Package ‘pointblank’

January 23, 2022

Type Package
Version 0.10.0
Title Data Validation and Organization of Metadata for Local and Remote Tables
Description Validate data in data frames, 'tibble' objects, 'Spark' 'DataFrames', and database tables. Validation pipelines can be made using easily-readable, consecutive validation steps. Upon execution of the validation plan, several reporting options are available. User-defined thresholds for failure rates allow for the determination of appropriate reporting actions. Many other workflows are available including an information management workflow, where the aim is to record, collect, and generate useful information on data tables.
License MIT + file LICENSE
BugReports https://github.com/rich-iannone/pointblank/issues
Encoding UTF-8
LazyData true
ByteCompile true
RoxygenNote 7.1.2
Depends R (>= 3.5.0)
Imports base64enc (>= 0.1-3), blastula (>= 0.3.2), cli (>= 2.5.0), DBI (>= 1.1.0), digest (>= 0.6.27), dplyr (>= 1.0.6), dbplyr (>= 2.1.1), fs (>= 1.5.0), glue (>= 1.4.2), gt (>= 0.3.0), htmltools (>= 0.5.1.1), knitr (>= 1.30), rlang (>= 0.4.11), magrittr, scales (>= 1.1.1), testthat (>= 2.3.2), tibble (>= 3.1.2), tidyr (>= 1.1.3), tidyselect (>= 1.1.1), yaml (>= 2.2.1)
Suggests arrow, covr, crayon, data.table, duckdb, ggforce, ggplot2, jsonlite, log4r, lubridate, RSQLite, RMySQL, RPostgres, readr, rmarkdown, sparklyr, dittodb, odbc
R topics documented:

- action_levels
- activate_steps
- affix_date
- affix_datetime
- all_passed
- col_exists
- col_is_character
- col_is_date
- col_is_factor
- col_is_integer
- col_is_logical
- col_is_numeric
- col_is_posix
- col_schema
- col_schema_match
- col_vals_between
- col_vals_decreasing
- col_vals_equal
- col_vals_expr
- col_vals_gt
- col_vals_gte
- col_vals_increasing
- col_vals_in_set
- col_vals_lt
- col_vals_lte
- col_vals_make_set
- col_vals_make_subset
- col_vals_not_between
- col_vals_not_equal
- col_vals_not_in_set
- col_vals_not_null
- col_vals_null
- col_vals_regex
- col_vals_within_spec
- conjointly
- create_agent
- create_informant
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>create_multiagent</td>
<td>199</td>
</tr>
<tr>
<td>db_tbl</td>
<td>202</td>
</tr>
<tr>
<td>deactivate_steps</td>
<td>205</td>
</tr>
<tr>
<td>draft_validation</td>
<td>207</td>
</tr>
<tr>
<td>email_blast</td>
<td>209</td>
</tr>
<tr>
<td>email_create</td>
<td>212</td>
</tr>
<tr>
<td>export_report</td>
<td>215</td>
</tr>
<tr>
<td>file_tbl</td>
<td>218</td>
</tr>
<tr>
<td>from_github</td>
<td>222</td>
</tr>
<tr>
<td>game_revenue</td>
<td>224</td>
</tr>
<tr>
<td>game_revenue_info</td>
<td>225</td>
</tr>
<tr>
<td>get_agent_report</td>
<td>226</td>
</tr>
<tr>
<td>get_agent_x_list</td>
<td>230</td>
</tr>
<tr>
<td>get_data_extracts</td>
<td>232</td>
</tr>
<tr>
<td>get_informant_report</td>
<td>234</td>
</tr>
<tr>
<td>get_multiagent_report</td>
<td>236</td>
</tr>
<tr>
<td>get_sundered_data</td>
<td>240</td>
</tr>
<tr>
<td>get_tt_param</td>
<td>243</td>
</tr>
<tr>
<td>has_columns</td>
<td>244</td>
</tr>
<tr>
<td>incorporate</td>
<td>246</td>
</tr>
<tr>
<td>info_columns</td>
<td>248</td>
</tr>
<tr>
<td>info_columns_from_tbl</td>
<td>252</td>
</tr>
<tr>
<td>info_section</td>
<td>254</td>
</tr>
<tr>
<td>info_snippet</td>
<td>258</td>
</tr>
<tr>
<td>info_tabular</td>
<td>261</td>
</tr>
<tr>
<td>interrogate</td>
<td>264</td>
</tr>
<tr>
<td>log4r_step</td>
<td>266</td>
</tr>
<tr>
<td>read_disk_multiagent</td>
<td>268</td>
</tr>
<tr>
<td>remove_steps</td>
<td>269</td>
</tr>
<tr>
<td>rows_complete</td>
<td>270</td>
</tr>
<tr>
<td>rows_distinct</td>
<td>276</td>
</tr>
<tr>
<td>row_count_match</td>
<td>282</td>
</tr>
<tr>
<td>scan_data</td>
<td>288</td>
</tr>
<tr>
<td>serially</td>
<td>290</td>
</tr>
<tr>
<td>set_tbl</td>
<td>296</td>
</tr>
<tr>
<td>small_table</td>
<td>298</td>
</tr>
<tr>
<td>small_table_sqlite</td>
<td>299</td>
</tr>
<tr>
<td>snip_highest</td>
<td>300</td>
</tr>
<tr>
<td>snip_list</td>
<td>301</td>
</tr>
<tr>
<td>snip_lowest</td>
<td>303</td>
</tr>
<tr>
<td>snip_stats</td>
<td>304</td>
</tr>
<tr>
<td>specially</td>
<td>306</td>
</tr>
<tr>
<td>specifications</td>
<td>312</td>
</tr>
<tr>
<td>stock_msg_body</td>
<td>313</td>
</tr>
<tr>
<td>stock_msg_footer</td>
<td>314</td>
</tr>
<tr>
<td>stop_if_not</td>
<td>314</td>
</tr>
<tr>
<td>tbl_get</td>
<td>315</td>
</tr>
<tr>
<td>tbl_match</td>
<td>317</td>
</tr>
</tbody>
</table>
action_levels

Set action levels: failure thresholds and functions to invoke

Description

The `action_levels()` function works with the actions argument that is present in the `create_agent()` function and in every validation step function (which also has an actions argument). With it, we can provide threshold `fail` levels for any combination of `warn`, `stop`, or `notify` states.

We can react to any entrance of a state by supplying corresponding functions to the `fns` argument. They will undergo evaluation at the time when the matching state is entered. If provided to `create_agent()` then the policies will be applied to every validation step, acting as a default for the validation as a whole.

Calls of `action_levels()` could also be applied directly to any validation step and this will act as an override if set also in `create_agent()`. Usage of `action_levels()` is required to have any useful side effects (i.e., warnings, throwing errors) in the case of validation functions operating directly on data (e.g., `mtcars %>% col_vals_lt("mpg", 35)`). There are two helper functions that are convenient when using validation functions directly on data (the agent-less workflow): `warn_on_fail()` and `stop_on_fail()`. These helpers either warn or stop (default failure threshold for each is set to 1), and, they do so with informative warning or error messages. The `stop_on_fail()` helper is applied by default when using validation functions directly on data (more information on this is provided in Details).
Usage

```r
action_levels(warn_at = NULL, stop_at = NULL, notify_at = NULL, fns = NULL)
```

```r
warn_on_fail(warn_at = 1)
```

```r
stop_on_fail(stop_at = 1)
```

Arguments

- `warn_at`, `stop_at`, `notify_at`
 The threshold number or fraction of test units that can provide a `fail` result before entering the `warn`, `stop`, or `notify` failure states. If this a decimal value between 0 and 1 then it's a proportional failure threshold (e.g., 0.15 indicates that if 15% percent of the test units are found to `fail`, then the designated failure state is entered). Absolute values starting from 1 can be used instead, and this constitutes an absolute failure threshold (e.g., 10 means that if 10 of the test units are found to `fail`, the failure state is entered).

- `fns`
 A named list of functions that is to be paired with the appropriate failure states. The syntax for this list involves using failure state names from the set of `warn`, `stop`, and `notify`. The functions corresponding to the failure states are provided as formulas (e.g., `list(warn = ~ warning("Too many failures.")`). A series of expressions for each named state can be used by enclosing the set of statements with `{ }`.

Details

The output of the `action_levels()` call in `actions` will be interpreted slightly differently if using an `agent` or using validation functions directly on a data table. For convenience, when working directly on data, any values supplied to `warn_at` or `stop_at` will be automatically given a stock `warning()` or `stop()` function. For example using `small_table %>% col_is_integer("date")` will provide a detailed stop message by default, indicating the reason for the failure. If you were to supply the `fns` for `stop` or `warn` manually then the stock functions would be overridden. Furthermore, if `actions` is `NULL` in this workflow (the default), `pointblank` will use a `stop_at` value of 1 (providing a detailed, context-specific error message if there are any `fail` units). We can absolutely suppress this automatic stopping behavior by at each validation step by setting `active = FALSE`. In this interactive data case, there is no stock function given for `notify_at`. The `notify` failure state is less commonly used in this workflow as it is in the `agent`-based one.

When using an `agent`, we often opt to not use any functions in `fns` as the `warn`, `stop`, and `notify` failure states will be reported on when using `create_agent_report()` (and, usually that’s sufficient). Instead, using the `end_fns` argument is a better choice since that scheme provides useful data on the entire interrogation, allowing for finer control on side effects and reducing potential for duplicating any side effects.

Function ID

1-5
See Also

Other Planning and Prep: create_agent(), create_informant(), db_tbl(), draft_validation(), file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

Examples

For these examples, we will use the # included `small_table` dataset
small_table

Create an `action_levels` object # with fractional values for the # `warn`, `stop`, and `notify` states
al <- action_levels(
 warn_at = 0.2,
 stop_at = 0.8,
 notify_at = 0.5
)

A summary of settings for the `al` # object is shown by printing it
al

Create a pointblank agent and # apply the `al` object to `actions`;
add two validation steps and # interrogate the `small_table`
agent_1 <-
create_agent(
 tbl = small_table,
 actions = al
) %>%
col_vals_gt(
 vars(a), value = 2
) %>%
col_vals_lt(
 vars(d), value = 20000
) %>%
interrogate()

The report from the agent will show # that the `warn` state has been entered # for the first validation step but not # the second one; we can confirm this # in the console by inspecting the # `warn` component in the agent's x-list
x_list <- get_agent_x_list(agent_1)
x_list$warn

Applying the `action_levels` object
to the agent means that all validation
steps will inherit these settings but
we can override this by applying
another such object to the validation
step instead (this time using the
`warn_on_fail()` shorthand)
agent_2 <-
create_agent(
 tbl = small_table,
 actions = al
) %>%
col_vals_gt(
 vars(a), value = 2,
 actions = warn_on_fail(warn_at = 0.5)
) %>%
col_vals_lt(
 vars(d), value = 20000
) %>%
test()

In this case, the first validation
step has a less stringent failure
threshold for the `warn` state and it's
high enough that the condition is not
entered; this can be confirmed in the
console through inspection of the
x-list `warn` component
x_list <- get_agent_x_list(agent_2)
x_list$warn

if (interactive()) {

 # In the context of using validation
 # functions directly on data (i.e., no
 # involvement of an agent) we want to
 # trigger warnings and raise errors; the
 # following will yield a warning if
 # it is executed (returning the
 # `small_table` data)
small_table %>%
col_vals_gt(
 vars(a), value = 2,
 actions = warn_on_fail(warn_at = 2)
)

 # With the same pipeline, not supplying
 # anything for `actions` (it's `NULL` by
 # default) will have the same effect as
 # using `stop_on_fail(stop_at = 1)`
small_table %>%
col_vals_gt(vars(a), value = 2)

small_table %>%
activate_steps

activate_steps

Activate one or more of an agent’s validation steps

Description

If certain validation steps need to be activated after the creation of the validation plan for an agent, use the activate_steps() function. This is equivalent to using the active = TRUE for the selected validation steps (active is an argument in all validation functions). This will replace any function that may have been defined for the active argument during creation of the targeted validation steps.

Usage

activate_steps(agent, i = NULL)

Arguments

agent An agent object of class ptblank_agent.
i The validation step number, which is assigned to each validation step in the order of definition.

Value

A ptblank_agent object.

Function ID

9.5

See Also

For the opposite behavior, use the deactivate_steps() function.

Other Object Ops: deactivate_steps(), export_report(), remove_steps(), set_tbl(), x_read_disk(), x_write_disk()
Examples

```r
# Create an agent that has the 
# `small_table` object as the 
# target table, add a few inactive 
# validation steps, and then use 
# `interrogate()`
agent_1 <-
  create_agent(
    tbl = small_table,
    tbl_name = "small_table",
    label = "An example."
  ) %>%
  col_exists(
    vars(date),
    active = FALSE
  ) %>%
  col_vals_regex(
    vars(b), regex = "[0-9]-[a-z]{3}-[0-9]{3}",
    active = FALSE
  ) %>%
  interrogate()

# In the above, the data is 
# not actually interrogated 
# because the `active` setting 
# was `FALSE` in all steps; we 
# can selectively change this 
# with `activate_steps()`
agent_2 <-
  agent_1 %>%
  activate_steps(i = 1) %>%
  interrogate()
```

affix_date

Put the current date into a file name

Description

This function helps to affix the current date to a filename. This is useful when writing `agent` and/or `informant` objects to disk as part of a continuous process. The date can be in terms of UTC time or the local system time. The date can be affixed either to the end of the filename (before the file extension) or at the beginning with a customizable delimiter.

The `x_write_disk()`, `yaml_write()` functions allow for the writing of `pointblank` objects to disk. Furthermore the `log4r_step()` function has the `append_to` argument that accepts filenames, and, it's reasonable that a series of log files could be differentiated by a date component in the naming scheme. The modification of the filename string takes effect immediately but not at the time of writing a file to disk. In most cases, especially when using `affix_date()` with the aforementioned file-writing functions, the file timestamps should approximate the time components affixed to the filenames.
Usage

```r
affix_date(
  filename,
  position = c("end", "start"),
  format = "%Y-%m-%d",
  delimiter = ".",
  utc_time = TRUE
)
```

Arguments

- `filename`: The filename to modify.
- `position`: Where to place the formatted date. This could either be at the "end" of the filename (the default) or at the "start".
- `format`: A `base::strptime()` format string for formatting the date. By default, this is
 "%Y-%m-%d" which expresses the date according to the ISO 8601 standard (as YYYY-MM-DD). Refer to the documentation on `base::strptime()` for conversion specifications if planning to use a different format string.
- `delimiter`: The delimiter characters to use for separating the date string from the original file name.
- `utc_time`: An option for whether to use the current UTC time to establish the date (the default, with TRUE), or, use the system’s local time (FALSE).

Value

A character vector.

Function ID

13-3

See Also

The `affix_datetime()` function provides the same features except it produces a date-time string by default.

Other Utility and Helper Functions: `affix_datetime()`, `col_schema()`, `from_github()`, `has_columns()`, `stop_if_not()`

Examples

```r
# Taking the generic `pb_file` name for
# a file, we add the current date to it
# as a suffix
affix_date(filename = "pb_file")

# File extensions won't get in the way:
affix_date(filename = "pb_file.rds")
```
affix_datetime

Put the current date-time into a file name

Description

This function helps to affix the current date-time to a filename. This is useful when writing agent and/or informant objects to disk as part of a continuous process. The date-time string can be based on the current UTC time or the local system time. The date-time can be affixed either to the end of the filename (before the file extension) or at the beginning with a customizable delimiter. Optionally, the time zone information can be included. If the date-time is based on the local system time, the
user system time zone is shown with the format <time>(+/-)hmm. If using UTC time, then the <time>Z format is adopted.

The `x_write_disk()`, `yaml_write()` functions allow for the writing of `pointblank` objects to disk. The modification of the filename string takes effect immediately but not at the time of writing a file to disk. In most cases, especially when using `affix_datetime()` with the aforementioned file-writing functions, the file timestamps should approximate the time components affixed to the filenames.

Usage

```r
affix_datetime(
  filename,
  position = c("end", "start"),
  format = "%Y-%m-%d_%H-%M-%S",
  delimiter = ",",
  utc_time = TRUE,
  add_tz = FALSE
)
```

Arguments

- **filename**
 The filename to modify.

- **position**
 Where to place the formatted date-time. This could either be at the "end" of the filename (the default) or at the "start".

- **format**
 A `base::strptime()` format string for formatting the date-time. By default, this is "%Y-%m-%d%T%H:%M:%S" which expresses the date according to the ISO 8601 standard. For example, if the current date-time is 2020-12-04 13:11:23, the formatted string would become "2020-12-04T13:11:23". Refer to the documentation on `base::strptime()` for conversion specifications if planning to use a different format string.

- **delimiter**
 The delimiter characters to use for separating the date-time string from the original file name.

- **utc_time**
 An option for whether to use the current UTC time to establish the date-time (the default, with `TRUE`), or, use the system’s local time (`FALSE`).

- **add_tz**
 Should the time zone (as an offset from UTC) be provided? If `TRUE` then the UTC offset will be either provided as <time>Z (if `utc_time = TRUE`) or <time>(+/-)hmm. By default, this is `FALSE`.

Value

A character vector.

Function ID

13-4
See Also

The `affix_date()` function provides the same features except it produces a date string by default.

Other Utility and Helper Functions: `affix_date()`, `col_schema()`, `from_github()`, `has_columns()`, `stop_if_not()`

Examples

```r
# Taking the generic 'pb_file' name for
# a file, we add the current date-time to it
# as a suffix
affix_datetime(filename = "pb_file")

# File extensions won't get in the way:
affix_datetime(filename = "pb_file.rds")

# The date-time can be used as a prefix
affix_datetime(  
  filename = "pb_file",  
  position = "start"
)

# The date-time pattern can be changed and so
# can the delimiter
affix_datetime(  
  filename = "pb_file.yml",  
  format = "%Y%m%d_%H%M%S",  
  delimiter = "-"
)

# Time zone information can be included
affix_datetime(  
  filename = "pb_file.yml",  
  add_tz = TRUE
)

if (interactive()) {
  # We can use a file-naming convention
  # involving date-times when writing output
  # files immediately after interrogating;
  # useful when interrogating directly
  # from YAML in a scheduled process
  yaml_agent_interrogate(    
    filename = system.file(      
      "yaml", "agent-small_table.yml",      
      package = "pointblank"
    )
  ) %>%
  x_write_disk(    
    filename = affix_datetime(      
      filename = "small_table_agent.rds",      
      delimiter = "-"
    )
  )
}  
```
Did all of the validations fully pass?

Description

Given an agent’s validation plan that had undergone interrogation via `interrogate()`, did every single validation step result in zero *failing* test units? Using the `all_passed()` function will let us know whether that’s TRUE or not.

Usage

```r
all_passed(agent, i = NULL)
```

Arguments

- `agent` An agent object of class `ptblank_agent`.
- `i` A vector of validation step numbers. These values are assigned to each validation step by `pointblank` in the order of definition. If `NULL` (the default), all validation steps will be used for the evaluation of complete *passing*.

Details

The `all_passed()` function provides a single logical value based on an interrogation performed in the agent-based workflow. For very large-scale validation (where data quality is a known issue, and is perhaps something to be tamed over time) this function is likely to be less useful since it is quite stringent (all test units must pass across all validation steps).

Should there be a requirement for logical values produced from validation, a more flexible alternative is in using the test (`test_*()`) variants of the validation functions. Each of those produce a single logical value and each and have a `threshold` option for failure levels. Another option is to utilize post-interrogation objects within the agent’s x-list (obtained by using the `get_agent_x_list()` function). This allows for many possibilities in producing a single logical value from an interrogation.

Value

A logical value.

Function ID

8-4
col_exists

Do one or more columns actually exist?

Description

The col_exists() validation function, the expect_col_exists() expectation function, and the test_col_exists() test function all check whether one or more columns exist in the target table. The only requirement is specification of the column names. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation step or expectation will operate over a single test unit, which is whether the column exists or not.

Usage

col_exists(
 x,
 columns,
 actions = NULL,
 step_id = NULL,
 label = NULL,
)
brief = NULL,
active = TRUE
)

expect_col_exists(object, columns, threshold = 1)

test_col_exists(object, columns, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns One or more columns from the table in focus. This can be provided as a vector of column names using c() or bare column names enclosed in vars().
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.
Object

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

Threshold

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_exists() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_exists() as a validation step is expressed in R code and in the corresponding YAML representation.
R statement
agent %>%
 col_exists(
 vars(a),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_exists()` step."
 active = FALSE
)

YAML representation
steps:
- col_exists:
 columns: vars(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_exists()` step.
 active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID
2-29

See Also
Other validation functions: `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()``, `tbl_match()`

Examples
For all examples here, we’ll use
a simple table with two columns:
`a` and `b`
tbl <-
 dplyr::tibble(
 a = c(5, 7, 6, 5, 8, 7),
 b = c(7, 1, 0, 0, 0, 3)
)
\# A: Using an `agent` with validation
\# functions and then `interrogate()`

\# Validate that columns `a` and `b`
\# exist in the `tbl` table; this
\# makes two distinct validation
\# steps since two columns were
\# provided to `vars()`
agent <-
create_agent(tbl) %>%
col_exists(vars(a, b)) %>%
interrogate()

\# Determine if this validation
\# had no failing test units (!)
all_passed(agent)

\# Calling `agent` in the console
\# prints the agent's report; but we
\# can get a `gt_tbl` object directly
\# with `get_agent_report(agent)`

\# B: Using the validation function
\# directly on the data (no `agent`)

\# This way of using validation functions
\# acts as a data filter: data is passed
\# through but should `stop()` if there
\# is a single test unit failing; the
\# behavior of side effects can be
\# customized with the `actions` option
nbl %>% col_exists(vars(a, b))

\# C: Using the expectation function

\# With the `expect_*()` form, we need
\# to be more exacting and provide one
\# column at a time; this is primarily
\# used in testthat tests
expect_col_exists(tbl, vars(a))
expect_col_exists(tbl, vars(b))

\# D: Using the test function

\# With the `test_*()` form, we should
\# get a single logical value returned
\# to us (even if there are multiple
\# columns tested, as is the case below)
nbl %>% test_col_exists(vars(a, b))
The col_is_character() validation function, the expect_col_is_character() expectation function, and the test_col_is_character() test function all check whether one or more columns in a table is of the character type. Like many of the col_is_*()-type functions in pointblank, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl.spark). Each validation step or expectation will operate over a single test unit, which is whether the column is a character-type column or not.

Usage

 col_is_character(
 x, columns,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

 expect_col_is_character(object, columns, threshold = 1)

 test_col_is_character(object, columns, threshold = 1)

Arguments

- **x**: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl.spark), or, an agent object of class ptblank_agent that is created with create_agent().
- **columns**: The column (or a set of columns, provided as a character vector) to which this validation should be applied.
- **actions**: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
- **step_id**: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the *agent* report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in *create_agent()*’s `lang` argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d,e)))`. The default for `active` is `TRUE`.

object
A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding *testthat* test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a *ptblank_agent* object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, *tidyselect* helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.
Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_is_`()-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will `stop()`).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()` or interrogate the target table (via `yaml_agent_interrogate()`). When `col_is_character()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_is_character()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
col_is_character(
 vars(a),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The 'col_is_character()' step.",
 active = FALSE
)

YAML representation
steps:
- col_is_character:
 columns: vars(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The 'col_is_character()' step.
 active: false

In practice, both of these will often be shorter as only the `columns` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-22

See Also

Other validation functions: `col_exists()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is POSIX()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `.tbl_match()`

Examples

```r
# For all examples here, we'll use
# a simple table with a numeric column
# ('a') and a character column ('b')
tbl <-
dplyr::tibble(
  a = c(5, 7, 6, 5, 8, 7),
  b = LETTERS[1:6]
)

# A: Using an 'agent' with validation
# functions and then 'interrogate()'

# Validate that column 'b' has the
# 'character' class
agent <-
  create_agent(tbl) %>%
  col_is_character(vars(b)) %>%
  interrogate()

# Determine if this validation
# had no failing test units (!)
all_passed(agent)

# Calling 'agent' in the console
# prints the agent's report; but we
# can get a 'gt_tbl' object directly
# with 'get_agent_report(agent)'

# B: Using the validation function
# directly on the data (no 'agent')

# This way of using validation functions
# acts as a data filter: data is passed
```
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>% col_is_character(vars(b))

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_character(tbl, vars(b))

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
tbl %>% test_col_is_character(vars(b))

col_is_date

Do the columns contain R Date objects?

Description

The `col_is_date()` validation function, the `expect_col_is_date()` expectation function, and the `test_col_is_date()` test function all check whether one or more columns in a table is of the R Date type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over a single test unit, which is whether the column is a Date-type column or not.

Usage

```r
col_is_date(
  x,
  columns,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)
```
col_is_date

```r
expect_col_is_date(object, columns, threshold = 1)

test_col_is_date(object, columns, threshold = 1)
```

Arguments

- `x`: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or an `agent` object of class ptblank_agent that is created with `create_agent()`.
- `columns`: The column (or a set of columns, provided as a character vector) to which this validation should be applied.
- `actions`: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.
- `step_id`: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
- `label`: An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
- `brief`: An optional, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the `agent`, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).
- `active`: A logical value indicating whether the validation step should be active. If the validation function is working with an `agent`, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no `agent` involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %% has_columns(vars(d,e)))`. The default for active is TRUE.
- `object`: A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.
- `threshold`: A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any
The single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_is_date() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_is_date() as a validation step is expressed in R code and in the corresponding YAML representation.

```r
# R statement
agent %>%
```
col_is_date

```
col_is_date(
  vars(a),
  actions = action_levels(warn_at = 0.1, stop_at = 0.2),
  label = "The `col_is_date()` step.",
  active = FALSE
)
```

YAML representation

```
steps:
- col_is_date:
  columns: vars(a)
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
  label: The `col_is_date()` step.
  active: false
```

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-26

See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals.regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

Examples

```
# The `small_table` dataset in the
# package has a `date` column; the
# following examples will validate
# that that column is of the `Date`
# class

# A: Using an `agent` with validation
# functions and then `interrogate`

# Validate that the column `date` has
# the `Date` class
```
agent <-
 create_agent(small_table) %>%
 col_is_date(vars(date)) %>%
 interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
small_table %>%
 col_is_date(vars(date)) %>%
 dplyr::slice(1:5)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_date(
 small_table, vars(date)
)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%
 test_col_is_date(vars(date))

col_is_factor
Do the columns contain R factor objects?
Description

The `col_is_factor()` validation function, the `expect_col_is_factor()` expectation function, and the `test_col_is_factor()` test function all check whether one or more columns in a table is of the factor type. Like many of the `col_is_*()`-type functions in *pointblank*, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an *agent* object (technically, a *ptblank_agent* object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over a single test unit, which is whether the column is a factor-type column or not.

Usage

```r
col_is_factor(
  x,
  columns,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)
```

```r
expect_col_is_factor(object, columns, threshold = 1)
```

```r
test_col_is_factor(object, columns, threshold = 1)
```

Arguments

- **x**
 A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an *agent* object of class `ptblank_agent` that is created with `create_agent()`.

- **columns**
 The column (or a set of columns, provided as a character vector) to which this validation should be applied.

- **actions**
 A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

- **step_id**
 One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and *pointblank* will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

- **label**
 An optional label for the validation step. This label appears in the *agent* report and for the best appearance it should be kept short.
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e)))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_is_"*"()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A **pointblank** agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_is_factor() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_is_factor() as a validation step is expressed in R code and in the corresponding YAML representation.

```r
# R statement
agent %>%
  col_is_factor(
    vars(a),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_is_factor()` step.",
    active = FALSE
  )
```

```yaml
steps:
- col_is_factor:
  columns: vars(a)
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
    label: The `col_is_factor()` step.
    active: false
```

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using yaml_write() (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the yaml_agent_string() function.

Function ID

2-28
See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_valsExpr()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_gt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

Examples

```
# Let's modify the 'f' column in the
# 'small_table' dataset so that the
# values are factors instead of having
# the 'character' class; the following
# examples will validate that the 'f'
# column was successfully mutated and
# now consists of factors
tbl <-
  small_table %>%
  dplyr::mutate(f = factor(f))

# A: Using an 'agent' with validation
#    functions and then 'interrogate()'

# Validate that the column 'f' in the
# 'tbl' object is of the 'factor' class
agent <-
  create_agent(tbl) %>%
  col_is_factor(vars(f)) %>%
  interrogate()

# Determine if this validation
# had no failing test units (1)
all_passed(agent)

# Calling 'agent' in the console
# prints the agent's report; but we
# can get a 'gt_tbl' object directly
# with 'get_agent_report(agent)'

# B: Using the validation function
#    directly on the data (no 'agent')

# This way of using validation functions
# acts as a data filter: data is passed
# through but should 'stop()' if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the 'actions' option
tbl %>%
```
The `col_is_integer()` validation function, the `expect_col_is_integer()` expectation function, and the `test_col_is_integer()` test function all check whether one or more columns in a table is of the integer type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over a single test unit, which is whether the column is an integer-type column or not.

Usage

```r
col_is_integer(
  x,
  columns,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)
```

```r
expect_col_is_integer(object, columns, threshold = 1)
```

```r
test_col_is_integer(object, columns, threshold = 1)
```
Arguments

- **x**: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an *agent* object of class ptblank_agent that is created with `create_agent()`.

- **columns**: The column (or a set of columns, provided as a character vector) to which this validation should be applied.

- **actions**: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

- **step_id**: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

- **label**: An optional label for the validation step. This label appears in the *agent* report and for the best appearance it should be kept short.

- **brief**: An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

- **active**: A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>%.has_columns(vars(d,e)))`. The default for active is `TRUE`.

- **object**: A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

- **threshold**: A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to `1` meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond `1` indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between `0` and `1`) act as a proportional failure threshold, where `0.15` means that `15` percent of failing test units results in an overall test failure.
Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_is_*()`-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will `stop()`).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A `pointblank` agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_is_integer()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_is_integer()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
# R statement
agent %>%
  col_is_integer(
    vars(a),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_is_integer()` step."
  ,
    active = FALSE
  )
```
YAML representation
steps:
 - col_is_integer:
 columns: vars(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_is_integer()` step.
 active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-24

See Also

Other validation functions: `col_exists()`, `col_is_charaeter()`, `col_is_date()`, `col_is_factor()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

Examples

```r
# For all examples here, we'll use
# a simple table with a character
# column (`a`) and a integer column
# (`b`)
tbl <-
dplyr::tibble(
  a = letters[1:6],
  b = 2:7
)

# A: Using an `agent` with validation
# functions and then `interrogate()`

# Validate that column `b` has the
# `integer` class
agent <-
create_agent(tbl) %>%
col_is_integer(vars(b)) %>%
```
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>% col_is_integer(vars(b))

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_integer(tbl, vars(b))

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
tbl %>% test_col_is_integer(vars(b))

col_is_logical

Do the columns contain logical values?

Description

The `col_is_logical()` validation function, the `expect_col_is_logical()` expectation function, and the `test_col_is_logical()` test function all check whether one or more columns in a table is of the logical (TRUE/FALSE) type. Like many of the col_is_*()-type functions in pointblank, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a pointblank_agent object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl.spark`).
Each validation step or expectation will operate over a single test unit, which is whether the column is an logical-type column or not.

Usage

col_is_logical(
 x,
 columns,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_is_logical(object, columns, threshold = 1)

test_col_is_logical(object, columns, threshold = 1)

Arguments

x
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns
The column (or a set of columns, provided as a character vector) to which this validation should be applied.

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_*) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a `pointblank_agent` object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a,col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the `col_is_*()`-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will `stop()`).
Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if \(x \) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_is_logical()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_is_logical()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
# R statement
agent %>%
col_is_logical(
  vars(a),
  actions = action_levels(warn_at = 0.1, stop_at = 0.2),
  label = "The `col_is_logical()` step."
) = FALSE
```

```yaml
# YAML representation
steps:
- col_is_logical:
  columns: vars(a)
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
  label: The `col_is_logical()` step.
  active: false
```

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-25

See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`.
Examples

The `small_table` dataset in the
package has an `e` column which has
logical values; the following examples
will validate that that column is of
the `logical` class

A: Using an `agent` with validation
functions and then `interrogate()`

agent <-
create_agent(small_table) %>%
col_is_logical(vars(e)) %>%
interrogate()

B: Using the validation function
directly on the data (no `agent`)

small_table %>%
col_is_logical(vars(e)) %>%
dplyr::slice(1:5)

C: Using the expectation function

expect_col_is_logical(}
D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%
 test_col_is_logical(vars(e))

col_is_numeric
Do the columns contain numeric values?

Description

The `col_is_numeric()` validation function, the `expect_col_is_numeric()` expectation function, and the `test_col_is_numeric()` test function all check whether one or more columns in a table is of the numeric type. Like many of the `col_is_*()`-type functions in **pointblank**, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over a single test unit, which is whether the column is a numeric-type column or not.

Usage

```r
col_is_numeric(
  x,
  columns,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)
```

```r
expect_col_is_numeric(object, columns, threshold = 1)
```

```r
test_col_is_numeric(object, columns, threshold = 1)
```

Arguments

- `x` A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or an `agent` object of class `ptblank_agent` that is created with `create_agent()`.
columns

The column (or a set of columns, provided as a character vector) to which this validation should be applied.

actions

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief

An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

object

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.
Value
For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names
If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a,col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Actions
Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_is_*()`-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will `stop()`).

Briefs
Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML
A `pointblank` agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_is_numeric()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_is_numeric()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
# R statement
agent %>%
col_is_numeric(
  vars(a),
  actions = action_levels(warn_at = 0.1, stop_at = 0.2),
  label = "The `col_is_numeric()` step.",
  active = FALSE
)
# YAML representation
steps:
  - col_is_numeric:
      columns: vars(a)
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The `col_is_numeric()` step.
      active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-23

See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

Examples

# The `small_table` dataset in the
# package has a `d` column that is
# known to be numeric; the following
# examples will validate that that
# column is indeed of the `numeric`
# class

# A: Using an `agent` with validation
# functions and then `interrogate()`

# Validate that the column `d` has
# the `numeric` class
agent <-
  create_agent(small_table) %>%
  col_is_numeric(vars(d)) %>%
  interrogate()

# Determine if this validation
col_is_posix

Do the columns contain POSIXct dates?

Description

The `col_is_posix()` validation function, the `expect_col_is_posix()` expectation function, and the `test_col_is_posix()` test function all check whether one or more columns in a table is of the R POSIXct date-time type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation
and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation step or expectation will operate over a single test unit, which is whether the column is a POSIXct-type column or not.

Usage

col_is_posix(
  x,
  columns,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_col_is_posix(object, columns, threshold = 1)

test_col_is_posix(object, columns, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
active
A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `. (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d,e)))`. The default for `active` is `TRUE`.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to `1` meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond `1` indicate that any failing units up to that absolute threshold value will result in a succeeding *testthat* test or evaluate to `TRUE`. Likewise, fractional values (between `0` and `1`) act as a proportional failure threshold, where `0.15` means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names
If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a,col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, *tidyselect* helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Actions
Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_is_*()`-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will `stop()`).
Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_isposix() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_isposix() as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
 col_is_posix(
 vars(a),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The \`col_is_posix\` step.",
 active = FALSE
)
```

```yaml
steps:
 - col_is_posix:
 columns: vars(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_is_posix()` step.
 active: false
```

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using yaml_write() (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the yaml_agent_string() function.

Function ID

2-27

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt().
Examples

# The `small_table` dataset in the # package has a `date_time` column; # the following examples will validate # that that column is of the `POSIXct` # and `POSIXt` classes

# A: Using an `agent` with validation # functions and then `interrogate()`
# Validate that the column `date_time` # is indeed a date-time column
agent <-
create_agent(small_table) %>%
col_is_posix(vars(date_time)) %>%
interrogate()

# Determine if this validation # had no failing test units (1)
all_passed(agent)

# Calling `agent` in the console # prints the agent's report; but we # can get a `gt_tbl` object directly # with `get_agent_report(agent)`

# B: Using the validation function # directly on the data (no `agent`)
# This way of using validation functions # acts as a data filter: data is passed # through but should `stop()` if there # is a single test unit failing; the # behavior of side effects can be # customized with the `actions` option
small_table %>%
col_is_posix(vars(date_time)) %>%
dplyr::slice(1:5)

# C: Using the expectation function
# With the `expect_*()` form, we would # typically perform one validation at a # time; this is primarily used in # testthat tests
expect_col_is_posix(

col_is_posix_in_set(), col_is_posix_increasing(), col_is_posix_lte(), col_is_posix_lt(),
col_is_posix_make_set(), col_is_posix_make_subset(), col_is_posix_not_between(), col_is_posix_not_equal(), col_is_posix_not_in_set(),
col_is_posix_not_null(), col_is_posix_null(), col_is_posix_regex(), col_is_posix_within_spec(), col_is_posix_conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match())
small_table, vars(date_time)
)

# D: Using the test function
# With the `test_*()` form, we should
# get a single logical value returned
# to us
small_table %>%
test_col_is_posix(vars(date_time))

---

**Description**

A table column schema object, as can be created by col_schema(), is necessary when using the col_schema.match() validation function (which checks whether the table object under study matches a known column schema). The col_schema object can be made by carefully supplying the column names and their types as a set of named arguments, or, we could provide a table object, which could be of the data.frame, tbl_df, tbl_dbi, or tbl_spark varieties. There’s an additional option, which is just for validating the schema of a tbl_dbi or tbl_spark object: we can validate the schema based on R column types (e.g., "numeric", "character", etc.), SQL column types (e.g., "double", "varchar", etc.), or Spark SQL column types ("DoubleType", "StringType", etc.). This is great if we want to validate table column schemas both on the server side and when tabular data is collected and loaded into R.

**Usage**

```r
col_schema(..., .tbl = NULL, .db_col_types = c("r", "sql"))
```

**Arguments**

- `...` A set of named arguments where the names refer to column names and the values are one or more column types.
- `.tbl` An option to use a table object to define the schema. If this is provided then any values provided to `...` will be ignored. This can either be a table object, a table-prep formula. This can be a table object such as a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, a table-prep formula (~ <table reading code>) or a function (function() <table reading code>) can be used to lazily read in the table at interrogation time.
- `.db_col_types` Determines whether the column types refer to R column types ("r") or SQL column types ("sql").

**Function ID**

13-1
See Also

Other Utility and Helper Functions: `affix_datetime()`, `affix_date()`, `from_github()`, `has_columns()`, `stop_if_not()`

Examples

```r
Create a simple table with two
columns: one `integer` and the
other `character`
tbl <-
dplyr::tibble(
a = 1:5,
b = letters[1:5]
)

Create a column schema object
that describes the columns and
their types (in the expected
order)
schema_obj <-
col_schema(
a = "integer",
b = "character"
)

Validate that the schema object
`schema_obj` exactly defines
the column names and column types
of the `tbl` table
agent <-
create_agent(tbl = tbl) %>%
 col_schema_match(schema_obj) %>%
 interrogate()

Determine if this validation step
passed by using `all_passed()`
all_passed(agent)

We can alternatively create
a column schema object from a
`tbl_df` object
schema_obj <-
col_schema(
 .tbl = dplyr::tibble(
 a = integer(0),
 b = character(0)
)
)

This should provide the same
interrogation results as in the
previous example
```
```r
create_agent(tbl = tbl) %>%
 col_schema_match(schema_obj) %>%
 interrogate() %>%
 all_passed()
```

**col_schema_match**

Do columns in the table (and their types) match a predefined schema?

**Description**

The `col_schema_match()` validation function, the `expect_col_schema_match()` expectation function, and the `test_col_schema_match()` test function all work in conjunction with a `col_schema` object (generated through the `col_schema()` function) to determine whether the expected schema matches that of the target table. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`).

The validation step or expectation operates over a single test unit, which is whether the schema matches that of the table (within the constraints enforced by the `complete`, `in_order`, and `is_exact` options). If the target table is a `tbl_dbi` or a `tbl_spark` object, we can choose to validate the column schema that is based on R column types (e.g., "numeric", "character", etc.), SQL column types (e.g., "double", "varchar", etc.), or Spark SQL types (e.g., "DoubleType", "StringType", etc.). That option is defined in the `col_schema()` function (it is the `.db_col_types` argument).

There are options to make schema checking less stringent (by default, this validation operates with highest level of strictness). With the `complete` option set to `FALSE`, we can supply a `col_schema` object with a partial inclusion of columns. Using `in_order` set to `FALSE` means that there is no requirement for the columns defined in the schema object to be in the same order as in the target table. Finally, the `is_exact` option set to `FALSE` means that all column classes/types don’t have to be provided for a particular column. It can even be `NULL`, skipping the check of the column type.

**Usage**

```r
col_schema_match(
 x,
 schema,
 complete = TRUE,
 in_order = TRUE,
 is_exact = TRUE,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_schema_match(
```
Arguments

- **x**: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an *agent* object of class `ptblank_agent` that is created with `create_agent()`.
- **schema**: A table schema of type `col_schema` which can be generated using the `col_schema()` function.
- **complete**: A requirement to account for all table columns in the provided schema. By default, this is `TRUE` and so that all column names in the target table must be present in the schema object. This restriction can be relaxed by using `FALSE`, where we can provide a subset of table columns in the schema.
- **in_order**: A stringent requirement for enforcing the order of columns in the provided schema. By default, this is `TRUE` and the order of columns in both the schema and the target table must match. By setting to `FALSE`, this strict order requirement is removed.
- **is_exact**: Determines whether the check for column types should be exact or even performed at all. For example, columns in R data frames may have multiple classes (e.g., a date-time column can have both the "POSIXct" and the "POSIXt" classes). If using `is_exact == FALSE`, the column type in the user-defined schema for a date-time value can be set as either "POSIXct" or "POSIXt" and pass validation (with this column, at least). This can be taken a step further and using `NULL` for a column type in the user-defined schema will skip the validation check of a column type. By default, `is_exact` is set to `TRUE`.
- **actions**: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.
- **step_id**: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step.
index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

**brief**

An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it's often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

**object**

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the 
warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are 
good choices depending on the situation (the first produces a warning, the other stop())s).

**Briebs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an 
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want 
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be 
automatically generated.

**YAML**

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can 
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via 
yaml_agent_interrogate()). When col_schema_match() is represented in YAML (under the 
top-level steps key as a list member), the syntax closely follows the signature of the validation 
function. Here is an example of how a complex call of col_schema_match() as a validation step is 
expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
col_schema_match(
 schema = col_schema(
 a = "integer",
 b = "character"
),
 complete = FALSE,
 in_order = FALSE,
 is_exact = FALSE,
 actions = action_levels(stop_at = 1),
 label = "The `col_schema_match()` step.",
 active = FALSE
)

YAML representation
steps:
- col_schema_match:
 schema:"/
 a: integer
 b: character
 complete: false
 in_order: false
 is_exact: false
 actions:
 stop_count: 1.0
 label: The `col_schema_match()` step.
 active: false
```
In practice, both of these will often be shorter as only the schema argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Function ID**

2-30

**See Also**

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`., `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

**Examples**

# For all examples here, we'll use
# a simple table with two columns:
# one 'integer' ('a') and the other
# 'character' ('b'); the following
# examples will validate that the
# table columns abides match a schema

# object as created by `col_schema()`
tbl <-
dplyr::tibble(
a = 1:5,
b = letters[1:5]
)
tbl

tbl

# Create a column schema object with
# the helper function `col_schema()`
# that describes the columns and
# their types (in the expected order)
schema_obj <-
col_schema(
a = "integer",
b = "character"
)

# A: Using an 'agent' with validation
# functions and then 'interrogate'`

# Validate that the schema object
# 'schema_obj' exactly defines
# the column names and column types
agent <-
  create_agent(tbl) %>%
  col_schema_match(schema_obj) %>%
  interrogate()

# Determine if this validation
# had no failing test units (there is
# a single test unit governed by
# whether there is a match)
all_passed(agent)

# Calling `agent` in the console
# prints the agent's report; but we
# can get a `gt_tbl` object directly
# with `get_agent_report(agent)`

# B: Using the validation function
# directly on the data (no `agent`

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the `actions` option
tbl %>% col_schema_match(schema_obj)

# C: Using the expectation function

# With the `expect_*()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests
expect_col_schema_match(tbl, schema_obj)

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us
tbl %>% test_col_schema_match(schema_obj)

col_vals_between  Do column data lie between two specified values or data in other columns?

