Package ‘pmultinom’

April 24, 2018

Type Package
Title One-Sided Multinomial Probabilities
Version 1.0.0
Author Alexander Davis
Maintainer Alexander Davis <ajdavis2@mdanderson.org>
Description Implements multinomial CDF (P(N1<=n1, ..., Nk<=nk)) and tail probabilities (P(N1>n1, ..., Nk>nk)), as well as probabilities with both constraints (P(l1<N1<=u1, ..., lk<Nk<=uk)). Uses a method suggested by Bruce Levin (1981) <doi:10.1214/aos/1176345593>.
License AGPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Imports fftw
Suggests testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2018-04-24 15:42:54 UTC

R topics documented:

invert.pmultinom .. 2
pmultinom .. 3

Index 6
invert.pmultinom

Calculate the sample size such that the probability of a result is a given amount.

Description

Calculate the sample size such that the probability of a result is a given amount.

Usage

`invert.pmultinom(lower = -Inf, upper = Inf, probs, target.prob, method)`

Arguments

- `lower` Vector of lower bounds. Lower bounds are excluded
- `upper` Vector of upper bounds. Upper bounds are included
- `probs` Cell probabilities
- `target.prob` The probability of the event, at the output sample size.
- `method` Method used for computation. Only method currently implemented is "exact"

Details

If only lower is given, then the result is the smallest size such that `pmultinom(lower=lower, size=size, probs=probs) >= target.prob`. If only upper is given, then the result is the smallest size such that `pmultinom(upper=upper, size=size, probs=probs) <= target.prob`. Behavior when both lower and upper are given is not yet implemented.

Value

The sample size parameter at which the the target probability of the given event is achieved.

References

See Also

`pmultinom`
pmultinom

Calculate the probability that a multinomial random vector is between, elementwise, two other vectors.

Description

Calculate the probability that a multinomial random vector is between, elementwise, two other vectors.

Usage

```r
pmultinom(lower = -Inf, upper = Inf, size, probs, method)
```

Arguments

- `lower`: Vector of lower bounds. Lower bounds are excluded
- `upper`: Vector of upper bounds. Upper bounds are included
- `size`: Number of draws
- `probs`: Cell probabilities
- `method`: Method used for computation. Only method currently implemented is "exact"

Details

The calculation follows the scheme suggested in Levin (1981): begin with the equivalent probability for a Poisson random vector, and update it by conditioning on the sum of the vector being equal to the size parameter, using Bayes’ theorem. This requires computation of the distribution of a sum of truncated Poisson random variables, which is accomplished using convolution, as per Levin’s suggestion for an exact calculation. Levin’s suggestion for an approximate calculation, using Edgeworth expansions, may be added to a later version. Fast convolution is achieved using the fastest Fourier transform in the west (Frigo, Johnson 1998).

Examples

How many cells must be sequenced to have a 95% chance of
observing at least 2 from each subclone of a tumor? (Data
from Casasent et al (2018); see vignette("pmultinom") for
details of this example)

Input:
ncells <- 204
subclone.freqs <- c(43, 20, 82, 17, 5, 37)/ncells
target.number <- c(2, 2, 2, 2, 2, 0)
lower.bound <- target.number - 1
invert.pmultinom(lower=lower.bound, probs=subclone.freqs,
 target.prob=.95, method="exact")

Output:
[1] 192
Value

The probability that a multinomial random vector is greater than all the lower bounds, and less than or equal all the upper bounds:

\[P(l_1 < N_1 \leq u_1, \ldots, l_k < N_k \leq u_k) \]

If only the upper bounds are given, then this is the multinomial CDF:

\[P(N_1 \leq u_1, \ldots, N_k \leq u_k) \]

If only the upper bounds are given, then this is the multinomial tail probability:

\[P(N_1 > l_1, \ldots, N_k > l_k) \]

References

See Also

invert.pmultinom

Examples

To determine the bias of a die, Rudolph Wolf rolled it 20,000 times. Side 2 was the most frequently observed, and was observed 3631 times. What is the probability that a fair die would have a side observed this many times or more?

Input:

```r
1 - pmultinom(upper=rep.int(3630, 6), size=20000,
              probs=rep.int(1/6, 6), method="exact")
```

Output:

```
[1] 7.379909e-08
```

Therefore we conclude that the die is biased. Fougere (1988) attempted to account for these biases by assuming certain manufacturing errors. Repeating the calculation with the distribution Fougere derived:

Input:

```r
theoretical.dist <- c(.17649, .17542, .15276, .15184, .17227, .17122)
1 - pmultinom(upper=rep.int(3630, 6), size=20000,
              probs=theoretical.dist, method="exact")
```

Output:

```
[1] 0.043362
```
Therefore we conclude that the die still seems more biased than Fougere’s model can explain.
Index

invert.pmultinom, 2, 4

pmultinom, 2, 3