361, 369, 382
file_tbl(), 229, 253
from_github, 12, 15, 66, 253, 281, 350
from_github(), 248–250
game_revenue, 254, 256, 335, 336, 349
game_revenue_info, 255, 256, 335, 336, 349
get_agent_report, 256, 299
get_agent_report(), 212, 213, 215, 218,
 223, 245, 254, 264, 269, 298, 388
get_agent_x_list, 17, 215, 266, 276, 388
get_agent_x_list(), 16, 215, 219, 241, 388
get_data_extracts, 17, 263, 264, 276, 388
get_data_extracts(), 215, 219, 388
get_informant_report, 266, 283
get_informant_report(), 220, 224, 245,
 281, 286, 291, 297, 388
get_multiagent_report, 227, 268, 303
get_multiagent_report(), 217, 224, 227,
 245
get_sundered_data, 17, 263, 266, 272, 388
get_sundered_data(), 215
get_tt_param, 276, 371, 374, 375, 377, 379,
 381
has_columns, 12, 15, 66, 253, 278, 350
has_columns(), 19, 24, 29, 35, 40, 45, 50, 55,
 60, 68, 75, 83, 90, 97, 104, 111, 118,
 125, 132, 139, 146, 152, 159, 167,
 173, 179, 185, 192, 199, 207, 307,
 313, 319, 328, 343, 355
I(), 227, 228, 259, 266, 268
incorporate, 267, 281
INDEX

info_columns, 283, 289, 292, 295, 298, 337, 339–341
info_columns_from_tbl, 286, 287, 292, 295, 298, 337, 339–341
info_columns_from_tbl(), 224, 256, 287
info_section(), 220, 282, 292
info_snippet, 286, 289, 292, 298, 337, 339–341
info_tabular(), 220, 289, 292, 297
interrogate, 261, 298
log4r_step, 300
log4r_step(), 10
read_disk_multiagent, 227, 272, 303
read_disk_multiagent(), 217, 399
remove_steps, 9, 233, 248, 304, 334, 389, 393
rlang::expr(), 101
rows_distinct(), 212, 219, 264
scan_data, 9, 219, 224, 233, 240, 252, 324, 353, 361, 369, 382
scan_data(), 262
set_tbl, 9, 233, 248, 304, 333, 389, 393
set_tbl(), 351, 359, 383, 390, 406
small_table, 246, 247, 255, 256, 334, 336, 349, 390, 392
small_table_sqlite, 255, 256, 335, 335, 349
snip_highest(), 220, 293, 294
snip_list, 286, 289, 292, 295, 298, 337, 340, 341
snip_list(), 220, 293
snip_lowest, 286, 289, 292, 295, 298, 337, 339, 339, 341
snip_lowest(), 220, 293
snip_stats(), 220, 293
specifications, 255, 256, 335, 336, 348
stock_msg_body, 243, 245, 349, 350
stock_msg_footer, 243, 245, 349, 349
stop_if_not, 12, 15, 66, 253, 281, 350
stop_on_fail(action_levels), 4
tbl_get, 9, 219, 224, 233, 240, 252, 325, 351, 361, 369, 382
tbl_source, 9, 219, 224, 233, 240, 252, 325, 333, 359, 369, 382
test_col_is_date, 33
test_col_is_factor, 38
test_col_is_integer, 43
test_col_is_logical, 49
test_col_is_numeric, 54
test_col_is_posix, 59
test_col_schema_match, 66
test_col_vals_between, 73
test_col_vals_decreasing, 81
test_col_vals_equal, 88
test_col_vals_expr, 95
test_col_vals_gt, 101
test_col_vals_gte, 109
test_col_vals_in_set, 123
test_col_vals_increasing, 116
test_col_vals_lt, 130
test_col_vals_lte, 137
test_col_vals_make_set, 144
test_col_vals_not_between, 157
test_col_vals_not_equal, 165
test_col_vals_not_in_set, 172
test_col_vals_not_null, 178
test_col_vals_null, 184
test_col_vals_regex, 190
test_col_vals_within_spec, 197
test_col_vals_within_spec(), 348
test_conjointly, 205
test_row_count_match, 317
test_rows_complete, 305
test_rows_distinct, 311
test_serially, 326
test_specially, 342
test_tbl_match, 353
testthat::skip_on_appveyor, 383
testthat::skip_on_ci, 383
testthat::skip_on_cran, 383
testthat::skip_on_os, 383
testthat::skip_on_travis, 383
testthat::test_that(), 382, 383

validate_rmd, 9, 219, 224, 233, 240, 252, 325, 353, 361, 369, 381
vars(), 24, 398, 407

warn_on_fail(action_levels), 4
write_testthat_file, 17, 263, 266, 276, 382

x_read_disk, 9, 233, 248, 304, 334, 388, 393