Description

The `col_vals_between()` validation function, the `expect_col_vals_between()` expectation function, and the `test_col_vals_between()` test function all check whether column values in a table
The range specified with three arguments: left, right, and inclusive. The left and right values specify the lower and upper bounds. The bounds can be specified as single, literal values or as column names given in `vars()`. The inclusive argument, as a vector of two logical values relating to left and right, states whether each bound is inclusive or not. The default is `c(TRUE, TRUE)`, where both endpoints are inclusive (i.e., [left, right]). For partially-unbounded versions of this function, we can use the `col_vals_lt()`, `col_vals_lte()`, `col_vals_gt()`, or `col_vals_gte()` validation functions. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_between(
x,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
)
```

```r
expect_col_vals_between(
object,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1
)
```

```r
test_col_vals_between(
object,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
```
**Arguments**

- **x**: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an `agent` object of class ptblank_agent that is created with `create_agent()`.  
- **columns**: The column (or a set of columns, provided as a character vector) to which this validation should be applied.  
- **left**: The lower bound for the range. The validation includes this bound value (if the first element in `inclusive` is TRUE) in addition to values greater than `left`. This can be a single value or a compatible column given in `vars()`.  
- **right**: The upper bound for the range. The validation includes this bound value (if the second element in `inclusive` is TRUE) in addition to values lower than `right`. This can be a single value or a compatible column given in `vars()`.  
- **inclusive**: A two-element logical value that indicates whether the `left` and `right` bounds should be inclusive. By default, both bounds are inclusive.  
- **na_pass**: Should any encountered NA values be considered as passing test units? This is by default `FALSE`. Set to `TRUE` to give NAs a pass.  
- **preconditions**: An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)`) or as a function (e.g., `function(x) dplyr::mutate(x,col = col + 10)`). See the Preconditions section for more information.  
- **segments**: An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.  
- **actions**: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.  
- **step_id**: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.  
- **label**: An optional label for the validation step. This label appears in the `agent` report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where .15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., vars(\texttt{col\_a}, \texttt{col\_b}) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.
Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).
**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an \textit{agent}. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The \textit{autobrief} protocol is kicked in when \( \text{brief} = \text{NULL} \) and a simple brief will then be automatically generated.

**YAML**

A \texttt{pointblank} agent can be written to YAML with \texttt{yaml_write()} and the resulting YAML can be used to regenerate an agent (with \texttt{yaml_read_agent()}) or interrogate the target table (via \texttt{yaml_agent_interrogate()}). When \texttt{col_vals_between()} is represented in YAML (under the top-level \texttt{steps} key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of \texttt{col_vals_between()} as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
 col_vals_between(
 columns = vars(a),
 left = 1,
 right = 2,
 inclusive = c(TRUE, FALSE),
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_vals_between()` step.",
 active = FALSE
)

YAML representation
steps:
- col_vals_between:
 columns: vars(a)
 left: 1.0
 right: 2.0
 inclusive:
 - true
 - false
 na_pass: true
 preconditions: ~ . %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_between()` step.
 active: false
```
In practice, both of these will often be shorter as only the columns, left, and right arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Function ID**

2-7

**See Also**

The analogue to this function: `col_vals_not_between()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

**Examples**

# The `small_table` dataset in the # package has a column of numeric # values in `c` (there are a few NAs # in that column); the following # examples will validate the values # in that numeric column

# A: Using an `agent` with validation # functions and then `interrogate()`

# Validate that values in column `c` # are all between `1` and `9`; because # there are NA values, we’ll choose to # let those pass validation by setting # `na_pass = TRUE`  
agent <-
  create_agent(small_table) %>%
  col_vals_between(
    vars(c), 1, 9, na_pass = TRUE
  ) %>%
  interrogate()

# Determine if this validation # had no failing test units (there # are 13 test units, one for each row)
all_passed(agent)

# Calling `agent` in the console
# prints the agent’s report; but we
# can get a 'gt_tbl' object directly
# with 'get_agent_report(agent)'

# B: Using the validation function
# directly on the data (no `agent`)

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the `actions` option
small_table %>%
col_vals_between(  
  vars(c), 1, 9, na_pass = TRUE
) %>%
dplyr::pull(c)

# C: Using the expectation function

# With the `expect_*()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests
expect_col_vals_between(  
  small_table, vars(c), 1, 9,
  na_pass = TRUE
)

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us
small_table %>%
test_col_vals_between(  
  vars(c), 1, 9,
  na_pass = TRUE
)

# An additional note on the bounds for
# this function: they are inclusive by
# default (i.e., values of exactly 1
# and 9 will pass); we can modify the
# inclusiveness of the upper and lower
# bounds with the `inclusive` option,
# which is a length-2 logical vector

# Testing with the upper bound being
# non-inclusive, we get 'FALSE' since
# two values are '9' and they now fall
# outside of the upper (or right) bound
col_vals_decreasing

Are column data decreasing by row?

Description

The `col_vals_decreasing()` validation function, the `expect_col_vals_decreasing()` expectation function, and the `test_col_vals_decreasing()` test function all check whether column values in a table are decreasing when moving down a table. There are options for allowing NA values in the target column, allowing stationary phases (where consecutive values don’t change), and even on for allowing increasing movements up to a certain threshold. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_decreasing(
 x,
 columns,
 allow_stationary = FALSE,
 increasing_tol = NULL,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_vals_decreasing(
 object,
 columns,
 allow_stationary = FALSE,
 increasing_tol = NULL,
 na_pass = FALSE,
 ...)
```


```r
preconditions = NULL,
threshold = 1
)

test_col_vals_decreasing(
 object,
columns,
allow_stationary = FALSE,
increasing_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
threshold = 1
)
```

**Arguments**

- **x**
  - A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with `create_agent()`.

- **columns**
  - The column (or a set of columns, provided as a character vector) to which this validation should be applied.

- **allow_stationary**
  - An option to allow pauses in decreasing values. For example if the values for the test units are [85, 82, 82, 80, 77] then the third unit (82, appearing a second time) would be marked with *fail* when `allow_stationary` is `FALSE` (the default). Using `allow_stationary = TRUE` will result in all the test units in [85, 82, 82, 80, 77] to be marked with *pass*.

- **increasing_tol**
  - An optional threshold value that allows for movement of numerical values in the positive direction. By default this is `NULL` but using a numerical value with set the absolute threshold of positive travel allowed across numerical test units. Note that setting a value here also has the effect of setting `allow_stationary` to `TRUE`.

- **na_pass**
  - Should any encountered NA values be considered as passing test units? This is by default `FALSE`. Set to `TRUE` to give NAs a pass.

- **preconditions**
  - An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)` or as a function (e.g., `function(x) dplyr::mutate(x,col = col + 10)`). See the *Preconditions* section for more information.

- **segments**
  - An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the *Segments* section for more details on this.

- **actions**
  - A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.
Column Names

If providing multiple column names to `cols`, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Missing Values

This validation function supports special handling of `NA` values. The `na_pass` argument will determine whether an `NA` value appearing in a test unit should be counted as a `pass` or a `fail`. The default of `na_pass = FALSE` means that any `NAs` encountered will accumulate failing test units.

Preconditions

Providing expressions as `preconditions` means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an `agent`-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where `preconditions` is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided `R` formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

Segments

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple `columns` specified then the potential number of validation steps will be `m` columns multiplied by `n` segments resolved.

Segmentation will always occur after `preconditions` (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when \( x \) is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_decreasing()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_decreasing()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
 col_vals_decreasing(
 columns = vars(a),
 allow_stationary = TRUE,
 increasing_tol = 0.5,
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_vals_decreasing()` step.",
 active = FALSE
) %>% yaml_agent_string()
```

```yaml
YAML representation
steps:
- col_vals_decreasing:
 columns: vars(a)
```
allow_stationary: true
increasing_tol: 0.5
na_pass: true
preconditions: %.>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
  warn_fraction: 0.1
  stop_fraction: 0.2
label: The `col_vals_decreasing()` step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-14

See Also

The analogous function that moves in the opposite direction: `col_vals_increasing()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

Examples

```r
The `game_revenue` dataset in # the package has the column # `session_start`, which contains # date-time values; let's create # a column of difftime values (in # `time_left`) that describes the # time remaining in the month # relative to the session start
game_revenue_2 <- game_revenue %>%
dplyr::mutate(
 time_left =
 lubridate::ymd_hms(
 "2015-02-01 00:00:00"
) - session_start
)
```
# Let’s ensure that the difftime values in the new `time_left` column has values that are decreasing from top to bottom

# A: Using an `agent` with validation functions and then `interrogate()`

# Validate that all difftime values in the column `time_left` are decreasing, and, allow for repeating values (`allow_stationary` will be set to `TRUE`)
agent <-
create_agent(game_revenue_2) %>%
col_vals_decreasing(
  vars(time_left),
  allow_stationary = TRUE
) %>%
interrogate()

# Determine if this validation had no failing test units (there are 2000 test units)
all_passed(agent)

# Calling `agent` in the console
# prints the agent’s report; but we can get a `gt_tbl` object directly with `get_agent_report(agent)`

# B: Using the validation function directly on the data (no `agent`)

# This way of using validation functions acts as a data filter: data is passed through but should `stop()` if there is a single test unit failing; the behavior of side effects can be customized with the `actions` option

# With the `expect_()` form, we would
# typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_decreasing(
  game_revenue_2,
  vars(time_left),
  allow_stationary = TRUE
)

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us
game_revenue_2 %>%
test_col_vals_decreasing(
  vars(time_left),
  allow_stationary = TRUE
)

---

col_vals_equal

### Description

Are column data equal to a fixed value or data in another column?

The `col_vals_equal()` validation function, the `expect_col_vals_equal()` expectation function, and the `test_col_vals_equal()` test function all check whether column values in a table are equal to a specified value. The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

### Usage

```r
col_vals_equal(
 x,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
)```
\begin{verbatim}
 active = TRUE

 expect_col_vals_equal(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

 test_col_vals_equal(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
\end{verbatim}

Arguments

\begin{itemize}
 \item \textbf{x} A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
 \item \textbf{columns} The column (or a set of columns, provided as a character vector) to which this validation should be applied.
 \item \textbf{value} A value used for this test of equality. This can be a single value or a compatible column given in vars(). Any column values equal to what is specified here will pass validation.
 \item \textbf{na_pass} Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
 \item \textbf{preconditions} An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading \(\sim \) (e.g., \(\sim \% \% \text{dplyr}::\text{mutate} \left(\text{col} = \text{col} + 10 \right) \)) or as a function (e.g., \(\text{function}(x) \% \% \text{dplyr}::\text{mutate}(x, \text{col} = \text{col} + 10) \)). See the Preconditions section for more information.
 \item \textbf{segments} An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
 \item \textbf{actions} A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
 \item \textbf{step_id} One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distin-
\end{itemize}
col_vals_equal

guish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_) and the test(test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names
If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Missing Values

This validation function supports special handling of NA values. The `na_pass` argument will determine whether an NA value appearing in a test unit should be counted as a **pass** or a **fail**. The default of `na_pass = FALSE` means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means **pointblank** will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

Segments

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be `m` columns multiplied by `n` segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.
Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A [pointblank](#) agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_equal()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_equal()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
# R statement
agent %>%
  col_vals_equal(
    columns = vars(a),
    value = 1,
    na_pass = TRUE,
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The \`col_vals_equal\` step.",
    active = FALSE
  )
# YAML representation
steps:
- col_vals_equal:
    columns: vars(a)
    value: 1.0
    na_pass: true
    preconditions: ~ . %>% dplyr::filter(a < 10)
    segments: b ~ c("group_1", "group_2")```
actions:
  warn_fraction: 0.1
  stop_fraction: 0.2
  label: The `col_vals_equal()` step.
  active: false

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-3

See Also

The analogue to this function: `col_vals_not_equal()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

Examples

# For all of the examples here, we'll use a simple table with three numeric # columns (`a`, `b`, and `c`) and three # character columns (`d`, `e`, and `f`)
tbl <-
  dplyr::tibble(
    a = c(5, 5, 5, 5, 5, 5),
    b = c(1, 1, 1, 2, 2, 2),
    c = c(1, 1, 1, 2, 2, 2),
    d = LETTERS[c(1:3, 5:7)],
    e = LETTERS[c(1:6)],
    f = LETTERS[c(1:6)]
  )

tbl

# A: Using an `agent` with validation # functions and then `interrogate()`

# Validate that values in column `a` # are all equal to the value of `5`
agent <-
```r
create_agent(tbl) %>%
 col_vals_equal(vars(a), 5) %>%
 interrogate()

Determine if this validation
had no failing test units (there
are 6 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option

col_vals_expr

C: Using the expectation function
With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_equal(tbl, vars(a), 5)

D: Using the test function
With the `test_*()` form, we should
get a single logical value returned
to us

test_col_vals_equal(tbl, vars(a), 5)
```

<table>
<thead>
<tr>
<th>col_vals_expr</th>
<th>Do column data agree with a predicate expression?</th>
</tr>
</thead>
</table>

**Description**

The `col_vals_expr()` validation function, the `expect_col_vals_expr()` expectation function, and the `test_col_vals_expr()` test function all check whether column values in a table agree...
with a user-defined predicate expression. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_expr(
 x,
 expr,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)
test_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)
```

**Arguments**

- `x`: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
- `expr`: An expression to use for this validation. This can either be in the form of a call made with the expr() function or as a one-sided R formula (using a leading ~).
- `preconditions`: An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the **Preconditions** section for more information.
- `segments`: An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the **Segments** section for more details on this.
- `actions`: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
- `step_id`: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

**brief**

An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (stil reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

**object**

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

### Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

### Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).
Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when \( \text{brief} = \text{NULL} \) and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_expr()` is represented in YAML (under the top-level `steps` key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_expr()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
 col_vals_expr(
 expr = ~ a %% 1 == 0,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The /grave.Var\ col_vals_expr/grave.Var step.",
 active = FALSE
)

YAML representation
steps:
- col_vals_expr:
 expr: ~a%1 == 0
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_expr` step.
 active: false
```

In practice, both of these will often be shorter as only the `expr` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-19
See Also

These reexported functions (from rlang and dplyr) work nicely within col_vals_expr() and its variants: rlang::expr(), dplyr::between(), and dplyr::case_when().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_gte(), col_vals_gt(), col_vals_in_set(), col_vals_increasing(), col_vals_lte(), col_vals_lt(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

# For all of the examples here, we’ll
# use a simple table with three numeric
# columns (‘a’, ‘b’, and ‘c’) and three
# character columns (‘d’, ‘e’, and ‘f’)
tbl <-
dplyr::tibble(
  a = c(1, 2, 1, 7, 8, 6),
  b = c(0, 0, 0, 1, 1, 1),
  c = c(0.5, 0.3, 0.8, 1.4, 1.9, 1.2),
)
tbl

# A: Using an ‘agent’ with validation
#   functions and then ‘interrogate()’

# Validate that values in column ‘a’
# are integer-like by using the R modulo
# operator and expecting ‘0’
agent <-
create_agent(tbl) %>%
col_vals_expr(expr(a %% 1 == 0)) %>%
interrogate()

# Determine if this validation
# had no failing test units (there
# are 6 test units, one for each row)
all_passed(agent)

# Calling ‘agent’ in the console
# prints the agent’s report; but we
# can get a ‘gt_tbl’ object directly
# with ‘get_agent_report(agent)’

# B: Using the validation function
#   directly on the data (no ‘agent’)

# This way of using validation functions
col_vals_gt

# acts as a data filter: data is passed through but should `stop()` if there is a single test unit failing; the behavior of side effects can be customized with the `actions` option

tbl %>%
col_vals_expr(expr(a %% 1 == 0)) %>%
dplyr::pull(a)

# C: Using the expectation function

# With the `expect_*()` form, we would typically perform one validation at a time; this is primarily used in testthat tests
expect_col_vals_expr(tbl, ~ a %% 1 == 0)

# D: Using the test function

# With the `test_*()` form, we should get a single logical value returned to us

test_col_vals_expr(tbl, ~ a %% 1 == 0)

# Variations

# We can do more complex things by taking advantage of the `case_when()` and `between()` functions (available for use in the pointblank package)
tbl %>%
test_col_vals_expr(~ case_when(
  b == 0 ~ a %>% between(0, 5) & c < 1,  
  b == 1 ~ a > 5 & c >= 1
))

# If you only want to test a subset of rows, then the `case_when()` statement doesn't need to be exhaustive; any rows that don't fall into the cases will be pruned (giving us less test units overall)
tbl %>%
test_col_vals_expr(~ case_when(
  b == 1 ~ a > 5 & c >= 1
))
Description

The `col_vals_gt()` validation function, the `expect_col_vals_gt()` expectation function, and the `test_col_vals_gt()` test function all check whether column values in a table are greater than a specified value (the exact comparison used in this function is `col_val > value`). The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_gt(
 x,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_vals_gt(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_gt(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```
Arguments

x  
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an `agent` object of class ptblank_agent that is created with `create_agent()`.

columns  
The column (or a set of columns, provided as a character vector) to which this validation should be applied.

value  
A value used for this comparison. This can be a single value or a compatible column given in `vars()`. Any column values greater than what is specified here will pass validation.

na_pass  
Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.

preconditions  
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., `~ x %>% dplyr::mutate(col = col + 10)` or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.

segments  
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions  
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

step_id  
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and ptblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label  
An optional label for the validation step. This label appears in the `agent` report and for the best appearance it should be kept short.

brief  
An optional, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the `agent`, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).

active  
A logical value indicating whether the validation step should be active. If the validation function is working with an `agent`, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent
involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %% has_columns(vars(d, e)))`. The default for `active` is `TRUE`.

object  
A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

threshold  
A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an `agent` object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names to `columns`, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Missing Values

This validation function supports special handling of NA values. The `na_pass` argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of `na_pass = FALSE` means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as `preconditions` means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an `agent`-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where `preconditions` is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formulas (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.
YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_gt()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_gt()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
col_vals_gt(
 columns = vars(a),
 value = 1,
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The 'col_vals_gt()' step.",
 active = FALSE
)
```

```yaml
steps:
 - col_vals_gt:
 columns: vars(a)
 value: 1.0
 na_pass: true
 preconditions: ~ . %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The 'col_vals_gt()' step.
 active: false
```

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Function ID**

2-6

**See Also**

The analogous function with a left-closed bound: `col_vals_gte()`.
Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()``

Examples

```r
For all of the examples here, we'll
use a simple table with three numeric
columns (‘a’, ‘b’, and ‘c’) and three
character columns (‘d’, ‘e’, and ‘f’)
tbl <-
dplyr::tibble(
 a = c(5, 5, 5, 5, 5, 5),
 b = c(1, 1, 1, 2, 2, 2),
 c = c(1, 1, 1, 2, 3, 4),
 d = LETTERS[a],
 e = LETTERS[b],
 f = LETTERS[c]
)

tbl
A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column ‘a’
are all greater than the value of ‘4’
agent <-
create_agent(tbl) %>%
 col_vals_gt(vars(a), value = 4) %>%
 interrogate()

Determine if this validation
had no failing test units (there
are 6 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent’s report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no 'agent')

This way of using validation functions
acts as a data filter: data is passed
through but should 'stop()' if there
```
# is a single test unit failing; the
# behavior of side effects can be
# customized with the `actions` option
tbl %>%
col_vals_gt(vars(a), value = 4) %>%
dplyr::pull(a)

# C: Using the expectation function
# With the `expect_*()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests
expect_col_vals_gt(
  tbl, vars(a),
  value = 4
)

# D: Using the test function
# With the `test_*()` form, we should
# get a single logical value returned
# to us
test_col_vals_gt(
  tbl, vars(a),
  value = 4
)

---

**col_vals_gte**

Are column data greater than or equal to a fixed value or data in another column?

**Description**

The `col_vals_gte()` validation function, the `expect_col_vals_gte()` expectation function, and the `test_col_vals_gte()` test function all check whether column values in a table are greater than or equal to a specified value (the exact comparison used in this function is `col_val >= value`). The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_gte(
 x,
```
col_vals_gte
columns, value, na_pass = FALSE, preconditions = NULL, segments = NULL, actions = NULL, step_id = NULL, label = NULL, brief = NULL, active = TRUE
)

expect_col_vals_gte(
  object, columns, value, na_pass = FALSE, preconditions = NULL, threshold = 1
)

test_col_vals_gte(
  object, columns, value, na_pass = FALSE, preconditions = NULL, threshold = 1
)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
value A value used for this comparison. This can be a single value or a compatible column given in vars(). Any column values greater than or equal to what is specified here will pass validation.
na_pass Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.
segments An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

**actions**

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

**step_id**

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

**brief**

An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

**object**

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.
Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names to `columns`, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Missing Values

This validation function supports special handling of `NA` values. The `na_pass` argument will determine whether an `NA` value appearing in a test unit should be counted as a `pass` or a `fail`. The default of `na_pass = FALSE` means that any `NAs` encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an `agent`-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \( m \)
columns multiplied by \( n \) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the `action_levels()`
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` arg-
ument. This is especially true when \( x \) is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other `stop()`s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an
agent. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want
to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be
automatically generated.

**YAML**

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can
be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via
`yaml_agent_interrogate()`). When `col_vals_gte()` is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of `col_vals_gte()` as a validation step is expressed
in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
 col_vals_gte(
 columns = vars(a),
 value = 1,
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_vals_gte()` step.",
 active = FALSE
)
```
# YAML representation
steps:
  - col_vals_gte:
      columns: vars(a)
      value: 1.0
      na_pass: true
      preconditions: ~. %>% dplyr::filter(a < 10)
      segments: b ~ c("group_1", "group_2")
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The `col_vals_gte()` step.
      active: false

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Function ID**

2.5

**See Also**

The analogous function with a left-open bound: `col_vals_gt()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

**Examples**

```r
For all of the examples here, we'll
use a simple table with three numeric
columns ('a', 'b', and 'c') and three
character columns ('d', 'e', and 'f')
tbl <-
dplyr::tibble(
 a = c(5, 5, 5, 5, 5, 5),
 b = c(1, 1, 1, 2, 2, 2),
 c = c(1, 1, 1, 2, 3, 4),
 d = LETTERS[a],
 e = LETTERS[b],
 f = LETTERS[c]
```
tbl

# A: Using an `agent` with validation functions and then `interrogate()`

# Validate that values in column `a` are all greater than or equal to the value of `5`
agent <-
  create_agent(tbl) %>%
  col_vals_gte(vars(a), 5) %>%
  interrogate()

# Determine if this validation had no failing test units (there are 6 test units, one for each row)
all_passed(agent)

# Calling `agent` in the console prints the agent's report; but we can get a `gt_tbl` object directly with `get_agent_report(agent)`

# B: Using the validation function directly on the data (no `agent`)

# This way of using validation functions acts as a data filter: data is passed through but should `stop()` if there is a single test unit failing; the behavior of side effects can be customized with the `actions` option
tbl %>%
  col_vals_gte(vars(a), 5) %>%
dplyr::pull(a)

# C: Using the expectation function

# With the `expect_*()` form, we would typically perform one validation at a time; this is primarily used in testthat tests
expect_col_vals_gte(tbl, vars(a), 5)

# D: Using the test function

# With the `test_*()` form, we should get a single logical value returned to us
test_col_vals_gte(tbl, vars(a), 5)
**Description**

The `col_vals_increasing()` validation function, the `expect_col_vals_increasing()` expectation function, and the `test_col_vals_increasing()` test function all check whether column values in a table are increasing when moving down a table. There are options for allowing NA values in the target column, allowing stationary phases (where consecutive values don’t change), and even on for allowing decreasing movements up to a certain threshold. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

col_vals_increasing(
  x,
  columns,
  allow_stationary = FALSE,
  decreasing_tol = NULL,
  na_pass = FALSE,
  preconditions = NULL,
  segments = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_col_vals_increasing(
  object,
  columns,
  allow_stationary = FALSE,
  decreasing_tol = NULL,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

test_col_vals_increasing(
  object,
  columns,
  allow_stationary = FALSE,
col_vals_increasing

defaulting_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
threshold = 1
)

Arguments

x
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class pointblank_agent that is created with create_agent()

columns
The column (or a set of columns, provided as a character vector) to which this validation should be applied.

allow_stationary
An option to allow pauses in decreasing values. For example if the values for the test units are [80, 82, 82, 85, 88] then the third unit (82, appearing a second time) would be marked with fail when allow_stationary is FALSE (the default). Using allow_stationary = TRUE will result in all the test units in [80, 82, 85, 88] to be marked with pass.

decreasing_tol
An optional threshold value that allows for movement of numerical values in the negative direction. By default this is NULL but using a numerical value with set the absolute threshold of negative travel allowed across numerical test units. Note that setting a value here also has the effect of setting allow_stationary to TRUE.

na_pass
Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.

preconditions
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**: An optional label for the validation step. This label appears in the *agent* report and for the best appearance it should be kept short.

**brief**: An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in *create_agent()*’s lang argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

**active**: A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function *has_columns()* can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

**object**: A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**: A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding *testthat* test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**

For the validation function, the return value is either a *ptblank_agent* object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Column Names**

If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., *vars(col_a, col_b)* will result in the entry of two validation steps). Aside from column names in quotes and in *vars()*, *tidyselect* helper functions are available for specifying columns. They are: *starts_with()*,*ends_with()*,*contains()*,*matches()*,*and everything()*.
Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

**YAML**

A pointblank agent can be written to YAML with yamll_write() and the resulting YAML can be used to regenerate an agent (with yamll_read_agent()) or interrogate the target table (via yamll_agent_interrogate()). When col_vals_increasing() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_increasing() as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
col_vals_increasing(
 columns = vars(a),
 allow_stationary = TRUE,
 decreasing_tol = 0.5,
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_vals_increasing()` step.",
 active = FALSE
)

YAML representation
steps:
- col_vals_increasing:
 columns: vars(a)
 allow_stationary: true
 decreasing_tol: 0.5
 na_pass: true
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
```
stop_fraction: 0.2
label: The `col_vals_increasing()` step.
active: false

In practice, both of these will often be shorter as only the `columns` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-13

See Also

The analogous function that moves in the opposite direction: `col_vals_decreasing()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

Examples

# The `game_revenue` dataset in
# the package has the column
# `session_start`, which contains
# date-time values; let’s ensure
# that this column has values that
# are increasing from top to bottom

# A: Using an `agent` with validation
# functions and then `interrogate()`

# Validate that all date-time values
# in the column `session_start` are
# increasing, and, allow for repeating
# values (`allow_stationary` will be
# set to `TRUE`)
agent <-
  create_agent(game_revenue) %>%
  col_vals_increasing(
    vars(session_start),
    allow_stationary = TRUE
  ) %>%
  interrogate()

# Determine if this validation
# had no failing test units (there
# are 2000 test units)
all_passed(agent)

# Calling `agent` in the console
# prints the agent's report; but we
# can get a `gt_tbl` object directly
# with `get_agent_report(agent)`

# B: Using the validation function
# directly on the data (no `agent`)

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the `actions` option

game_revenue %>%
col_vals_increasing(
  vars(session_start),
  allow_stationary = TRUE
) %>%
dplyr::select(session_start) %>%
dplyr::distinct() %>%
dplyr::count()

# C: Using the expectation function

# With the `expect_*()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests

expect_col_vals_increasing(
  game_revenue,
  vars(session_start),
  allow_stationary = TRUE
)

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us

test_col_vals_increasing(
  vars(session_start),
  allow_stationary = TRUE
)
col_vals_in_set  Are column data part of a specified set of values?

Description

The `col_vals_in_set()` validation function, the `expect_col_vals_in_set()` expectation function, and the `test_col_vals_in_set()` test function all check whether column values in a table are part of a specified set of values. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
Validation function
col_vals_in_set(
 x,
 columns,
 set,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

Expectation function
expect_col_vals_in_set(
 object,
 columns,
 set,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_in_set(object, columns, set, preconditions = NULL, threshold = 1)
```

Arguments

- **x**: A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an `agent` object of class `ptblank_agent` that is created with `create_agent()`.
- **columns**: The column (or a set of columns, provided as a character vector) to which this validation should be applied.
- **set**: A vector of numeric or string-based elements, where column values found within this set will be considered as passing.
col_vals_in_set

preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

segments An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it's often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**

For the validation function, the return value is either a `pointblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Column Names**

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

**Preconditions**

Providing expressions as preconditions means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `~` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

**Segments**

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it's possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function's documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you'll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that's the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_vals_in_set() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_in_set() as a validation step is expressed in R code and in the corresponding YAML representation.

# R statement
agent %>%
col_vals_in_set(
columns = vars(a),
set = c(1, 2, 3, 4),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_in_set()` step.",
active = FALSE
)
# YAML representation
steps:
- col_vals_in_set:
  columns: vars(a)
  set:
  - 1.0
  - 2.0
  - 3.0
  - 4.0
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
  warn_fraction: 0.1
  stop_fraction: 0.2
label: The `col_vals_in_set()` step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Function ID**

2.9

**See Also**

The analogue to this function: `col_vals_not_in_set()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

**Examples**

```
The `small_table` dataset in the
package will be used to validate that
column values are part of a given set

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column `f`
are all part of the set of values
```
# containing 'low', 'mid', and 'high'
agent <-
create_agent(small_table) %>%
col_vals_in_set(
  vars(f), c("low", "mid", "high")
) %>%
interrogate()

# Determine if this validation
# had no failing test units (there
# are 13 test units, one for each row)
all_passed(agent)

# Calling `agent` in the console
# prints the agent's report; but we
# can get a `gt_tbl` object directly
# with `get_agent_report(agent)`

# B: Using the validation function
# directly on the data (no `agent`)

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the `actions` option
small_table %>%
col_vals_in_set(
  vars(f), c("low", "mid", "high")
) %>%
dplyr::pull(f) %>%
unique()

# C: Using the expectation function

# With the `expect_*()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests
expect_col_vals_in_set(
  small_table,
  vars(f), c("low", "mid", "high")
)

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us
small_table %>%
test_col_vals_in_set(
  vars(f), c("low", "mid", "high")
)
**Description**

The `col_vals_lt()` validation function, the `expect_col_vals_lt()` expectation function, and the `test_col_vals_lt()` test function all check whether column values in a table are less than a specified value (the exact comparison used in this function is `col_val < value`). The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an agent object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_lt(
 x,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_vals_lt(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_lt(
 object,
 columns,
 value,
```
Arguments

\textbf{x} \hspace{1cm} \text{A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class pointblank\_agent that is created with create\_agent().}

\textbf{columns} \hspace{1cm} \text{The column (or a set of columns, provided as a character vector) to which this validation should be applied.}

\textbf{value} \hspace{1cm} \text{A value used for this comparison. This can be a single value or a compatible column given in vars(). Any column values less than what is specified here will pass validation.}

\textbf{na\_pass} \hspace{1cm} \text{Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.}

\textbf{preconditions} \hspace{1cm} \text{An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading \sim{} (e.g., \sim{} \texttt{\%\%} dplyr\_\texttt{\_mutate}(col = \texttt{col + 10}) or as a function (e.g., \texttt{function(x) dplyr\_\texttt{\_mutate(x,col = col + 10)}). See the Preconditions section for more information.}

\textbf{segments} \hspace{1cm} \text{An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.}

\textbf{actions} \hspace{1cm} \text{A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action\_levels() helper function.}

\textbf{step\_id} \hspace{1cm} \text{One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.}

\textbf{label} \hspace{1cm} \text{An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.}

\textbf{brief} \hspace{1cm} \text{An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create\_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).}
active  A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

object  A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold  A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.
The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using \texttt{dplyr} code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided \texttt{R} formula (using a leading `~`). In the formula representation, the \texttt{.} serves as the input data table to be transformed (e.g., `~ . %>% \texttt{dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) \texttt{dplyr::mutate(x, col_b = col_a + 10)}`).

**Segments**

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, \texttt{vars(a_column)} will segment the target table in however many unique values are present in the column called \texttt{a_column}. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using \texttt{a_column ~ c("group_1", "group_2")} will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \texttt{m} columns multiplied by \texttt{n} segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the \texttt{action_levels()} function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the \texttt{warn_at} argument. This is especially true when \texttt{x} is a table object because, otherwise, nothing happens. For the \texttt{col_vals_*()}-type functions, using \texttt{action_levels(warn_at = 0.25)} or \texttt{action_levels(stop_at = 0.25)} are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other \texttt{stop()}s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \texttt{x} is an \texttt{agent}. If that’s the case, \texttt{brief} the agent with some text that fits. Don’t worry if you don’t want to do it. The \texttt{autobrief} protocol is kicked in when \texttt{brief = NULL} and a simple brief will then be automatically generated.
A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_lt()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_lt()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
col_vals_lt(
 columns = vars(a),
 value = 1,
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_vals_lt()` step."
 active = FALSE
)

YAML representation
steps:
- col_vals_lt:
 columns: vars(a)
 value: 1.0
 na_pass: true
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_lt()` step.
 active: false
```

In practice, both of these will often be shorter as only the `columns` and `value` arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Function ID**

2-1

**See Also**

The analogous function with a right-closed bound: `col_vals_lte()`.
Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()

Examples

# For all of the examples here, we'll
# use a simple table with three numeric
# columns (`a`, `b`, and `c`) and three
# character columns (`d`, `e`, and `f`)
tbl <-
dplyr::tibble(
  a = c(5, 5, 5, 5, 5, 5),
  b = c(1, 1, 1, 2, 2, 2),
  c = c(1, 1, 1, 2, 3, 4),
  d = LETTERS[a],
  e = LETTERS[b],
  f = LETTERS[c]
)

tbl

# A: Using an `agent` with validation
# functions and then `interrogate()`

# Validate that values in column `c`
# are all less than the value of `5`
agent <-
create_agent(tbl) %>%
  col_vals_lt(vars(c), 5) %>%
  interrogate()

# Determine if this validation
# had no failing test units (there
# are 6 test units, one for each row)
all_passed(agent)

# Calling `agent` in the console
# prints the agent's report; but we
# can get a `gt_tbl` object directly
# with `get_agent_report(agent)`

# B: Using the validation function
# directly on the data (no `agent`)

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the `actions` option
tbl %>%
col_vals_lt(vars(c), 5) %>%
dplyr::pull(c)

# C: Using the expectation function

# With the `expect_*()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests
expect_col_vals_lt(tbl, vars(c), 5)

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us
test_col_vals_lt(tbl, vars(c), 5)

---

**col_vals_lte**

*A description of the col_vals_lte function*

The `col_vals_lte()` validation function, the `expect_col_vals_lte()` expectation function, and the `test_col_vals_lte()` test function all check whether column values in a table are *less than or equal to* a specified value (the exact comparison used in this function is `col_val <= value`). The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_lte(
 x,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
)```
col_vals_lte

```r
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
)

expect_col_vals_lte(
  object,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

test_col_vals_lte(
  object,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)
```

Arguments

- `x` A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an `agent` object of class ptblank_agent that is created with `create_agent()`.
- `columns` The column (or a set of columns, provided as a character vector) to which this validation should be applied.
- `value` A value used for this comparison. This can be a single value or a compatible column given in `vars()`. Any column values less than or equal to what is specified here will pass validation.
- `na_pass` Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
- `preconditions` An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)` or as a function (e.g., `function(x) dplyr::mutate(x,col = col + 10)`). See the Preconditions section for more information.
- `segments` An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
- `actions` A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief

An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . ## has_columns(vars(d,e))). The default for active is TRUE.

object

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.
Column Names

If providing multiple column names to `columns`, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a, col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Missing Values

This validation function supports special handling of NA values. The `na_pass` argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of `na_pass = FALSE` means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

Segments

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()` or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_lte()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_lte()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
# R statement
given <-
col_vals_lte(
columns = vars(a),
value = 1,
na_pass = TRUE,
preconditions = ~ dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The \texttt{col_vals_lte()} step.",
active = FALSE
)

# YAML representation
steps:
  - col_vals_lte:
      columns: vars(a)
      value: 1.0
```
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
label: The 'col_vals_lte' step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-2

See Also

The analogous function with a right-open bound: `col_vals_lt()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

Examples

For all of the examples here, we'll
use a simple table with three numeric
columns ('a', 'b', and 'c') and three
character columns ('d', 'e', and 'f')
tbl <-
dplyr::tibble(
 a = c(5, 5, 5, 5, 5, 5),
 b = c(1, 1, 1, 2, 2, 2),
 c = c(1, 1, 1, 2, 3, 4),
 d = LETTERS[a],
 e = LETTERS[b],
 f = LETTERS[c]
)

tbl

A: Using an `agent` with validation
functions and then `interrogate()`
Validate that values in column 'c'
are all less than or equal to the
value of '4'
agent <-
 create_agent(tbl) %>%
 col_vals_lte(vars(c), 4) %>%
 interrogate()

Determine if this validation
had no failing test units (there
are 6 test units, one for each row)
all_passed(agent)

Calling 'agent' in the console
prints the agent's report; but we
can get a 'gt_tbl' object directly
with 'get_agent_report(agent)'

B: Using the validation function
directly on the data (no 'agent')

This way of using validation functions
acts as a data filter: data is passed
through but should 'stop()' if there
is a single test unit failing; the
behavior of side effects can be
customized with the 'actions' option
tbl %>%
 col_vals_lte(vars(c), 4) %>%
dplyr::pull(c)

C: Using the expectation function

With the 'expect_*()' form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_lte(tbl, vars(c), 4)

D: Using the test function

With the 'test_*()' form, we should
get a single logical value returned
to us
test_col_vals_lte(tbl, vars(c), 4)
Description

The `col_vals_make_set()` validation function, the `expect_col_vals_make_set()` expectation function, and the `test_col_vals_make_set()` test function all check whether set values are all seen at least once in a table column. A necessary criterion here is that no *additional* values (outside those defined in the set) should be seen (this requirement is relaxed in the `col_vals_make_subset()` validation function and in its expectation and test variants). The validation function can be used directly on a data table or with an *agent* object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of elements in the set plus a test unit reserved for detecting column values outside of the set (any outside value seen will make this additional test unit fail).

Usage

```r
col_vals_make_set(
  x,
  columns,
  set,
  preconditions = NULL,
  segments = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_col_vals_make_set(
  object,
  columns,
  set,
  preconditions = NULL,
  threshold = 1
)

test_col_vals_make_set(
  object,
  columns,
  set,
  preconditions = NULL,
  threshold = 1
)
```

Arguments

- `x` A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or an *agent* object of class `ptblank_agent` that is created with `create_agent()`.
columns
The column (or a set of columns, provided as a character vector) to which this validation should be applied.

set
A vector of elements that is expected to be equal to the set of unique values in the target column.

preconditions
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading \(\sim \) (e.g., \(\sim \) . \%\% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in `create_agent()`’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading \(\sim \) can be used with \(. \) (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., \(\sim \) . \%\% has_columns(vars(d,e))). The default for active is TRUE.
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_make_set()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_make_set()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
# R statement
agent %>%
  col_vals_make_set(
    columns = vars(a),
    set = c(1, 2, 3, 4),
    preconditions = ~ . %>% dplyr::filter(a < 10),
```
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_make_set()` step.",
active = FALSE
)

YAML representation
steps:
- col_vals_make_set:
 columns: vars(a)
 set:
 - 1.0
 - 2.0
 - 3.0
 - 4.0
 preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_make_set()` step.
 active: false

In practice, both of these will often be shorter as only the columns and set arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID
2-11

See Also
Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is POSIX()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

Examples
The `small_table` dataset in the
package will be used to validate that
column values are part of a given set

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column `f`
comprise the values of `low`, `mid`,
and `high`, and, no other values

```r
agent <-
  create_agent(small_table) %>%
  col_vals_make_set(
    vars(f), c("low", "mid", "high")
  ) %>%
  interrogate()
```

Determine if this validation
had no failing test units (there
are 4 test units)

```r
all_passed(agent)
```

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option

```r
small_table %>%
  col_vals_make_set(
    vars(f), c("low", "mid", "high")
  ) %>%
  dplyr::pull(f) %>%
  unique()
```

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests

```r
expect_col_vals_make_set(
  small_table,
  vars(f), c("low", "mid", "high")
)
```

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%
test_col_vals_make_set(
 vars(f), c("low", "mid", "high")
)

col_vals_make_subset
Is a set of values a subset of a column of values?

Description

The `col_vals_make_subset()` validation function, the `expect_col_vals_make_subset()` expectation function, and the `test_col_vals_make_subset()` test function all check whether all set values are seen at least once in a table column. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of elements in the set.

Usage

col_vals_make_subset(
 x,
 columns,
 set,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_vals_make_subset(
 object,
 columns,
 set,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_make_subset(
 object,
 columns,


```r
set,
preconditions = NULL,
threshold = 1
)
```

Arguments

- **x**
 A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an `agent` object of class `ptblank_agent` that is created with `create_agent()`.

- **columns**
 The column (or a set of columns, provided as a character vector) to which this validation should be applied.

- **set**
 A vector of elements that is expected to be a subset of the unique values in the target column.

- **preconditions**
 An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)`) or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the `Preconditions` section for more information.

- **segments**
 An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the `Segments` section for more details on this.

- **actions**
 A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

- **step_id**
 One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of `columns` provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

- **label**
 An optional label for the validation step. This label appears in the `agent` report and for the best appearance it should be kept short.

- **brief**
 An optional, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the `agent`, using the language provided in `create_agent()`’s `lang` argument (which defaults to “en” or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).

- **active**
 A logical value indicating whether the validation step should be active. If the validation function is working with an `agent`, `FALSE` will make the validation
step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_ and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names
If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Preconditions
Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).
Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1","group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when x is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_make_subset()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation
Function. Here is an example of how a complex call of `col_vals_make_subset()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
# R statement
agent %>%
  col_vals_make_subset(
    columns = vars(a),
    set = c(1, 2, 3, 4),
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_vals_make_subset()` step.",
    active = FALSE
  )

# YAML representation
steps:
- col_vals_make_subset:
    columns: vars(a)
    set:
      - 1.0
      - 2.0
      - 3.0
      - 4.0
    preconditions: ~ . %>% dplyr::filter(a < 10)
    segments: b ~ c("group_1", "group_2")
    actions:
      warn_fraction: 0.1
      stop_fraction: 0.2
    label: The `col_vals_make_subset()` step.
    active: false
```

In practice, both of these will often be shorter as only the columns and set arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-12

See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`,
Examples

The `small_table` dataset in the package will be used to validate that column values are part of a given set

A: Using an `agent` with validation functions and then `interrogate()`

Validate that the distinct set of values in column `f` contains at least the subset defined as `low` and `high` (the column actually has both of those and some `mid` values)
agent <-
col_vals_make_subset(
 vars(f), c("low", "high")
) %>%
interrogate()

Determine if this validation had no failing test units (there are 2 test units, one per element in the `set`)
all_passed(agent)

Calling `agent` in the console prints the agent's report; but we can get a `gt_tbl` object directly with `get_agent_report(agent)`

B: Using the validation function directly on the data (no `agent`)

This way of using validation functions acts as a data filter: data is passed through but should `stop()` if there is a single test unit failing; the behavior of side effects can be customized with the `actions` option
small_table %>%
col_vals_make_subset(
 vars(f), c("low", "high")
) %>%
dplyr::pull(f) %>%
unique()

C: Using the expectation function
With the `expect_*()` form, we would typically perform one validation at a time; this is primarily used in testthat tests

```r
expect_col_vals_make_subset(
  small_table,
  vars(f), c("low", "high")
)
```

D: Using the test function

With the `test_*()` form, we should get a single logical value returned to us

```r
small_table %>%
  test_col_vals_make_subset(
    vars(f), c("low", "high")
  )
```

col_vals_not_between
Do column data lie outside of two specified values or data in other columns?

Description

The `col_vals_not_between()` validation function, the `expect_col_vals_not_between()` expectation function, and the `test_col_vals_not_between()` test function all check whether column values in a table *do not* fall within a range. The range specified with three arguments: `left`, `right`, and `inclusive`. The `left` and `right` values specify the lower and upper bounds. The bounds can be specified as single, literal values or as column names given in `vars()`. The `inclusive` argument, as a vector of two logical values relating to `left` and `right`, states whether each bound is inclusive or not. The default is `c(TRUE, TRUE)`, where both endpoints are inclusive (i.e., `[left, right]`). For partially-unbounded versions of this function, we can use the `col_vals_lt()`, `col_vals_lte()`, `col_vals_gt()`, or `col_vals_gte()` validation functions. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_not_between(
  x,
  columns,
  left,
  right,
  inclusive = c(TRUE, TRUE),
)```


```r
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
)

expect_col_vals_not_between(
 object,
 columns,
 left,
 right,
 inclusive = c(TRUE, TRUE),
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_not_between(
 object,
 columns,
 left,
 right,
 inclusive = c(TRUE, TRUE),
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

Arguments

- **x**
 - A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with `create_agent()`.

- **columns**
 - The column (or a set of columns, provided as a character vector) to which this validation should be applied.

- **left, right**
 - The lower (or left) and upper (or right) boundary values for the range. These can be expressed as single values, compatible columns given in `vars()`, or a combination of both. By default, any column values greater than or equal to `left` and less than or equal to `right` will fail validation. The inclusivity of the bounds can be modified by the `inclusive` option.

- **inclusive**
 - A two-element logical value that indicates whether the `left` and `right` bounds should be inclusive. By default, both bounds are inclusive.

- **na_pass**
 - Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.
```
**Preconditions**

An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)`) or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the **Preconditions** section for more information.

**Segments**

An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the **Segments** section for more details on this.

**Actions**

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function.

**Step ID**

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and **pointblank** will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**Label**

An optional label for the validation step. This label appears in the **agent** report and for the best appearance it should be kept short.

**Brief**

An optional, text-based description for the validation step. If nothing is provided here then an **autobrief** is generated by the **agent**, using the language provided in `create_agent()`’s `lang` argument (which defaults to "en" or English). The **autobrief** incorporates details of the validation step so it’s often the preferred option in most cases (where a **label** might be better suited to succinctly describe the validation).

**Active**

A logical value indicating whether the validation step should be active. If the validation function is working with an **agent**, **FALSE** will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no **agent** involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `. (serving as the input data table) to evaluate to a single logical value. With this approach, the **pointblank** function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d,e)))`. The default for `active` is **TRUE**.

**Object**

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**Threshold**

A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.
As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it's own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when x is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A `pointblank` agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_not_between()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_not_between()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
 col_vals_not_between(
 columns = vars(a),
```
left = 1,
right = 2,
inclusive = c(TRUE, FALSE),
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The \texttt{\textbackslash col_vals_not_between()} step.",
active = FALSE
)

# YAML representation
steps:
- col_vals_not_between:
  columns: vars(a)
  left: 1.0
  right: 2.0
  inclusive:
  - true
  - false
  na_pass: true
  preconditions: ~ . %>% dplyr::filter(a < 10)
  segments: b ~ c("group_1", "group_2")
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
  label: The \texttt{\textbackslash col_vals_not_between()} step.
  active: false

In practice, both of these will often be shorter as only the columns, left, and right arguments require values. Arguments with default values won’t be written to YAML when using \texttt{yaml_write()} (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the \texttt{yaml_agent_string()} function.

Function ID

2-8

See Also

The analogue to this function: \texttt{col_vals_between()}.

Other validation functions: \texttt{col_exists()}, \texttt{col_is_character()}, \texttt{col_is_date()}, \texttt{col_is_factor()}, \texttt{col_is_integer()}, \texttt{col_is_logical()}, \texttt{col_is_numeric()}, \texttt{col_is_posix()}, \texttt{col_schema_match()}, \texttt{col_vals_between()}, \texttt{col_vals_decreasing()}, \texttt{col_vals_equal()}, \texttt{col_vals_expr()}, \texttt{col_vals_gte()}, \texttt{col_vals_gt()}, \texttt{col_vals_in_set()}, \texttt{col_vals_increasing()}, \texttt{col_vals_lte()}, \texttt{col_vals_lt()}, \texttt{col_vals_make_set()}, \texttt{col_vals_make_subset()}, \texttt{col_vals_not_equal()}, \texttt{col_vals_not_in_set()}, \texttt{col_vals_not_null()}, \texttt{col_vals_null()}, \texttt{col_vals_regex()}, \texttt{col_vals_within_spec()}, \texttt{conjointly()}, \texttt{row_count_match()}, \texttt{rows_complete()}, \texttt{rows_distinct()}, \texttt{serially()}, \texttt{specially()}, \texttt{tbl_match()}
Examples

# The `small_table` dataset in the
# package has a column of numeric
# values in `c` (there are a few NAs
# in that column); the following
# examples will validate the values
# in that numeric column

# A: Using an `agent` with validation
# functions and then `interrogate()`

# Validate that values in column `c`
# are all between `10` and `20`; because
# there are NA values, we'll choose to
# let those pass validation by setting
# `na_pass = TRUE`
agent <-
col_vals_not_between(
  vars(c), 10, 20, na_pass = TRUE
) %>%
interrogate()

# Determine if this validation
# had no failing test units (there
# are 13 test units, one for each row)
all_passed(agent)

# B: Using the validation function
# directly on the data (no `agent`)

small_table %>%
col_vals_not_between(
  vars(c), 10, 20, na_pass = TRUE
) %>%
dplyr::pull(c)

# C: Using the expectation function

# With the `expect_*(.)` form, we would
# typically perform one validation at a
col_vals_not_equal

Are column data not equal to a fixed value or data in another column?

Description

The `col_vals_not_equal()` validation function, the `expect_col_vals_not_equal()` expectation function, and the `test_col_vals_not_equal()` test function all check whether column values in a table are not equal to a specified value. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used...
include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_not_equal(
 x,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_vals_not_equal(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```

```r
test_col_vals_not_equal(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```

**Arguments**

- `x` A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl.spark), or, an agent object of class ptblank_agent that is created with `create_agent()`.
- `columns` The column (or a set of columns, provided as a character vector) to which this validation should be applied.
- `value` A value used for this test of inequality. This can be a single value or a compatible column given in `vars()`. Any column values not equal to what is specified here will pass validation.
na_pass

Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.

preconditions

An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)` or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.

segments

An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief

An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d,e)))`. The default for active is TRUE.

object

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.
threshold  A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, \texttt{vars(a_column)} will segment the
target table in however many unique values are present in the column called \texttt{a_column}. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmenta-
tion. Using \texttt{a_column \sim c("group_1","group_2")} will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \texttt{m}
columns multiplied by \texttt{n} segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

\textbf{Actions}

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the \texttt{action_levels()}
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
specified as either the fraction of test units failed, or, an absolute value, often using the \texttt{warn_at}
argument. This is especially true when \texttt{x} is a table object because, otherwise, nothing happens. For the
\texttt{col_vals_*()}-type functions, using \texttt{action_levels(warn_at = 0.25)} or \texttt{action_levels(stop_at
= 0.25)} are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other \texttt{stop()}s at the same threshold level).

\textbf{Briefs}

Want to describe this validation step in some detail? Keep in mind that this is only useful if \texttt{x} is an
\texttt{agent}. If that’s the case, \texttt{brief} the agent with some text that fits. Don’t worry if you don’t want
to do it. The \texttt{autobrief} protocol is kicked in when \texttt{brief = NULL} and a simple brief will then be
automatically generated.

\textbf{YAML}

A \texttt{pointblank} agent can be written to YAML with \texttt{yaml_write()} and the resulting YAML can
be used to regenerate an agent (with \texttt{yaml_read_agent()}) or interrogate the target table (via
\texttt{yaml_agent_interrogate()}). When \texttt{col_vals_not_equal()} is represented in YAML (under
the top-level \texttt{steps} key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of \texttt{col_vals_not_equal()} as a validation step
is expressed in R code and in the corresponding YAML representation.

\begin{verbatim}
# R statement
agent %%
\end{verbatim}
col_vals_not_equal

col_vals_not_equal(
  columns = vars(a),
  value = 1,
  na_pass = TRUE,
  preconditions = ~ . %>% dplyr::filter(a < 10),
  segments = b ~ c("group_1", "group_2"),
  actions = action_levels(warn_at = 0.1, stop_at = 0.2),
  label = "The `col_vals_not_equal()` step.",
  active = FALSE
)

# YAML representation
steps:
- col_vals_not_equal:
  columns: vars(a)
  value: 1.0
  na_pass: true
  preconditions: ~. %>% dplyr::filter(a < 10)
  segments: b ~ c("group_1", "group_2")
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
  label: The `col_vals_not_equal()` step.
  active: false

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Function ID**

2.4

**See Also**

The analogue to this function: `col_vals_equal()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

**Examples**

# For all of the examples here, we’ll
# use a simple table with three numeric columns (`a`, `b`, and `c`) and three character columns (`d`, `e`, and `f`)

tbl <-
dplyr::tibble(
  a = c(5, 5, 5, 5, 5, 5),
  b = c(1, 1, 1, 2, 2, 2),
  c = c(1, 1, 2, 2, 2, 2),
  d = LETTERS[c(1:3, 5:7)],
  e = LETTERS[c(1:6)],
  f = LETTERS[c(1:6)]
)

tbl

# A: Using an `agent` with validation functions and then `interrogate()`

# Validate that values in column `a` are all `not` equal to the value of `6`
agent <-
  create_agent(tbl) %>%
  col_vals_not_equal(vars(a), 6) %>%
  interrogate()

# Determine if this validation had no failing test units (there are 6 test units, one for each row)
all_passed(agent)

# Calling `agent` in the console prints the agent's report; but we can get a `gt_tbl` object directly with `get_agent_report(agent)`

# B: Using the validation function directly on the data (no `agent`)

# This way of using validation functions acts as a data filter: data is passed through but should `stop()` if there is a single test unit failing; the behavior of side effects can be customized with the `actions` option

tbl %>%
  col_vals_not_equal(vars(a), 6) %>%
  dplyr::pull(a)

# C: Using the expectation function

# With the `expect_*()` form, we would typically perform one validation at a
col_vals_not_in_set

# time; this is primarily used in
# testthat tests
expect_col_vals_not_equal(tbl, vars(a), 6)

# D: Using the test function

# With the `test_*()` form, we should
# get a single logical value returned
# to us
test_col_vals_not_equal(tbl, vars(a), 6)

---

**col_vals_not_in_set**  Are data not part of a specified set of values?

**Description**

The `col_vals_not_in_set()` validation function, the `expect_col_vals_not_in_set()` expectation function, and the `test_col_vals_not_in_set()` test function all check whether column values in a table are not part of a specified set of values. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

**Usage**

```r
col_vals_not_in_set(
 x,
 columns,
 set,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_vals_not_in_set(
 object,
 columns,
 set,
 preconditions = NULL,
 threshold = 1
)
```
test_col_vals_not_in_set(
  object,
  columns,
  set,
  preconditions = NULL,
  threshold = 1
)

Arguments

x  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class pointblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
set A vector of numeric or string-based elements, where column values found within this set will be considered as failing.
preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.
segments An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred
Option in most cases (where a label might be better suited to succinctly describe the validation).

**active**
A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

**object**
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**
A simple failure threshold value for use with the expectation (expect_...) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding *testthat* test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**
For the validation function, the return value is either a `pointblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Column Names**
If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a,col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, *tidyselect* helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

**Preconditions**
Providing expressions as preconditions means *pointblank* will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an *agent*-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using *dplyr* code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `. %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

**Segments**

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be `m` columns multiplied by `n` segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.
YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_not_in_set()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_not_in_set()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
col_vals_not_in_set(
 columns = vars(a),
 set = c(1, 2, 3, 4),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_vals_not_in_set()` step.",
 active = FALSE
)

YAML representation
steps:
- col_vals_not_in_set:
 columns: vars(a)
 set:
 - 1.0
 - 2.0
 - 3.0
 - 4.0
 preconditions: ~ . %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_not_in_set()` step.
 active: false
```

In practice, both of these will often be shorter as only the columns and set arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-10
See Also

The analogue to this function: `col_vals_not_in_set()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

Examples

# The `small_table` dataset in the
# package will be used to validate that
# column values are not part of a
# given set

# A: Using an `agent` with validation
# functions and then `interrogate()`

# Validate that values in column `f`
# contain none of the values `lows`,
# `mids`, and `highs`
agent <-
create_agent(small_table) %>%
col_vals_not_in_set(  
  vars(f), c("lows", "mids", "highs")
) %>%
interrogate()

# Determine if this validation
# had no failing test units (there
# are 13 test units, one for each row)
all_passed(agent)

# Calling `agent` in the console
# prints the agent's report; but we
# can get a `gt_tbl` object directly
# with `get_agent_report(agent)`

# B: Using the validation function
# directly on the data (no `agent`)

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the `actions` option
small_table %>%
col_vals_not_in_set(  

```r
col_vals_not_null

 vars(f), c("lows", "mids", "highs")
) %>%
dplyr::pull(f) %>%
unique()

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_not_in_set(
 small_table,
 vars(f), c("lows", "mids", "highs")
)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%
test_col_vals_not_in_set(
 vars(f), c("lows", "mids", "highs")
)
```

---

col_vals_not_null  Are column data not NULL/NA?

### Description

The `col_vals_not_null()` validation function, the `expect_col_vals_not_null()` expectation function, and the `test_col_vals_not_null()` test function all check whether column values in a table are not NA values or, in the database context, not NULL values. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

### Usage

```r
col_vals_not_null(
 x,
 columns,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
)```
step_id = NULL,
label = NULL,
b Brief = NULL,
active = TRUE
)

expect_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)

test_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)

Arguments

x: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().
columns: The column (or a set of columns, provided as a character vector) to which this validation should be applied.
preconditions: An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.
segments: An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
actions: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label: An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
b brief: An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
active

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).
Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1","group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when x is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_not_null()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of `col_vals_not_null()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
# R statement
agent %>%
  col_vals_not_null(
    vars(a),
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_vals_not_null()` step.",
    active = FALSE
  )

# YAML representation
steps:
  - col_vals_not_null:
      columns: vars(a)
      preconditions: ~. %>% dplyr::filter(a < 10)
      segments: b ~ c("group_1", "group_2")
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The `col_vals_not_null()` step.
      active: false
```

In practice, both of these will often be shorter as only the `columns` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-16

See Also

The analogue to this function: `col_vals_null()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
Examples

For all examples here, we'll use
a simple table with four columns:
'a', 'b', 'c', and 'd'
tbl <-
 dplyr::tibble(
 a = c(5, 7, 6, 5, 8),
 b = c(7, 1, 0, 0, 0),
 c = c(NA, NA, NA, NA, NA),
 d = c(35, 23, NA, NA, NA)
)

tbl

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that all values in column
'b' are *not* NA (they would be
non-NULL in a database context, which
isn't the case here)
agent <-
 create_agent(tbl) %>%
 col_vals_not_null(vars(b)) %>%
 interrogate()

Determine if this validation
had no failing test units (there
are 5 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the 'actions' option
tbl %>%
 col_vals_not_null(vars(b)) %>%
 dplyr::pull(b)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_null(tbl, vars(b))

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
tbl %>% test_col_vals_not_null(vars(b))

Description

The `col_vals_null()` validation function, the `expect_col_vals_null()` expectation function, and the `test_col_vals_null()` test function all check whether column values in a table are NA values or, in the database context, NULL values. The validation function can be used directly on a data table or with an agent object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r

col_vals_null( 
  x, 
  columns, 
  preconditions = NULL, 
  segments = NULL, 
  actions = NULL, 
  step_id = NULL, 
  label = NULL, 
  brief = NULL, 
  active = TRUE
)

expect_col_vals_null(object, columns, preconditions = NULL, threshold = 1)

test_col_vals_null(object, columns, preconditions = NULL, threshold = 1)
```

Arguments

- **x** A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an agent object of class `ptblank_agent` that is created with `create_agent()`.
columns
The column (or a set of columns, provided as a character vector) to which this validation should be applied.

preconditions
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)` or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.

segments
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d,e)))`. The default for active is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.
threshold

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a `pointblank_agent` object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a,col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Preconditions

Providing expressions as preconditions means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% `dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x,col_b = col_a + 10)`).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.
With a formula, we can be more selective with which column values should be used for segmentation. Using \texttt{a_column \sim c(\"group_1\", \"group_2\")} will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \(m\) columns multiplied by \(n\) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the \texttt{action_levels()} function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the \texttt{warn_at} argument. This is especially true when \(x\) is a table object because, otherwise, nothing happens. For the \texttt{col_vals_*()}-type functions, using \texttt{action_levels(warn_at = 0.25)} or \texttt{action_levels(stop_at = 0.25)} are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other \texttt{stop()}s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if \(x\) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The \texttt{autobrief} protocol is kicked in when \texttt{brief = NULL} and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with \texttt{yaml_write()} and the resulting YAML can be used to regenerate an agent (with \texttt{yaml_read_agent()}) or interrogate the target table (via \texttt{yaml_agent_interrogate()}). When \texttt{col_vals_null()} is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of \texttt{col_vals_null()} as a validation step is expressed in R code and in the corresponding YAML representation.

```r
# R statement
agent %>%
col\_vals\_null(
  vars(a),
  preconditions = ~ . \%\% dplyr::filter(a < 10),
  segments = b \sim c("group\_1", "group\_2"),
  actions = action\_levels(warn\_at = 0.1, stop\_at = 0.2),
  label = "The \`col\_vals\_null\` step.",
  active = FALSE
)
### YAML representation

```yaml
steps:
- col_vals_null:
 columns: vars(a)
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_null` step.
 active: false
```

In practice, both of these will often be shorter as only the `columns` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

### Function ID

2-15

### See Also

The analogue to this function: `col_vals_not_null()`.

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

### Examples

#### For all examples here, we’ll use

#### a simple table with four columns:

`a`, `b`, `c`, and `d`

```r
tbl <-
 dplyr::tibble(
 a = c(5, 7, 6, 5, 8),
 b = c(7, 1, 0, 0, 0),
 c = c(NA, NA, NA, NA, NA),
 d = c(35, 23, NA, NA, NA)
)
```

```r
tbl
```
# A: Using an `'agent` with validation functions and then `interrogate()`

# Validate that all values in column `c` are NA (they would be NULL in a database context, which isn’t the case here)
agent <-
create_agent(tbl) %>%
col_vals_null(vars(c)) %>%
interrogate()

# Determine if this validation had no failing test units (there are 5 test units, one for each row)
all_passed(agent)

# Calling `agent` in the console prints the agent's report; but we can get a `gt_tbl` object directly with `get_agent_report(agent)`

# B: Using the validation function directly on the data (no `agent`)

# This way of using validation functions acts as a data filter: data is passed through but should `stop()` if there is a single test unit failing; the behavior of side effects can be customized with the `actions` option
tbl %>%
col_vals_null(vars(c)) %>%
dplyr::pull(c)

# C: Using the expectation function

# With the `expect_*()` form, we would typically perform one validation at a time; this is primarily used in testthat tests
expect_col_vals_null(tbl, vars(c))

# D: Using the test function

# With the `test_*()` form, we should get a single logical value returned to us
tbl %>% test_col_vals_null(vars(c))
Description

The `col_vals_regex()` validation function, the `expect_col_vals_regex()` expectation function, and the `test_col_vals_regex()` test function all check whether column values in a table correspond to a regex matching expression. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_regex(x, columns, regex, na_pass = FALSE, preconditions = NULL, segments = NULL, actions = NULL, step_id = NULL, label = NULL, brief = NULL, active = TRUE)

expect_col_vals_regex(object, columns, regex, na_pass = FALSE, preconditions = NULL, threshold = 1)

test_col_vals_regex(object, columns, regex, na_pass = FALSE, preconditions = NULL, threshold = 1)
```
Arguments

x  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns  The column (or a set of columns, provided as a character vector) to which this validation should be applied.

regex  A regular expression pattern to test for a match to the target column. Any regex matches to values in the target columns will pass validation.

na_pass  Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.

preconditions  An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

segments  An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions  A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id  One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label  An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief  An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active  A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d,e)))`. The default for active is `TRUE`.

**Value**

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Column Names**

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., `vars(col_a,col_b)` will result in the entry of two validation steps). Aside from column names in quotes and in `vars()`, `tidyselect` helper functions are available for specifying columns. They are: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

**Missing Values**

This validation function supports special handling of NA values. The `na_pass` argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of `na_pass = FALSE` means that any NAs encountered will accumulate failing test units.

**Preconditions**

Providing expressions as `preconditions` means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where `preconditions` is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

Segments

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \( m \) columns multiplied by \( n \) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via
When `col_vals_regex()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_regex()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
 col_vals_regex(
 columns = vars(a),
 regex = "[0-9]-[a-z]{3}-[0-9]{3}",
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The \`col_vals_regex\` step.",
 active = FALSE
)
```

```yaml
steps:
- col_vals_regex:
 columns: vars(a)
 regex: '[0-9]-[a-z]{3}-[0-9]{3}'
 na_pass: true
 preconditions: ~ . %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_regex` step.
 active: false
```

In practice, both of these will often be shorter as only the columns and regex arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Function ID**

2-17

**See Also**

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`. 
Examples

# The `small_table` dataset in the # package has a character-based `b` # column with values that adhere to # a very particular pattern; the # following examples will validate # that that column abides by a regex # pattern

```r
small_table

This is the regex pattern that will # be used throughout
pattern <- ^[0-9][-a-z]{3}^[0-9]{3}$

A: Using an `agent` with validation # functions and then `interrogate()`

Validate that all values in column # `b` match the regex `pattern`
agent <-
col_vals_regex(vars(b), pattern) %>%
interrogate()

Determine if this validation # had no failing test units (there # are 13 test units, one for each row)
all_passed(agent)

Calling `agent` in the console # prints the agent’s report; but we # can get a `gt_tbl` object directly # with `get_agent_report(agent)`

B: Using the validation function # directly on the data (no `agent`)

This way of using validation functions # acts as a data filter: data is passed # through but should `stop()` if there # is a single test unit failing; the # behavior of side effects can be # customized with the `actions` option
small_table %>%
col_vals_regex(vars(b), pattern) %>%
dplyr::slice(1:5)

C: Using the expectation function
With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_regex(
 small_table,
 vars(b), pattern
)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%
 test_col_vals_regex(
 vars(b), pattern
)

col_vals_within_spec *Do values in column data fit within a specification?*

Description

The `col_vals_within_spec()` validation function, the `expect_col_vals_within_spec()` expectation function, and the `test_col_vals_within_spec()` test function all check whether column values in a table correspond to a specification (spec) type (details of which are available in the *Specifications* section). The validation function can be used directly on a data table or with an agent object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_within_spec(
    x, columns, spec, na_pass = FALSE, preconditions = NULL, segments = NULL, actions = NULL, step_id = NULL, label = NULL, brief = NULL,
)```
active = TRUE 
)

expect_col_vals_within_spec(
  object,
  columns,
  spec,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

test_col_vals_within_spec(
  object,
  columns,
  spec,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

Arguments

x
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

columns
The column (or a set of columns, provided as a character vector) to which this validation should be applied.

spec
A specification string. Examples are "email", "url", and "postal[USA]". All options are explained in the Specifications section.

na_pass
Should any encountered NA values be considered as passing test units? This is by default FALSE. Set to TRUE to give NAs a pass.

preconditions
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

segments
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying...
a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**

An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

**brief**

An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

**object**

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

### Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

### Specifications

A specification type must be used with the spec argument. This is a character-based keyword that corresponds to the type of data in the specified columns. The following keywords can be used:
“isbn”: The International Standard Book Number (ISBN) is a unique numerical identifier for books, pamphlets, educational kits, microforms, and digital/electronic publications. The specification has been formalized in ISO 2108. This keyword can be used to validate 10- or 13-digit ISBNs.

“VIN”: A vehicle identification number (VIN) is a unique code (which includes a serial number) used by the automotive industry to identify individual motor vehicles, motorcycles, scooters, and mopeds as stipulated by ISO 3779 and ISO 4030.

“postal_code[<country_code>]”: A postal code (also known as postcodes, PIN, or ZIP codes, depending on region) is a series of letters, digits, or both (sometimes including spaces/punctuation) included in a postal address to aid in sorting mail. Because the coding varies by country, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1 alpha-3) formats needs to be supplied along with the keywords (e.g., for postal codes in Germany, "postal_code[DE]" or "postal_code[DEU]" can be used). The keyword alias "zip" can be used for US ZIP codes.

“credit_card”: A credit card number can be validated and this check works across a large variety of credit type issuers (where card numbers are allocated in accordance with ISO/IEC 7812). Numbers can be of various lengths (typically, they are of 14-19 digits) and the key validation performed here is the usage of the Luhn algorithm.

“iban[<country_code>]”: The International Bank Account Number (IBAN) is a system of identifying bank accounts across different countries for the purpose of improving cross-border transactions. IBAN values are validated through conversion to integer values and performing a basic mod-97 operation (as described in ISO 7064) on them. Because the length and coding varies by country, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1 alpha-3) formats needs to be supplied along with the keywords (e.g., for IBANs in Germany, "iban[DE]" or "iban[DEU]" can be used).

“swift”: Business Identifier Codes (also known as SWIFT-BIC, BIC, or SWIFT code) are defined in a standard format as described by ISO 9362. These codes are unique identifiers for both financial and non-financial institutions. SWIFT stands for the Society for Worldwide Interbank Financial Telecommunication. These numbers are used when transferring money between banks, especially important for international wire transfers.

“phone”, “email”, “url”, “ipv4”, “ipv6”, “mac”: Phone numbers, email addresses, Internet URLs, IPv4 or IPv6 addresses, and MAC addresses can be validated with their respective keywords. These validations use regex-based matching to determine validity.

Only a single spec value should be provided per function call.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of `na_pass = FALSE` means that any NAs encountered will accumulate failing test units.

**Preconditions**

Providing expressions as preconditions means **pointblank** will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an **agent**-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using **dplyr** code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided **R** formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

**Segments**

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1","group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be `m` columns multiplied by `n` segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at
are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

**YAML**

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_within_spec()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_within_spec()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
col_vals_within_spec(
 columns = vars(a),
 spec = "email",
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(b < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The \texttt{col_vals_within_spec()} step.",
 active = FALSE
)
```

```yaml
steps:
- col_vals_within_spec:
 columns: vars(a)
 spec: email
 na_pass: true
 preconditions: ~ . %>% dplyr::filter(b < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_within_spec()` step.
 active: false
```

In practice, both of these will often be shorter as only the columns and spec arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Function ID**

2-18

**See Also**

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

**Examples**

```
The `specifications` dataset in the # package has columns of character data # that correspond to each of the # specifications that can be tested; # the following examples will validate # that the `email_addresses` column # has 5 correct values (this is true if # we get a subset of the data: the first # five rows)
spec_slice <- specifications[1:5,]

A: Using an `agent` with validation # functions and then `interrogate()`
agent <-
 create_agent(spec_slice) %>%
 col_vals_within_spec(#
 vars(email_addresses), #
 spec = "email" #
) %>%
 interrogate()

Determine if this validation # had no failing test units (there # are 5 test units, one for each row)
all_passed(agent)

Calling `agent` in the console # prints the agent's report; but we # can get a `gt_tbl` object directly # with `get_agent_report(agent)`
```
# B: Using the validation function
# directly on the data (no `agent`)

# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the 'actions' option
spec_slice %>%
  col_vals_within_spec(
    vars(email_addresses),
    spec = "email"
  ) %>%
dplyr::select(email_addresses)

# C: Using the expectation function

# With the `expect_()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests
expect_col_vals_within_spec(
  spec_slice, 
  vars(email_addresses),
  spec = "email"
)

# D: Using the test function

# With the `test_()` form, we should
# get a single logical value returned
# to us
spec_slice %>%
test_col_vals_within_spec(
  vars(email_addresses),
  spec = "email"
)

---

**Description**

The `conjointly()` validation function, the `expect_conjointly()` expectation function, and the `test_conjointly()` test function all check whether test units at each index (typically each row) all pass multiple validations. We can use validation functions that validate row units (the `col_vals_` series), check for column existence (`col_exists()`), or validate column type (the `col_is_` series).
Because of the imposed constraint on the allowed validation functions, the ensemble of test units are either comprised rows of the table (after any common preconditions have been applied) or are single test units (for those functions that validate columns).

Each of the functions used in a `conjointly()` validation step (composed using multiple validation function calls) ultimately perform a rowwise test of whether all sub-validations reported a pass for the same test units. In practice, an example of a joint validation is testing whether values for column \( a \) are greater than a specific value while adjacent values in column \( b \) lie within a specified range. The validation functions to be part of the conjoint validation are to be supplied as one-sided R formulas (using a leading `~`, and having a . stand in as the data object). The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table.

**Usage**

```r
conjointly(
 x,
 ...,
 .list = list2(...),
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_conjointly(
 object,
 ...,
 .list = list2(...),
 preconditions = NULL,
 threshold = 1
)
```

```r
test_conjointly(
 object,
 ...,
 .list = list2(...),
 preconditions = NULL,
 threshold = 1
)
```

**Arguments**

- `x`  
  A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an `agent` object of class `ptblank_agent` that is created with `create_agent()`.

- `...`  
  A collection one-sided formulas that consist of validation functions that validate
row units (the col_vals_*() series), column existence (col_exists()), or column type (the col_is_*() series). An example of this is ~ col_vals_gte(., vars(a), 5.5), ~ col_vals_not_null(., vars(b)).

.list
Allows for the use of a list as an input alternative to . . .

preconditions
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.
threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names If providing multiple column names in any of the supplied validation steps, the result will be an expansion of sub-validation steps to that number of column names. Aside from column names in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Preconditions Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x,col_b = col_a + 10)).

Segments By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \( m \) columns multiplied by \( n \) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when \( x \) is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A `pointblank` agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `conjointly()` is represented in YAML (under the top-level `steps` key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `conjointly()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
 conjointly(
 ~ col_vals_lt(., vars(a), 8),
 ~ col_vals_gt(., vars(c), vars(a)),
 ~ col_vals_not_null(., vars(b)),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The \`conjointly\` step.",
 active = FALSE
```
In practice, both of these will often be shorter as only the expressions for validation steps are necessary. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-33

See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()` ,`specially()`, `tbl_match()`

Examples

# For all examples here, we’ll use
# a simple table with three numeric
# columns (‘a’, ‘b’, and ‘c’); this is
# a very basic table but it’ll be more
# useful when explaining things later
tbl <-
dplyr::tibble(
a = c(5, 2, 6),
b = c(3, 4, 6),
c = c(9, 8, 7)
)

```yaml
YAML representation
steps:
- conjointly:
 fns:
 - ~col_vals_lt(., vars(a), 8)
 - ~col_vals_gt(., vars(c), vars(a))
 - ~col_vals_not_null(., vars(b))
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `conjointly()` step.
 active: false
```

Function ID

2-33
# A: Using an `agent` with validation functions and then `interrogate()`

# Validate a number of things on a row-by-row basis using validation functions of the `col_vals*` type (all have the same number of test units): (1) values in `a` are less than `8`, (2) values in `c` are greater than the adjacent values in `a`, and (3) there aren't any NA values in `b`

```r
taget <- create_agent(tbl = tbl) %>%
 conjointly(
 ~ col_vals_lt(., vars(a), value = 8),
 ~ col_vals_gt(., vars(c), value = vars(a)),
 ~ col_vals_not_null(., vars(b))
) %>%
 interrogate()
```

# Determine if this validation had no failing test units (there are 3 test units, one for each row)
```r
all_passed(agent)
```

# Calling `agent` in the console prints the agent's report; but we can get a `gt_tbl` object directly with `get_agent_report(agent)`

# What's going on? Think of there being three parallel validations, each producing a column of `TRUE` or `FALSE` values (`pass` or `fail`) and line them up side-by-side, any rows with any `FALSE` values results in a conjoint `fail` test unit

# B: Using the validation function directly on the data (no `agent`)

# This way of using validation functions acts as a data filter: data is passed through but should `stop()` if there is a single test unit failing; the behavior of side effects can be customized with the `actions` option
```r
tbl %>%
 conjointly(
create_agent

Create a pointblank agent object

Description

The create_agent() function creates an agent object, which is used in a data quality reporting workflow. The overall aim of this workflow is to generate useful reporting information for assessing the level of data quality for the target table. We can supply as many validation functions as the user wishes to write, thereby increasing the level of validation coverage for that table. The agent assigned by the create_agent() call takes validation functions, which expand to validation steps (each one is numbered). This process is known as developing a validation plan.

The validation functions, when called on an agent, are merely instructions up to the point the interrogate() function is called. That kicks off the process of the agent acting on the validation plan and getting results for each step. Once the interrogation process is complete, we can say that the agent has intel. Calling the agent itself will result in a reporting table. This reporting of the interrogation can also be accessed with the get_agent_report() function, where there are more reporting options.
Usage

```r
create_agent(
    tbl = NULL,
    tbl_name = NULL,
    label = NULL,
    actions = NULL,
    end_fns = NULL,
    embed_report = FALSE,
    lang = NULL,
    locale = NULL,
    read_fn = NULL
)
```

Arguments

- **tbl**: The input table. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, an expression can be supplied to serve as instructions on how to retrieve the target table at interrogation-time. There are two ways to specify an association to a target table: (1) as a table-prep formula, which is a right-hand side (RHS) formula expression (e.g., `~ { <table reading code>})), or (2) as a function (e.g., function() { <table reading code>}).

- **tbl_name**: A optional name to assign to the input table object. If no value is provided, a name will be generated based on whatever information is available. This table name will be displayed in the header area of the agent report generated by printing the `agent` or calling `get_agent_report()`.

- **label**: An optional label for the validation plan. If no value is provided, a label will be generated based on the current system time. Markdown can be used here to make the label more visually appealing (it will appear in the header area of the agent report).

- **actions**: A option to include a list with threshold levels so that all validation steps can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function. Should an action levels list be used for a specific validation step, the default set specified here will be overridden.

- **end_fns**: A list of expressions that should be invoked at the end of an interrogation. Each expression should be in the form of a one-sided R formula, so overall this construction should be used: `end_fns = list(~ <R statements>, ~ <R statements>, ...)`. An example of a function included in `pointblank` that can be sensibly used here is `email_blast()`, which sends an email of the validation report (based on a sending condition).

- **embed_report**: An option to embed a `gt`-based validation report into the `ptblank_agent` object. If `FALSE` (the default) then the table object will be not generated and available with the `agent` upon returning from the interrogation.

- **lang**: The language to use for automatic creation of briefs (short descriptions for each validation step) and for the `agent report` (a summary table that provides the validation plan and the results from the interrogation). By default, `NULL` will create English ("en") text. Other options include French ("fr"), German
create_agent

("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

locale

An optional locale ID to use for formatting values in the agent report summary table according the locale's rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").

read_fn

The read_fn argument is deprecated. Instead, supply a table-prep formula or function to tbl.

Value

A ptblank_agent object.

Data Products Obtained from an Agent

A very detailed list object, known as an x-list, can be obtained by using the get_agent_x_list() function on the agent. This font of information can be taken as a whole, or, broken down by the step number (with the i argument).

Sometimes it is useful to see which rows were the failing ones. By using the get_data_extracts() function on the agent, we either get a list of tibbles (for those steps that have data extracts) or one tibble if the validation step is specified with the i argument.

The target data can be split into pieces that represent the 'pass' and 'fail' portions with the get_sundered_data() function. A primary requirement is an agent that has had interrogate() called on it. In addition, the validation steps considered for this data splitting need to be those that operate on values down a column (e.g., the col_vals_*() functions or conjointly()). With these in-consideration validation steps, rows with no failing test units across all validation steps comprise the 'pass' data piece, and rows with at least one failing test unit across the same series of validations constitute the 'fail' piece.

If we just need to know whether all validations completely passed (i.e., all steps had no failing test units), the all_passed() function could be used on the agent. However, in practice, it’s not often the case that all data validation steps are free from any failing units.

While printing an agent will display the agent report in the Viewer, we can alternatively use the get_agent_report() to take advantage of other options (e.g., overriding the language, modifying the arrangement of report rows, etc.), and to return the report as independent objects. For example, with the display_table = TRUE option (the default), get_agent_report() will return a gt table object (“gt_tbl”). If display_table is set to FALSE, we’ll get a data frame back instead.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). Here is an example of how a complex call of create_agent() is expressed in R code and in the corresponding YAML representation.

R statement
create_agent(
tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example.",
 actions = action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
),
 end_fns = list(
 ~ beep::beep(2),
 ~ Sys.sleep(1)
),
 embed_report = TRUE,
 lang = "fr",
 locale = "fr_CA"
)

YAML representation
type: agent
tbl: ~small_table
tbl_name: small_table
label: An example.
lang: fr
locale: fr_CA
actions:
 warn_fraction: 0.1
 stop_fraction: 0.25
 notify_fraction: 0.35
end_fns:
 ~ beep::beep(2)
 ~ Sys.sleep(1)
embed_report: true

In practice, this block of YAML will be shorter since arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). The only requirement for writing the YAML representation of an agent is having tbl specified as table-prep formula.

What typically follows this chunk of YAML is a steps part, and that corresponds to the addition of validation steps via validation functions. Help articles for each validation function have a YAML section that describes how a given validation function is translated to YAML.

Should you need to preview the transformation of an agent to YAML (without any committing anything to disk), use the `yaml_agent_string()` function. If you already have a .yml file that holds an agent, you can get a glimpse of the R expressions that are used to regenerate that agent with `yaml_agent_show_exprs()`.

Writing an Agent to Disk

An agent object can be written to disk with the `x_write_disk()` function. This can be useful for keeping a history of validations and generating views of data quality over time. Agents are stored
in the serialized RDS format and can be easily retrieved with the `x_read_disk()` function. It’s recommended that table-prep formulas are supplied to the `tbl` argument of `create_agent()`. In this way, when an `agent` is read from disk through `x_read_disk()`, it can be reused to access the target table (which may change, hence the need to use an expression for this).

Combining Several Agents in a `multiagent` Object

Multiple `agent` objects can be part of a `multiagent` object, and two functions can be used for this: `create_multiagent()` and `read_disk_multiagent()`. By gathering multiple agents that have performed interrogations in the past, we can get a `multiagent` report showing how data quality evolved over time. This use case is interesting for data quality monitoring and management, and, the reporting (which can be customized with `get_multiagent_report()`) is robust against changes in validation steps for a given target table.

Figures

Function ID

1-2

See Also

Other Planning and Prep: `action_levels()`, `create_informant()`, `db_tbl()`, `draft_validation()`, `file_tbl()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `tbl_store()`, `validate_rmd()`

Examples

```r
# Let's walk through a data quality analysis of an extremely small table;
# it's actually called `small_table` and we can find it as a dataset in this package
small_table

# We ought to think about what's tolerable in terms of data quality so let's designate proportional failure
# thresholds to the `warn`, `stop`, and `notify` states using `action_levels()`
al <-
  action_levels(
    warn_at = 0.10,
    stop_at = 0.25,
    notify_at = 0.35
  )

# Now create a pointblank `agent` object and give it the `al` object (which serves as a default for all validation
```
steps which can be overridden); the
static thresholds provided by `al` will
make the reporting a bit more useful;
we also provide a target table and we'll
use `pointblank::small_table`
agent <-
 create_agent(
 tbl = pointblank::small_table,
 tbl_name = "small_table",
 label = "An example."
 actions = al
)

Then, as with any `agent` object, we
can add steps to the validation plan by
using as many validation functions as we
want; then, we use `interrogate()` to
physically perform the validations and
gather intel
agent <-
 agent %>%
 col_exists(vars(date, date_time)) %>%
 col_vals_regex(vars(b),
 regex = "[0-9]-[a-z]{3}-[0-9]{3}"
) %>%
 rows_distinct() %>%
 col_vals_gt(vars(d), value = 100) %>%
 col_vals_lte(vars(c), value = 5) %>%
 col_vals_equal(vars(d), value = vars(d),
 na_pass = TRUE
) %>%
 col_vals_between(vars(c),
 left = vars(a), right = vars(d),
 na_pass = TRUE
) %>%
 interrogate()

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`
report <- get_agent_report(agent)
class(report)

What can you do with the report object?
Print it from an R Markdown code
chunk, use it in a **blastula** email,
put it in a webpage, etc.

From the report we know that Step
4 had two test units (rows, really)
that failed; we can see those rows
with `get_data_extracts()`
agent %>% get_data_extracts(i = 4)

We can get an x-list for the whole
validation (8 steps), or, just for
the 4th step with `get_agent_x_list()`
xl_step_4 <-
 agent %>% get_agent_x_list(i = 4)

And then we can peruse the different
parts of the list; let's get the
fraction of test units that failed
xl_step_4$f_failed

Just printing the x-list will tell
us what's available therein
xl_step_4

An x-list not specific to any step
will have way more information and a
slightly different structure; see
`?help(get_agent_x_list)` for more info
get_agent_x_list(agent)

create_informant
Create a pointblank informant object

Description

The create_informant() function creates an informant object, which is used in an information management workflow. The overall aim of this workflow is to record, collect, and generate useful information on data tables. We can supply any information that is useful for describing a particular data table. The informant object created by the create_informant() function takes information-focused functions: info_columns(), info_tabular(), info_section(), and info_snippet(). The info_*() series of functions allows for a progressive build up of information about the target table. The info_columns() and info_tabular() functions facilitate the entry of info text that concerns the table columns and the table proper; the info_section() function allows for the creation of arbitrary sections that can have multiple subsections full of additional info text. The system allows for dynamic values culled from the target table by way of info_snippet(), for getting named text extracts from queries, and the use of `{<snippet_name>}` in the info text. To make the use of info_snippet() more convenient for common queries, a set of snip_*() functions are provided in the package (snip_list(), snip_stats(), snip_lowest(), and snip_highest()) though you are free to use your own expressions.

Because snippets need to query the target table to return fragments of info text, the incorporate() function needs to be used to initiate this action. This is also necessary for the informant to update other metadata elements such as row and column counts. Once the incorporation process is
create_informant

create_informant(
 tbl = NULL,
 tbl_name = NULL,
 label = NULL,
 agent = NULL,
 lang = NULL,
 locale = NULL,
 read_fn = NULL
)

Arguments

 tbl The input table. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, an expression can be supplied to serve as instructions on how to retrieve the target table at incorporation-time. There are two ways to specify an association to a target table: (1) as a table-prep formula, which is a right-hand side (RHS) formula expression (e.g., ~ { <table reading code>}), or (2) as a function (e.g., function() { <table reading code>}).

tbl_name A optional name to assign to the input table object. If no value is provided, a name will be generated based on whatever information is available.

 label An optional label for the information report. If no value is provided, a label will be generated based on the current system time. Markdown can be used here to make the label more visually appealing (it will appear in the header area of the information report).

 agent A pointblank agent object. The table from this object can be extracted and used in the new informant instead of supplying a table in tbl.

 lang The language to use for the information report (a summary table that provides all of the available information for the table. By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

 locale An optional locale ID to use for formatting values in the information report according the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").

 read_fn The read_fn argument is deprecated. Instead, supply a table-prep formula or function to tbl.
Value

A pointblank_informant object.

YAML

A pointblank informant can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an informant (with `yaml_read_informant()`) or perform the 'incorporate' action using the target table (via `yaml_informant_incorporate()`). Here is an example of how a complex call of `create_informant()` is expressed in R code and in the corresponding YAML representation.

R statement
create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example.",
 lang = "fr",
 locale = "fr_CA"
)

YAML representation

type: informant
tbl: ~small_table
tbl_name: small_table
info_label: An example.
lang: fr
locale: fr_CA
table:
 name: small_table
 _columns: 8
 _rows: 13.0
 _type: tbl_df
columns:
date_time:
 _type: POSIXct, POSIXt
date:
 _type: Date
a:
 _type: integer
b:
 _type: character
c:
 _type: numeric
d:
 _type: numeric
e:
 _type: logical
f:
The generated YAML includes some top-level keys where `type` and `tbl` are mandatory, and, two metadata sections: `table` and `columns`. Keys that begin with an underscore character are those that are updated whenever `incorporate()` is called on an `informant`. The `table` metadata section can have multiple subsections with `info text`. The `columns` metadata section can similarly have multiple subsections, so long as they are children to each of the column keys (in the above YAML example, `date_time` and `date` are column keys and they match the table’s column names). Additional sections can be added but they must have key names on the top level that don’t duplicate the default set (i.e., `type`, `table`, `columns`, etc. are treated as reserved keys).

Writing an Informant to Disk

An `informant` object can be written to disk with the `x_write_disk()` function. Informants are stored in the serialized RDS format and can be easily retrieved with the `x_read_disk()` function. It’s recommended that table-prep formulas are supplied to the `tbl` argument of `create_informant()`. In this way, when an `informant` is read from disk through `x_read_disk()`, it can be reused to access the target table (which may changed, hence the need to use an expression for this).

Figures

Function ID

1-3

See Also

Other Planning and Prep: `action_levels()`, `create_agent()`, `db_tbl()`, `draft_validation()`, `file_tbl()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `tbl_store()`, `validate_rmd()`

Examples

```r
# Let's walk through how we can
# generate some useful information for a
# really small table; it's actually
# called `small_table` and we can find
# it as a dataset in this package
small_table

# Create a pointblank `informant`
# object with `create_informant()`
# and the `small_table` dataset
informant <-
create_informant(  
tbl = pointblank::small_table,  
tbl_name = "small_table",  
label = "An example."
)
```
This function creates some information without any extra help by profiling the supplied table object; it adds the sections: (1) 'table' and (2) 'columns' and we can print the object to see the information report.

Alternatively, we can get the same report by using `get_informant_report()`:

```r
report <- get_informant_report(informant)
class(report)
```

create_multiagent

Create a **pointblank** multiagent object

Description

Multiple agents can be part of a single object called the **multiagent**. This can be useful when gathering multiple agents that have performed interrogations in the past (perhaps saved to disk with `x_write_disk()`). When be part of a multiagent, we can get a report that shows how data quality evolved over time. This can be of interest when it’s important to monitor data quality and even the evolution of the validation plan itself. The reporting table, generated by printing a `ptblank_multiagent` object or by using the `get_multiagent_report()` function, is, by default, organized by the interrogation time and it automatically recognizes which validation steps are equivalent across interrogations.

Usage

```r
create_multiagent(..., lang = NULL, locale = NULL)
```

Arguments

- `...` One or more **pointblank** agent objects.
- `lang` The language to use for any reporting that will be generated from the **multiagent**. (e.g., individual agent reports, multiagent reports, etc.). By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").
- `locale` An optional locale ID to use for formatting values in the reporting outputs according the locale's rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").

Value

A `ptblank_multiagent` object.
Figures

Function ID
10-1

See Also
Other The multiagent: `get_multiagent_report()`, `read_disk_multiagent()`

Examples

```r
if (interactive()) {
  # Let's walk through several theoretical
  # data quality analyses of an extremely
  # small table; that table is called
  # `small_table` and we can find it as a
  # dataset in this package
  small_table

  # To set failure limits and signal
  # conditions, we designate proportional
  # failure thresholds to the `warn`, `stop`,
  # and `notify` states using `action_levels()`
  al <- action_levels(
    warn_at = 0.05,
    stop_at = 0.10,
    notify_at = 0.20
  )

  # We will create four different agents
  # and have slightly different validation
  # steps in each of them; in the first,
  # `agent_1`, eight different validation
  # steps are created and the agent will
  # interrogate the `small_table`
  agent_1 <- create_agent(
    tbl = small_table,
    label = "An example.",
    actions = al
  )

  col_vals_gt(
    vars(date_time),
    value = vars(date),
    na_pass = TRUE
  )

  col_vals_gt(
    vars(b),
    ...}
```
value = vars(g),
na_pass = TRUE
) %>%
rows_distinct() %>%
col_vals_equal(
 vars(d),
 value = vars(d),
 na_pass = TRUE
) %>%
col_vals_between(
 vars(c),
 left = vars(a), right = vars(d)
) %>%
col_vals_not_between(
 vars(c),
 left = 10, right = 20,
 na_pass = TRUE
) %>%
rows_distinct(vars(d, e, f)) %>%
col_is_integer(vars(a)) %>%
interrogate()

The second agent, `agent_2`, retains
all of the steps of `agent_1` and adds
two more (the last of which is inactive)
agent_2 <-
agent_1 %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(
 vars(b),
 regex = "[0-9]-[a-z][0-9]-[0-9]\d\d\d",
 active = FALSE
) %>%
interrogate()

The third agent, `agent_3`, adds a single
validation step, removes the fifth one,
and deactivates the first
agent_3 <-
agent_2 %>%
col_vals_in_set(
 vars(f),
 set = c("low", "mid", "high")
) %>%
remove_steps(i = 5) %>%
deactivate_steps(i = 1) %>%
interrogate()

The fourth and final agent, `agent_4`.
Reactivates steps 1 and 10, and removes
the sixth step
agent_4 <-
agent_3 %>%
activate_steps(i = 1) %>%
activate_steps(i = 10) %>%
remove_steps(i = 6) %>%
interrogate()

While all the agents are slightly
different from each other, we can still
get a combined report of them by
creating a 'multiagent'
multiagent <-
 create_multiagent(
 agent_1, agent_2, agent_3, agent_4
)

Calling 'multiagent' in the console
prints the multiagent report; but we
can get a 'gt_tbl' object with the
'get_multiagent_report()' function
report <- get_multiagent_report(multiagent)
class(report)

db_tbl

Get a table from a database

Description

If your target table is in a database, the `db_tbl()` function is a handy way of accessing it. This function simplifies the process of getting a `tbl_dbi` object, which usually involves a combination of building a connection to a database and using the `dplyr::tbl()` function with the connection and the table name (or a reference to a table in a schema). You can use `db_tbl()` as the basis for obtaining a database table for the `tbl` parameter in `create_agent()` or `create_informant()`. Another great option is supplying a table-prep formula involving `db_tbl()` to `tbl_store()` so that you have access to database tables though single names via a table store.

The username and password are supplied through environment variable names. If desired, values for the username and password can be supplied directly by enclosing such values in `I()`.

Usage

```r
db_tbl(
  table,
  dbname,
  dbtype,
  host = NULL,
  port = NULL,
  user = NULL,
```
Arguments

table The name of the table, or, a reference to a table in a schema (two-element vector with the names of schema and table). Alternatively, this can be supplied as a data table to copy into an in-memory database connection. This only works if: (1) the db is chosen as either "sqlite" or "duckdb", (2) the dbname was is set to ":memory:", and (3) the object supplied to table is a data frame or a tibble object.

dbname The database name.

dbtype Either an appropriate driver function (e.g., RPostgres::Postgres()) or a short-name for the database type. Valid names are: "postgresql", "postgres", or "pgsql" (PostgreSQL, using the RPostgres::Postgres() driver function); "mysql" (MySQL, using RMySQL::MySQL()); "duckdb" (DuckDB, using duckdb::duckdb()); and "sqlite" (SQLite, using RSQLite::SQLite()).

host, port The database host and optional port number.

user, password The environment variables used to access the username and password for the database.

Value

A tbl_dbi object.

Function ID

1-6

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), draft_validation(), file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

Examples

```r
# You can use an in-memory database
# table and supply an in-memory table
# to it too:
small_table_duckdb <-
  db_tbl(
    table = small_table,
    dbname = ":memory:",
    dbtype = "duckdb"
  )

if (interactive()) {

  # It's also possible to obtain a remote
  # file and shove it into an in-memory
```
database; use the all-powerful
`file_tbl()` + `db_tbl()` combo

all_revenue_large_duckdb <-
 db_tbl(
 table = file_tbl(
 file = from_github(
 file = "all_revenue_large.rds",
 repo = "rich-iannone/intendo",
 subdir = "data-large"
),
 dbname = ":memory:",
 dbtype = "duckdb"
),
 dbname = "":memory:",
 dbtype = "duckdb"
)

For remote databases, it's much the
same; here's an example that accesses
the `rna` table (in the RNA Central
public database) using `db_tbl()`

rna_db_tbl <-
 db_tbl(
 table = "rna",
 dbname = "pfmeqdrnargs",
 dbtype = "postgres",
 host = "hh-pgsq1-public.ebi.ac.uk",
 port = 5432,
 user = I("reader"),
 password = I("NWDMCE5xdlpIjRrp")
)

Using `I()` for the user name and
password means that you're passing in
the actual values but, normally, you
would want use the names of environment
variables (envvars) to securely access
the appropriate username and password
values when connecting to a DB:

example_db_tbl <-
 db_tbl(
 table = "<table_name>",
 dbname = "<database_name>",
 dbtype = "<database_type_shortname>",
 host = "<connection_url>",
 port = "<connection_port>",
 user = "<DB_USER_NAME>",
 password = "<DB_PASSWORD>"
)

Environment variables can be created
by editing the user `.Renviron` file and
the `usethis::edit_r_environ()` function
makes this pretty easy to do
Storing table-prep formulas in a table
store makes it easier to work with DB
tables in pointblank; here's how to
generate a table store with two named
entries for table preparations

tbls <-
tbl_store(
 small_table_duck ~ db_tbl(
 table = pointblank::small_table,
 dbname = "::memory:",
 dbtype = "duckdb"
),
 small_high_duck ~ db_tbl(
 table = pointblank::small_table,
 dbname = "::memory:",
 dbtype = "duckdb"
) %>%
 dplyr::filter(f == "high")
)

Now it's easy to access either of these
tables (the second is a mutated version)
via the `tbl_get()` function
tbl_get("small_table_duck", store = tbls)
tbl_get("small_high_duck", store = tbls)

The table-prep formulas in `tbls`
could also be used in functions with
the `tbl` argument; this is thanks
to the `tbl_source()` function
agent <-
create_agent(
 tbl = ~ tbl_source(
 "small_table_duck",
 store = tbls
)
)

informant <-
create_informant(
 tbl = ~ tbl_source(
 "small_high_duck",
 store = tbls
)
)

deactivate_steps

Deactivate one or more of an agent's validation steps
Description

Should the deactivation of one or more validation steps be necessary after creation of the validation plan for an agent, the `deactivate_steps()` function will be helpful for that. This has the same effect as using the `active = FALSE` option (active is an argument in all validation functions) for the selected validation steps. Please note that this directly edits the validation step, wiping out any function that may have been defined for whether the step should be active or not.

Usage

```r
deactivate_steps(agent, i = NULL)
```

Arguments

- `agent`: An agent object of class `ptblank_agent`.
- `i`: The validation step number, which is assigned to each validation step in the order of definition.

Value

A `ptblank_agent` object.

Function ID

9-6

See Also

For the opposite behavior, use the `activate_steps()` function.

Other Object Ops: `activate_steps()`, `export_report()`, `remove_steps()`, `set_tbl()`, `x_read_disk()`, `x_write_disk()`

Examples

```r
# Create an agent that has the
# `small_table` object as the
# target table, add a few
# validation steps, and then use
# `interrogate()`
agent_1 <-
create_agent(
  tbl = small_table,
  tbl_name = "small_table",
  label = "An example."
) %>%
col_exists(vars(date)) %>%
col_vals_regex(
  vars(b),
  regex = "[0-9-][a-z][3]-[0-9]"
) %>%
interrogate()
```
The second validation step is now being reconsidered and may be either phased out or improved upon; in the interim period it was decided that the step should be deactivated for now

```r
agent_2 <-
  agent_1 %>%
  deactivate_steps(i = 2) %>%
  interrogate()
```

draft_validation *Draft a starter pointblank validation .R/Rmd file with a data table*

Description

Generate a draft validation plan in a new .R or .Rmd file using an input data table. Using this workflow, the data table will be scanned to learn about its column data and a set of starter validation steps (constituting a validation plan) will be written. It’s best to use a data extract that contains at least 1000 rows and is relatively free of spurious data.

Once in the file, it’s possible to tweak the validation steps to better fit the expectations to the particular domain. While column inference is used to generate reasonable validation plans, it is difficult to infer the acceptable values without domain expertise. However, using `draft_validation()` could get you started on floor 10 of tackling data quality issues and is in any case better than starting with an empty code editor view.

Usage

```r
draft_validation(
  tbl,
  tbl_name = NULL,
  file_name = tbl_name,
  path = NULL,
  lang = NULL,
  output_type = c("R", "Rmd"),
  add_comments = TRUE,
  overwrite = FALSE,
  quiet = FALSE
)
```

Arguments

- `tbl`: The input table. This can be a data frame, tibble, a `tbl_dbi` object, or a `tbl_spark` object.
tbl_name A optional name to assign to the input table object. If no value is provided, a name will be generated based on whatever information is available. This table name will be displayed in the header area of the agent report generated by printing the agent or calling get_agent_report().

file_name An optional name for the .R or .Rmd file. This should be a name without an extension. By default, this is taken from the tbl_name but if nothing is supplied for that, the name will contain the text "draft_validation_" followed by the current date and time.

path A path can be specified here if there shouldn’t be an attempt to place the generated file in the working directory.

lang The language to use when creating comments for the automatically-generated validation steps. By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

output_type An option for choosing what type of output should be generated. By default, this is an .R script ("R") but this could alternatively be an R Markdown document ("Rmd").

add_comments Should there be comments that explain the features of the validation plan in the generated document? By default, this is TRUE.

overwrite Should a file of the same name be overwritten? By default, this is FALSE.

quiet Should the function not inform when the file is written? By default this is FALSE.

Value Invisibly returns TRUE if the file has been written.

Function ID 1-11

See Also Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(), file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

Examples

if (interactive()) {

 # Draft validation plan for the
 # `dplyr::storms` dataset
 draft_validation(tbl = dplyr::storms)

}
email_blast

Send email at a validation step or at the end of an interrogation

Description

The email_blast() function is useful for sending an email message that explains the result of a pointblank validation. It is powered by the blastula and glue packages. This function should be invoked as part of the end_fns argument of create_agent(). It’s also possible to invoke email_blast() as part of the fns argument of the action_levels() function (i.e., to send multiple email messages at the granularity of different validation steps exceeding failure thresholds).

To better get a handle on emailing with email_blast(), the analogous email_create() function can be used with a pointblank agent object or an x-list obtained from using the get_agent_x_list() function.

Usage

e-mail_blast(
 x,
 to,
 from,
 credentials = NULL,
 msg_subject = NULL,
 msg_header = NULL,
 msg_body = stock_msg_body(),
 msg_footer = stock_msg_footer(),
 send_condition = ~TRUE %in% x$notify
)

Arguments

x
 A reference to the x-list object prepared internally by the agent. This version of the x-list is the same as that generated via get_agent_x_list(<agent>) except this version is internally generated and hence only available in an internal evaluation context.

to, from
 The email addresses for the recipients and of the sender.

credentials
 A credentials list object that is produced by either of the blastula::creds(), blastula::creds_anonymous(), blastula::creds_key(), or blastula::creds_file() functions. Please refer to the blastula documentation for information on how to use these functions.

msg_subject
 The subject line of the email message.

msg_header, msg_body, msg_footer
 Content for the header, body, and footer components of the HTML email message.
An expression that should evaluate to a logical vector of length 1. If evaluated as `TRUE` then the email will be sent, if `FALSE` then that won’t happen. The expression can use x-list variables (e.g., `x$notify`, `x$type`, etc.) and all of those variables can be explored using the `get_agent_x_list()` function. The default expression is `~TRUE %in% x$notify`, which results in `TRUE` if there are any `TRUE` values in the `x$notify` logical vector (i.e., any validation step results in a ‘notify’ condition).

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()` or interrogate the target table (via `yaml_agent_interrogate()`). Here is an example of how the use of `email_blast()` inside the `end_fns` argument of `create_agent()` is expressed in R code and in the corresponding YAML representation.

```r
# R statement
create_agent(
  tbl = ~ small_table,
  tbl_name = "small_table",
  label = "An example.",
  actions = al,
  end_fns = list(~ email_blast(
    x,
    to = "joe_public@example.com",
    from = "pb_notif@example.com",
    msg_subject = "Table Validation",
    credentials = blastula::creds_key(
      id = "smtp2go"
    ),
  ),
),
) %>%
# YAML representation
type: agent
tbl: ~small_table
tbl_name: small_table
label: An example.
lang: en
locale: en
actions:
  warn_count: 1.0
  notify_count: 2.0
end_fns: ~email_blast(x, to = "joe_public@example.com",
  from = "pb_notif@example.com", msg_subject = "Table Validation",
)
credentials = blastula::creds_key(id = "smtp2go"),
} embed_report: true
steps:
- col_vals_gt:
  columns: vars(a)
  value: 1.0
- col_vals_lt:
  columns: vars(a)
  value: 7.0

Function ID
4-1

See Also
Other Emailing: `email_create()`, `stock_msg_body()`, `stock_msg_footer()`

Examples
```r
Create an `action_levels()` list
with absolute values for the
`warn`, and `notify` states (with
thresholds of 1 and 2 'fail' units)
al <-
 action_levels(
 warn_at = 1,
 notify_at = 2
)

if (interactive()) {
 # Validate that values in column
 # `a` from `small_tbl` are always > 1
 # and that they are always < 7; first,
 # apply the `actions_levels()`
 # directive to `actions` and set up
 # an `email_blast()` as one of the
 # `end_fns` (by default, the email
 # will be sent if there is a single
 # `notify` state across all
 # validation steps)
 agent <-
 create_agent(
 tbl = small_table,
 tbl_name = "small_table",
 label = "An example.",
 actions = al,
 end_fns = list(
 ~ email_blast(
 x,
```
to = "joe_public@example.com",
    from = "pb_notif@example.com",
    msg_subject = "Table Validation",
    credentials = blastula::creds_key(
        id = "smtp2go"
    ),
)
)
)  %>%
col_vals_gt(vars(a), value = 1) %>%
col_vals_lt(vars(a), value = 7) %>%
interrogate()
)
)
  # The above example was intentionally
  # not run because email credentials
  # aren't available and the 'to'
  # and 'from' email addresses are
  # nonexistent

  # To get a blastula email object
  # instead of eagerly sending the
  # message, we can use the
  # 'email_create()' function
  email_object <-
    create_agent(
      tbl = small_table,
      tbl_name = "small_table",
      label = "An example.",
      actions = al
    )  %>%
col_vals_gt(vars(a), value = 5) %>%
col_vals_lt(vars(a), value = 7) %>%
interrogate() %>%
email_create()

---

**email_create**

*Create an email object from a pointblank agent or informant*

**Description**

The `email_create()` function produces an email message object that could be sent using the `blastula` package. The `x` that we need for this could either be a pointblank agent, the `agent` `x-list` (produced from the `agent` with the `get_agent_x_list()` function), or a pointblank informant. In all cases, the email message will appear in the Viewer and a `blastula` email_message object will be returned.
Usage

```r
email_create(
 x,
 msg_header = NULL,
 msg_body = stock_msg_body(),
 msg_footer = stock_msg_footer()
)
```

Arguments

- **x**
  A **pointblank agent**, an **agent x-list**, or a **pointblank informant**. The x-list object can be created with the `get_agent_x_list()` function. It is recommended that the option `i = NULL` be used with `get_agent_x_list()` if supplying an x-list as `x`. Furthermore, The option `generate_report = TRUE` could be used with `create_agent()` so that the agent report is available within the email.

- **msg_header**, **msg_body**, **msg_footer**
  Content for the header, body, and footer components of the HTML email message.

Value

A **blastula** *email_message* object.

Function ID

4-2

See Also

Other Emailing: `email_blast()`, `stock_msg_body()`, `stock_msg_footer()`

Examples

```r
if (interactive()) {

 # Create an `action_levels()` list
 # with absolute values for the
 # `warn`, and `notify` states (with
 # thresholds of 1 and 2 `fail` units)
 al <- action_levels(
 warn_at = 1,
 notify_at = 2
)

 # In a workflow that involves an
 # `agent` object, we can make use of
 # the `end_fns` argument and
 # programmatically email the report
 # with the `email_blast()` function,
```
# however, an alternate workflow is to
# produce the email object and choose
# to send outside of the pointblank API;
# the `email_create()` function lets
# us do this with an `agent` object

```r
email_object_1 <-
 create_agent(
 tbl = small_table,
 tbl_name = "small_table",
 label = "An example.",
 actions = al
) %>%
 col_vals_gt(vars(a), value = 1) %>%
 col_vals_lt(vars(a), value = 7) %>%
 interrogate() %>%
 email_create()
```

# We can view the HTML email just
# by printing `email_object`; it
# should appear in the Viewer

# The `email_create()` function can
# also be used on an agent x-list to
# get the same email message object

```r
email_object_2 <-
 create_agent(
 tbl = small_table,
 tbl_name = "small_table",
 label = "An example.",
 actions = al
) %>%
 col_vals_gt(vars(a), value = 5) %>%
 col_vals_lt(vars(b), value = 5) %>%
 interrogate() %>%
 get_agent_x_list() %>%
 email_create()
```

# An information report that's
# produced by the informant can
# made into an email message object;
# let's create an informant and use
# `email_create()`

```r
email_object_3 <-
 create_informant(
 tbl = small_table,
 tbl_name = "small_table",
 label = "An example."
) %>%
 info_tabular(
 info = "A simple table in the
 Examples section of the function
called `email_create()`."
) %>%
 email_create()
```
info_columns(
  columns = vars(a),
  info = "Numbers. On the high side."
) %>%
info_columns(
  columns = vars(b),
  info = "Lower numbers. Zeroes, even."
) %>%
incorporate() %>%
email_create()

---

**export_report**

*Export an agent, informant, multiagent, or table scan to HTML*

**Description**

The *agent, informant, multiagent*, and the table scan object can be easily written as HTML with `export_report()`. Furthermore, any report objects from the *agent, informant, and multiagent* (generated using `get_agent_report()`, `get_informant_report()`, and `get_multiagent_report()`) can be provided here for HTML export. Each HTML document written to disk is self-contained and easily viewable in a web browser.

**Usage**

```r
export_report(x, filename, path = NULL, quiet = FALSE)
```

**Arguments**

- **x**  
  An *agent* object of class `ptblank_agent`, an *informant* of class `ptblank_informant`, a *multiagent* of class `ptblank_multiagent`, a table scan of class `ptblank_tbl_scan`, or, customized reporting objects (`ptblank_agent_report`, `ptblank_informant_report`, `ptblank_multiagent_report.wide`, `ptblank_multiagent_report.long`).

- **filename**  
  The filename to create on disk for the HTML export of the object provided. It's recommended that the extension ".html" is included.

- **path**  
  An optional path to which the file should be saved (this is automatically combined with `filename`).

- **quiet**  
  Should the function *not* inform when the file is written? By default this is `FALSE`.

**Value**

Invisibly returns `TRUE` if the file has been written.

**Function ID**

9.3
See Also

Other Object Ops: activate_steps(), deactivate_steps(), remove_steps(), set_tbl(), x_read_disk(), x_write_disk()

Examples

if (interactive()) {
  # A: Writing an agent report as HTML
  # Let's go through the process of (1)
  # developing an agent with a validation plan (to be used for the data quality analysis of the `small_table` dataset),
  # (2) interrogating the agent with the `interrogate()` function, and (3) writing the agent and all its intel to a file
  # Creating an `action_levels` object is a common workflow step when creating a pointblank agent; we designate failure thresholds to the `warn`, `stop`, and `notify` states using `action_levels()`
  al <- action_levels(
    warn_at = 0.10,
    stop_at = 0.25,
    notify_at = 0.35
  )

  # Now create a pointblank `agent` object and give it the `al` object (which serves as a default for all validation steps which can be overridden); the data will be referenced in `tbl`
  agent <- create_agent(
    tbl = small_table,
    tbl_name = "small_table",
    label = "export_report()",
    actions = al
  )

  # Then, as with any agent object, we can add steps to the validation plan by using as many validation functions as we want; then, we `interrogate()`
  agent <-
    agent %>%
    col_exists(vars(date, date_time)) %>%
    col_vals_regex(
      vars(b), regex = "[0-9]-[a-z](3)-[0-9](3)"
    )
 export_report

) %>%
 rows_distinct() %>%
col_vals_gt(vars(d), value = 100) %>%
col_vals_lte(vars(c), value = 5) %>%
interrogate()

# The agent report can be written to an HTML file with `export_report()`
export_report(
  agent,
  filename = "agent-small_table.html"
)

# If you're consistently writing agent reports when periodically checking data, we could make use of `affix_date()` or `affix_datetime()` depending on the granularity you need; here's an example that writes the file with the format: 'agent-small_table-YYYY-mm-dd_HH-MM-SS.html'
export_report(
  agent,
  filename = affix_datetime("agent-small_table.html"
)
)

# B: Writing an informant report as HTML

# Let's go through the process of (1) creating an informant object that minimally describes the 'small_table' dataset, (2) ensuring that data is captured from the target table using the `incorporate()` function, and (3) writing the informant report to HTML

# Create a pointblank 'informant' object with `create_informant()` and the 'small_table' dataset; `incorporate()` so that info snippets are integrated into the text
informant <- create_informant(
  tbl = ~ small_table,
  tbl_name = "small_table",
  label = "export_report()"
) %>%
info_snippet(
  snippet_name = "high_a",
  fn = snip_highest(column = "a")
) %>%
info_snippet(
file_tbl

Get a table from a local or remote file

Description

If your target table is in a file, stored either locally or remotely, the file_tbl() function can make it possible to access it in a single function call. Compatible file types for this function are: CSV
(.csv), TSV (.tsv), RDA (.rda), and RDS (.rds) files. This function generates an in-memory tbl_df object, which can be used as a target table for `create_agent()` and `create_informant()`. Another great option is supplying a table-prep formula involving `file_tbl()` to `tbl_store()` so that you have access to tables based on flat files though single names via a table store.

In the remote data use case, we can specify a URL starting with http://, https://, etc., and ending with the file containing the data table. If data files are available in a GitHub repository then we can use the `from_github()` function to specify the name and location of the table data in a repository.

Usage

```r
file_tbl(file, type = NULL, ..., keep = FALSE, verify = TRUE)
```

Arguments

- `file`: The complete file path leading to a compatible data table either in the user system or at a http://, https://, ftp://, or ftsp:// URL. For a file hosted in a GitHub repository, a call to the `from_github()` function can be used here.
- `type`: The file type. This is normally inferred by file extension and is by default NULL to indicate that the extension will dictate the type of file reading that is performed internally. However, if there is no extension (and valid extensions are .csv, .tsv, .rda, and .rds), we can provide the type as either of csv, tsv, rda, or rds.
- `...`: Options passed to `readr`'s `read_csv()` or `read_tsv()` function. Both functions have the same arguments and one or the other will be used internally based on the file extension or an explicit value given to `type`.
- `keep`: In the case of a downloaded file, should it be stored in the working directory (keep = TRUE) or should it be downloaded to a temporary directory? By default, this is FALSE.
- `verify`: If TRUE (the default) then a verification of the data object having the data.frame class will be carried out.

Value

A tbl_df object.

Function ID

1-7

See Also

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `db_tbl()`, `draft_validation()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `tbl_store()`, `validate_rmd()`
Examples

# A local CSV file can be obtained as
# a tbl object by supplying a path to
# the file and some CSV reading options
# (the ones used by `readr::read_csv()`)  
# to the `file_tbl()` function; for
# this example we could obtain a path
# to a CSV file in the pointblank
# package with `system.file()`:

```r
csv_path <-
 system.file(
 "data_files", "small_table.csv",
 package = "pointblank"
)
```

# Then use that path in `file_tbl()`
# with the option to specify the column
# types in that CSV

tbl <-
  file_tbl(
    file = csv_path,
    col_types = "TDdcddlc"
  )

# Now that we have a `tbl` object that
# is a tibble, it can be introduced to
# `create_agent()` for validation
agent <- create_agent(tbl = tbl)

# A different strategy is to provide
# the data-reading function call
# directly to `create_agent()`:
agent <-
  create_agent(
    tbl = ~ file_tbl(
      file = system.file(
        "data_files", "small_table.csv",
        package = "pointblank"
      ),
      col_types = "TDdcddlc"
    )
  ) %>%
  col_vals_gt(vars(a), value = 0)

# All of the file-reading instructions
# are encapsulated in the `tbl`
# expression so the agent will always
# obtain the most recent version of
# the table (and the logic can be
# translated to YAML, for later use)

if (interactive()) {

```
A CSV can be obtained from a public
GitHub repo by using the `from_github()`
helper function; let's create an agent
a supply a table-prep formula that
gets the same CSV file from the GitHub
repository for the pointblank package
agent <-
 create_agent(
 tbl = ~ file_tbl(
 file = from_github(
 file = "inst/data_files/small_table.csv",
 repo = "rich-iannone/pointblank"
),
 col_types = "TDcdddc"
)
) %>%
 col_vals_gt(vars(a), value = 0) %>%
 interrogate()

This interrogated the data that was
obtained from the remote source file,
and, there's nothing to clean up (by
default, the downloaded file goes into
a system temp directory)

Storing table-prep formulas in a table
store makes it easier to work with
tabular data originating from files;
here's how to generate a table store
with two named entries for table
preparations
tbls <-
 tbl_store(
 small_table_file ~ file_tbl(
 file = system.file(
 "data_files", "small_table.csv",
 package = "pointblank"
),
 col_types = "TDcdddc"
),
 small_high_file ~ file_tbl(
 file = system.file(
 "data_files", "small_table.csv",
 package = "pointblank"
),
 col_types = "TDcdddc"
)
) %>%
 dplyr::filter(f == "high")

Now it's easy to access either of these
tables (the second is a mutated version)
via the `tbl_get()` function

```r
tbl_get("small_table_file", store = tbls)
tbl_get("small_high_file", store = tbls)
```

The table-prep formulas in `tbls`:
could also be used in functions with
the `tbl` argument; this is thanks
to the `tbl_source()` function

```r
agent <-
  create_agent(
    tbl = tbl_source(
      "small_table_file",
      store = tbls
    )
  )
```

```r
informant <-
  create_informant(
    tbl = tbl_source(
      "small_high_file",
      store = tbls
    )
  )
```

from_github

Specify a file for download from GitHub

Description

The `from_github()` function is helpful for generating a valid URL that points to a data file in a public GitHub repository. This function can be used in the `file` argument of the `file_tbl()` function or anywhere else where GitHub URLs for raw user content are needed.

Usage

```r
from_github(file, repo, subdir = NULL, default_branch = "main")
```

Arguments

- `file` The name of the file to target in a GitHub repository. This can be a path leading to and including the file. This is combined with any path given in `subdir`.
- `repo` The GitHub repository address in the format `username/repo[subdir@ref#pull@*release]`.
- `subdir` A path string representing a subdirectory in the GitHub repository. This is combined with any path components included in `file`.
- `default_branch` The name of the default branch for the repo. This is usually "main" (the default used here).
Value

A character vector of length 1 that contains a URL.

Function ID

13-6

See Also

Other Utility and Helper Functions: `affix_datetime()`, `affix_date()`, `col_schema()`, `has_columns()`, `stop_if_not()`

Examples

```r
# A valid URL to a data file in GitHub can be obtained from the HEAD of the default branch
# from_github(
#   file = "inst/data_files/small_table.csv",
#   repo = "rich-iannone/pointblank"
# )

# The path to the file location can be supplied fully or partially to `subdir`
# from_github(
#   file = "small_table.csv",
#   repo = "rich-iannone/pointblank",
#   subdir = "inst/data_files"
# )

# We can use the first call in combination with `file_tbl()` and `create_agent()`; this supplies a table-prep formula that gets a CSV file from the GitHub repository for the pointblank package
# agent <-
#   create_agent(
#     tbl = ~ file_tbl(
#       file = from_github(
#         file = "inst/data_files/small_table.csv",
#         repo = "rich-iannone/pointblank"
#       ),
#       col_types = "TDdcdldc"
#     )
#   ) %>%
#   col_vals_gt(vars(a), 0) %>%
#   interrogate()

# The `from_github()` helper function is pretty powerful and can get at lots of different files in a repository

# A data file from GitHub can be obtained from
```
game_revenue

A table with game revenue data

Description

This table is a subset of the sj_all_revenue table from the intendo data package. It’s the first 2,000 rows from that table where revenue records range from 2015-01-01 to 2015-01-21.

Usage

game_revenue

Format

A tibble with 2,000 rows and 11 variables:

player_id A character column with unique identifiers for each user/player.

session_id A character column that contains unique identifiers for each player session.

session_start A date-time column that indicates when the session (containing the revenue event) started.

item_type A character column that provides the class of the item purchased.

item_name A character column that provides the name of the item purchased.

item_revenue A numeric column with the revenue amounts per item purchased.
session_duration A numeric column that states the length of the session (in minutes) for which the purchase occurred.

start_day A Date column that provides the date of first login for the player making a purchase.

acquisition A character column that provides the method of acquisition for the player.

country A character column that provides the probable country of residence for the player.

Function ID

14-4

See Also

Other Datasets: game_revenue_info, small_table_sqlite(), small_table, specifications

Examples

```r
# Here is a glimpse at the data
# available in 'game_revenue'
dplyr::glimpse(game_revenue)
```

game_revenue_info A table with metadata for the game_revenue dataset

Description

This table contains metadata for the game_revenue table. The first column (named `column`) provides the column names from game_revenue. The second column (`info`) contains descriptions for each of the columns in that dataset. This table is in the correct format for use in the `info_columns_from_tbl()` function.

Usage

```r
game_revenue_info
```

Format

A tibble with 11 rows and 2 variables:

- **column** A character column with unique identifiers for each user/player.
- **info** A character column that contains unique identifiers for each player session.

Function ID

14-5
get_agent_report

See Also

Other Datasets: game_revenue, small_table_sqlite(), small_table, specifications

Examples

```r
# Here is a glimpse at the data
# available in 'game_revenue_info'
dplyr::glimpse(game_revenue_info)
```

get_agent_report Get a summary report from an agent

Description

We can get an informative summary table from an agent by using the get_agent_report() function. The table can be provided in two substantially different forms: as a gt based display table (the default), or, as a tibble. The amount of fields with intel is different depending on whether or not the agent performed an interrogation (with the interrogate() function). Basically, before interrogate() is called, the agent will contain just the validation plan (however many rows it has depends on how many validation functions were supplied a part of that plan). Post-interrogation, information on the passing and failing test units is provided, along with indicators on whether certain failure states were entered (provided they were set through actions). The display table variant of the agent report, the default form, will have the following columns:

- **i** (unlabeled): the validation step number.
- **STEP**: the name of the validation function used for the validation step.
- **COLUMNS**: the names of the target columns used in the validation step (if applicable).
- **VALUES**: the values used in the validation step, where applicable; this could be as literal values, as column names, an expression, etc.
- **TBL**: indicates whether any there were any changes to the target table just prior to interrogation. A rightward arrow from a small circle indicates that there was no mutation of the table. An arrow from a circle to a purple square indicates that preconditions were used to modify the target table. An arrow from a circle to a half-filled circle indicates that the target table has been segmented.
- **EVAL**: a symbol that denotes the success of interrogation evaluation for each step. A checkmark indicates no issues with evaluation. A warning sign indicates that a warning occurred during evaluation. An explosion symbol indicates that evaluation failed due to an error. Hover over the symbol for details on each condition.
- **UNITS**: the total number of test units for the validation step
- **PASS**: on top is the absolute number of passing test units and below that is the fraction of passing test units over the total number of test units.
- **FAIL**: on top is the absolute number of failing test units and below that is the fraction of failing test units over the total number of test units.
• W, S, N: indicators that show whether the warn, stop, or notify states were entered; unset states appear as dashes, states that are set with thresholds appear as unfilled circles when not entered and filled when thresholds are exceeded (colors for W, S, and N are amber, red, and blue)
• EXT: a column that provides buttons to download data extracts as CSV files for row-based validation steps having **failing** test units. Buttons only appear when there is data to collect.

The small version of the display table (obtained using `size = "small"`) omits the COLUMNS, TBL, and EXT columns. The width of the small table is 575px; the standard table is 875px wide.

The `ptblank_agent_report` can be exported to a standalone HTML document with the `export_report()` function.

If choosing to get a tibble (with `display_table = FALSE`), it will have the following columns:

• **i:** the validation step number.
• **type:** the name of the validation function used for the validation step.
• **columns:** the names of the target columns used in the validation step (if applicable).
• **values:** the values used in the validation step, where applicable; for a `conjointly()` validation step, this is a listing of all sub-validations.
• **precon:** indicates whether any there are any preconditions to apply before interrogation and, if so, the number of statements used.
• **active:** a logical value that indicates whether a validation step is set to "active" during an interrogation.
• **eval:** a character value that denotes the success of interrogation evaluation for each step. A value of "OK" indicates no issues with evaluation. The "WARNING" value indicates a warning occurred during evaluation. The "ERROR" VALUES indicates that evaluation failed due to an error. With "W+E" both warnings and an error occurred during evaluation.
• **units:** the total number of test units for the validation step.
• **n_pass:** the number of **passing** test units.
• **f_pass:** the fraction of **passing** test units.
• W, S, N: logical value stating whether the warn, stop, or notify states were entered. Will be **NA** for states that are unset.
• **extract:** an integer value that indicates the number of rows available in a data extract. Will be **NA** if no extract is available.

Usage

```r
get_agent_report(
    agent,
    arrange_by = c("i", "severity"),
    keep = c("all", "fail_states"),
    display_table = TRUE,
    size = "standard",
    title = ":default:",
    lang = NULL,
    locale = NULL
)
```
Arguments

- **agent**
 An agent object of class `ptblank_agent`.

- **arrange_by**
 A choice to arrange the report table rows by the validation step number ("i", the default), or, to arrange in descending order by severity of the failure state (with "severity").

- **keep**
 An option to keep "all" of the report’s table rows (the default), or, keep only those rows that reflect one or more "fail_states".

- **display_table**
 Should a display table be generated? If `TRUE` (the default), and if the `gt` package is installed, a display table for the report will be shown in the Viewer. If `FALSE`, or if `gt` is not available, then a tibble will be returned.

- **size**
 The size of the display table, which can be either "standard" (the default) or "small". This only applies to a display table (where `display_table = TRUE`).

- **title**
 Options for customizing the title of the report. The default is the keyword ":default:" which produces generic title text that refers to the `pointblank` package in the language governed by the `lang` option. Another keyword option is ":tbl_name:", and that presents the name of the table as the title for the report. If no title is wanted, then the ":none:" keyword option can be used. Aside from keyword options, text can be provided for the title and `glue::glue()` calls can be used to construct the text string. If providing text, it will be interpreted as Markdown text and transformed internally to HTML. To circumvent such a transformation, use text in `I()` to explicitly state that the supplied text should not be transformed.

- **lang**
 The language to use for automatic creation of briefs (short descriptions for each validation step) and for the `agent report` (a summary table that provides the validation plan and the results from the interrogation. By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl"). This `lang` option will override any previously set language setting (e.g., by the `create_agent()` call).

- **locale**
 An optional locale ID to use for formatting values in the `agent report` summary table according the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES"). This `locale` option will override any previously set locale value (e.g., by the `create_agent()` call).

Value

A `ptblank_agent_report` object if `display_table = TRUE` or a tibble if `display_table = FALSE`.

Function ID

6-2
See Also

Other Interrogate and Report: `interrogate()`

Examples

```r
# Create a simple table with a
# column of numerical values
tbl <-
  dplyr::tibble(a = c(5, 7, 8, 5))

# Validate that values in column
# 'a' are always greater than 4
agent <-
  create_agent(tbl = tbl) %>%
  col_vals_gt(vars(a), value = 4) %>%
  interrogate()

# Get a tibble-based report from the
# agent by using `get_agent_report()`
# with `display_table = FALSE`
agent %>%
  get_agent_report(display_table = FALSE)

# View a the report by printing the
# 'agent' object anytime, but, return a
# gt table object by using this with
# `display_table = TRUE` (the default)
report <- get_agent_report(agent)
class(report)

# What can you do with the report?
# Print it from an R Markdown code,
# use it in an email, put it in a
# webpage, or further modify it with
# the **gt** package

# The agent report as a **gt** display
# table comes in two sizes: "standard"
# (the default) and "small"
small_report <-
  get_agent_report(
    agent = agent,
    size = "small"
  )
class(small_report)

# The standard report is 875px wide
# the small one is 575px wide
```
get_agent_x_list Get the agent's x-list

Description

The agent's x-list is a record of information that the agent possesses at any given time. The x-list will contain the most complete information after an interrogation has taken place (before then, the data largely reflects the validation plan). The x-list can be constrained to a particular validation step (by supplying the step number to the i argument), or, we can get the information for all validation steps by leaving i unspecified. The x-list is indeed an R list object that contains a veritable cornucopia of information.

For an x-list obtained with i specified for a validation step, the following components are available:

- time_start: the time at which the interrogation began (POSIXct [0 or 1])
- time_end: the time at which the interrogation ended (POSIXct [0 or 1])
- label: the optional label given to the agent (chr [1])
- tbl_name: the name of the table object, if available (chr [1])
- tbl_src: the type of table used in the validation (chr [1])
- tbl_src_details: if the table is a database table, this provides further details for the DB table (chr [1])
- tbl: the table object itself
- col_names: the table's column names (chr [ncol(tbl)])
- col_types: the table's column types (chr [ncol(tbl)])
- i: the validation step index (int [1])
- type: the type of validation, value is validation function name (chr [1])
- columns: the columns specified for the validation function (chr [variable length])
- values: the values specified for the validation function (mixed types [variable length])
- briefs: the brief for the validation step in the specified lang (chr [1])
- eval_error, eval_warning: indicates whether the evaluation of the step function, during interrogation, resulted in an error or a warning (lgl [1])
- capture_stack: a list of captured errors or warnings during step-function evaluation at interrogation time (list [1])
- n: the number of test units for the validation step (num [1])
- n_passed, n_failed: the number of passing and failing test units for the validation step (num [1])
- f_passed: the fraction of passing test units for the validation step, n_passed / n (num [1])
- f_failed: the fraction of failing test units for the validation step, n_failed / n (num [1])
- warn, stop, notify: a logical value indicating whether the level of failing test units caused the corresponding conditions to be entered (lgl [1])
get_agent_x_list

- lang: the two-letter language code that indicates which language should be used for all briefs, the agent report, and the reporting generated by the scan_data() function (chr [1])

If i is unspecified (i.e., not constrained to a specific validation step) then certain length-one components in the x-list will be expanded to the total number of validation steps (these are: i, type, columns, values, briefs, eval_error, eval_warning, capture_stack, n, n_passed, n_failed, f_passed, f_failed, warn, stop, and notify). The x-list will also have additional components when i is NULL, which are:

- report_object: a gt table object, which is also presented as the default print method for a ptblank_agent
- email_object: a blastula email_message object with a default set of components
- report_html: the HTML source for the report_object, provided as a length-one character vector
- report_html_small: the HTML source for a narrower, more condensed version of report_object, provided as a length-one character vector; The HTML has inlined styles, making it more suitable for email message bodies

Usage

get_agent_x_list(agent, i = NULL)

Arguments

agent
An agent object of class ptblank_agent.

i
The validation step number, which is assigned to each validation step in the order of invocation. If NULL (the default), the x-list will provide information for all validation steps. If a valid step number is provided then x-list will have information pertaining only to that step.

Value

A list object.

Function ID

8-1

See Also

Other Post-interrogation: all_passed(), get_data_extracts(), get_sundered_data(), write_testthat_file()

Examples

Create a simple data frame with
a column of numerical values
tbl <- dplyr::tibble(a = c(5, 7, 8, 5))

Create an `action_levels()` list
with fractional values for the
'warn', 'stop', and 'notify' states
al <-
 action_levels(
 warn_at = 0.2,
 stop_at = 0.8,
 notify_at = 0.345
)

Create an agent (giving it the
'tbl' and the 'al' objects),
supply two validation step
functions, then interrogate
agent <-
 create_agent(
 tbl = tbl,
 actions = al
) %>%
 col_vals_gt(vars(a), value = 7) %>%
 col_is_numeric(vars(a)) %>%
 interrogate()

Get the agent x-list
x <- get_agent_x_list(agent)

Print the x-list object `x`
x

Get the `f_passed` component
of the x-list
x$f_passed

get_data_extracts

Collect data extracts from a validation step

Description

In an agent-based workflow (i.e., initiating with `create_agent()`), after interrogation with `interrogate()`, we can extract the row data that didn’t pass row-based validation steps with the `get_data_extracts()` function. There is one discrete extract per row-based validation step and the amount of data available in a particular extract depends on both the fraction of test units that didn’t pass the validation step and the level of sampling or explicit collection from that set of units. These extracts can be collected programmatically through `get_data_extracts()` but they may also be downloaded as CSV files from the HTML report generated by the agent’s print method or through the use of `get_agent_report()`.

The availability of data extracts for each row-based validation step depends on whether `extract_failed` is set to `TRUE` within the `interrogate()` call (it is by default). The amount of `fail` rows extracted depends on the collection parameters in `interrogate()`, and the default behavior is to collect up to the first 5000 `fail` rows.
Row-based validation steps are based on those validation functions of the form col_vals_*() and also include conjointly() and rows_distinct(). Only functions from that combined set of validation functions can yield data extracts.

Usage

get_data_extracts(agent, i = NULL)

Arguments

agent An agent object of class ptblank_agent. It should have had interrogate() called on it, such that the validation steps were carried out and any sample rows from non-passing validations could potentially be available in the object.

i The validation step number, which is assigned to each validation step by pointblank in the order of definition. If NULL (the default), all data extract tables will be provided in a list object.

Value

A list of tables if i is not provided, or, a standalone table if i is given.

Function ID

8-2

See Also

Other Post-interrogation: all_passed(), get_agent_x_list(), get_sundered_data(), write_testthat_file()

Examples

Create a series of two validation steps focused on testing row values # for part of the `small_table` object; # `interrogate()` immediately
agent <-
create_agent(
 tbl = small_table %>%
 dplyr::select(a:f),
 label = "get_data_extracts()"
) %>%
col_vals_gt(vars(d), value = 1000) %>%
col_vals_between(
 vars(c),
 left = vars(a), right = vars(d),
 na_pass = TRUE
) %>%
interrogate()

Using `get_data_extracts()` with its # defaults returns of a list of tables,
where each table is named after the
validation step that has an extract
available
agent %>% get_data_extracts()

We can get an extract for a specific
step by specifying it in the `i`
argument; let's get the failing rows
from the first validation step
(`col_vals_gt`)
agent %>% get_data_extracts(i = 1)

get_informant_report

Get a table information report from an informant object

Description

We can get a table information report from an informant object that’s generated by the `create_informant()` function. The report is provided as a `gt` based display table. The amount of information shown depends on the extent of that added via the use of the `info_*()` functions or through direct editing of a `pointblank` YAML file (an informant can be written to `pointblank` YAML with `yaml_write(informant = <informant>, ...)`).

Usage

```r
get_informant_report(
  informant,
  size = "standard",
  title = "":default:",
  lang = NULL,
  locale = NULL
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>informant</code></td>
<td>An informant object of class <code>ptblank_informant</code>.</td>
</tr>
<tr>
<td><code>size</code></td>
<td>The size of the display table, which can be either "standard" (the default, with a width of 875px) or "small" (width of 575px).</td>
</tr>
<tr>
<td><code>title</code></td>
<td>Options for customizing the title of the report. The default is the keyword ":default:" which produces generic title text that refers to the <code>pointblank</code> package in the language governed by the <code>lang</code> option. Another keyword option is ":tbl_name:" which presents the name of the table as the title for the report. If no title is wanted, then the ":none:" keyword option can be used. Aside from keyword options, text can be provided for the title and <code>glue::glue()</code> calls can be used to construct the text string. If providing text, it will be interpreted as Markdown text and transformed internally to HTML. To circumvent such a transformation, use text in <code>I()</code> to explicitly state that the supplied text should not be transformed.</td>
</tr>
</tbody>
</table>
The language to use for the *information report*. By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl"). This `lang` option will override any previously set language setting (e.g., by the `create_informant()` call).

An optional locale ID to use for formatting values in the *information report* summary table according the locale's rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES"). This `locale` option will override any previously set locale value (e.g., by the `create_informant()` call).

Value

A `gt` table object.

Function ID

7-2

See Also

Other Incorporate and Report: `incorporate()`

Examples

```r
# Generate an informant object using
# the 'small_table' dataset
informant <- create_informant(small_table)

# This function creates some information
# without any extra help by profiling
# the supplied table object; it adds
# the sections 'table' and columns' and
# we can print the object to see the
# table information report

# Alternatively, we can get the same report
# by using `get_informant_report()`
report <- get_informant_report(informant)
class(report)
```
get_multiagent_report Get a summary report using multiple agents

Description

We can get an informative summary table from a collective of agents by using the `get_multiagent_report()` function. Information from multiple agent can be provided in three very forms: (1) the Long Display (stacked reports), (2) the Wide Display (a comparison report), (3) as a tibble with packed columns.

Usage

```r
get_multiagent_report(
  multiagent,
  display_table = TRUE,
  display_mode = c("long", "wide"),
  title = ":default:",
  lang = NULL,
  locale = NULL
)
```

Arguments

- **multiagent**: A multiagent object of class `ptblank_multiagent`.
- **display_table**: Should a display table be generated? If TRUE (the default) a display table for the report will be shown in the Viewer. If FALSE then a tibble will be returned.
- **display_mode**: If we are getting a display table, should the agent data be presented in a "long" or "wide" form? The default is "long" but when comparing multiple runs where the target table is the same it might be preferable to choose "wide".
- **title**: Options for customizing the title of the report when `display_table = TRUE`. The default is the keyword ":default:" which produces generic title text. If no title is wanted, then the ":none:" keyword option can be used. Another keyword option is ":tbl_name:“, and that presents the name of the table as the title for the report (this can only be used when `display_mode = "long"`). Aside from keyword options, text can be provided for the title and `glue::glue()` calls can be used to construct the text string. If providing text, it will be interpreted as Markdown text and transformed internally to HTML. To circumvent such a transformation, use text in `I()` to explicitly state that the supplied text should not be transformed.
- **lang**: The language to use for the long or wide report forms. By default, NULL will preserve any language set in the component reports. The following options will force the same language across all component reports: English ("en"), French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").
locale

An optional locale ID to use for formatting values in the long or wide report forms (according the locale's rules). Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES"). This locale option will override any previously set locale values.

Value

A gt table object if display_table = TRUE or a tibble if display_table = FALSE.

The Long Display

When displayed as "long" the multiagent report will stack individual agent reports in a single document in the order of the agents in the multiagent object.

Each validation plan (possibly with interrogation info) will be provided and the output for each is equivalent to calling get_agent_report() on each of the agents within the multiagent object.

The Wide Display

When displayed as "wide" the multiagent report will show data from individual agents as columns, with rows standing as validation steps common across the agents.

Each validation step is represented with an icon (standing in for the name of the validation function) and the associated SHA1 hash. This is a highly trustworthy way for ascertaining which validation steps are effectively identical across interrogations. This way of organizing the report is beneficial because different agents may have used different steps and we want to track the validation results where the validation step doesn't change but the target table does (i.e., new rows are added, existing rows are updated, etc.).

The single table from this display mode will have the following columns:

- **STEP**: the SHA1 hash for the validation step, possibly shared among several interrogations.
- **subsequent columns**: each column beyond STEP represents a separate interrogation from an agent object. The time stamp for the completion of each interrogation is shown as the column label.

Function ID

10-3

See Also

Other The multiagent: create_multiagent(), read_disk_multiagent()

Examples

```r
if (interactive()) {

# Let's walk through several theoretical
# data quality analyses of an extremely
```
small table; that table is called
`small_table` and we can find it as a
dataset in this package
small_table

To set failure limits and signal
conditions, we designate proportional
failure thresholds to the `warn`, `stop`,
and `notify` states using `action_levels()

al <-
 action_levels(
 warn_at = 0.05,
 stop_at = 0.10,
 notify_at = 0.20
)

We will create four different agents
and have slightly different validation
steps in each of them; in the first,
`agent_1`, eight different validation
steps are created and the agent will
interrogate the `small_table`

agent_1 <-
 create_agent(
 tbl = small_table,
 tbl_name = "small_table",
 label = "get_multiagent_report()
 actions = al
)

%>%
 col_vals_gt(
 vars(date_time),
 value = vars(date),
 na_pass = TRUE
)

%>%
 col_vals_gt(
 vars(b),
 value = vars(g),
 na_pass = TRUE
)

%>%
 rows_distinct() %>%
 col_vals_equal(
 vars(d),
 value = vars(d),
 na_pass = TRUE
)

%>%
 col_vals_between(
 vars(c),
 left = vars(a), right = vars(d)
)

%>%
 col_vals_not_between(
 vars(c),
 left = 10, right = 20,
 na_pass = TRUE
)
get_multiagent_report

```r

rows_distinct(vars(d, e, f)) %>%
col_is_integer(vars(a)) %>%
interrogate()

# The second agent, `agent_2`, retains
# all of the steps of `agent_1` and adds
# two more (the last of which is inactive)
agent_2 <-
  agent_1 %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(
  vars(b),
  regex = "[0-9]-[a-z]{3}-[0-9]{3}",
  active = FALSE
) %>%
interrogate()

# The third agent, `agent_3`, adds a single
# validation step, removes the fifth one,
# and deactivates the first
agent_3 <-
agent_2 %>%
col_vals_in_set(
  vars(f),
  set = c("low", "mid", "high")
) %>%
remove_steps(i = 5) %>%
deactivate_steps(i = 1) %>%
interrogate()

# The fourth and final agent, `agent_4`,
# reactivates steps 1 and 10, and removes
# the sixth step
agent_4 <-
agent_3 %>%
activate_steps(i = 1) %>%
activate_steps(i = 10) %>%
remove_steps(i = 6) %>%
interrogate()

# While all the agents are slightly
# different from each other, we can still
# get a combined report of them by
# creating a `multiagent`
multiagent <-
create_multiagent(
  agent_1, agent_2, agent_3, agent_4
)

# Calling `multiagent` in the console
# prints the multiagent report; but we
# can use some non-default option with
```

The second agent, `agent_2`, retains
all of the steps of `agent_1` and adds
two more (the last of which is inactive)
agent_2 <-
 agent_1 %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(
 vars(b),
 regex = "[0-9]-[a-z]{3}-[0-9]{3}",
 active = FALSE
) %>%
interrogate()

The third agent, `agent_3`, adds a single
validation step, removes the fifth one,
and deactivates the first
agent_3 <-
agent_2 %>%
col_vals_in_set(
 vars(f),
 set = c("low", "mid", "high")
) %>%
remove_steps(i = 5) %>%
deactivate_steps(i = 1) %>%
interrogate()

The fourth and final agent, `agent_4`,
reactivates steps 1 and 10, and removes
the sixth step
agent_4 <-
agent_3 %>%
activate_steps(i = 1) %>%
activate_steps(i = 10) %>%
remove_steps(i = 6) %>%
interrogate()

While all the agents are slightly
different from each other, we can still
get a combined report of them by
creating a `multiagent`
multiagent <-
create_multiagent(
 agent_1, agent_2, agent_3, agent_4
)

Calling `multiagent` in the console
prints the multiagent report; but we
can use some non-default option with
the `get_multiagent_report()` function

By default, `get_multiagent_report()`
gives you a tall report with agent
reports being stacked
report_1 <-
 get_multiagent_report(multiagent)

We can modify the title with that's
more suitable or use a keyword like
`:tbl_name:` to give us the target
table name in each section
report_2 <-
 get_multiagent_report(
 multiagent,
 title = "::tbl_name:"
)

We can opt for a wide display of
the reporting info, and this is
great when reporting on multiple
validations of the same target
table
report_3 <-
 get_multiagent_report(
 multiagent,
 display_mode = "wide"
)

get_sundered_data
Sunder the data, splitting it into 'pass' and 'fail' pieces

Description

Validation of the data is one thing but, sometimes, you want to use the best part of the input dataset for something else. The get_sundered_data() function works with an agent object that has intel (i.e., post interrogate()) and gets either the 'pass' data piece (rows with no failing test units across all row-based validation functions), or, the 'fail' data piece (rows with at least one failing test unit across the same series of validations). As a final option, we can have emit all the data with a new column (called .pb_combined) which labels each row as passing or failing across validation steps. These labels are "pass" and "fail" by default but their values can be easily customized.

Usage

```r
get_sundered_data(
  agent,
  type = c("pass", "fail", "combined"),
)```

```r
```
Arguments

agent    An agent object of class ptblank_agent. It should have had `interrogate()` called on it, such that the validation steps were actually carried out.

type     The desired piece of data resulting from the splitting. Options for returning a single table are "pass" (the default) and "fail". Each of these options return a single table with, in the "pass" case, only the rows that passed across all validation steps (i.e., had no failing test units in any part of a row for any validation step), or, the complementary set of rows in the "fail" case. Providing NULL returns both of the split data tables in a list (with the names of "pass" and "fail"). The option "combined" applies a categorical (pass/fail) label (settable in the `pass_fail` argument) in a new .pb_combined flag column. For this case the ordering of rows is fully retained from the input table.

pass_fail A vector for encoding the flag column with 'pass' and 'fail' values when type = "combined". The default is c("pass","fail") but other options could be c(TRUE,FALSE), c(1,0), or c(1L,0L).

id_cols  An optional specification of one or more identifying columns. When taken together, we can count on this single column or grouping of columns to distinguish rows. If the table undergoing validation is not a data frame or tibble, then columns need to be specified for `id_cols`.

Details

There are some caveats to sundering. The validation steps considered for this splitting has to be of the row-based variety (e.g., the col_vals_*() functions or `conjointly()`), but not `rows_distinct()`). Furthermore, validation steps that experienced evaluation issues during interrogation are not considered, and, validation steps where `active = FALSE` will be disregarded. The collection of validation steps that fulfill the above requirements for sundering are termed in-consideration validation steps.

If using any preconditions for validation steps, we must ensure that all in-consideration validation steps use the same specified preconditions function. Put another way, we cannot split the target table using a collection of in-consideration validation steps that use different forms of the input table.

Value

A list of table objects if type is NULL, or, a single table if a type is given.

Function ID

8-3

See Also

Other Post-interrogation: `all_passed()`, `get_agent_x_list()`, `get_data_extracts()`, `write_testthat_file()`
Examples

# Create a series of two validation
# steps focused on testing row values
# for part of the 'small_table' object;
# `interrogate()` immediately
agent <-
  create_agent(
    tbl = small_table %>%
      dplyr::select(a:f),
    label = "get_sundered_data()"
  )
  col_vals_gt(vars(d), value = 1000) %>
  col_vals_between(
    vars(c),
    left = vars(a), right = vars(d),
    na_pass = TRUE
  ) %>
  interrogate()

# Get the sundered data piece that
# contains only rows that passed both
# validation steps (the default piece);
# this yields 5 of 13 total rows
agent %>% get_sundered_data()

# Get the complementary data piece:
# all of those rows that failed either
# of the two validation steps;
# this yields 8 of 13 total rows
agent %>%
  get_sundered_data(type = "fail")

# We can get all of the input data
# returned with a flag column (called
# `.pb_combined`); this is done by
# using `type = "combined"` and that
# rightmost column will contain "pass"
# and "fail" values
agent %>%
  get_sundered_data(type = "combined")

# We can change the "pass" or "fail"
# text values to another type of coding
# with the 'pass_fail' argument; one
# possibility is TRUE/FALSE
agent %>%
  get_sundered_data(
    type = "combined",
    pass_fail = c(TRUE, FALSE)
  )

# ...and using `0` and `1` might be
# worthwhile in some situations

```r
agent %>%
get_sundered_data(
 type = "combined",
 pass_fail = 0:1
)
```

---

### Description

The `get_tt_param()` function can help you to obtain a single parameter value from a summary table generated by the `tt_*()` functions `tt_summary_stats()`, `tt_string_info()`, `tt_tbl_dims()`, or `tt_tbl_colnames()`. The following parameters are to be used depending on the input `tbl`:

- from `tt_summary_stats()`: "min", "p05", "q_1", "med", "q_3", "p95", "max", "iqr", "range"
- from `tt_string_info()`: "length_mean", "length_min", "length_max"
- from `tt_tbl_dims()`: "rows", "columns"
- from `tt_tbl_colnames()`: any integer present in the `.param.` column

The `tt_summary_stats()` and `tt_string_info()` functions will generate summary tables with columns that mirror the numeric and character columns in their input tables, respectively. For that reason, a column name must be supplied to the `column` argument in `get_tt_param()`.

### Usage

```r
get_tt_param(tbl, param, column = NULL)
```

### Arguments

- **tbl**: A summary table generated by either of the `tt_summary_stats()`, `tt_string_info()`, `tt_tbl_dims()`, or `tt_tbl_colnames()` functions.

- **param**: The parameter name associated to the value that is to be gotten. These parameter names are always available in the first column (.param.) of a summary table obtained by `tt_summary_stats()`, `tt_string_info()`, `tt_tbl_dims()`, or `tt_tbl_colnames()`.

- **column**: The column in the summary table for which the data value should be obtained. This must be supplied for summary tables generated by `tt_summary_stats()` and `tt_string_info()` (the `tt_tbl_dims()` and `tt_tbl_colnames()` functions will always generate a two-column summary table).

### Function ID

12-7
See Also

Other Table Transformers: `tt_string_info()` , `tt_summary_stats()` , `tt_tbl_colnames()` , `tt_tbl dims()` ,
`tt_time_shift()` , `tt_time_slice()`

Examples

```r
Get summary statistics for the
first quarter of the `game_revenue`
dataset that's included in the package
stat_tbl <-
 game_revenue %>%
 tt_time_slice(slice_point = 0.25) %>%
 tt_summary_stats()

Based on player behavior for the first
quarter of the year, test whether the
maximum session duration during the
rest of the year is never higher
game_revenue %>%
 tt_time_slice(
 slice_point = 0.25,
 keep = "right"
) %>%
 test_col_vals_lte(
 columns = vars(session_duration),
 value = get_tt_param(
 tbl = stat_tbl,
 param = "max",
 column = "session_duration"
)
)
```

### has_columns

*Determine if one or more columns exist in a table*

**Description**

This utility function can help you easily determine whether a column of a specified name is present in a table object. This function works well enough on a table object but it can also be used as part of a formula in any validation function's active argument. Using `active = ~ . %>% has_columns("column_1")` means that the validation step will be inactive if the target table doesn't contain a column named `column_1`. We can also use multiple columns in `vars()` so having `active = ~ . %>% has_columns(vars(column_1, column_2)` in a validation step will make it inactive at `interrogate()` time unless the columns `column_1` and `column_2` are both present.

**Usage**

`has_columns(x, columns)`
has_columns

Arguments

x The table object.
columns One or more column names that are to be checked for existence in the table x.

Value

A length-1 logical vector.

Function ID

13-2

See Also

Other Utility and Helper Functions: affix_datetime(), affix_date(), col_schema(), from_github(), stop_if_not()

Examples

# The `small_table` dataset in the package has the columns `date_time`, `date`, and the `a` through `f` columns
small_table

# With `has_columns()` we can check for column existence by using it directly on the table; a column name can be verified as present by using it in double quotes
small_table %>% has_columns("date")

# Multiple column names can be supplied; this is TRUE because both columns are present in `small_table`
small_table %>% has_columns(c("a", "b"))

# It's possible to supply column names in `vars()` as well
small_table %>% has_columns(vars(a, b))

# Because column 'h' isn't present, this returns FALSE (all specified columns need to be present to obtain TRUE)
small_table %>% has_columns(vars(a, h))

# The `has_columns()` function can be useful in expressions that involve the target table, especially if it is uncertain that the table will contain a column that's involved in a validation
In the following agent-based validation, the first two steps will be 'active' because all columns checked for in the expressions are present; the third step is inactive because column 'j' isn't there (without the 'active' statement we would get an evaluation failure in the agent report).

agent <-
  create_agent(
    tbl = small_table,
    tbl_name = "small_table"
  ) %>%
  col_vals_gt(
    vars(c), value = vars(a),
    active = ~ . %>% has_columns(vars(a, c))
  ) %>%
  col_vals_lt(
    vars(h), value = vars(d),
    preconditions = ~ . %>% dplyr::mutate(h = d - a),
    active = ~ . %>% has_columns(vars(a, d))
  ) %>%
  col_is_character(
    vars(j),
    active = ~ . %>% has_columns("j")
  ) %>%
  interrogate()

---

**incorporate**

*Given an informant object, update and incorporate table snippets*

### Description

When the *informant* object has a number of snippets available (by using `info_snippet()`) and the strings to use them (by using the `info_*()` functions and `<snippet_name>` in the text elements), the process of incorporating aspects of the table into the info text can occur by using the `incorporate()` function. After that, the information will be fully updated (getting the current state of table dimensions, re-rendering the info text, etc.) and we can print the *informant* object or use the `get_informant_report()` function to see the information report.

### Usage

`incorporate(informant)`

### Arguments

- **informant** — An informant object of class `ptblank_informant`. 
incorporate

Value
A ptblnk_informant object.

Function ID
7-1

See Also
Other Incorporate and Report: get_informant_report()

Examples

```r
if (interactive()) {
 # Take the `small_table` and
 # assign it to `test_table`; we'll
 # modify it later
 test_table <- small_table

 # Generate an informant object, add
 # two snippets with `info_snippet()`,
 # add information with some other
 # `info_*()` functions and then
 # `incorporate()` the snippets into
 # the info text
 informant <-
 create_informant(
 tbl = ~ test_table,
 tbl_name = "test_table"
) %>%
 info_snippet(
 snippet_name = "row_count",
 fn = ~ . %>% nrow()
) %>%
 info_snippet(
 snippet_name = "col_count",
 fn = ~ . %>% ncol()
) %>%
 info_columns(
 columns = vars(a),
 info = "In the range of 1 to 10. (SIMPLE)"
) %>%
 info_columns(
 columns = starts_with("date"),
 info = "Time-based values (e.g., `Sys.time()`)."
) %>%
 info_columns(
 columns = "date",
 info = "The date part of `date_time`. (CALC)"
) %>%
 info_section(
 }
```
```r
section_name = "rows",
row_count = "There are {row_count} rows available."
) %>%
incorporate()

We can print the 'informant' object
to see the information report

Let's modify `test_table` to give
it more rows and an extra column
test_table <-
dplyr::bind_rows(test_table, test_table) %>%
dplyr::mutate(h = a + c)

Using 'incorporate()' will cause
the snippets to be reprocessed, and,
the strings to be updated
informant <-
informant %>% incorporate()

When printed again, we'll see that the
row and column counts in the header
have been updated to reflect the
changed 'test_table'

}
```

---

**info_columns**

Add information that focuses on aspects of a data table’s columns

---

### Description

Upon creation of an `informant` object (with the `create_informant()` function), there are two sections containing properties: (1) 'table' and (2) 'columns'. The 'columns' section is initialized with the table’s column names and their types (as _type). Beyond that, it is useful to provide details about the nature of each column and we can do that with the `info_columns()` function. A single column (or multiple columns) is targeted, and then a series of named arguments (in the form `entry_name = "The *info text*."`) serves as additional information for the column or columns.

---

### Usage

```r
info_columns(x, columns, ..., .add = TRUE)
```

### Arguments

- **x**
  An informant object of class `ptblank_informant`.

- **columns**
  The column or set of columns to focus on. Can be defined as a column name in quotes (e.g., "<column_name>"), one or more column names in `vars()` (e.g., `vars(<column_name>)`), or with a select helper (e.g., `starts_with("date")`).
Information entries as a series of named arguments. The names refer to subsection titles within `COLUMN -> <COLUMN_NAME>` and the RHS contains the *info text* (informational text that can be written as Markdown and further styled with *Text Tricks*).

**.add** Should new text be added to existing text? This is `TRUE` by default; setting to `FALSE` replaces any existing text for a property.

**Value**

A `ptblank_informant` object.

**Info Text**

The *info text* that’s used for any of the `info_*()` functions readily accepts Markdown formatting, and, there are a few *Text Tricks* that can be used to spice up the presentation. Markdown links written as `< link url >` or `[ link text ]( link url )` will get nicely-styled links. Any dates expressed in the ISO-8601 standard with parentheses, "(2004-12-01)" , will be styled with a font variation (monospaced) and underlined in purple. Spans of text can be converted to label-style text by using: (1) double parentheses around text for a rectangular border as in `((label text))`, or (2) triple parentheses around text for a rounded-rectangular border like `(((label text)))`.

CSS style rules can be applied to spans of *info text* with the following form:

```
[[info text]][< CSS style rules >]
```

As an example of this in practice suppose you’d like to change the color of some text to red and make the font appear somewhat thinner. A variation on the following might be used:

"This is a `[[factor]]<<color: red; font-weight: 300;>>` value."

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

- `color: <a color value>;` (text color)
- `background-color: <a color value>;` (the text’s background color)
- `text-decoration: (overline | line-through | underline);`
- `text-transform: (uppercase | lowercase | capitalize);`
- `letter-spacing: <a +/- length value>;`
- `word-spacing: <a +/- length value>;`
- `font-style: (normal | italic | oblique);`
- `font-weight: (normal | bold | 100-900);`
- `font-variant: (normal | bold | 100-900);`
- `border: <a color value> <a length value> (solid | dashed | dotted);`

In the above examples, 'length value' refers to a CSS length which can be expressed in different units of measure (e.g., 12px, 1em, etc.). Some lengths can be expressed as positive or negative values (e.g., for *letter-spacing*). Color values can be expressed in a few ways, the most common being in the form of hexadecimal color values or as CSS color names.
YAML

A pointblank informant can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an informant (with `yaml_read_informant()`) or perform the 'incorporate' action using the target table (via `yaml_informant_incorporate()`). The way that information on table columns is represented in YAML works like this: *info text* goes into subsections of YAML keys named for the columns, which are themselves part of the top-level columns key. Here is an example of how several calls of `info_columns()` are expressed in R code and how the result corresponds to the YAML representation.

```r
R statement
informant %>%
 info_columns(
 columns = "date_time",
 info = "*info text* 1."
) %>%
 info_columns(
 columns = "date",
 info = "*info text* 2."
) %>%
 info_columns(
 columns = "item_count",
 info = "*info text* 3. Statistics: {snippet_1}."
) %>%
 info_columns(
 columns = vars(date, date_time),
 info = "UTC time."
)

YAML representation
columns:
 date_time:
 _type: POSIXct, POSIXt
 info: 'INFO text* 1. UTC time.'
 date:
 _type: Date
 info: 'INFO text* 2. UTC time.'
 item_count:
 _type: integer
 info: 'INFO text* 3. Statistics: {snippet_1}.'
```

Subsections represented as column names are automatically generated when creating an informant. Within these, there can be multiple subsections used for holding *info text* on each column. The subsections used across the different columns needn’t be the same either, the only commonality that should be enforced is the presence of the _type key (automatically updated at every `incorporate()` invocation).

It’s safest to use single quotation marks around any *info text* if directly editing it in a YAML file. Note that Markdown formatting and *info snippet* placeholders (shown here as `{snippet_1}`, see `info_snippet()` for more information) are preserved in the YAML. The Markdown to HTML
conversion is done when printing an informant (or invoking `get_informant_report()` on an informant) and the processing of snippets (generation and insertion) is done when using the `incorporate()` function. Thus, the source text is always maintained in the YAML representation and is never written in processed form.

**Figures**

**Function ID**

3-2

**See Also**

Other Information Functions: `info_columns_from_tbl()`, `info_section()`, `info_snippet()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_lowest()`, `snip_stats()`

**Examples**

```r
Create a pointblank `informant` object with `create_informant()``;
we can specify a `tbl` with the `\~` followed by a statement that
gets the `small_table` dataset
informant <-
 create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
)

We can add *info text* to describe
the columns in the table with multiple
`info_columns()` calls; the *info text*
calls are additive to existing content
in subsections
informant <-
 informant %>%
 info_columns(
 columns = vars(a),
 info = "In the range of 1 to 10. (SIMPLE)"
) %>%
 info_columns(
 columns = starts_with("date"),
 info = "Time-based values (e.g., `Sys.time()`)."
) %>%
 info_columns(
 columns = "date",
 info = "The date part of `date_time`. (CALC)"
)
```
# Upon printing the `informant` object, we see
# the additions made to the `Columns` section

if (interactive()) {
  # The `informant` object can be written to
  # a YAML file with the `yaml_write()`
  # function; then, information can
  # be directly edited or modified
  yaml_write(
    informant = informant,
    filename = "informant.yml"
  )

  # The YAML file can then be read back
  # into an informant object with the
  # `yaml_read_informant()` function
  informant <-
    yaml_read_informant(
      filename = "informant.yml"
    )
}

info_columns_from_tbl  Add column information from another data table

Description

The `info_columns_from_tbl()` function is a wrapper around the `info_columns()` function and is useful if you wish to apply info text to columns where that information already exists in a data frame (or in some form that can readily be coaxed into a data frame). The form of the input tbl (the one that contains column metadata) has a few basic requirements:

- the data frame must have two columns
- both columns must be of class character
- the first column should contain column names and the second should contain the info text

Each column that matches across tables (i.e., the tbl and the target table of the informant) will have a new entry for the "info" property. Empty or missing info text will be pruned from tbl.

Usage

`info_columns_from_tbl(x, tbl, .add = TRUE)`
Arguments

x  An informant object of class `ptblank_informant`.

tbl  The two-column data frame which contains metadata about the target table in
the informant object.

.add  Should new text be added to existing text? This is `TRUE` by default; setting to
`FALSE` replaces any existing text for the "info" property.

Value

A `ptblank_informant` object.

Function ID

3-3

See Also

The `info_columns()` function, which allows for manual entry of `info text`.

Other Information Functions: `info_columns()`, `info_section()`, `info_snippet()`, `info_tabular()`,
`snip_highest()`, `snip_list()`, `snip_lowest()`, `snip_stats()`

Examples

```r
Create a pointblank `informant`
object with `create_informant()`;
we can specify a `tbl` with the
`~` followed by a statement that
gets the `game_revenue` dataset
informant <-
 create_informant(
 tbl = ~ game_revenue,
 tbl_name = "game_revenue",
 label = "An example."
)

We can add *info text* to describe
the columns in the table by using
information in another table; the
`game_revenue_info` dataset contains
metadata for `game_revenue`

game_revenue_info

The `info_columns_from_tbl()`
function takes a table object
where the first column has the
column names and the second
contains the *info text*
informant <-
informant %>%
```
info_columns_from_tbl(
  tbl = game_revenue_info
)

# We can continue to add more *info
# text* since the process is additive;
# the `info_columns_from_tbl()`
# function populates the `info`
# subsection
informant <-
informant %>%
  info_columns(
    columns = "item_revenue",
    info = "Revenue reported in USD."
  ) %>%
  info_columns(
    columns = "acquisition",
    'top list' = "{top5_aq}"  
  ) %>%
  info_snippet(
    snippet_name = "top5_aq",
    fn = snip_list(column = "acquisition")
  ) %>%
  incorporate()

---

info_section  
*Add information that focuses on some key aspect of the data table*

**Description**

While the `info_tabular()` and `info_columns()` functions allow us to add/modify info text for specific sections, the `info_section()` makes it possible to add sections of our own choosing and the information that make sense for those sections. Define a `section_name` and provide a series of named arguments (in the form `entry_name = "The *info text*."`) to build the informational content for that section.

**Usage**

`info_section(x, section_name, ...)`

**Arguments**

- `x`  
  An informant object of class `ptblank_informant`.

- `section_name`  
  The name of the section for which this information pertains.

- `...`  
  Information entries as a series of named arguments. The names refer to subsection titles within the section defined as `section_name` and the RHS is the `info text` (informational text that can be written as Markdown and further styled with Text Tricks).
**Value**

A ptblank_informant object.

**Info Text**

The *info text* that’s used for any of the info_*() functions readily accepts Markdown formatting, and, there are a few *Text Tricks* that can be used to spice up the presentation. Markdown links written as `<link url>` or `[link text](link url)` will get nicely-styled links. Any dates expressed in the ISO-8601 standard with parentheses, "(2004-12-01)", will be styled with a font variation (monospaced) and underlined in purple. Spans of text can be converted to label-style text by using: (1) double parentheses around text for a rectangular border as in `((label text))`, or (2) triple parentheses around text for a rounded-rectangular border like `(((label text)))`. CSS style rules can be applied to spans of *info text* with the following form:

```
[[info text]]<<CSS style rules>>
```

As an example of this in practice suppose you’d like to change the color of some text to red and make the font appear somewhat thinner. A variation on the following might be used:

"This is a [[factor]]<<color: red; font-weight: 300;>> value."

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

- `color: <a color value>;` (text color)
- `background-color: <a color value>;` (the text’s background color)
- `text-decoration: (overline | line-through | underline);`
- `text-transform: (uppercase | lowercase | capitalize);`
- `letter-spacing: <a +/- length value>;`
- `word-spacing: <a +/- length value>;`
- `font-style: (normal | italic | oblique);`
- `font-weight: (normal | bold | 100-900);`
- `font-variant: (normal | bold | 100-900);`
- `border: <a color value> <a length value> (solid | dashed | dotted);`

In the above examples, ‘length value’ refers to a CSS length which can be expressed in different units of measure (e.g., 12px, 1em, etc.). Some lengths can be expressed as positive or negative values (e.g., for letter-spacing). Color values can be expressed in a few ways, the most common being in the form of hexadecimal color values or as CSS color names.

**YAML**

A pointblank informant can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an informant (with `yaml_read_informant()`) or perform the ‘incorporate’ action using the target table (via `yaml_informant_incorporate()`). Extra sections (i.e., neither the table nor the columns sections) can be generated and filled with *info text* by using one or more calls of `info_section()`. This is how it is expressed in both R code and in the YAML representation.
Subsections represented as column names are automatically generated when creating an informant. Within each of the top-level sections (i.e., History and Additional Notes) there can be multiple subsections used for holding info text. It's safest to use single quotation marks around any info text if directly editing it in a YAML file. Note that Markdown formatting and info snippet placeholders (shown here as {snippet}, see info_snippet() for more information) are preserved in the YAML. The Markdown to HTML conversion is done when printing an informant (or invoking get_informant_report() on an informant) and the processing of snippets (generation and insertion) is done when using the incorporate() function. Thus, the source text is always maintained in the YAML representation and is never written in processed form.

Figures

Function ID

3-4
See Also

Other Information Functions: `info_columns_from_tbl()`, `info_columns()`, `info_snippet()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_lowest()`, `snip_stats()`

Examples

```r
Create a pointblank 'informant'
object with 'create_informant()';
we can specify a 'tbl' with the
'~' followed by a statement that
gets the 'small_table' dataset
informant <-
 create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
)

The 'informant' object has the 'table'
and 'columns' sections; we can create
entirely different sections with their
own properties using 'info_section()'
informant <-
 informant %>%
 info_section(
 section_name = "Notes",
 creation = "Dataset generated on (2020-01-15).",
 usage = "small_table %>% dplyr::glimpse()"
) %>%
 incorporate()

Upon printing the 'informant' object, we see
the addition of the 'Notes' section and its
own information
if (interactive()) {
 informant
}

The 'informant' object can be written to
a YAML file with the 'yaml_write()' function; then, information can
be directly edited or modified
yaml_write(
 informant = informant,
 filename = "informant.yml"
)

The YAML file can then be read back
into an informant object with the
'yaml_read_informant()' function
informant <-
 yaml_read_informant(
 filename = "informant.yml"
)
```
Generate a useful text 'snippet' from the target table

Description

Getting little snippets of information from a table goes hand-in-hand with mixing those bits of info with your table info. Call `info_snippet()` to define a snippet and how you’ll get that from the target table. The snippet definition is supplied either with a formula, or, with a `pointblank`-supplied `snip_*()` function. So long as you know how to interact with a table and extract information, you can easily define snippets for a `informant` object. And once those snippets are defined, you can insert them into the `info text` as defined through the other info_*() functions (`info_tabular()`, `info_columns()`, and `info_section()`). Use curly braces with just the snippet_name inside (e.g., "This column has {n_cat} categories.").

Usage

`info_snippet(x, snippet_name, fn)`

Arguments

- `x` An informant object of class `ptblank_informant`.
- `snippet_name` The name for snippet, which is used for interpolating the result of the snippet formula into `info text` defined through the other info_*() functions.
- `fn` A formula that obtains a snippet of data from the target table. It’s best to use a leading dot (.) that stands for the table itself and use pipes to construct a series of operations to be performed on the table (e.g., `. %>% dplyr::pull(column_2) %>% max(na.rm = TRUE)`). So long as the result is a length-1 vector, it’ll likely be valid for insertion into some info text. Alternatively, a `snip_*()` function can be used here (these functions always return a formula that’s suitable for all types of data sources).

Value

A `ptblank_informant` object.

Snip functions provided in pointblank

For convenience, there are several `snip_*()` functions provided in the package that work on column data from the `informant`’s target table. These are:

- `snip_list()`: get a list of column categories
- `snip_stats()`: get an inline statistical summary
- `snip_lowest()`: get the lowest value from a column
- `snip_highest()`: get the highest value from a column

As it's understood what the target table is, only the column in each of these functions is necessary for obtaining the resultant text.

**YAML**

A **pointblank** informant can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an informant (with `yaml_read_informant()`) or perform the 'incorporate' action using the target table (via `yaml_informant_incorporate()`). Snippets are stored in the YAML representation and here is is how they are expressed in both R code and in the YAML output (showing both the meta_snippets and columns keys to demonstrate their relationship here).

```r
R statement
informant %>%
 info_columns(
 columns = "date_time",
 'Latest Date' = "The latest date is {latest_date}."
) %>%
 info_snippet(
 snippet_name = "latest_date",
 fn = ~ . %>% dplyr::pull(date) %>% max(na.rm = TRUE)
) %>%
 incorporate()
```

```yaml
YAML representation
meta_snippets:
 latest_date: ~. %>% dplyr::pull(date) %>% max(na.rm = TRUE)
...
columns:
 date_time:
 _type: POSIXct, POSIXt
 Latest Date: The latest date is {latest_date}.
 date:
 _type: Date
 item_count:
 _type: integer
```

**Figures**

**Function ID**

3-5
See Also

Other Information Functions: `info_columns_from_tbl()`, `info_columns()`, `info_section()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_lowest()`, `snip_stats()`

Examples

# Take the `small_table` and
# assign it to `test_table`; we'll
# modify it later
test_table <- small_table

# Generate an informant object, add
# two snippets with `info_snippet()`,
# add information with some other
# `info_*()` functions and then
# `incorporate()` the snippets into
# the info text
informant <-
create_informant(
  tbl = ~ test_table,
  tbl_name = "test_table",
  label = "An example."
) %>%
  info_snippet(
    snippet_name = "row_count",
    fn = ~ . %>% nrow()
  ) %>%
  info_snippet(
    snippet_name = "max_a",
    fn = snip_highest(column = "a"
  ) %>%
  info_columns(
    columns = vars(a),
    info = "In the range of 1 to {max_a}. (SIMPLE)"
  ) %>%
  info_columns(
    columns = starts_with("date"),
    info = "Time-based values (e.g., `Sys.time()`)".
  ) %>%
  info_columns(
    columns = "date",
    info = "The date part of `date_time`. (CALC)"
  ) %>%
  info_section(
    section_name = "rows",
    row_count = "There are {row_count} rows available."
  ) %>%
  incorporate()

# We can print the `informant` object
# to see the information report
# Let's modify 'test_table' to give
# it more rows and an extra column
test_table <-
  dplyr::bind_rows(test_table, test_table) %>%
  dplyr::mutate(h = a + c)

# Using 'incorporate()' will cause
# the snippets to be reprocessed, and,
# the info text to be updated
informant <-
  informant %>% incorporate()

---

**info_tabular**

*Add information that focuses on aspects of the data table as a whole*

## Description

When an *informant* object is created with the `create_informant()` function, it has two starter sections: (1) 'table' and (2) 'columns'. The 'table' section should contain a few properties upon creation, such as the supplied table name (`name`) and table dimensions (as `_columns` and `_rows`). We can add more table-based properties with the `info_tabular()` function. By providing a series of named arguments (in the form `entry_name = "The *info text*."`), we can add more information that makes sense for describing the table as a whole.

## Usage

```
info_tabular(x, ...)
```

## Arguments

- **x**
  
  An informant object of class `ptblank_informant`.

- **...**
  
  Information entries as a series of named arguments. The names refer to subsection titles within the `TABLE` section and the RHS is the *info text* (informational text that can be written as Markdown and further styled with Text Tricks).

## Value

A `ptblank_informant` object.

## Info Text

The *info text* that's used for any of the info_*() functions readily accepts Markdown formatting, and, there are a few Text Tricks that can be used to spice up the presentation. Markdown links written as `<link url>` or `[link text](link url)` will get nicely-styled links. Any dates expressed in the ISO-8601 standard with parentheses, "(2004-12-01)", will be styled with a font variation (monospaced) and underlined in purple. Spans of text can be converted to label-style text by using: (1) double parentheses around text for a rectangular border as in `((label text))`, or (2) triple parentheses around text for a rounded-rectangular border like `(((label text)))`.‌
CSS style rules can be applied to spans of *info text* with the following form:

```
[[info text]]<< CSS style rules >>
```

As an example of this in practice suppose you’d like to change the color of some text to red and make the font appear somewhat thinner. A variation on the following might be used:

"This is a [[factor]]<<color: red; font-weight: 300;>> value."

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

- `color: <a color value>;` (text color)
- `background-color: <a color value>;` (the text’s background color)
- `text-decoration: (overline | line-through | underline);`
- `text-transform: (uppercase | lowercase | capitalize);`
- `letter-spacing: <a +/- length value>;
- `word-spacing: <a +/- length value>;
- `font-style: (normal | italic | oblique);`
- `font-weight: (normal | bold | 100-900);`
- `font-variant: (normal | bold | 100-900);`
- `border: <a color value> <a length value> (solid | dashed | dotted);`

In the above examples, 'length value' refers to a CSS length which can be expressed in different units of measure (e.g., 12px, 1em, etc.). Some lengths can be expressed as positive or negative values (e.g., for `letter-spacing`). Color values can be expressed in a few ways, the most common being in the form of hexadecimal color values or as CSS color names.

**YAML**

A **pointblank** informant can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an informant (with `yaml_read_informant()`) or perform the 'incorporate' action using the target table (via `yaml_informant_incorporate()`). When `info_tabular()` is represented in YAML, *info text* goes into subsections of the top-level table key. Here is an example of how a call of `info_tabular()` is expressed in R code and in the corresponding YAML representation.

```r
R statement
informant %>%
 info_tabular(
 section_1 = "*info text* 1."
 , section 2 = "*info text* 2 and {snippet_1}"
)
```

```yaml
YAML representation
table:
 _columns: 23
 _rows: 205.0
 _type: tbl_df
 section_1: '*info text* 1.'
 section 2: '*info text* 2 and {snippet_1}'
```
Subsection titles as defined in `info_tabular()` can be set in backticks if they are not syntactically correct as an argument name without them (e.g., when using spaces, hyphens, etc.). It’s safest to use single quotation marks around any `info text` if directly editing it in a YAML file. Note that Markdown formatting and `info snippet` placeholders (shown here as `{snippet_1}`), see `info_snippet()` for more information) are preserved in the YAML. The Markdown to HTML conversion is done when printing an informant (or invoking `get_informant_report()` on an `informant`) and the processing of snippets (generation and insertion) is done when using the `incorporate()` function. Thus, the source text is always maintained in the YAML representation and is never written in processed form.

**Figures**

**Function ID**

3-1

**See Also**

Other Information Functions: `info_columns_from_tbl()`, `info_columns()`, `info_section()`, `info_snippet()`, `snip_highest()`, `snip_list()`, `snip_lowest()`, `snip_stats()`

**Examples**

```r
Create a pointblank `informant` object with `create_informant()`;
we can specify a `tbl` with the
`~` followed by a statement that
gets the `small_table` dataset
informant <-
create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
)

We can add `info text` to describe
the table with `info_tabular()`
informant %>%
info_tabular(
 `Row Definition` = "A row has randomized values.",
 Source = c(
 "- From the **pointblank** package.",
 "- https://rich-iannone.github.io/pointblank/
)
)

Upon printing the `informant` object, we see
the additions made to the 'Table' section
```
interrogate

Description

Given an agent that has a validation plan, perform an interrogation

When the agent has all the information on what to do (i.e., a validation plan which is a series of validation steps), the interrogation process can occur according its plan. After that, the agent will have gathered intel, and we can use functions like `get_agent_report()` and `all_passed()` to understand how the interrogation went down.

Usage

```r
interrogate(
 agent,
 extract_failed = TRUE,
 get_first_n = NULL,
 sample_n = NULL,
 sample_frac = NULL,
 sample_limit = 5000
)
```

Arguments

- **agent**: An agent object of class `ptblank_agent` that is created with `create_agent()`.
- **extract_failed**: An option to collect rows that didn’t pass a particular validation step. The default is `TRUE` and further options allow for fine control of how these rows are collected.
interrogate

get_first_n If the option to collect non-passing rows is chosen, there is the option here to collect the first \( n \) rows here. Supply the number of rows to extract from the top of the non-passing rows table (the ordering of data from the original table is retained).

sample_n If the option to collect non-passing rows is chosen, this option allows for the sampling of \( n \) rows. Supply the number of rows to sample from the non-passing rows table. If \( n \) is greater than the number of non-passing rows, then all the rows will be returned.

sample_frac If the option to collect non-passing rows is chosen, this option allows for the sampling of a fraction of those rows. Provide a number in the range of 0 and 1. The number of rows to return may be extremely large (and this is especially when querying remote databases), however, the sample_limit option will apply a hard limit to the returned rows.

sample_limit A value that limits the possible number of rows returned when sampling non-passing rows using the sample_frac option.

Value
A ptblank_agent object.

Function ID
6-1

See Also
Other Interrogate and Report: `get_agent_report()`

Examples
if (interactive()) {

# Create a simple table with two columns of numerical values
tbl <-
dplyr::tibble(
  a = c(5, 7, 6, 5, 8, 7),
  b = c(7, 1, 0, 0, 0, 3)
)

# Validate that values in column `a` from `tbl` are always > 5,
# using `interrogate()` carries out
# the validation plan and completes
# the whole process
agent <-
create_agent(tbl = tbl) %>%
col_vals_gt(vars(a), value = 5) %>%
interrogate()
**Description**

The `log4r_step()` function can be used as an action in the `action_levels()` function (as a list component for the `fns` list). Place a call to this function in every failure condition that should produce a log (i.e., `warn`, `stop`, `notify`). Only the failure condition with the highest severity for a given validation step will produce a log entry (skipping failure conditions with lower severity) so long as the call to `log4r_step()` is present.

**Usage**

```r
log4r_step(x, message = NULL, append_to = "pb_log_file")
```

**Arguments**

- `x`  
  A reference to the x-list object prepared by the agent. This version of the x-list is the same as that generated via `get_agent_x_list(<agent>, i = <step>))` except this version is internally generated and hence only available in an internal evaluation context.

- `message`  
  The message to use for the log entry. When not provided, a default glue string is used for the messaging. This is dynamic since the internal `glue::glue()` call occurs in the same environment as `x`, the x-list that’s constrained to the validation step. The default message, used when `message = NULL` is the glue string "Step \{x$i\} exceeded the \{level\} failure threshold (f_failed = \{x$f_failed\}) [\'(\type\')]". As can be seen, a custom message can be crafted that uses other elements of the x-list with the `\{x$<component>\}` construction.

- `append_to`  
  The file to which log entries at the warn level are appended. This can alternatively be one or more `log4r` appenders.

**Value**

Nothing is returned however log files may be written in very specific conditions.

**Function ID**

5-1
Examples

# We can create an `action_levels` object that has a threshold for
# the `warn` state, and, an
# associated function that should
# be invoked whenever the `warn` state is entered. Here, the
# function call with `log4r_step()`
# will be invoked whenever there
# is one failing test unit. It's
# important to match things up here;
# notice that `warn_at` is given a
# threshold and the list of functions
# given to `fns` has a `warn` component
al <-
action_levels(
    warn_at = 1,
    fns = list(
        warn = ~ log4r_step(
            x, append_to = "example_log"
        )
    )
)

# Printing `al` will show us the
# settings for the
# `action_levels` object:
al

# Let's create an agent with
# `small_table` as the target
# table, apply the `action_levels`
# object created above as `al`,
# add two validation steps, and
# then `interrogate()` the data
agent <-
create_agent(
    tbl = small_table,
    tbl_name = "small_table",
    actions = al
) %>%
col_vals_gt(vars(d), 300) %>%
col_vals_in_set(
    vars(f), c("low", "high")
) %>%
interrogate()

# From the agent report, we can
# see that both steps have yielded
# warnings upon interrogation
# (i.e., filled yellow circles
# in the `W` column).
# We can see this more directly
# by inspecting the `warn`
# component of the agent’s x-list:
get_agent_x_list(agent)$warn

# Upon entering the `warn` state
# in each validation step during
# interrogation, the `log4r_step()`
# function call was invoked! This
# will generate an "example_log"
# file in the working directory
# and log entries will be appended
# to the file

if (file.exists("example_log")) {
  file.remove("example_log")
}

---

read_disk_multiagent  Read pointblank agents stored on disk as a multiagent

**Description**

An *agent* or *informant* can be written to disk with the `x_write_disk()` function. While useful for later retrieving the stored agent with `x_read_disk()` it’s also possible to read a series of on-disk agents with the `read_disk_multiagent()` function, which creates a `ptblank_multiagent` object. A *multiagent* object can also be generated via the `create_multiagent()` function but is less convenient to use if one is just using agents that have been previous written to disk.

**Usage**

```r
read_disk_multiagent(filenames = NULL, pattern = NULL, path = NULL)
```

**Arguments**

- **filenames** The names of files (holding *agent* objects) that were previously written by `x_write_disk()`.
- **pattern** A regex pattern for accessing saved-to-disk *agent* files located in a directory (specified in the `path` argument).
- **path** A path to a collection of files. This is either optional in the case that files are specified in `filenames` (the path combined with all `filenames`), or, required when providing a `pattern` for file names.

**Value**

A `ptblank_multiagent` object.
Function ID

10-2

See Also

Other The multiagent: create_multiagent(), get_multiagent_report()

remove_steps

Remove one or more of an agent’s validation steps

Description

Validation steps can be removed from an agent object through use of the remove_steps() function. This is useful, for instance, when getting an agent from disk (via the x_read_disk() function) and omitting one or more steps from the agent’s validation plan. Please note that when removing validation steps all stored data extracts will be removed from the agent.

Usage

remove_steps(agent, i = NULL)

Arguments

agent An agent object of class ptblank_agent.
i The validation step number, which is assigned to each validation step in the order of definition. If NULL (the default) then step removal won’t occur by index.

Value

A ptblank_agent object.
A ptblank_agent object.

Function ID

9-7

See Also

Instead of removal, the deactivate_steps() function will simply change the active status of one or more validation steps to FALSE (and activate_steps() will do the opposite).

Other Object Ops: activate_steps(), deactivate_steps(), export_report(), set_tbl(), x_read_disk(), x_write_disk()
Examples

# Create an agent that has the
# `small_table` object as the
# target table, add a few
# validation steps, and then use
# `interrogate()`
agent_1 <-
  create_agent(
    tbl = small_table,
    tbl_name = "small_table",
    label = "An example."
  ) %>%
  col_exists(vars(date)) %>%
  col_vals_regex(
    vars(b), regex = "\[0-9\]-[a-z]\[3\]-[0-9]\"
  ) %>%
  interrogate()

# The second validation step has
# been determined to be unneeded and
# is to be removed; this can be done
# by using `remove_steps()` with the
# agent object
agent_2 <-
  agent_1 %>%
  remove_steps(i = 2) %>%
  interrogate()

Description

The `rows_complete()` validation function, the `expect_rows_complete()` expectation function, and the `test_rows_complete()` test function all check whether rows contain any NA/NULL values (optionally constrained to a selection of specified columns). The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). As a validation step or as an expectation, this will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

We can specify the constraining column names in quotes, in `vars()`, and with the following `tidyselect` helper functions: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

Usage

`rows_complete()`
expect_rows_complete(
  object,
  columns = NULL,
  preconditions = NULL,
  threshold = 1
)

Arguments

- **x**: A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or an agent object of class ptblank_agent that is created with create_agent().
- **columns**: The column (or a set of columns, provided as a character vector) to which this validation should be applied.
- **preconditions**: An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.
- **segments**: An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
- **actions**: A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
- **step_id**: One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**
An optional label for the validation step. This label appears in the *agent* report and for the best appearance it should be kept short.

**brief**
An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in *create_agent*’s `lang` argument (which defaults to “en” or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

**active**
A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `. (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . ` managerial columns existing in the table (e.g., `~ .`). The default for active is `TRUE`.

**object**
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding *testthat* test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**
For the validation function, the return value is either a *ptblank_agent* object or a table object (depending on whether an *agent* object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Preconditions**
Providing expressions as *preconditions* means *pointblank* will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an *agent*-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where *preconditions* is used. Using *dplyr* code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided \texttt{R} formula (using a leading `\~`). In the formula representation, the `\~` serves as the input data table to be transformed (e.g., `\~ \%\% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

**Segments**

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1","group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. Using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other \texttt{stop()}s at the same threshold level).

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an \texttt{agent}. If that’s the case, \texttt{brief} the agent with some text that fits. Don’t worry if you don’t want to do it. The \texttt{autobrief} protocol is kicked in when \texttt{brief = NULL} and a simple brief will then be automatically generated.

**YAML**

A \texttt{pointblank} agent can be written to YAML with \texttt{yaml_write()} and the resulting YAML can be used to regenerate an agent (with \texttt{yaml_read_agent()}) or interrogate the target table (via
yaml_agent_interrogate()). When rows_complete() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of rows_complete() as a validation step is expressed in R code and in the corresponding YAML representation.

# R statement
agent %>%
  rows_complete(
    columns = vars(a, b),
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `rows_complete()` step.",
    active = FALSE
  )

# YAML representation
steps:
  - rows_complete:
      columns: vars(a, b)
      preconditions: ~ . %>% dplyr::filter(a < 10)
      segments: b ~ c("group_1", "group_2")
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The `rows_complete()` step.
      active: false

In practice, both of these will often be shorter. A value for columns is only necessary if checking for unique values across a subset of columns. Arguments with default values won’t be written to YAML when using yaml_write() (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the yaml_agent_string() function.

Function ID

2-21

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(), col_vals_increasing(), col_vals_lte(), col_vals_lt(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_distinct(), serially(), specially(), tbl_match()
Examples

# Create a simple table with three columns of numerical values
tbl <-
  dplyr::tibble(
    a = c(5, 7, 6, 5, 8, 7),
    b = c(7, 1, 0, 0, 8, 3),
    c = c(1, 1, 1, 3, 3, 3)
  )

tbl

# A: Using an `agent` with validation functions and then `interrogate()`

# Validate that when considering only data in columns `a` and `b`, there are only complete rows (i.e., all rows have no `NA` values)
agent <-
  create_agent(tbl = tbl) %>%
  rows_complete(vars(a, b)) %>%
  interrogate()

# Determine if this validation passed by using `all_passed()`
all_passed(agent)

# Calling `agent` in the console prints the agent's report; but we can get a `gt_tbl` object directly with `get_agent_report(agent)`

# B: Using the validation function directly on the data (no `agent`)

# This way of using validation functions acts as a data filter: data is passed through but should `stop()` if there is a single test unit failing; the behavior of side effects can be customized with the `actions` option

# C: Using the expectation function

# With the `expect_*()` form, we would typically perform one validation at a time; this is primarily used in testthat tests
```
expect_rows_complete(
 tbl, vars(a, b)
)

D: Using the test function
With the `test_*()` form, we should
get a single logical value returned
to us
test_rows_complete(
 tbl, vars(a, b)
)
```

---

**rows_distinct**  
*Are row data distinct?*

**Description**

The `rows_distinct()` validation function, the `expect_rows_distinct()` expectation function, and the `test_rows_distinct()` test function all check whether row values (optionally constrained to a selection of specified columns) are, when taken as a complete unit, distinct from all other units in the table. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). As a validation step or as an expectation, this will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

We can specify the constraining column names in quotes, in `vars()`, and with the following `tidyselect` helper functions: `starts_with()`, `ends_with()`, `contains()`, `matches()`, and `everything()`.

**Usage**

```r
rows_distinct(
 x,
 columns = NULL,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_rows_distinct(
 object,
 columns = NULL,
)```
preconditions = NULL,
 threshold = 1
})

test_rows_distinct(object, columns = NULL, preconditions = NULL, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class pointblank_agent that is created with create_agent()..
columns The column (or a set of columns, provided as a character vector) to which this validation should be applied.
preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.
segments An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.
actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.
step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.
brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to “en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent
involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided \texttt{R} formula using a leading `~` can be used with \texttt{x} (serving as the input data table) to evaluate to a single logical value. With this approach, the \texttt{pointblank} function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `\sim . %>% has_columns(vars(d,e)))`. The default for `active` is \texttt{TRUE}.

- **object**: A data frame, \texttt{tbl_df} or \texttt{tbl_dbi}, or Spark DataFrame (\texttt{tbl_spark}) that serves as the target table for the expectation function or the test function.

- **threshold**: A simple failure threshold value for use with the expectation (\texttt{expect_}) and the test (\texttt{test_}) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding \texttt{test_} test or evaluate to \texttt{TRUE}. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a \texttt{ptblank_agent} object or a table object (depending on whether an agent object or a table was passed to \texttt{x}). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Preconditions

Providing expressions as \texttt{preconditions} means \texttt{pointblank} will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an \texttt{agent_based report} this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where \texttt{preconditions} is used. Using \texttt{dplyr} code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided \texttt{R} formula (using a leading `~`). In the formula representation, the \texttt{.} serves as the input data table to be transformed (e.g., `\sim . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x,col_b = col_a + 10)`).

Segments

By using the \texttt{segments} argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called \texttt{a_column}. This is great
if every unique value in a particular column (like different locations, or different dates) requires it's own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1","group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it's possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function's documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you'll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. Using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that's the case, brief the agent with some text that fits. Don't worry if you don't want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `rows_distinct()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `rows_distinct()` as a validation step is expressed in R code and in the corresponding YAML representation.

```
# R statement
agent %>%
  rows_distinct(
    columns = vars(a, b),
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The \texttt{rows_distinct()} step.",
    active = FALSE
  )
```
YAML representation
steps:
 - rows_distinct:
 columns: vars(a, b)
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `rows_distinct()` step.
 active: false

In practice, both of these will often be shorter. A value for `columns` is only necessary if checking for unique values across a subset of columns. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-20

See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `serially()`, `specially()`, `tbl_match()`

Examples

Create a simple table with three columns of numerical values
tbl <-
 dplyr::tibble(
 a = c(5, 7, 6, 5, 8, 7),
 b = c(7, 1, 0, 0, 8, 3),
 c = c(1, 1, 3, 3, 3)
)

tbl

A: Using an 'agent' with validation functions and then 'interrogate()'
Validate that when considering only data in columns `a` and `b`, there are no duplicate rows (i.e., all rows are distinct)
agent <-
 create_agent(tbl = tbl) %>%
 rows_distinct(vars(a, b)) %>%
 interrogate()

Determine if this validation passed by using `all_passed()`
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we can get a `gt_tbl` object directly with `get_agent_report(agent)`

B: Using the validation function directly on the data (no `agent`)
This way of using validation functions acts as a data filter: data is passed through but should `stop()` if there is a single test unit failing; the behavior of side effects can be customized with the `actions` option
agent <-
 create_agent(tbl = tbl) %>%
 rows_distinct(vars(a, b)) %>%
 dplyr::pull(a)

C: Using the expectation function
With the `expect_*()` form, we would typically perform one validation at a time; this is primarily used in testthat tests
expect_rows_distinct(tbl, vars(a, b))

D: Using the test function
With the `test_*()` form, we should get a single logical value returned to us
test_rows_distinct(tbl, vars(a, b))
row_count_match

Does the row count match that of a different table?

Description

The `row_count_match()` validation function, the `expect_row_count_match()` expectation function, and the `test_row_count_match()` test function all check whether the row count in the target table matches that of a comparison table. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (`tbl_dbi`), and Spark DataFrames (`tbl_spark`). As a validation step or as an expectation, there is a single test unit that hinges on whether the row counts for the two tables are the same (after any preconditions have been applied).

Usage

```r
row_count_match(
  x,
  tbl_compare,
  preconditions = NULL,
  segments = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)
```

```r
expect_row_count_match(
  object,
  tbl_compare,
  preconditions = NULL,
  threshold = 1
)
```

```r
test_row_count_match(object, tbl_compare, preconditions = NULL, threshold = 1)
```

Arguments

- **x**
 - A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or an `agent` object of class `ptblank_agent` that is created with `create_agent()`.

- **tbl_compare**
 - A table to compare against the target table in terms of row count values. This can either be a table object, a table-prep formula. This can be a table object such as a data frame, a tibble, a `tbl_dbi` object, or a `tbl_spark` object. Alternatively, a table-prep formula (~ <table reading code>) or a function (function() <table reading code>) can be used to lazily read in the table at interrogation time.
row_count_match

preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

segments An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d, e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that this particular validation requires some operation on the target table before the row count comparison takes place. Using preconditions can be useful at times since since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed. Alternatively, a function could instead be supplied.

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.
Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. Using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other `stop()`s).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `row_count_match()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `row_count_match()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
# R statement
agent %>%
  row_count_match(
    tbl_compare = ~ file_tbl(
      file = from_github(
        file = "all_revenue_large.rds",
        repo = "rich-iannone/intendo",
        subdir = "data-large"
      ),
    ),
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The 'row_count_match()' step.",
    active = FALSE
  )

# YAML representation
steps:
- row_count_match:
  tbl_compare: ~ file_tbl(
    file = from_github(
      file = "all_revenue_large.rds",
```
repo = "rich-iannone/intendo",
subdir = "data-large"
)
)
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
label: The 'row_count_match()' step.
active: false

In practice, both of these will often be shorter. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-31

See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `rows_complete()`, `rows_distinct()`, `serially()` , `specially()`, `tbl_match()`

Examples

Create a simple table with three # columns and four rows of values
tbl <-
dplyr::tibble(
 a = c(5, 7, 6, 5),
 b = c(7, 1, 0, 0),
 c = c(1, 1, 1, 3)
)

tbl

Create a second table which is # quite different but has the # same number of rows as 'tbl'
tbl_2 <-
dplyr::tibble(
 e = c("a", NA, "a", "c"),
 f = c(2.6, 1.2, 0, NA)
A: Using an `agent` with validation functions and then `interrogate()`

Validate that the count of rows in the target table (`tbl`) matches that of the comparison table (`tbl_2`)

```r
agent <- create_agent(tbl = tbl) %>%
  row_count_match(tbl_compare = tbl_2) %>%
  interrogate()
```

Determine if this validation passed by using `all_passed()`

```r
all_passed(agent)
```

Calling `agent` in the console prints the agent's report; but we can get a `gt_tbl` object directly with `get_agent_report(agent)`

B: Using the validation function directly on the data (no `agent`)

This way of using validation functions acts as a data filter: data is passed through but should `stop()` if there is a single test unit failing; the behavior of side effects can be customized with the `actions` option

```r
tbl %>%
  row_count_match(tbl_compare = tbl_2)
```

C: Using the expectation function

With the `expect_*()` form, we would typically perform one validation at a time; this is primarily used in testthat tests

```r
expect_row_count_match(
  tbl,
  tbl_compare = tbl_2
)
```

D: Using the test function

With the `test_*()` form, we should get a single logical value returned to us

```r
tbl %>%
  row_count_match(
    tbl_compare = tbl_2
```
Description

Generate an HTML report that scours the input table data. Before calling up an *agent* to validate the data, it’s a good idea to understand the data with some level of precision. Make this the initial step of a well-balanced *data quality reporting* workflow. The reporting output contains several sections to make everything more digestible, and these are:

- **Overview** Table dimensions, duplicate row counts, column types, and reproducibility information
- **Variables** A summary for each table variable and further statistics and summaries depending on the variable type
- **Interactions** A matrix plot that shows interactions between variables
- **Correlations** A set of correlation matrix plots for numerical variables
- **Missing Values** A summary figure that shows the degree of missingness across variables
- **Sample** A table that provides the head and tail rows of the dataset

The output HTML report will appear in the RStudio Viewer and can also be integrated in R Markdown HTML output. If you need the output HTML as a string, it’s possible to get that by using `as.character()` (e.g., `scan_data(tbl = mtcars) %>% as.character()`). The resulting HTML string is a complete HTML document where *Bootstrap* and *jQuery* are embedded within.

Usage

```r
scan_data(
  tbl,
  sections = "OVICMS",
  navbar = TRUE,
  width = NULL,
  lang = NULL,
  locale = NULL
)
```

Arguments

- `tbl` The input table. This can be a data frame, tibble, a `tbl_dbi` object, or a `tbl_spark` object.
- `sections` The sections to include in the finalized Table Scan report. A string with key characters representing section names is required here. The default string is "OVICMS" wherein each letter stands for the following sections in their default order: "O": "overview"; "V": "variables"; "I": "interactions"; "C": "correlations"; "M": "missing"; and "S": "sample". This string can be
compromised of less characters and the order can be changed to suit the desired layout of the report. For tbl_dbi and tbl_spark objects supplied to tbl, the “interactions” and “correlations” sections are currently excluded.

navbar
Should there be a navigation bar anchored to the top of the report page? By default this is TRUE.

width
An optional fixed width (in pixels) for the HTML report. By default, no fixed width is applied.

lang
The language to use for label text in the report. By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Swedish ("sv"), and Dutch ("nl").

locale
An optional locale ID to use for formatting values in the report according the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").

Figures

Function ID

1-1

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(), draft_validation(), file_tbl(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

Examples

```r
if (interactive()) {
  # Get an HTML document that describes all of
  # the data in the 'dplyr::storms' dataset
  tbl_scan <- scan_data(tbl = dplyr::storms)
}
```
The `serially()` validation function allows for a series of tests to run in sequence before either culminating in a final validation step or simply exiting the series. This construction allows for pre-testing that may make sense before a validation step. For example, there may be situations where it’s vital to check a column type before performing a validation on the same column (since having the wrong type can result in an evaluation error for the subsequent validation). Another serial workflow might entail having a bundle of checks in a prescribed order and, if all pass, then the goal of this testing has been achieved (e.g., checking if a table matches another through a series of increasingly specific tests).

A series as specified inside `serially()` is composed with a listing of calls, and we would draw upon test functions (T) to describe tests and optionally provide a finalizing call with a validation function (V). The following constraints apply:

- there must be at least one test function in the series (T -> V is good, V is not)
- there can only be one validation function call, V; it’s optional but, if included, it must be placed at the end (T -> T -> V is good, these sequences are bad: (1) T -> V -> T, (2) T -> T -> V)
- a validation function call (V), if included, mustn’t itself yield multiple validation steps (this may happen when providing multiple columns or any segments)

Here’s an example of how to arrange expressions:

```
~ test_col_exists(., columns = vars(count)),
~ test_col_is_numeric(., columns = vars(count)),
~ col_vals_gt(., columns = vars(count), value = 2)
```

This series concentrates on the column called `count` and first checks whether the column exists, then checks if that column is numeric, and then finally validates whether all values in the column are greater than 2.

Note that in the above listing of calls, the . stands in for the target table and is always necessary here. Also important is that all test_*() functions have a threshold argument that is set to 1 by default. Should you need to bump up the threshold value it can be changed to a different integer value (as an absolute threshold of failing test units) or a decimal value between 0 and 1 (serving as a fractional threshold of failing test units).

Usage

```
serially(
  x,
  ..., .list = list2(...),
  preconditions = NULL,
)```
actions = NULL,
step_id = NULL,
label = NULL,
brie = NULL,
active = TRUE
)

expect_serially(
  object,
  ..., 
  .list = list2(...),
  preconditions = NULL,
  threshold = 1
)

test_serially(
  object,
  ..., 
  .list = list2(...),
  preconditions = NULL,
  threshold = 1
)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

... A collection one-sided formulas that consist of test_*() function calls (e.g., test_col_vals_between(), etc.) arranged in sequence of intended interrogation order. Typically, validations up until the final one would have some threshold value set (default is 1) for short circuiting within the series. A finishing validation function call (e.g., col_vals_increasing(), etc.) can optionally be inserted at the end of the series, serving as a validation step that only undergoes interrogation if the prior tests adequately pass. An example of this is ~ test_column_exists(., vars(a)), ~ col_vals_not_null(., vars(a))).

.list Allows for the use of a list as an input alternative to ....

preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

**brief**
An optional, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the agent, using the language provided in `create_agent()`’s `lang` argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(vars(d,e)))`. The default for active is `TRUE`.

**object**
A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

**threshold**
A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that tests or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where `0.15` means that 15 percent of failing test units results in an overall test failure.

**Value**
For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Column Names**
If providing multiple column names in any of the supplied validation steps, the result will be an expansion of sub-validation steps to that number of column names. Aside from column names in...
quotes and in vars(). tidyselect helper functions are available for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and everything().

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fail, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When serially() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of serially() as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
 serially(
 ~ col_vals_lt(., vars(a), 8),
```
~ col_vals_gt(., vars(c), vars(a)),
~ col_vals_not_null(., vars(b)),
preconditions = ~ . %>% dplyr::filter(a < 10),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The \`serially()\` step.",
active = FALSE
)

# YAML representation
steps:
- serially:
  fns:
  - ~col_vals_lt(., vars(a), 8)
  - ~col_vals_gt(., vars(c), vars(a))
  - ~col_vals_not_null(., vars(b))
  preconditions: ~. %>% dplyr::filter(a < 10)
  actions:
  warn_fraction: 0.1
  stop_fraction: 0.2
  label: The `serially()` step.
  active: false

In practice, both of these will often be shorter as only the expressions for validation steps are necessary. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Function ID**

2-34

**See Also**

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `specially()`, `tbl_match()`

**Examples**

# For all examples here, we'll use
# a simple table with three numeric
# columns (`'a'`, `'b'`, and `'c'`); this is
# a very basic table but it'll be more
# useful when explaining things later
tbl <-
dplyr::tibble(
  a = c(5, 2, 6),
  b = c(6, 4, 9),
  c = c(1, 2, 3)
)

tbl

# A: Using an `agent` with validation
  functions and then `interrogate()`

# The `serially()` function can be set
# up to perform a series of tests and
# then perform a validation (only if
# all tests pass); here, we are going
# to (1) test whether columns `a` and
# `b` are numeric, (2) check that both
# don't have any `NA` values, and (3)
# perform a finalizing validation that
# checks whether values in `b` are
# greater than values in `a`
agent_1 <-
  create_agent(tbl = tbl) %>%
  serially(
    ~ test_col_is_numeric(., vars(a, b)),
    ~ test_col_vals_not_null(., vars(a, b)),
    ~ col_vals_gt(., vars(b), vars(a))
  ) %>%
  interrogate()

# Determine if this validation
# had no failing test units (there are
# 4 tests and a final validation)
all_passed(agent_1)

# Calling `agent` in the console
# prints the agent's report; but we
# can get a `gt.tbl` object directly
# with `get_agent_report(agent_1)`

# What's going on? All four of the tests
# passed and so the final validation
# occurred; there were no failing test
# units in that either!

# The final validation is optional; here
# is a different agent where only the
# serial tests are performed
agent_2 <-
  create_agent(tbl = tbl) %>%
  serially(
    ~ test_col_is_numeric(., vars(a, b)),
    ~ test_col_vals_not_null(., vars(a, b))
  )
```r
<%
interrogate()

Everything is good here too:
all_passed(agent_2)

B: Using the validation function
directly on the data (no 'agent')

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the 'actions' option
tbl %>>% serially(
 ~ test_col_is_numeric(., vars(a, b)),
 ~ test_col_vals_not_null(., vars(a, b)),
 ~ col_vals_gt(., vars(b), vars(a))
)

C: Using the expectation function

With the 'expect_*()' form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_serially(
 tbl,
 ~ test_col_is_numeric(., vars(a, b)),
 ~ test_col_vals_not_null(., vars(a, b)),
 ~ col_vals_gt(., vars(b), vars(a))
)

D: Using the test function

With the 'test_*()' form, we should
get a single logical value returned
to us
tbl %>>%
 test_serially(
 ~ test_col_is_numeric(., vars(a, b)),
 ~ test_col_vals_not_null(., vars(a, b)),
 ~ col_vals_gt(., vars(b), vars(a))
)
```

**set_tbl**

Set a data table to an agent or an informant
Description

Setting a data table to an agent or an informant with `set_tbl()` replaces any associated table (a data frame, a tibble, objects of class tbl_dbi or tbl_spark).

Usage

```r
set_tbl(x, tbl, tbl_name = NULL, label = NULL)
```

Arguments

- **x**: An agent object of class `ptblank_agent`, or, an informant of class `ptblank_informant`.
- **tbl**: The input table for the agent or the informant. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, an expression can be supplied to serve as instructions on how to retrieve the target table at interrogation- or incorporation-time. There are two ways to specify an association to a target table: (1) as a table-prep formula, which is a right-hand side (RHS) formula expression (e.g., ~ { <table reading code>}), or (2) as a function (e.g., function() { <table reading code>}).
- **tbl_name**: A optional name to assign to the new input table object. If no value is provided, a name will be generated based on whatever information is available.
- **label**: An optional label for the validation plan. If no value is provided then any existing label will be retained.

Function ID

9-4

See Also

Other Object Ops: `activate_steps()`, `deactivate_steps()`, `export_report()`, `remove_steps()`, `x_read_disk()`, `x_write_disk()`

Examples

```r
Set proportional failure thresholds
to the 'warn', 'stop', and 'notify'
states using `action_levels()`
al <- action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
)

Create an agent that has
'small_table' set as the target
table via `tbl`; apply the actions,
add some validation steps and then
interrogate the data
```
agent_1 <-
create_agent(
  tbl = small_table,
  tbl_name = "small_table",
  label = "An example.",
  actions = al
)

col_exists(vars(date, date_time))

col_vals_regex(
  vars(b), "[0-9]-[a-z]{3}-[0-9]{3}"
)

rows_distinct()

interrogate()

# Replace the agent's association to
# 'small_table' with a mutated version
# of it (one that removes duplicate rows);
# then, interrogate the new target table
agent_2 <-

agent_1 %>%
set_tbl(
  tbl = small_table %>% dplyr::distinct()
)

interrogate()

---

small_table

A small table that is useful for testing

Description

This is a small table with a few different types of columns. It’s probably just useful when testing the functions from pointblank. Rows 9 and 10 are exact duplicates. The c column contains two NA values.

Usage

small_table

Format

A tibble with 13 rows and 8 variables:

date_time  A date-time column (of the POSIXct class) with dates that correspond exactly to those in the date column. Time values are somewhat randomized but all 'seconds' values are 00.

date  A Date column with dates from 2016-01-04 to 2016-01-30.
a  An integer column with values ranging from 1 to 8.
b  A character column with values that adhere to a common pattern.
An integer column with values ranging from 2 to 9. Contains two NA values.

A numeric column with values ranging from 108 to 10000.

A logical column.

A character column with "low", "mid", and "high" values.

Function ID
14-1

See Also
Other Datasets: game_revenue_info, game_revenue, small_table_sqlite(), specifications

Examples

```r
Here is a glimpse at the data
available in `small_table`

dplyr::glimpse(small_table)
```

small_table_sqlite   An SQLite version of the small_table dataset

Description

The small_table_sqlite() function creates an SQLite, tbl_dbi version of the small_table dataset. A requirement is the availability of the DBI and RSQLite packages. These packages can be installed by using install.packages("DBI") and install.packages("RSQLite").

Usage

small_table_sqlite()

Function ID
14-2

See Also

Other Datasets: game_revenue_info, game_revenue, small_table, specifications

Examples

```r
Use `small_table_sqlite()` to
create an SQLite version of the
`small_table` table
#
small_table_sqlite <- small_table_sqlite()
```
The `snip_highest()` function can be used as an `info_snippet()` function (i.e., provided to `fn`) to get the highest numerical, time value, or alphabetical value from a column in the target table.

**Usage**

```r
snip_highest(column)
```

**Arguments**

- `column` The name of the column that contains the target values.

**Value**

A formula needed for `info_snippet()`’s `fn` argument.

**Function ID**

3-9

**See Also**

Other Information Functions: `info_columns_from_tbl()`, `info_columns()`, `info_section()`, `info_snippet()`, `info_tabular()`, `snip_list()`, `snip_lowest()`, `snip_stats()`

**Examples**

```r
Generate an informant object, add
a snippet with `info_snippet()`
and `snip_highest()` (giving us a
method to get the highest value in
column `a`); define a location for
the snippet result in `{ }` and
then `incorporate()` the snippet
into the info text
informant <-
 create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
) %>%
 info_columns(
 columns = "a",
 `Highest Value` = "Highest value is {highest_a}.
) %>%
```
info_snippet(
    snippet_name = "highest_a",
    fn = snip_highest(column = "a")
) %>%
incorporate()

# We can print the 'informant' object
# to see the information report

---

**snip_list**  

*fn for info_snippet(): get a list of column categories*

**Description**

The `snip_list()` function can be used as an `info_snippet()` function (i.e., provided to `fn`) to get a catalog list from a table column. You can limit the number of items in that list with the `limit` value.

**Usage**

```r
snip_list(
 column,
 limit = 5,
 sorting = c("inorder", "infreq", "inseq"),
 reverse = FALSE,
 sep = ",",
 and_or = NULL,
 oxford = TRUE,
 as_code = TRUE,
 quot_str = NULL,
 lang = NULL
)
```

**Arguments**

- **column**  
  The name of the column that contains the target values.

- **limit**  
  A limit of items put into the generated list. The returned text will state the remaining number of items beyond the `limit`. By default, the limit is 5.

- **sorting**  
  A keyword used to designate the type of sorting to use for the list. The three options are "inorder" (the default), "infreq", and "inseq". With "inorder", distinct items are listed in the order in which they first appear. Using "infreq" orders the items by the decreasing frequency of each item. The "inseq" option applies an alphanumeric sorting to the distinct list items.

- **reverse**  
  An option to reverse the ordering of list items. By default, this is `FALSE` but using `TRUE` will reverse the items before applying the `limit`.

- **sep**  
  The separator to use between list items. By default, this is a comma.
and_or  The type of conjunction to use between the final and penultimate list items (should the item length be below the limit value). If NULL (the default) is used, then the 'and' conjunction will be used. Alternatively, the following keywords can be used: "and", "or", or an empty string (for no conjunction at all).

oxford  Whether to use an Oxford comma under certain conditions. By default, this is TRUE.

as_code  Should each list item appear in a 'code font' (i.e., as monospaced text)? By default this is TRUE. Using FALSE keeps all list items in the same font as the rest of the information report.

quot_str  An option for whether list items should be set in double quotes. If NULL (the default), the quotation marks are mainly associated with list items derived from character or factor values; numbers, dates, and logical values won’t have quotation marks. We can explicitly use quotations (or not) with either TRUE or FALSE here.

lang  The language to use for any joining words (from the and_or option) or additional words in the generated list string. By default, NULL will use whichever lang setting is available in the parent informant object (this is settable in the create_informant() lang argument). If specified here as an override, the language options are English ("en"), French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

Value  A formula needed for info_snippet()’s fn argument.

Function ID  3-6

See Also  Other Information Functions: info_columns_from_tbl(), info_columns(), info_section(), info_snippet(), info_tabular(), snip_highest(), snip_lowest(), snip_stats()

Examples  # Generate an informant object, add
# a snippet with `info_snippet()`  
# and `snip_list()` (giving us a
# method to get a distinct list of
# column values for column 'f');
# define a location for the snippet
# result in `{ }` and then
# `incorporate()` the snippet into
# the info text
informant <-
create_informant(
  tbl = ~ small_table,
```r

tbl_name = "small_table",
label = "An example."
) %>%
info_columns(
columns = "f",
`items` = "This column contains {values_f}."
) %>%
info_snippet(
 snippet_name = "values_f",
 fn = snip_list(column = "f")
) %>%
incorporate()

We can print the 'informant' object
to see the information report

Description

The `snip_lowest()` function can be used as an `info_snippet()` function (i.e., provided to `fn`) to get the lowest numerical, time value, or alphabetical value from a column in the target table.

Usage

```r
snip_lowest(column)
```

Arguments

- `column` The name of the column that contains the target values.

Value

A formula needed for `info_snippet()`’s `fn` argument.

Function ID

3-8

See Also

Other Information Functions: `info_columns_from_tbl()`, `info_columns()`, `info_section()`, `info_snippet()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_stats()`
Examples

```r
# Generate an informant object, add
# a snippet with `info_snippet()`
# and `snip_lowest()` (giving us a
# method to get the lowest value in
# column `a`); define a location for
# the snippet result in `{ }` and
# then `incorporate()` the snippet
# into the info text
informant <-
  create_informant(
    tbl = ~ small_table,
    tbl_name = "small_table",
    label = "An example."
  ) %>%
  info_columns(
    columns = "a",
    'Lowest Value' = "Lowest value is {lowest_a}".
  ) %>%
  info_snippet(
    snippet_name = "lowest_a",
    fn = snip_lowest(column = "a")
  ) %>%
  incorporate()

# We can print the 'informant' object
# to see the information report

# A fn for info_snippet(): get an inline statistical summary

Description

The snip_stats() function can be used as an info_snippet() function (i.e., provided to fn) to produce a five- or seven-number statistical summary. This inline summary works well within a paragraph of text and can help in describing the distribution of numerical values in a column.

For a given column, three different types of inline statistical summaries can be provided:

1. a five-number summary ("5num"): minimum, Q1, median, Q3, maximum
2. a seven-number summary ("7num"): P2, P9, Q1, median, Q3, P91, P98
3. Bowley's seven-figure summary ("bowley"): minimum, P10, Q1, median, Q3, P90, maximum

Usage

snip_stats(column, type = c("5num", "7num", "bowley"))
Arguments

- **column**: The name of the column that contains the target values.
- **type**: The type of summary. By default, the "5num" keyword is used to generate a five-number summary. Two other options provide seven-number summaries: "7num" and "bowley".

Value

A formula needed for `info_snippet()`'s `fn` argument.

Function ID

3-7

See Also

Other Information Functions: `info_columns_from_tbl()`, `info_columns()`, `info_section()`, `info_snippet()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_lowest()`

Examples

```r
Generate an informant object, add a snippet with `info_snippet()` and `snip_stats()` (giving us a method to get some summary stats for column `a`); define a location for the snippet result in `{ }` and then `incorporate()` the snippet into the info text
informant <- create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
) %>%
 info_columns(
 columns = "a",
 `Stats` = "Stats (fivenum): {stats_a}"
) %>%
 info_snippet(
 snippet_name = "stats_a",
 fn = snip_stats(column = "a")
) %>%
 incorporate()

We can print the `informant` object # to see the information report
```
specially

Perform a specialized validation with a user-defined function

Description

The specially() validation function allows for custom validation with a function that you provide. The major proviso for the provided function is that it must either return a logical vector or a table where the final column is logical. The function will operate on the table object, or, because you can do whatever you like, it could also operate on other types of objects. To do this, you can transform the input table in preconditions or inject an entirely different object there. During interrogation, there won’t be any checks to ensure that the data is a table object.

Usage

specially(
  x,
  fn,
  preconditions = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_specially(object, fn, preconditions = NULL, threshold = 1)

test_specially(object, fn, preconditions = NULL, threshold = 1)

Arguments

x  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

fn A function that performs the specialized validation on the data. It must either return a logical vector or a table where the last column is a logical column.

preconditions An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

actions A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(vars(d,e))). The default for active is TRUE.

object
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Preconditions
Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way. Within specially(), because this function is special, there won’t be internal checking as to whether the preconditions-based output is a table.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x,col_b = col_a + 10)).

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When specially() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of specially() as a validation step is expressed in R code and in the corresponding YAML representation.

```r
R statement
agent %>%
specially(
 fn = function(x) { ... },
 preconditions = ~ . %>% dplyr::filter(a < 10),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `specially()` step.",
 active = FALSE
)
```
specially

# YAML representation
steps:
- specially:
  fn: function(x) { ... }
  preconditions: ~. %>% dplyr::filter(a < 10)
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
    label: The `specially()` step.
  active: false

In practice, both of these will often be shorter as only the expressions for validation steps are necessary. Arguments with default values won't be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-35

See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within SPEC()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `tbl_match()`

Examples

# For all examples here, we'll use
# a simple table with three numeric
# columns (`a`, `b`, and `c`); this is
# a very basic table but it'll be more
# useful when explaining things later
tbl <-
  dplyr::tibble(
    a = c(5, 2, 6),
    b = c(3, 4, 6),
    c = c(9, 8, 7)
  )

tbl

# A: Using an `agent` with validation
# functions and then `interrogate()`
# Validate that the target table has
# exactly three rows; this single
# validation with `specially()` has
# 1 test unit since the function
# executed on `x` (the target table)
# results in a logical vector with a
# length of 1
agent <-
  create_agent(tbl = tbl) %>%
    specially(
      fn = function(x) nrow(x) == 3
    ) %>%
    interrogate()

# Determine if this validation
# had no failing test units (there
# is 1 test unit)
all_passed(agent)

# Calling `agent` in the console
# prints the agent's report; but we
# can get a `gt_tbl` object directly
# with `get_agent_report(agent)`

# B: Using the validation function
# directly on the data (no `agent`)  
# This way of using validation functions
# acts as a data filter: data is passed
# through but should `stop()` if there
# is a single test unit failing; the
# behavior of side effects can be
# customized with the `actions` option
tbl %>%
  specially(
    fn = function(x) nrow(x) == 3
  )

# C: Using the expectation function
# With the `expect_*()` form, we would
# typically perform one validation at a
# time; this is primarily used in
# testthat tests
expect_specially(
  tbl,  
  fn = function(x) nrow(x) == 3
)

# D: Using the test function
# With the `test_*()` form, we should
# get a single logical value returned
# Variations

# We can do more complex things with
# `specially()` and its variants
tbl %>% test_specially(
fn = function(x) inherits(x, "data.frame")
)

# Check that the number of rows in the
# target table is less than `small_table`
tbl %>% test_specially(
fn = function(x) nrow(x) < nrow(small_table)
)

# Check that all numbers across all
# numeric column are less than `10`
tbl %>% test_specially(
fn = function(x) {
  (x %>%
    dplyr::select(where(is.numeric)) %>%
    unlist()) < 10
}
)

# Check that all values in column
# `c` are greater than `b` and greater
# than `a` (in each row) and always
# less than `10`; this creates a table
# with the new column `d` which is
# a logical column (that is used as
# the evaluation of test units)
tbl %>% test_specially(
fn = function(x) {
  x %>%
    dplyr::mutate(
      d = c > b & c > a & c < 10
    )
}
)

# Check that the `game_revenue`
# table (which is not the target
table) has exactly 2000 rows
tbl %>% test_specially(
fn = function(x) {
    nrow(game_revenue) == 2000
}
)

**specifications**  
_A table containing data pertaining to various specifications_

**Description**

The specifications dataset is useful for testing the `col_vals_within_spec()`, `test_col_vals_within_spec()`, and `expect_col_vals_within_spec()` functions. For each column, holding character values for different specifications, rows 1-5 contain valid values, the 6th row is an NA value, and the final two values (rows 7 and 8) are invalid. Different specification (spec) keywords apply to each of columns when validating with any of the aforementioned functions.

**Usage**

```
specifications
```

**Format**

A tibble with 8 rows and 12 variables:

- **isbn_numbers** ISBN-13 numbers; can be validated with the "isbn" specification.
- **vin_numbers** VIN numbers (identifiers for motor vehicles); can be validated with the "vin" specification.
- **zip_codes** Postal codes for the U.S.; can be validated with the "postal[USA]" specification or its "zip" alias.
- **credit_card_numbers** Credit card numbers; can be validated with the "credit_card" specification or the "cc" alias.
- **iban_austria** IBAN numbers for Austrian accounts; can be validated with the "iban[AUT]" specification.
- **swift_numbers** Swift-BIC numbers; can be validated with the "swift" specification.
- **phone_numbers** Phone numbers; can be validated with the "phone" specification.
- **email_addresses** Email addresses; can be validated with the "email" specification.
- **urls** URLs; can be validated with the "url" specification.
- **ipv4_addresses** IPv4 addresses; can be validated with the "ipv4" specification.
- **ipv6_addresses** IPv6 addresses; can be validated with the "ipv6" specification.
- **mac_addresses** MAC addresses; can be validated with the "mac" specification.
**stock_msg_body**

**Function ID**

14-3

**See Also**

Other Datasets: `game_revenue_info`, `game_revenue`, `small_table_sqlite()`, `small_table`

**Examples**

```r
Here is a glimpse at the data
available in 'specifications'
dplyr::glimpse(specifications)
```

The `stock_msg_body()` function simply provides some stock text for an email message sent via `email_blast()` or obtained as a standalone object through `email_create()`.

**Usage**

```r
stock_msg_body()
```

**Value**

Text suitable for the `msg_body` argument of `email_blast()` and `email_create()`.

**Function ID**

4-3

**See Also**

Other Emailing: `email_blast()`, `email_create()`, `stock_msg_footer()`
**stock_msg_footer**

*Provide simple email message body components: footer*

**Description**

The `stock_msg_footer()` function simply provides some stock text for an email message sent via `email_blast()` or obtained as a standalone object through `email_create()`.

**Usage**

```r
stock_msg_footer()
```

**Value**

Text suitable for the `msg_footer` argument of `email_blast()` and `email_create()`.

**Function ID**

4-4

**See Also**

Other Emailing: `email_blast()`, `email_create()`, `stock_msg_body()`

---

**stop_if_not**

*The next generation of stopifnot()-type functions: stop_if_not()*

**Description**

This is `stopifnot()` but with a twist: it works well as a standalone, replacement for `stopifnot()` but is also customized for use in validation checks in R Markdown documents where `pointblank` is loaded. Using `stop_if_not()` in a code chunk where the `validate = TRUE` option is set will yield the correct reporting of successes and failures whereas `stopifnot()` *does not*.

**Usage**

```r
stop_if_not(...)```

Arguments

```r
...             R expressions that should each evaluate to (a logical vector of all) TRUE.
```

Value

`NULL` if all statements in `...` are `TRUE`.
Function ID

13-5

See Also

Other Utility and Helper Functions: affix_datetime(), affix_date(), col_schema(), from_github(), has_columns()

Examples

This checks whether the number of # rows in `small_table` is greater # than `10`
stop_if_not(nrow(small_table) > 10)

This will stop for sure: there # isn't a `time` column in `small_table` # (but there are the `date_time` and # `date` columns)
stop_if_not(“time” %in% colnames(small_table))

You're not bound to using tabular # data here, any statements that # evaluate to logical vectors will work
stop_if_not(1 < 20:25 - 18)

tbl_get Obtain a materialized table via a table store

Description

The tbl_get() function gives us the means to materialize a table that has an entry in a table store (i.e., has a table-prep formula with a unique name). The table store that is used for this can be in the form of a tbl_store object (created with the tbl_store() function) or an on-disk YAML representation of a table store (created by using yaml_write() with a tbl_store object).

Should you want a table-prep formula from a table store to use as a value for tbl (in create_agent(), create_informant(), or set_tbl()), then have a look at the tbl_source() function.

Usage

tbl_get(tbl, store = NULL)
Arguments

tbl
The table to retrieve from a table store. This table could be identified by its name (e.g., `tbl = "large_table"`) or by supplying a reference using a subset (with `$`) of the `tbl_store` object (e.g., `tbl = store$large_table`). If using the latter method then nothing needs to be supplied to `store`.

store
Either a table store object created by the `tbl_store()` function or a path to a table store YAML file created by `yaml_write()`.

Value

A table object.

Function ID

1-10

See Also

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `db_tbl()`, `draft_validation()`, `file_tbl()` , `scan_data()`, `tbl_source()`, `tbl_store()`, `validate_rmd()`

Examples

```r
if (interactive()) {
  # Define a 'tbl_store' object by adding
  # table-prep formulas in 'tbl_store()'
  tbls <-
    tbl_store(
      small_table_duck ~ db_tbl(
        table = small_table,
        dbname = "::memory:",
        dbtype = "duckdb"
      ),
      table = "rna",
      dbname = "pfmegnargs",
      dbtype = "postgres",
      host = "hh-pgsql-public.ebi.ac.uk",
      port = 5432,
      user = I("reader"),
      password = I("NWDMCE5xdipIjRrp")
    ),
    all_revenue ~ db_tbl(
      file = from_github(
        file = "all_revenue_large.rds",
        repo = "rich-iannone/intendo",
        subdir = "data-large"
      ),
    ),
  
```
tbl_match

Does the target table match a comparison table?

Description

The tbl_match() validation function, the expect_tbl_match() expectation function, and the test_tbl_match() test function all check whether the target table's composition matches that of a comparison table. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). As a validation step or as an expectation, there is a single test unit that hinges on whether the two tables are the same (after any preconditions have been applied).

Usage

tbl_match(
 x,
 tbl_compare,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
expect_tbl_match(object, tbl_compare, preconditions = NULL, threshold = 1)

test_tbl_match(object, tbl_compare, preconditions = NULL, threshold = 1)

Arguments

x
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is created with create_agent().

tbl_compare
A table to compare against the target table. This can either be a table object, a table-prep formula. This can be a table object such as a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, a table-prep formula (~ <table reading code>) or a function (function() <table reading code>) can be used to lazily read in the table at interrogation time.

preconditions
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

segments
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels. This is to be created with the action_levels() helper function.

step_id
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
An optional label for the validation step. This label appears in the agent report and for the best appearance it should be kept short.

brief
An optional, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to ”en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . ~%>% has_columns(vars(d,e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that this particular validation requires some operation on the target table before the comparison takes place. Using preconditions can be useful at times since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed. Alternatively, a function could instead be supplied.

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1","group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. Using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other `stop()`s).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `tbl_match()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `tbl_match()` as a validation step is expressed in R code and in the corresponding YAML representation.

```r
# R statement
agent %>%
  tbl_match(
    tbl_compare = ~ file_tbl(
      file = from_github(
        file = "all_revenue_large.rds",
        repo = "rich-iannone/intendo",
        subdir = "data-large"
      ),
    ),
    preconditions = ~ . %>% dplyr::filter(a < 10),
```
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `tbl_match()` step.",
active = FALSE
)

YAML representation
steps:
 - tbl_match:
 tbl_compare: ~ file_tbl(
 file = from_github(
 file = "all_revenue_large.rds",
 repo = "rich-iannone/intendo",
 subdir = "data-large"
)
)
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `tbl_match()` step.
 active: false

In practice, both of these will often be shorter. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Function ID

2-32

See Also

Other validation functions: `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`,
`col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`,
`col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`,
`col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lt()`,
`col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`,
`col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regexp()`, `col_vals_within_spec()`,
`conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`

Examples

Create a simple table with three columns and four rows of values
tbl <-
 dplyr::tibble(
 a = c(5, 7, 6, 5),

b = c(7, 1, 0, 0),
c = c(1, 1, 1, 3)
)

tbl

Create a second table which is
the same as `tbl`
tbl_2 <-
dplyr::tibble(
 a = c(5, 7, 6, 5),
 b = c(7, 1, 0, 0),
 c = c(1, 1, 1, 3)
)

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that the target table
('tbl') and the comparison table
('tbl_2') are equivalent in terms
of content
agent <-
 create_agent(tbl = tbl) %>%
 tbl_match(tbl_compare = tbl_2) %>%
 interrogate()

Determine if this validation passed
by using `all_passed()`
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>%
 tbl_match(tbl_compare = tbl_2)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests

epect_tbl_match(
 tbl, tbl_compare = tbl_2
)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us

tbl %>%
 tbl_match(
 tbl_compare = tbl_2
)

tbl_source

Obtain a table-prep formula from a table store

Description

The `tbl_source()` function provides a convenient means to access a table-prep formula from either a `tbl_store` object or a table store YAML file (which can be created with the `yaml_write()` function). A call to `tbl_source()` is most useful as an input to the `tbl` argument of `create_agent()`, `create_informant()`, or `set_tbl()`.

Should you need to obtain the table itself (that is generated via the table-prep formula), then the `tbl_get()` function should be used for that.

Usage

```r
tbl_source(tbl, store = NULL)
```

Arguments

- **tbl**

The table name associated with a table-prep formula. This is part of the table store. This table could be identified by its name (e.g., `tbl = "large_table"`) or by supplying a reference using a subset (with `$`) of the `tbl_store` object (e.g., `tbl = store$large_table`). If using the latter method then nothing needs to be supplied to `store`.

- **store**

 Either a table store object created by the `tbl_store()` function or a path to a table store YAML file created by `yaml_write()`.

Value

A table-prep formula.

Function ID

1.9
See Also

Other Planning and Prep: action_levels(),create_agent(),create_informant(),db_tbl(),
draft_validation(),file_tbl(),scan_data(),tbl_get(),tbl_store(),validate_rmd()

Examples

```r
if (interactive()) {
  # Let's create a 'tbl_store' object by
  # giving two table-prep formulas to
  # 'tbl_store()'
  tibs <-
    tbl_store(  
      small_table_duck ~ db_tbl(  
        table = small_table,
        dbname = "::memory:",
        dbtype = "duckdb"
      ),
      sml_table ~ pointblank::small_table
    )

  # We can pass a table-prep formula
  # to 'create_agent()' and interrogate
  # the table shortly thereafter
  agent <-
    create_agent(  
      tbl = tbl_source("sml_table", tibs),
      label = "An example that uses a table store."
    ) %>%
    col_exists(vars(date, date_time)) %>%
    interrogate()

  # Both the 'tbl_store' object and the
  # 'agent' can be transformed to YAML with
  # the 'yaml_write()' function

  # This writes the 'tbl_store.yml' file
  # by default (but a different name
  # could be used)
  yaml_write(tibs)

  # Let's modify the agent's target
  # to point to the table labeled as
  # "sml_table" in the YAML
  # representation of the 'tbl_store'
  agent %>%
    set_tbl(      
      ~ tbl_source(  
        tbl = "sml_table",
        store = "tbl_store.yml"
      )
    )
}
```
tbl_store

Define a store of tables with table-prep formulas: a table store

Description

It can be useful to set up all the data sources you need and just draw from them when necessary. This upfront configuration with `tbl_store()` lets us define the methods for obtaining tabular data from mixed sources (e.g., database tables, tables generated from flat files, etc.) and provide names for these data preparation procedures. Then we have a convenient way to access the materialized tables with `tbl_get()`, or, the table-prep formulas with `tbl_source()`. Table-prep formulas can be as simple as getting a table from a location, or, it can involve as much mutation as is necessary (imagine procuring several mutated variations of the same source table, generating a table from multiple sources, or pre-filtering a database table according to the system time). Another nice aspect of organizing table-prep formulas in a single object is supplying it to the `tbl` argument of `create_agent()` or `create_informant()` via `$` notation (e.g. `create_agent(tbl = <tbl_store>$<name>)) or with `tbl_source()` (e.g., `create_agent(tbl = ~ tbl_source("<name>", <tbl_store>))`).

Usage

`tbl_store(..., .list = list2(...))`

Arguments

- `...` Expressions that contain table-prep formulas and table names for data retrieval. Two-sided formulas (e.g, `<LHS> ~ <RHS>`) are to be used, where the left-hand side is a given name and the right-hand is the portion that is is used to obtain the table.

- `.list` Allows for the use of a list as an input alternative to `...`
A tbl_store object that contains table-prep formulas.

YAML

A pointblank table store can be written to YAML with yaml_write() and the resulting YAML can be used in several ways. The ideal scenario is to have pointblank agents and informants also in YAML form. This way the agent and informant can refer to the table store YAML (via tbl_source()), and, the processing of both agents and informants can be performed with yaml_agent_interrogate() and yaml_informant_incorporate(). With the following R code, a table store with two table-prep formulas is generated and written to YAML (if no filename is given then the YAML is written to "tbl_store.yml").

```r
# R statement for generating the "tbl_store.yml" file
tbl_store(
  tbl_duckdb ~ db_tbl(small_table, dbname = "::memory:", dbtype = "duckdb"),
  sml_table_high ~ small_table %>% dplyr::filter(f == "high")
) %>%
  yaml_write()
```

This is useful when you want to get fresh pulls of prepared data from a source materialized in an R session (with the tbl_get() function. For example, the sml_table_high table can be obtained by using tbl_get("sml_table_high","tbl_store.yml"). To get an agent to check this prepared data periodically, then the following example with tbl_source() will be useful:

```r
# Generate agent that checks `sml_table_high`, write it to YAML
create_agent(
  tbl = ~ tbl_source("sml_table_high", "tbl_store.yml"),
  label = "An example that uses a table store.",
  actions = action_levels(warn_at = 0.10)
) %>
  col_exists(vars(date, date_time)) %>
  write_yaml()
```

This is useful when you want to get fresh pulls of prepared data from a source materialized in an R session (with the tbl_get() function. For example, the sml_table_high table can be obtained by using tbl_get("sml_table_high","tbl_store.yml"). To get an agent to check this prepared data periodically, then the following example with tbl_source() will be useful:
Now, whenever the `sml_table_high` table needs to be validated, it can be done with `yaml_agent_interrogate()` (e.g., `yaml_agent_interrogate("agent-sml_table_high.yml")`).

Function ID

1-8

See Also

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `db_tbl()`, `draft_validation()`, `file_tbl()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `validate_rmd()`

Examples

```r
if (interactive()) {

  # Define a `tbl_store` object by adding
  # table-prep formulas inside the
  # `tbl_store()` call
tbls <-
  tbl_store(
    small_table_duck ~ db_tbl(
      table = small_table,
      dbname = "::memory:",
      dbtype = "duckdb"
    ),
    ~ db_tbl(
      table = "rna",
      dbname = "pfnmegnarg",
      dbtype = "postgres",
      host = "hh-pgsql-public.ebi.ac.uk",
      port = 5432,
      user = I("reader"),
      password = I("NWDMCE5xdipIjRrp")
    ),
    all_revenue ~ db_tbl(
      table = file_tbl(
        file = from_github(
          file = "all_revenue_large.rds",
          repo = "rich-iannone/intendo",
          subdir = "data-large"
        ),
        dbname = "::memory:",
        dbtype = "duckdb"
      ),
      dbname = "::memory:",
      dbtype = "duckdb"
    ),
    sml_table ~ pointblank::small_table
  )

  # Once this object is available, you
  # can check that the table of interest
  # is produced to your specification with
```
the `tbl_get()` function
tbl_get(
 tbl = "small_table_duck",
 store = tbls
)

Another simpler way to get the same
table materialized is by using `$` to
get the entry of choice for `tbl_get()`
tbls$small_table_duck %>% tbl_get()

Creating an agent is easy when all
table-prep formulas are encapsulated
in a `tbl_store` object; use `$`
notation to pass the appropriate
procedure for reading a table to the
`tbl` argument
agent_1 <-
 create_agent(
 tbl = tbls$small_table_duck
)

There are other ways to use the
table store to assign a target table
to an agent, like using the
`tbl_source()` function
agent_2 <-
 create_agent(
 tbl = ~ tbl_source(
 tbl = "small_table_duck",
 store = tbls
)
)

The table store can be moved to
YAML with `yaml_write` and the
`tbl_source()` call could then
refer to that on-disk table store;
let's do that YAML conversion
yaml_write(tbls)

The above writes the `tbl_store.yml`
file (by not providing a `filename`
this default filename is chosen);
next, modify the `tbl_source()`
so that `store` refer to the YAML
file
agent_3 <-
 create_agent(
 tbl = ~ tbl_source(
 tbl = "small_table_duck",
 store = "tbl_store.yml"
)
)
Description

With any table object, you can produce a summary table that is scoped to string-based columns. The output summary table will have a leading column called ".param." with labels for each of the three rows, each corresponding to the following pieces of information pertaining to string length:

1. Mean String Length ("length_mean")
2. Minimum String Length ("length_min")
3. Maximum String Length ("length_max")

Only string data from the input table will generate columns in the output table. Column names from the input will be used in the output, preserving order as well.

Usage

\texttt{tt_string_info(tbl)}

Arguments

\begin{itemize}
\item \texttt{tbl} \quad A table object to be used as input for the transformation. This can be a data frame, a tibble, a \texttt{tbl_dbi} object, or a \texttt{tbl_spark} object.
\end{itemize}

Value

A tibble object.

Function ID

12-2

See Also

Other Table Transformers: \texttt{get_tt_param()}, \texttt{tt_summary_stats()}, \texttt{tt_tbl_colnames()}, \texttt{tt_tbl_dims()}, \texttt{tt_time_shift()}, \texttt{tt_time_slice()}

Table Transformer: obtain a summary table for string columns
Examples

```r
# Get string information for the string-based columns in the 'game_revenue' dataset
tt_string_info(game_revenue)

# Ensure that 'player_id' and 'session_id' values always have the same number of characters throughout the table
tt_string_info(game_revenue) %>%
col_vals_equal(
  columns = vars(player_id),
  value = 15
) %>%
col_vals_equal(
  columns = vars(session_id),
  value = 24
)

# Check that the maximum string length in column 'f' of the 'small_table' dataset is no greater than '4'
tt_string_info(small_table) %>%
test_col_vals_lte(
  columns = vars(f),
  value = 4
)
```

tt_summary_stats

Table Transformer: obtain a summary stats table for numeric columns

Description

With any table object, you can produce a summary table that is scoped to the numeric column values. The output summary table will have a leading column called `.param.` with labels for each of the nine rows, each corresponding to the following summary statistics:

1. Minimum ("min")
2. 5th Percentile ("p05")
3. 1st Quartile ("q_1")
4. Median ("med")
5. 3rd Quartile ("q_3")
6. 95th Percentile ("p95")
7. Maximum ("max")
8. Interquartile Range ("iqr")
9. Range ("range")

Only numerical data from the input table will generate columns in the output table. Column names from the input will be used in the output, preserving order as well.

Usage

```
tt_summary_stats(tbl)
```

Arguments

- **tbl**: A table object to be used as input for the transformation. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object.

Value

- A tibble object.

Function ID

- 12-1

See Also

Other Table Transformers: `get_tt_param()`, `tt_string_info()`, `tt_tbl_colnames()`, `tt_tbl_dims()`, `tt_time_shift()`, `tt_time_slice()`

Examples

```
# Get summary statistics for the
# `game_revenue` dataset that is
# included in the package
tt_summary_stats(game_revenue)

# Ensure that the maximum revenue
# for individual purchases in the
# `game_revenue` table is less than
# $150
tt_summary_stats(game_revenue) %>%
  col_vals_lt(
    columns = vars(item_revenue),
    value = 150,
    segments = .param ~ "max"
  )

# For in-app purchases in the
# `game_revenue` table, check that
# median revenue is somewhere
# between $8 and $12
game_revenue %>%
  dplyr::filter(item_type == "iap") %>%
```
tt_summary_stats() %>%
col_vals_between(
 columns = vars(item_revenue),
 left = 8, right = 12,
 segments = .param ~ "med"
)

While performing validations of the
`game_revenue` table with an agent
we can include the same revenue
check by using `tt_summary_stats()`
in the `preconditions` argument (this
will transform the target table for
the validation step); we also need
to get just a segment of that table
(the row with the median values)
agent <-
 create_agent(
 tbl = game_revenue,
 tbl_name = "game_revenue",
 label = "An example.",
 actions = action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
)
)
) %>%
rows_complete() %>%
rows_distinct() %>%
col_vals_between(
 columns = vars(item_revenue),
 left = 8, right = 12,
 preconditions = ~ . %>%
 dplyr::filter(item_type == "iap") %>%
 tt_summary_stats(),
 segments = .param ~ "med"
) %>%
interrogate()

This should all pass but let's check:
all_passed(agent)

tt_tbl_colnames

Table Transformer: get a table’s column names

Description

With any table object, you can produce a summary table that contains table’s column names. The output summary table will have two columns and as many rows as there are columns in the input
table. The first column is the ".param." column, which is an integer-based column containing the indices of the columns from the input table. The second column, "value", contains the column names from the input table.

Usage

```r
tt_tbl_colnames(tbl)
```

Arguments

- `tbl`: A table object to be used as input for the transformation. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object.

Value

A tibble object.

Function ID

12-4

See Also

Other Table Transformers: `get_tt_param()`, `tt_string_info()`, `tt_summary_stats()`, `tt_tbl_dims()`, `tt_time_shift()`, `tt_time_slice()`

Examples

```r
# Get the column names of the `game_revenue` dataset that's included in the package
tt_tbl_colnames(game_revenue)

# This output table is useful when you want to validate the column names of the table; here,
# we check that `game_revenue` has certain column names present
specifications <- game_revenue %>%
  test_col_vals_make_subset(
    columns = vars(value),
    set = c("acquisition", "country")
  )

# We can check to see whether the column names in the `specifications` table are all less than 15
# characters in length
specifications %>%
  tt_tbl_colnames() %>%
  tt_string_info() %>%
  test_col_vals_lt(
```
tt_tbl_dims

Table Transformer: get the dimensions of a table

Description

With any table object, you can produce a summary table that contains nothing more than the table’s dimensions: the number of rows and the number of columns. The output summary table will have two columns and two rows. The first is the ".param." column with the labels "rows" and "columns"; the second column, "value", contains the row and column counts.

Usage

```
tt_tbl_dims(tbl)
```

Arguments

- **tbl**
 A table object to be used as input for the transformation. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object.

Value

A tibble object.

Function ID

12-3

See Also

Other Table Transformers: `get_tt_param()`, `tt_string_info()`, `tt_summary_stats()`, `tt_tbl_colnames()`, `tt_time_shift()`, `tt_time_slice()`

Examples

```
# Get the dimensions of the
# `game_revenue` dataset that's
# included in the package
tt_tbl_dims(game_revenue)

# This output table is useful when
# you want to validate the
# dimensions of the table; here,
# we check that `game_revenue` has
# at least 1500 rows
```
Table Transformer: shift the times of a table

Description

With any table object containing date or date-time columns, these values can be precisely shifted with `tt_time_shift()` and specification of the time shift. We can either provide a string with the time shift components and the shift direction (like "-4y 10d") or a `difftime` object (which can be created via `lubridate` expressions or by using the `base::difftime()` function).

Usage

```
tt_time_shift(tbl, time_shift = "0y 0m 0d 0H 0M 0S")
```

Arguments

- **tbl**
 A table object to be used as input for the transformation. This can be a data frame, a tibble, a `tbl_dbi` object, or a `tbl_spark` object.

- **time_shift**
 Either a character-based representation that specifies the time difference by which all time values in time-based columns will be shifted, or, a `difftime` object. The character string is constructed in the format "0y 0m 0d 0H 0M 0S" and individual time components can be omitted (i.e., "1y 5d" is a valid specification of shifting time values ahead one year and five days). Adding a "-" at the beginning of the string (e.g., "-2y") will shift time values back.

Details

The `time_shift` specification cannot have a higher time granularity than the least granular time column in the input table. Put in simpler terms, if there are any date-based based columns (or just a single date-based column) then the time shifting can only be in terms of years, months, and days. Using a `time_shift` specification of "20d 6H" in the presence of any dates will result in a truncation to "20d". Similarly, a `difftime` object will be altered in the same circumstances, however, the object will resolved to an exact number of days through rounding.
Table Transformer: slice a table with a slice point on a time column

Description

With any table object containing date, date-time columns, or a mixture thereof, any one of those columns can be used to effectively slice the data table in two with a slice_point: and you get to choose which of those slices you want to keep. The slice point can be defined in several ways. One method involves using a decimal value between 0 and 1, which defines the slice point as the time instant somewhere between the earliest time value (at 0) and the latest time value (at 1). Another way of defining the slice point is by supplying a time value, and the following input types are accepted: (1) an ISO 8601 formatted time string (as a date or a date-time), (2) a POSIXct time, or (3) a Date object.
tt_time_slice

Usage

```r
tt_time_slice(
  tbl,
  time_column = NULL,
  slice_point = 0,
  keep = c("left", "right"),
  arrange = FALSE
)
```

Arguments

- **tbl**: A table object to be used as input for the transformation. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object.
- **time_column**: The time-based column that will be used as a basis for the slicing. If no time column is provided then the first one found will be used.
- **slice_point**: The location on the `time_column` where the slicing will occur. This can either be a decimal value from 0 to 1, an ISO 8601 formatted time string (as a date or a date-time), a POSIXct time, or a Date object.
- **keep**: Which slice should be kept? The "left" side (the default) contains data rows that are earlier than the `slice_point` and the "right" side will have rows that are later.
- **arrange**: Should the slice be arranged by the `time_column`? This may be useful if the input `tbl` isn't ordered by the `time_column`. By default, this is `FALSE` and the original ordering is retained.

Details

There is the option to arrange the table by the date or date-time values in the `time_column`. This ordering is always done in an ascending manner. Any NA/NULL values in the `time_column` will result in the corresponding rows can being removed (no matter which slice is retained).

Value

A data frame, a tibble, a tbl_dbi object, or a tbl_spark object depending on what was provided as `tbl`.

Function ID

12-6

See Also

Other Table Transformers: `get_tt_param()`, `tt_string_info()`, `tt_summary_stats()`, `tt_tbl_colnames()`, `tt_tbl_dims()`, `tt_time_shift()`
Examples

```r
# With the `game_revenue` dataset,
# which has entries in the first
# 21 days of 2015, elect to get all
# of the records where the `time`
# values are strictly for the first
# 15 days of 2015
tt_time_slice(
  tbl = game_revenue,
  time_column = "time",
  slice_point = "2015-01-16"
)
```

```r
# Omit the first 25% of records
# from `small_table` on the basis
# of a timeline that begins at
# `2016-01-04 11:00:00` and
# ends at `2016-01-30 11:23:00`
small_table %>%
  tt_time_slice(
    slice_point = 0.25,
    keep = "right"
  )
```

validate_rmd

Perform pointblank validation testing within R Markdown documents

Description

The `validate_rmd()` function sets up a framework for validation testing within specialized validation code chunks inside an R Markdown document. To enable this functionality, `validate_rmd()` should be called early within an R Markdown document code chunk (preferably in the setup chunk) to signal that validation should occur within specific code chunks. The validation code chunks require the `validate = TRUE` option to be set. Using `pointblank` validation functions on data in these marked code chunks will flag overall failure if the stop threshold is exceeded anywhere. All errors are reported in the validation code chunk after rendering the document to HTML, where a centered status button either indicates success or the number of overall failures. Clicking the button reveals the otherwise hidden validation statements and their error messages (if any).

Usage

```r
validate_rmd(summary = TRUE, log_to_file = NULL)
```

Arguments

- `summary`: If TRUE (the default), then there will be a leading summary of all validations in the rendered R Markdown document. With FALSE, this element is not shown.
log_to_file An option to log errors to a text file. By default, no logging is done but TRUE
will write log entries to "validation_errors.log" in the working directory.
To both enable logging and to specify a file name, include a path to a log file of
the desired name.

Function ID
1-4

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(),
draft_validation(), file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store()

write_testthat_file Transform a pointblank agent to a testthat test file

Description

With a pointblank agent, we can write a testthat test file and opt to place it in the testthat/tests
if it is available in the project path (we can specify an alternate path as well). This works by trans-
forming the validation steps to a series of expect_() calls inside individual testthat::test_that() statements.

A major requirement for using write_testthat_file() on an agent is the presence of an expres-
sion that can retrieve the target table. Typically, we might supply a table-prep formula, which is a
formula that can be invoked to obtain the target table (e.g., tbl = ~ pointblank::small_table). This user-supplied statement will be used by write_testthat_file() to generate a table-loading statement at the top of the new testthat test file so that the target table is available for each of the
testthat::test_that() statements that follow. If an agent was not created using a table-prep formula set for the tbl, it can be modified via the set_tbl() function.

Thresholds will be obtained from those applied for the stop state. This can be set up for a point-
blank agent by passing an action_levels object to the actions argument of create_agent() or
the same argument of any included validation function. If stop thresholds are not available, then a
threshold value of 1 will be used for each generated expect_() statement in the resulting testthat
test file.

There is no requirement that the agent first undergo interrogation with interrogate(). However,
it may be useful as a dry run to interactively perform an interrogation on the target data before
generating the testthat test file.

Usage

write_testthat_file(
 agent,
 name = NULL,
 path = NULL,
 overwrite = FALSE,
write_testthat_file

```r
skips = NULL,
quiet = FALSE
)
```

Arguments

- **agent**
 - An agent object of class `ptblank_agent`.

- **name**
 - An optional name for the `testthat` test file. This should be a name without extension and without the leading "test-" text. If nothing is supplied, the name will be derived from the `tbl_name` in the agent. If that's not present, a generic name will be used.

- **path**
 - A path can be specified here if there shouldn't be an attempt to place the file in `testthat/tests`.

- **overwrite**
 - Should a `testthat` file of the same name be overwritten? By default, this is `FALSE`.

- **skips**
 - This is an optional vector of test-skipping keywords modeled after the `testthat` `skip_on_*()` functions. The following keywords can be used to include `skip_on_*()` statements: "cran" (`testthat::skip_on_cran()`), "travis" (`testthat::skip_on_travis()`), "appveyor" (`testthat::skip_on_appveyor()`), "ci" (`testthat::skip_on_ci()`), "covr" (`testthat::skip_on_covr()`), "bioc" (`testthat::skip_on_bioc()`). There are keywords for skipping tests on certain operating systems and all of them will insert a specific `testthat::skip_on_os()` call. These are "windows" (`skip_on_os("windows")`), "mac" (`skip_on_os("mac")`), "linux" (`skip_on_os("linux")`), and "solaris" (`skip_on_os("solaris")`). These calls will be placed at the top of the generated `testthat` test file.

- **quiet**
 - Should the function *not* inform when the file is written? By default this is `FALSE`.

Details

Tests for inactive validation steps will be skipped with a clear message indicating that the reason for skipping was due to the test not being active. Any inactive validation steps can be forced into an active state by using the `activate_steps()` on an agent (the opposite is possible with the `deactivate_steps()` function).

The `testthat` package comes with a series of `skip_on_*()` functions which conveniently cause the test file to be skipped entirely if certain conditions are met. We can quickly set any number of these at the top of the `testthat` test file by supplying keywords as a vector to the `skips` option of `write_testthat_file()`. For instance, setting `skips = c("cran", "windows")` will add the `testthat` `skip_on_cran()` and `skip_on_os("windows")` statements, meaning that the generated test file won't run on a CRAN system or if the system OS is Windows.

Here is an example of `testthat` test file output:

```r
test-small_table.R

# Generated by pointblank

tbl <- small_table

test_that("column 'date_time' exists", {
write_testthat_file

```r
expect_col_exists(
 tbl,
 columns = vars(date_time),
 threshold = 1
)
)
}

test_that("values in `c` should be <= `5`, {

 expect_col_vals_lte(
 tbl,
 columns = vars(c),
 value = 5,
 threshold = 0.25
)
)
})

This was generated by the following set of statements:

library(pointblank)

agent <-
 create_agent(
 tbl = ~ small_table,
 actions = action_levels(stop_at = 0.25)
) %>%
 col_exists(vars(date_time)) %>%
 col_vals_lte(vars(c), value = 5)

write_testthat_file(
 agent = agent,
 name = "small_table",
 path = "."
)

Value

Invisibly returns TRUE if the testthat file has been written.

Function ID

8-5

See Also

Other Post-interrogation: all_passed(), get_agent_x_list(), get_data_extracts(), get_sundered_data()
Examples

if (interactive()) {

Creating an `action_levels` object is a
common workflow step when creating a
pointblank agent; we designate failure
thresholds to the `warn`, `stop`, and
`notify` states using `action_levels`

al <- action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
)

A pointblank `agent` object is now
created and the `al` object is provided
to the agent; the static thresholds
provided by `al` make reports a bit
more useful after interrogation

agent <- create_agent(
 tbl = ~ small_table,
 label = "An example.",
 actions = al
) %>%
 col_exists(vars(date, date_time)) %>%
 col_vals_regex(
 vars(b),
 regex = "[0-9]-[a-z]{3}-[0-9]{3}"%
) %>%
 col_vals_gt(vars(d), value = 100) %>%
 col_vals_lte(vars(c), value = 5) %>%
 interrogate()

This agent and all of the checks can
be transformed into a testthat file
with `write_testthat_file()`; the `stop`
thresholds will be ported over

write_testthat_file(
 agent = agent,
 name = "small_table",
 path = "."
)

The above code will generate a file with
the name `test-small_table.R`; the path
was specified with `""` but, by default,
the function will place the file in the
`tests/testthat` folder if it's available

An agent on disk as a YAML file can be
made into a testthat file; the
'agent-small_table.yml' file is
available in the package through
`system.file()`
yml_file <-
 system.file(
 "yaml", "agent-small_table.yml",
 package = "pointblank"
)

Writing the testthat file into the
working directory is much the same
as before but we're reading the
agent from disk this time
write_testthat_file(
 agent = yaml_read_agent(yml_file),
 name = "from_agent_yaml",
 path = "."
)

}
Details

Should a written-to-disk agent or informant possess a table-prep formula or a specific in-memory table we could use the interrogate() or incorporate() function again. For a data quality reporting workflow, it is useful to interrogate() target tables that evolve over time. While the same validation steps will be used, more can be added before calling interrogate(). For an information management workflow with an informant object, using incorporate() will update aspects of the reporting such as table dimensions, and info snippets/text will be regenerated.

Value

Either a ptblank_agent, ptblank_informant, or a ptblank_tbl_scan object.

Function ID

9-2

See Also

Other Object Ops: activate_steps(), deactivate_steps(), export_report(), remove_steps(), set_tbl(), x_write_disk()

Examples

if (interactive()) {

 # A: Reading an agent from disk
 # The process of developing an agent
 # and writing it to disk with the
 # `x_write_disk()` function is explained
 # in that function's documentation;
 # but suppose we have such a written file
 # that's named "agent-small_table.rds",
 # we could read that to a new agent
 # object with `x_read_disk()`
 agent <-
 x_read_disk("agent-small_table.rds")

 # B: Reading an informant from disk
 # If there is an informant written
 # to disk via `x_write_disk()` and it's
 # named "informant-small_table.rds",
 # we could read that to a new informant
 # object with `x_read_disk()`
 informant <-
 x_read_disk("informant-small_table.rds")

 # C: Reading a multiagent from disk
 # The process of creating a multiagent
x_write_disk

and writing it to disk with the
`x_write_disk()` function is shown
in that function's documentation;
but should we have such a written file
called "multiagent-small_table.rds",
we could read that to a new multiagent
object with `x_read_disk()`
multiagent <-
x_read_disk("multiagent-small_table.rds")

D: Reading a table scan from disk

If there is a table scan written
to disk via `x_write_disk()` and it's
named "tbl_scan-storms.rds", we could
read it back into R with `x_read_disk()`
tbl_scan <-
x_read_disk("tbl_scan-storms.rds")

}

x_write_disk

Write an agent, informant, multiagent, or table scan to disk

Description

Writing an agent, informant, multiagent, or even a table scan to disk with x_write_disk() can be useful for keeping data validation intel or table information close at hand for later retrieval (with x_read_disk()). By default, any data table that the agent or informant may have held before being committed to disk will be expunged (not applicable to any table scan since they never hold a table object). This behavior can be changed by setting keep_tbl to TRUE but this only works in the case where the table is not of the tbl_dbi or the tbl_spark class.

Usage

x_write_disk(
 x,
 filename,
 path = NULL,
 keep_tbl = FALSE,
 keep_extracts = FALSE,
 quiet = FALSE
)

Arguments

 x An agent object of class ptblank_agent, an informant of class ptblank_informant, or an table scan of class ptblank_tblScan.
filename The filename to create on disk for the agent, informant, or table scan.

path An optional path to which the file should be saved (this is automatically combined with filename).

keep_tbl An option to keep a data table that is associated with the agent or informant (which is the case when the agent, for example, is created using create_agent(tbl = <data table, ...)). The default is FALSE where the data table is removed before writing to disk. For database tables of the class tbl_dbi and for Spark DataFrames (tbl_spark) the table is always removed (even if keep_tbl is set to TRUE).

keep_extracts An option to keep any collected extract data for failing rows. Only applies to agent objects. By default, this is FALSE (i.e., extract data is removed).

quiet Should the function not inform when the file is written? By default this is FALSE.

Details
It is recommended to set up a table-prep formula so that the agent and informant can access refreshed data after being read from disk through x_read_disk(). This can be done initially with the tbl argument of create_agent()/create_informant() by passing in a table-prep formula or a function that can obtain the target table when invoked. Alternatively, we can use the set_tbl() with a similarly crafted tbl expression to ensure that an agent or informant can retrieve a table at a later time.

Value
Invisibly returns TRUE if the file has been written.

Function ID
9-1

See Also
Other Object Ops: activate_steps(), deactivate_steps(), export_report(), remove_steps(), set_tbl(), x_read_disk()
pointblank agent; we designate failure
thresholds to the `warn`, `stop`, and
`notify` states using `action_levels()`
al <-
 action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
)

Now create a pointblank `agent` object
and give it the `al` object (which
serves as a default for all validation
steps which can be overridden); the
data will be referenced in `tbl`
agent <-
 create_agent(
 tbl = small_table,
 tbl_name = "small_table",
 label = "x_write_disk()",
 actions = al
)

Then, as with any `agent` object, we
can add steps to the validation plan by
using as many validation functions as we
want; then, we `interrogate()`
agent <-
 agent %>%
 col_exists(vars(date, date_time)) %>%
 col_vals_regex(
 vars(b), regex = "[0-9]-[a-z]{3}-[0-9]{3}"%
) %>%
 rows_distinct() %>%
 col_vals_gt(vars(d), value = 100) %>%
 col_vals_lte(vars(c), value = 5) %>%
 interrogate()

The `agent` can be written to a file with
the `x_write_disk()` function
x_write_disk(
 agent,
 filename = "agent-small_table.rds"
)

We can read the file back as an agent
with the `x_read_disk()` function and
we'll get all of the intel along with the
restored agent

If you're consistently writing agent
reports when periodically checking data,
we could make use of the `affix_date()`
or `affix_datetime()` depending on the
granularity you need; here's an example
that writes the file with the format:
'agent-small_table-YYYY-mm-dd_HH-MM-SS.rds'

```r
x_write_disk(
    agent,
    filename = affix_datetime(
        "agent-small_table.rds"
    )
)
```

B: Writing an `informant` to disk

Let's go through the process of (1)
creating an informant object that
minimally describes the `small_table`'
dataset, (2) ensuring that data is
captured from the target table using
the `incorporate()` function, and (3)
writing the informant to a file

Create a pointblank `informant`
object with `create_informant()`
and the `small_table` dataset; use
`incorporate()` so that info snippets
are integrated into the text

```r
toplay <-
create_informant(
    tbl =~ small_table,
    tbl_name = "small_table",
    label = "x_write_disk()"
  )

info_snippet(
    snippet_name = "high_a",
    fn = snip_highest(column = "a")
  )

info_snippet(
    snippet_name = "low_a",
    fn = snip_lowest(column = "a")
  )

info_columns(
    columns = vars(a),
    info = "From \{low_a\} to \{high_a\}."
  )

info_columns(
    columns = starts_with("date"),
    info = "Time-based values."
  )

info_columns(
    columns = "date",
    info = "The date part of \{date_time\}."
  )

incorporate()
```
The `informant` can be written to a file with `x_write_disk()`; let's do this with `affix_date()` so that the filename has a datestamp

```r
x_write_disk(
  informant,
  filename = affix_date(
    "informant-small_table.rds"
  )
)
```

We can read the file back into a new informant object (in the same state as when it was saved) by using `x_read_disk()`

C: Writing a multiagent to disk

Let's create one more pointblank agent object, provide it with some validation steps, and `interrogate()`

```r
gerent_b <-
  create_agent(
    tbl = ~ small_table,
    tbl_name = "small_table",
    label = "x_write_disk()",
    actions = al
  ) %>%
  col_vals_gt(
    vars(b), vars(g), na_pass = TRUE,
    label = "b > g"
  ) %>%
  col_is_character(
    vars(b, f),
    label = "Verifying character-type columns"
  ) %>%
  interrogate()
```

Now we can combine the earlier `agent` object with the newer `agent_b` to create a `multiagent`

```r
multiagent <-
  create_multiagent(agent, agent_b)
```

The `multiagent` can be written to a file with the `x_write_disk()` function

```r
x_write_disk(
  multiagent,
  filename = "multiagent-small_table.rds"
)
```

We can read the file back as a multiagent
with the `x_read_disk()` function and
we'll get all of the constituent agents
and their associated intel back as well

D: Writing a table scan to disk

We can get a report that describes all
of the data in the `storms` dataset
tbl_scan <- scan_data(tbl = dplyr::storms)

The table scan object can be written
to a file with `x_write_disk()`
x_write_disk(
 tbl_scan,
 filename = "tbl_scan-storms.rds"
)

yaml_agent_interrogate

Get an agent from pointblank YAML and interrogate()

Description

The `yaml_agent_interrogate()` function operates much like the `yaml_read_agent()` function (reading a pointblank YAML file and generating an agent with a validation plan in place). The key difference is that this function takes things a step further and interrogates the target table (defined by table-prep formula that is required in the YAML file). The additional auto-invocation of `interrogate()` uses the default options of that function. As with `yaml_read_agent()` the agent is returned except, this time, it has intel from the interrogation.

Usage

```r
yaml_agent_interrogate(filename, path = NULL)
```

Arguments

- **filename**
 - The name of the YAML file that contains fields related to an agent.
- **path**
 - An optional path to the YAML file (combined with filename).

Value

A `ptblank_agent` object.

Function ID

11-4
See Also

Other pointblank YAML: `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_exec()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

Examples

```r
if (interactive()) {
  # Let's go through the process of
  # developing an agent with a validation
  # plan (to be used for the data quality
  # analysis of the 'small_table' dataset),
  # and then offloading that validation
  # plan to a pointblank YAML file; this
  # will later be read in as a new agent and
  # the target data will be interrogated
  # (one step) with 'yaml_agent_interrogate()'

  # Creating an 'action_levels' object is a
  # common workflow step when creating a
  # pointblank agent; we designate failure
  # thresholds to the 'warn', 'stop', and
  # 'notify' states using 'action_levels()'
  al <-
    action_levels(
      warn_at = 0.10,
      stop_at = 0.25,
      notify_at = 0.35
    )

  # Now create a pointblank 'agent' object
  # and give it the 'al' object (which
  # serves as a default for all validation
  # steps which can be overridden); the
  # data will be referenced in 'tbl'
  # (a requirement for writing to YAML)
  agent <-
    create_agent(
      tbl = ~ small_table,
      tbl_name = "small_table",
      label = "A simple example with the 'small_table'.",
      actions = al
    )

  # Then, as with any 'agent' object, we
  # can add steps to the validation plan by
  # using as many validation functions as we
  # want
  agent <-
    agent %>%
    col_exists(vars(date, date_time)) %>%
    col_vals_regex(  

```
```r
vars(b),
regex = "[0-9]-[a-z]{3}-[0-9]{3}"
) %>%
rows_distinct() %>%
col_vals_gt(vars(d), value = 100) %>%
col_vals_lte(vars(c), value = 5)

# The agent can be written to a pointblank
# YAML file with `yaml_write`
yaml_write(
  agent = agent,
  filename = "agent-small_table.yml"
)

# The 'agent-small_table.yml' file is
# available in the package through 'system.file'
yml_file <-
  system.file(
    "yaml", "agent-small_table.yml",
    package = "pointblank"
  )

# We can view the YAML file in the console
# with the `yaml_agent_string()` function
yaml_agent_string(filename = yml_file)

# The YAML can also be printed in the console
# by supplying the agent as the input
yaml_agent_string(agent = agent)

# We can interrogate the data (which
# is accessible through 'tbl')
# through direct use of the YAML file
# with `yaml_agent_interrogate`
agent <-
  yaml_agent_interrogate(filename = yml_file)

class(agent)

# If it's desired to only create a new
# agent with the validation plan in place
# (stopping short of interrogating the data),
# then the `yaml_read_agent()` function
# will be useful
agent <-
  yaml_read_agent(filename = yml_file)
class(agent)
```

yaml_agent_show_exprs

Display validation expressions using **pointblank YAML**

Description

The `yaml_agent_show_exprs()` function follows the specifications of a **pointblank** YAML file to generate and show the **pointblank** expressions for generating the described validation plan. The expressions are shown in the console, providing an opportunity to copy the statements and extend as needed. A **pointblank** YAML file can itself be generated by using the `yaml_write()` function with a pre-existing `agent`, or, it can be carefully written by hand.

Usage

```r
yaml_agent_show_exprs(filename, path = NULL)
```

Arguments

- `filename`: The name of the YAML file that contains fields related to an `agent`.
- `path`: An optional path to the YAML file (combined with `filename`).

Function ID

11-6

See Also

Other **pointblank** YAML: `yaml_agent_interrogate()`, `yaml_agent_string()`, `yaml_exec()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

Examples

```r
if (interactive()) {

# Let's create a validation plan for the
# data quality analysis of the 'small_table'
# dataset; we need an agent and its
# table-prep formula enables retrieval
# of the target table
agent <-
  create_agent(
    tbl = ~ small_table,
    tbl_name = "small_table",
    label = "A simple example with the 'small_table'.",
    actions = action_levels(
      warn_at = 0.10,
      stop_at = 0.25,
      notify_at = 0.35
    )
  )
}
```
col_exists(vars(date, date_time)) %>%
col_vals_regex(
 vars(b),
 regex = "[0-9]-[a-z]{3}-[0-9]{3}")
%>%
rows_distinct() %>%
col_vals_gt(vars(d), value = 100) %>%
col_vals_lte(vars(c), value = 5)

The agent can be written to a pointblank
YAML file with `yaml_write()`
yaml_write(
 agent = agent,
 filename = "agent-small_table.yml"
)

The 'agent-small_table.yml' file is
available in the package through
`system.file()`
yml_file <-
system.file(
 "yaml", "agent-small_table.yml",
 package = "pointblank"
)

At a later time, the YAML file can
be read into a new agent with the
`yaml_read_agent()` function
agent <-
yaml_read_agent(filename = yml_file)

class(agent)

To get a sense of which expressions are
being used to generate the new agent, we
can use `yaml_agent_show_exprs()`
yaml_agent_show_exprs(filename = yml_file)

display.pointblank

Description

With **pointblank** YAML, we can serialize an agent’s validation plan (with `yaml_write()`), read it back later with a new agent (with `yaml_read_agent()`), or perform an interrogation on the target data table directly with the YAML file (with `yaml_agent_interrogate()`). The `yaml_agent_string()` function allows us to inspect the YAML generated by `yaml_write()` in the console, giving us a look
at the YAML without needing to open the file directly. Alternatively, we can provide an agent to the `yaml_agent_string()` and view the YAML representation of the validation plan without needing to write the YAML to disk beforehand.

Usage

```r
yaml_agent_string(agent = NULL, filename = NULL, path = NULL, expanded = FALSE)
```

Arguments

- **agent**: An agent object of class `ptblank_agent`. If an object is provided here, then filename must not be provided.
- **filename**: The name of the YAML file that contains fields related to an agent. If a file name is provided here, then agent object must not be provided in agent.
- **path**: An optional path to the YAML file (combined with filename).
- **expanded**: Should the written validation expressions for an agent be expanded such that `tidyselect` and `vars()` expressions for columns are evaluated, yielding a validation function per column? By default, this is FALSE so expressions as written will be retained in the YAML representation.

Function ID

11-5

See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_exec()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

Examples

```r
if (interactive()) {

  # Let's create a validation plan for the data quality analysis of the 'small_table' dataset; we need an agent and its table-prep formula enables retrieval of the target table
  agent <- create_agent(
    tbl = ~ small_table,
    tbl_name = "small_table",
    label = "A simple example with the 'small_table'.",
    actions = action_levels(
      warn_at = 0.10,
      stop_at = 0.25,
      notify_at = 0.35
    )
  )
  col_exists(vars(date, date_time)) %>%
```
execute all agent and informant YAML tasks

Description

The `yaml_exec()` function takes all relevant `pointblank` YAML files in a directory and executes them. Execution involves interrogation of agents for YAML agents and incorporation of informants.
for YAML informants. Under the hood, this uses `yaml_agent_interrogate()` and `yaml_informant_incorporate()` and then `x_write_disk()` to save the processed objects to an output directory. These written artifacts can be read in at any later time with the `x_read_disk()` function or the `read_disk_multiagent()` function. This is useful when data in the target tables are changing and the periodic testing of such tables is part of a data quality monitoring plan.

The output RDS files are named according to the object type processed, the target table, and the date-time of processing. For convenience and modularity, this setup is ideal when a table store YAML file (typically named "tbl_store.yml" and produced via the `tbl_store()` and `yaml_write()` workflow) is available in the directory, and when table-prep formulas are accessed by name through `tbl_source()`.

A typical directory of files set up for execution in this way might have the following contents:

- a "tbl_store.yml" file for holding table-prep formulas (created with `tbl_store()` and written to YAML with `yaml_write()`)
- one or more YAML agent files to validate tables (ideally using `tbl_source()`)
- one or more YAML informant files to provide refreshed metadata on tables (again, using `tbl_source()` to reference table preparations is ideal)
- an output folder (default is "output") to save serialized versions of processed agents and informants

Minimal example files of the aforementioned types can be found in the `pointblank` package through the following `system.file()` calls:

```
• system.file("yaml","agent-small_table.yml",package = "pointblank")
• system.file("yaml","informant-small_table.yml",package = "pointblank")
• system.file("yaml","tbl_store.yml",package = "pointblank")
```

The directory itself can be accessed using `system.file("yaml",package = "pointblank")`.

Usage

```r
yaml_exec(
  path = NULL,
  files = NULL,
  write_to_disk = TRUE,
  output_path = file.path(path, "output"),
  keep_tbl = FALSE,
  keep_extracts = FALSE
)
```

Arguments

- **path** The path that contains the YAML files for agents and informants.
- **files** A vector of YAML files to use in the execution workflow. By default, `yaml_exec()` will attempt to process every valid YAML file in `path` but supplying a vector here limits the scope to the specified files.
write_to_disk Should the execution workflow include a step that writes output files to disk? This internally calls `x_write_disk()` to write RDS files and uses the base filename of the agent/informant YAML file as part of the output filename, appending the date-time to the basename.

output_path The output path for any generated output files. By default, this will be a subdirectory of the provided path called "output".

keep_tbl, keep_extracts For agents, the table may be kept if it is a data frame object (databases tables will never be pulled for storage) and extracts, collections of table rows that failed a validation step, may also be stored. By default, both of these options are set to FALSE.

Value

Invisibly returns a named vector of file paths for the input files that were processed; file output paths (for wherever writing occurred) are given as the names.

Function ID

11-8

See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

Examples

```r
if (interactive()) {

  # The 'yaml' directory that is
  # accessible in the package through
  # 'system.file()' contains the files
  # 1. 'agent-small_table.yml'
  # 2. 'informant-small_table.yml'
  # 3. 'tbl_store.yml'

  # There are references in YAML files
  # 1 & 2 to the table store YAML file,
  # so, they all work together cohesively

  # Let's process the agent and the
  # informant YAML files with 'yaml_exec()';
  # and we'll specify the working directory
  # as the place where the output RDS files
  # are written

  output_dir <- getwd()

  yaml_exec(
    path = system.file(}
```
yaml_informant_incorporate

Get an informant from `pointblank` YAML and incorporate()

Description

The `yaml_informant_incorporate()` function operates much like the `yaml_read_informant()` function (reading a `pointblank` YAML file and generating an `informant` with all information in place). The key difference is that this function takes things a step further and incorporates aspects from the target table (defined by table-prep formula that is required in the YAML file). The additional auto-invocation of `incorporate()` uses the default options of that function. As with `yaml_read_informant()` the informant is returned except, this time, it has been updated with the latest information from the target table.

Usage

```r
yaml_informant_incorporate(filename, path = NULL)
```

Arguments

- `filename`: The name of the YAML file that contains fields related to an `informant`.
- `path`: An optional path to the YAML file (combined with `filename`).

Value

A `ptblank_informant` object.

Function ID

11-7
See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_exec()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

Examples

```r
if (interactive()) {
  # Let's go through the process of
  # developing an informant with information
  # about the 'small_table' dataset and then
  # move all that to a pointblank YAML
  # file; this will later be read in as a
  # new informant and the target data will
  # be incorporated into the info text
  # (in one step) with
  # 'yaml_informant_incorporate()'

  # Now create a pointblank 'informant'
  # object; the data will be referenced
  # to 'tbl' with a table-prep formula
  # (a requirement for writing to YAML)
  informant <-
    create_informant(
      tbl = ~ small_table,  # small_table column name
      label = "A simple example with the 'small_table'."
    )

  # Then, as with any 'informant' object, we
  # can add information by using as many
  # 'info_*()' functions as we want
  informant <-
    informant %>%
      info_columns(
        columns = vars(a),
        info = "In the range of 1 to 10. (SIMPLE)"
      ) %>%
      info_columns(
        columns = starts_with("date"),
        info = "Time-based values (e.g., 'Sys.time()')."
      ) %>%
      info_columns(
        columns = "date",
        info = "The date part of 'date_time'. (CALC)"
      ) %>%
      info_section(
        section_name = "rows",
        row_count = "There are {row_count} rows available."
      ) %>%
      info_snippet(
        snippet_name = "row_count",
        fn = ~ . %>% nrow()
    )
```

Read a pointblank YAML file to create an agent object

Description

With `yaml_read_agent()` we can read a pointblank YAML file that describes a validation plan to be carried out by an agent (typically generated by the `yaml_write()` function. What’s returned is a new agent with that validation plan, ready to interrogate the target table at will (using the
table-prep formula that is set with the tbl argument of `create_agent()`. The agent can be given more validation steps if needed before using `interrogate()` or taking part in any other agent ops (e.g., writing to disk with outputs intact via `x_write_disk()` or again to pointblank YAML with `yaml_write()`).

To get a picture of how `yaml_read_agent()` is interpreting the validation plan specified in the pointblank YAML, we can use the `yaml_agent_show_exprs()` function. That function shows us (in the console) the pointblank expressions for generating the described validation plan.

Usage

```r
yaml_read_agent(filename, path = NULL)
```

Arguments

- `filename` The name of the YAML file that contains fields related to an agent.
- `path` An optional path to the YAML file (combined with `filename`).

Value

A pointblank_agent object.

Function ID

11-2

See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_exec()`, `yaml_informant_incorporate()`, `yaml_read_informant()`, `yaml_write()`

Examples

```r
if (interactive()) {
  # Let's go through the process of
  # developing an agent with a validation
  # plan (to be used for the data quality
  # analysis of the 'small_table' dataset),
  # and then offloading that validation
  # plan to a pointblank YAML file; this
  # will be read in with 'yaml_read_agent()'

  # Creating an 'action_levels' object is a
  # common workflow step when creating a
  # pointblank agent; we designate failure
  # thresholds to the 'warn', 'stop', and
  # 'notify' states using 'action_levels()'
  al <-
    action_levels(
      warn_at = 0.10,
      stop_at = 0.25,
    )
}
```
notify_at = 0.35
)

Now create a pointblank `agent` object
and give it the `al` object (which
serves as a default for all validation
steps which can be overridden); the
data will be referenced in `tbl` with
a table-prep formula (a requirement
for writing to YAML)
agent <-
create_agent(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "A simple example with the 'small_table'.",
 actions = al
)

Then, as with any `agent` object, we
can add steps to the validation plan by
using as many validation functions as we
want
agent <-
 agent %>%
 col_exists(vars(date, date_time)) %>%
 col_vals_regex(
 vars(b),
 regex = "[0-9]-[a-z]{3}-[0-9]{3}"
) %>%
 rows_distinct() %>%
 col_vals_gt(vars(d), value = 100) %>%
 col_vals_lte(vars(c), value = 5)

The agent can be written to a pointblank
YAML file with `yaml_write`
yaml_write(
 agent = agent,
 filename = "agent-small_table.yml"
)

The 'agent-small_table.yml' file is
available in the package through
`system.file`
yml_file <-
system.file(
 "yaml", "agent-small_table.yml",
 package = "pointblank"
)

We can view the YAML file in the console
with the `yaml_agent_string()` function
yaml_agent_string(filename = yml_file)
yaml_read_informant

Read a `pointblank` YAML file to create an informant object

Description

With `yaml_read_informant()` we can read a `pointblank` YAML file that describes table information (typically generated by the `yaml_write()` function). What’s returned is a new `informant` object with the information intact. The `informant` object can be given more information through use of the `info_*()` functions.

Usage

```
yaml_read_informant(filename, path = NULL)
```

Arguments

- `filename` The name of the YAML file that contains fields related to an `informant`.
- `path` An optional path to the YAML file (combined with `filename`).

Value

A `ptblank_informant` object.
Function ID

11-3

See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_exec()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_write()`

Examples

```r
if (interactive()) {
  # Create a pointblank 'informant'
  # object with 'create_informant()'  
  # and the 'small_table' dataset
  informant <- create_informant(small_table)

  # An 'informant' object can be written
  # to a YAML file with the 'yaml_write()'  
  # function
  yaml_write(
    # informant = informant,  
    # filename = "informant-small_table.yml"
    #
  )

  # The 'informant-small_table.yml' file 
  # looks like this when written

  #> info_label: '[2020-09-06|13:37:38]'
  #> table:
  #>   name: small_table
  #>   _columns: 8
  #>   _rows: 13
  #>   _type: tbl_df
  #> columns:
  #>   date_time:
  #>     _type: POSIXct, POSIXt
  #>   date:
  #>     _type: Date
  #>   a:
  #>     _type: integer
  #>   b:
  #>     _type: character
  #>   c:
  #>     _type: numeric
  #>   d:
  #>     _type: numeric
  #>   e:
  #>     _type: logical
  #>   f:
  #>     _type: character
```
We can add keys and values to
add more pertinent information; with
some direct editing of the file we get:

```yaml
> info_label: ['2020-09-06|13:37:38']
> table:
  > name: small_table
  > _columns: 8
  > _rows: 13
  > _type: tbl_df
  > columns:
    > date_time:
      > _type: POSIXct, POSIXt
      > info: Date-time values.
    > date:
      > _type: Date
      > info: Date values (the date part of 'date_time').
    > a:
      > _type: integer
      > info: Small integer values (no missing values).
    > b:
      > _type: character
      > info: Strings with a common pattern.
    > c:
      > _type: numeric
      > info: Small numeric values (contains missing values).
    > d:
      > _type: numeric
      > info: Large numeric values (much greater than 'c')
    > e:
      > _type: logical
      > info: TRUE and FALSE values.
    > f:
      > _type: character
      > info: Strings of the set "low", "mid", and "high".
```

We could also have done the same
with the `informant` object by use of
the `info_columns()` function

The 'informant-small_table.yml' file
is available in the package through
`system.file()`
```
yml_file <-
  system.file(
    "yaml", "informant-small_table.yml",
    package = "pointblank"
  )
```

We can read this YAML file back
as an `informant` object by using
`yaml_read_informant()`
informant <-
yaml_write

```r
yaml_read_informant(filename = yml_file)

class(informant)
```

Description

With `yaml_write()` we can take different `pointblank` objects (these are the `ptblank_agent`, `ptblank_informant`, and `tbl_store`) and write them to YAML. With an `agent`, for example, `yaml_write()` will write that everything that is needed to specify an `agent` and it's validation plan to a YAML file. With YAML, we can modify the YAML markup if so desired, or, use as is to create a new agent with the `yaml_read_agent()` function. That `agent` will have a validation plan and is ready to `interrogate()` the data. We can go a step further and perform an interrogation directly from the YAML file with the `yaml_agent_interrogate()` function. That returns an agent with intel (having already interrogated the target data table). An `informant` object can also be written to YAML with `yaml_write()`.

One requirement for writing an `agent` or an `informant` to YAML is that we need to have a table-prep formula specified (it's an R formula that is used to read the target table when `interrogate()` or `incorporate()` is called). This option can be set when using `create_agent()/create_informant()` or with `set_tbl()` (useful with an existing agent or informant object).

Usage

```r
yaml_write(
  ..., 
  .list = list2(...),
  filename = NULL,
  path = NULL,
  expanded = FALSE,
  quiet = FALSE
)
```

Arguments

- `...` Any mix of `pointblank` objects such as the `agent` (`ptblank_agent`), the `informant` (`ptblank_informant`), or the table store (`tbl_store`). The agent and informant can be combined into a single YAML file (so long as both objects refer to the same table). A table store cannot be combined with either an agent or an informant so it must undergo conversion alone.

- `.list` Allows for the use of a list as an input alternative to `...`
filename The name of the YAML file to create on disk. It is recommended that either the .yaml or .yml extension be used for this file. If not provided then default names will be used ("tbl_store.yml") for a table store and the other objects will get default naming to the effect of "<object>-<tbl_name>.yml".

path An optional path to which the YAML file should be saved (combined with filename).

expanded Should the written validation expressions for an agent be expanded such that tidyselect and vars() expressions for columns are evaluated, yielding a validation function per column? By default, this is FALSE so expressions as written will be retained in the YAML representation.

quiet Should the function not inform when the file is written? By default this is FALSE.

Value

Invisibly returns TRUE if the YAML file has been written.

Function ID

11-1

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(), yaml_exec(), yaml_informant_incorporate(), yaml_read_agent(), yaml_read_informant()

Examples

if (interactive()) {

 # Let's go through the process of
 # developing an agent with a validation
 # plan (to be used for the data quality
 # analysis of the 'small_table' dataset),
 # and then offloading that validation
 # plan to a pointblank YAML file

 # Creating an 'action_levels' object is a
 # common workflow step when creating a
 # pointblank agent; we designate failure
 # thresholds to the 'warn', 'stop', and
 # 'notify' states using 'action_levels()'
 al <- action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
)

 # Now create a pointblank 'agent' object
 # and give it the 'al' object (which
serves as a default for all validation
steps which can be overridden); the
data will be referenced in `tbl`
(a requirement for writing to YAML)
agent <-
create_agent(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "A simple example with the 'small_table'.",
 actions = al
)

Then, as with any `agent` object, we
can add steps to the validation plan by
using as many validation functions as we
want
agent <-
 agent %>%
 col_exists(vars(date, date_time)) %>%
 col_vals_regex(
 vars(b), regex = "[0-9]-[a-z][3]-[0-9][3]"
) %>%
 rows_distinct() %>%
 col_vals_gt(vars(d), value = 100) %>%
 col_vals_lte(vars(c), value = 5)

The agent can be written to a pointblank
YAML file with `yaml_write()`
yaml_write(
 agent,
 filename = "agent-small_table.yml"
)

The 'agent-small_table.yml' file is
available in the package through
`system.file()`
yml_file <-
system.file(
 "yaml", "agent-small_table.yml",
 package = "pointblank"
)

We can view the YAML file in the console
with the `yaml_agent_string()` function
yaml_agent_string(filename = yml_file)

The YAML can also be printed in the console
by supplying the agent as the input
yaml_agent_string(agent = agent)

At some later time, the YAML file can
be read as a new agent with the
`yaml_read_agent()` function
agent <-
 yaml_read_agent(filename = yml_file)

class(agent)

We can interrogate the data (which
is accessible through `tbl`
with `interrogate()` and get an
agent with intel, or, we can
interrogate directly from the YAML
file with `yaml_agent_interrogate`
agent <-
 yaml_agent_interrogate(filename = yml_file)

class(agent)

}
Index

* Datasets
 - game_revenue, 224
 - game_revenue_info, 225
 - small_table, 298
 - small_table_sqlite, 299
 - specifications, 312
* Emailing
 - email_blast, 209
 - email_create, 212
 - stock_msg_body, 313
 - stock_msg_footer, 314
* Incorporate and Report
 - get_informant_report, 234
 - incorporate, 246
* Information Functions
 - info_columns, 248
 - info_columns_from_tbl, 252
 - info_section, 254
 - info_snippet, 258
 - info_tabular, 261
 - snip_highest, 300
 - snip_list, 301
 - snip_lowest, 303
 - snip_stats, 304
* Interrogate and Report
 - get_agent_report, 226
 - interrogate, 246
* Logging
 - log4r_step, 266
* Object Ops
 - activate_steps, 8
 - deactivate_steps, 205
 - export_report, 215
 - remove_steps, 269
 - set_tbl, 296
 - x_read_disk, 343
 - x_write_disk, 345
* Planning and Prep
 - action_levels, 4
 - create_agent, 189
 - create_informant, 195
 - db_tbl, 202
 - draft_validation, 207
 - file_tbl, 218
 - scan_data, 288
 - tbl_get, 315
 - tbl_source, 323
 - tbl_store, 325
 - validate_rmd, 338
* Post-interrogation
 - all_passed, 14
 - get_agent_x_list, 230
 - get_data_extracts, 232
 - get_sundered_data, 240
 - write_testthat_file, 339
* Table Transformers
 - get_tt_param, 243
 - tt_string_info, 329
 - tt_summary_stats, 330
 - tt_tbl_colnames, 332
 - tt_tbl_dims, 334
 - tt_time_shift, 335
 - tt_time_slice, 336
* The multiagent
 - create_multiagent, 199
 - get_multiagent_report, 236
 - read_disk_multiagent, 268
* Utility and Helper Functions
 - affix_date, 9
 - affix_datetime, 11
 - col_schema, 51
 - from_github, 222
 - has_columns, 244
 - stop_if_not, 314
* datasets
 - game_revenue, 224
 - game_revenue_info, 225
 - small_table, 298
specifications, 312
* pointblank YAML
 yaml_agent_interrogate, 350
 yaml_agent_show_exprs, 353
 yaml_agent_string, 354
 yaml_exec, 356
 yaml_informant_incorporate, 359
 yaml_read_agent, 361
 yaml_read_informant, 364
 yaml_write, 367
* validation functions
 col_exists, 15
 col_is_character, 20
 col_is_date, 24
 col_is_factor, 28
 col_is_integer, 33
 col_is_logical, 37
 col_is_numeric, 42
 col_is_posix, 46
 col_schema_match, 53
 col_vals_between, 58
 col_vals_decreasing, 66
 col_vals_equal, 73
 col_vals_expr, 79
 col_vals_gt, 85
 col_vals_gte, 92
 col_vals_in_set, 106
 col_vals_increasing, 99
 col_vals_lt, 112
 col_vals_lte, 118
 col_vals_make_set, 124
 col_vals_make_subset, 131
 col_vals_not_between, 137
 col_vals_not_equal, 144
 col_vals_not_in_set, 151
 col_vals_not_null, 157
 col_vals_null, 163
 col_vals_regex, 169
 col_vals_within_spec, 175
 conjointly, 182
 row_count_match, 282
 rows_complete, 270
 rows_distinct, 276
 serially, 290
 specially, 306
 tbl_match, 317

activate_steps, 8, 206, 216, 269, 297, 344, 346
activate_steps(), 206, 269, 340
affix_date, 9, 13, 52, 223, 245, 315
affix_date(), 13
affix_datetime, 10, 11, 52, 223, 245, 315
affix_datetime(), 10
all_passed, 14, 231, 233, 241, 341
all_passed(), 191, 264
base::difftime, 335
base::strptime(), 10, 12
blastula::creds(), 209
blastula::creds_anonymous(), 209
blastula::creds_file(), 209
blastula::creds_key(), 209

col_exists(), 182, 184
col_is_character, 18, 20, 27, 32, 36, 40, 45, 49, 57, 64, 71, 78, 84, 91, 97, 104, 110, 117, 123, 129, 135, 142, 149, 156, 161, 167, 173, 181, 187, 274, 280, 286, 294, 309, 321
col_is_date, 18, 23, 24, 32, 36, 40, 45, 49, 57, 64, 71, 78, 84, 91, 97, 104, 110, 117, 123, 129, 135, 142, 149, 156, 161, 167, 173, 181, 187, 274, 280, 286, 294, 309, 321
col_is_factor, 18, 23, 27, 28, 36, 40, 45, 49, 57, 64, 71, 78, 84, 91, 97, 104, 110, 117, 123, 129, 135, 142, 149, 156, 161, 167, 173, 181, 187, 274, 280, 286, 294, 309, 321
<table>
<thead>
<tr>
<th>Function</th>
<th>Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>col_is_integer</td>
<td>18, 23, 27, 32, 33, 40, 45, 49, 57, 64, 71, 78, 84, 91, 97, 104, 110, 117, 123, 129, 135, 142, 149, 156, 161, 167, 173, 181, 187, 274, 280, 286, 294, 309, 321</td>
</tr>
<tr>
<td>col_is_logical</td>
<td>18, 23, 27, 32, 36, 37, 45, 49, 57, 64, 71, 78, 84, 91, 97, 104, 110, 117, 123, 129, 135, 142, 149, 156, 161, 167, 173, 181, 187, 274, 280, 286, 294, 309, 321</td>
</tr>
<tr>
<td>col_is_numeric</td>
<td>18, 23, 27, 32, 36, 40, 42, 49, 57, 64, 71, 78, 84, 91, 97, 104, 110, 117, 123, 129, 135, 142, 149, 156, 161, 167, 173, 181, 187, 274, 280, 286, 294, 309, 321</td>
</tr>
<tr>
<td>col_is_posix</td>
<td>18, 23, 27, 32, 36, 40, 45, 46, 57, 64, 71, 78, 84, 91, 97, 104, 110, 117, 123, 129, 135, 142, 149, 156, 161, 167, 173, 181, 187, 274, 280, 286, 294, 309, 321</td>
</tr>
<tr>
<td>col_schema</td>
<td>10, 13, 51, 223, 245, 315</td>
</tr>
<tr>
<td>col_schema()</td>
<td>53, 54</td>
</tr>
<tr>
<td>col_schema_match()</td>
<td>51</td>
</tr>
<tr>
<td>col_vals_between()</td>
<td>142</td>
</tr>
<tr>
<td>col_vals_decreasing()</td>
<td>104</td>
</tr>
<tr>
<td>col_vals_equal</td>
<td>18, 23, 27, 32, 36, 40, 45, 49, 57, 64, 71, 73, 84, 91, 97, 104, 110, 117, 123, 129, 135, 142, 149, 156, 161, 167, 173, 181, 187, 274, 280, 286, 294, 309, 321</td>
</tr>
<tr>
<td>col_vals_equal()</td>
<td>149</td>
</tr>
<tr>
<td>col_vals_gte</td>
<td>59, 97, 137</td>
</tr>
<tr>
<td>col_vals_gte()</td>
<td>59, 90, 137</td>
</tr>
<tr>
<td>col_vals_in_set()</td>
<td>156</td>
</tr>
<tr>
<td>col_vals_increasing()</td>
<td>71, 291</td>
</tr>
<tr>
<td>col_vals_lt()</td>
<td>59, 123, 137</td>
</tr>
<tr>
<td>col_vals_lte()</td>
<td>59, 116, 137</td>
</tr>
</tbody>
</table>
col vals make subset(125)
col vals not between(), 125
col vals not between(), 64
col vals not equal(), 78
col vals not in set(), 110
col vals not null(), 167
col vals null(), 161
col vals regex(), 161
col vals with spec(), 312
conjointly(), 191, 227, 233, 241
create agent(6, 189, 198, 203, 208, 219, 289, 316, 324, 327, 339)
create informant(6, 193, 195, 203, 208, 219, 289, 316, 324, 327, 339)
create informant(), 202, 219, 234, 235, 248, 261, 302, 315, 323, 325, 346, 367
create multiagent, 199, 237, 269
create multiagent(), 193, 268
db tbl(6, 193, 198, 202, 208, 219, 289, 316, 324, 327, 339)
deactivate steps. 8, 205, 216, 269, 297, 344, 346
deactivate steps(), 8, 269, 340
dplyr::between(). 84
dplyr::case_when(). 84
draft validation(6, 193, 198, 203, 207, 219, 289, 316, 324, 327, 339)
email blast, 209, 213, 313, 314
eemail blast(), 190, 313, 314
eemail create, 211, 212, 313, 314
eemail create(), 209, 313, 314
expect col exists(col exists), 15
expect col is character
(col is character), 20
expect col is date(col is date), 24
expect col is factor(col is factor), 28
expect col is integer(col is integer), 33
expect col is logical(col is logical), 37
expect col is numeric(col is numeric), 42
expect col is posix(col is posix), 46
expect col schema match
(col schema match), 53
INDEX

expect_col_vals_between
(col_vals_between), 58
expect_col_vals_decreasing
(col_vals_decreasing), 66
expect_col_vals_equal
(col_vals_equal), 73
expect_col_vals_expr
(col_vals_expr), 79
expect_col_vals_gt
(col_vals_gt), 85
expect_col_vals_gte
(col_vals_gte), 92
expect_col_vals_in_set
(col_vals_in_set), 106
expect_col_vals_increasing
(col_vals_increasing), 99
expect_col_vals_lte
(col_vals_lte), 118
expect_col_vals_make_set
(col_vals_make_set), 124
expect_col_vals_make_subset
(col_vals_make_subset), 131
expect_col_vals_not_between
(col_vals_not_between), 137
expect_col_vals_not_equal
(col_vals_not_equal), 144
expect_col_vals_not_in_set
(col_vals_not_in_set), 151
expect_col_vals_not_null
(col_vals_not_null), 157
expect_col_vals_null
(col_vals_null), 163
expect_col_vals_regex
(col_vals_regex), 169
expect_col_vals_within_spec
(col_vals_within_spec), 175
expect_col_vals_within_spec()
(175)
expect_conjointly
(conjointly), 182
expect_row_count_match
(row_count_match), 282
expect_rows_complete
(rows_complete), 270
expect_rows_distinct
(rows_distinct), 276
expect_serially
(serially), 290
expect_specially
(specially), 306
expect_tbl_match
(tbl_match), 317
export_report
(8, 206, 215, 269, 297, 344, 346)
export_report()
(227)
file_tbl
(6, 193, 198, 203, 208, 218, 289, 316, 324, 327, 339)
file_tbl()
(222)
from_github
(10, 13, 52, 222, 245, 315)
from_github()
(219)
game_revenue
(224, 226, 299, 313)
game_revenue_info
(225, 225, 299, 313)
get_agent_report
(226, 265)
get_agent_report()
(189–191, 208, 215, 222, 237, 264, 343)
get_agent_x_list
(15, 230, 233, 241, 341)
get_agent_x_list()
(14, 191, 209, 210, 212, 213, 343)
data_extracts
(15, 231, 232, 241, 341)
data_extracts()
(191, 343)
get_informant_report
(234, 247)
get_informant_report()
(196, 215, 246, 251, 256, 263, 343)
get_multiagent_report
(200, 236, 269)
get_multiagent_report()
(193, 199, 215)
get_sundered_data
(15, 231, 233, 240, 341)
get_sundered_data()
(191)
get_tt_param
(243, 329, 331, 333, 334, 336, 337)
has_columns
(10, 13, 52, 223, 244, 315)
has_columns()
(16, 21, 25, 30, 34, 39, 43, 48, 55, 61, 68, 75, 81, 88, 94, 101, 107, 114, 120, 126, 133, 139, 146, 153, 159, 164, 171, 177, 184, 272, 278, 283, 292, 307, 319)
I()
(202, 228, 234, 236)
incorporate
(235, 246)
incorporate()
(195, 198, 250, 251, 256, 263, 344, 359, 367)
info_columns
(248, 253, 257, 260, 263, 300, 302, 303, 305)
info_columns()
(195, 252–254, 258)
info_columns_from_tbl
(251, 252, 257, 260, 263, 300, 302, 303, 305)
info_columns_from_tbl()
(225)
info_section
(251, 253, 254, 260, 263, 300, 302, 303, 305)
info_section()
(195, 258)
info_snippet
(251, 253, 257, 258, 263, 300, 302, 303, 305)
info_snippet()
(195, 246, 250, 256, 263, 300–305)
info_tabular, 251, 253, 257, 260, 261, 300, 302, 303, 305
info_tabular(), 195, 254, 258
interrogate, 229, 264
interrogate(), 189, 191, 226, 232, 233, 241, 244, 339, 344, 350, 362, 367
log4r_step, 266
log4r_step(), 9
read_disk_multiagent, 200, 237, 268
read_disk_multiagent(), 193, 357
remove_steps, 8, 206, 216, 269, 297, 344, 346
rlang::expr(), 84
rows_distinct(), 233
scan_data, 6, 193, 198, 203, 208, 219, 288, 316, 324, 327, 339
scan_data(), 231
set_tbl, 8, 206, 216, 269, 296, 344, 346
set_tbl(), 313, 323, 339, 346, 367
small_table, 225, 226, 298, 299, 313
small_table_sqlite, 225, 226, 299, 299, 313
snip_highest, 251, 253, 257, 260, 263, 300, 302, 303, 305
snip_highest(), 195, 259
snip_list, 251, 253, 257, 260, 263, 300, 301, 303, 305
snip_list(), 195, 258
snip_lowest, 251, 253, 257, 260, 263, 300, 302, 303, 305
snip_lowest(), 195, 259
snip_stats, 251, 253, 257, 260, 263, 300, 302, 303, 304
snip_stats(), 195, 258
specifications, 225, 226, 299, 312
stock_msg_body, 211, 213, 313, 314
stock_msg_footer, 211, 213, 313, 314
stop_if_not, 10, 13, 52, 223, 245, 314
stop_on_fail(action_levels), 4
tbl_get, 6, 193, 198, 203, 208, 219, 289, 315, 324, 327, 339
tbl_get(), 323, 325, 326
tbl_source, 6, 193, 198, 203, 208, 219, 289, 316, 323, 327, 339
tbl_source(), 315, 325, 326, 357
tbl_store, 6, 193, 198, 203, 208, 219, 289, 316, 324, 325, 339
tbl_store(), 202, 219, 315, 316, 323, 357
test_col_exists(col_exists), 15
test_col_is_character
(col_is_character), 20
test_col_is_date(col_is_date), 24
test_col_is_factor(col_is_factor), 28
test_col_is_integer(col_is_integer), 33
test_col_is_logical(col_is_logical), 37
test_col_is_numeric(col_is_numeric), 42
test_col_is posix(col_is posix), 46
test_col_schema_match
(col_schema_match), 53
test_col_vals_between
(col_vals_between), 58
test_col_vals_between(), 291
test_col_vals_decreasing
(col_vals_decreasing), 66
test_col_vals_equal(col_vals_equal), 73
test_col_vals_expr (col_vals_expr), 79
test_col_vals_gt (col_vals_gt), 85
test_col_vals_gte (col_vals_gte), 92
test_col_vals_in_set (col_vals_in_set), 106
test_col_vals_increasing
 (col_vals_increasing), 99
test_col_vals_lt (col_vals_lt), 112
test_col_vals_lte (col_vals_lte), 118
test_col_vals_make_set
 (col_vals_make_set), 124
test_col_vals_make_subset
 (col_vals_make_subset), 131
test_col_vals_not_between
 (col_vals_not_between), 137
test_col_vals_not_equal
 (col_vals_not_equal), 144
test_col_vals_not_in_set
 (col_vals_not_in_set), 151
test_col_vals_not_null
 (col_vals_not_null), 157
test_col_vals_null (col_vals_null), 163
test_col_vals_regex (col_vals_regex), 169
test_col_vals_within_spec
 (col_vals_within_spec), 175
test_col_vals_within_spec(), 312
test_conjointly (conjointly), 182
test_row_count_match (row_count_match), 282
test_rows_complete (rows_complete), 270
test_rows_distinct (rows_distinct), 276
test_serially (serially), 290
test_specially (specially), 306
test_tbl_match (tbl_match), 317
testthat::skip_on_appveyor(), 340
testthat::skip_on_bioc(), 340
testthat::skip_on_ci(), 340
testthat::skip_on_covr(), 340
testthat::skip_on_cran(), 340
testthat::skip_on_os(), 340
testthat::skip_on_travis(), 340
testthat::test_that(), 339
tt_string_info, 244, 329, 331, 333, 334, 336, 337
tt_string_info(), 243
tt_summary_stats, 244, 329, 330, 333, 334, 336, 337
yaml_informant_incorporate(), 197, 250, 255, 259, 262, 266, 357
yaml_read_agent, 351, 353, 355, 358, 360, 361, 365, 368
yaml_read_informant, 351, 353, 355, 358, 360, 362, 364, 368
yaml_read_informant(), 197, 250, 255, 259, 262, 359
yaml_write, 351, 353, 355, 358, 360, 362, 365, 367