Package ‘platetools’

June 3, 2021

Title
Tools and Plots for Multi-Well Plates

Version 0.1.5

Description
Collection of functions for working with multi-well microtitre plates, mainly 96, 384 and 1536 well plates.

Depends
R (>= 3.1.0)

License
MIT + file LICENSE

URL
https://github.com/swarchal/platetools

BugReports
https://github.com/swarchal/platetools/issues

Encoding
UTF-8

LazyData
true

Imports
RColorBrewer, ggplot2 (>= 2.2.0)

Suggests
testthat, viridis

RoxygenNote
7.1.1

NeedsCompilation
no

Author
Scott Warchal [aut, cre]

Maintainer
Scott Warchal <scott.warchal@gmail.com>

Repository
CRAN

Date/Publication
2021-06-03 12:00:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>bhit_map</td>
<td>2</td>
</tr>
<tr>
<td>b_grid</td>
<td>4</td>
</tr>
<tr>
<td>b_map</td>
<td>5</td>
</tr>
<tr>
<td>b_score</td>
<td>6</td>
</tr>
<tr>
<td>check_plate_input</td>
<td>7</td>
</tr>
<tr>
<td>dist_map</td>
<td>7</td>
</tr>
<tr>
<td>fill_plate</td>
<td>8</td>
</tr>
<tr>
<td>hit_grid</td>
<td>8</td>
</tr>
<tr>
<td>hit_map</td>
<td>10</td>
</tr>
</tbody>
</table>
Platemap to identify 'hits' following a B-score normalisation

Description

Produces a platemap with colours indicating wells above or below selected threshold after normalising for systematic plate effects via B-score smooth. The threshold is defined calculated from a z-score, i.e plus or minus standard deviations from the plate mean.
Usage

bhit_map(
 data,
 well,
 plate = 96,
 threshold = 2,
 palette = "Spectral",
 eps = 0.01,
 maxiter = 10,
 trace.iter = FALSE,
 na.rm = TRUE,
 ...
)

Arguments

data Vector of numerical values
well Vector of well identifiers, e.g. "A01"
plate Number of wells in whole plate (96, 384 or 1536)
threshold Standard deviations from the plate average to indicate a hit. default is set to +/- 2 SD.
palette RColorBrewer palette
eps real number greater than 0. A tolerance for divergence
maxiter int, the maximum number of iterations
trace.iter Boolean, should progress in convergence be reported?
na.rm Boolean, should missing values be removed?
... additional parameters to plot wrappers

Value

ggplot plot

Examples

df <- data.frame(vals = rnorm(384),
 well = num_to_well(1:384, plate = 384))

bhit_map(data = df$vals,
 well = df$well,
 plate = 384,
 threshold = 3)
b_grid

Plots multiple b-scored normalised platemaps

Description

Transforms numerical values using the b-score normalisation process to account for row and column effects. Uses well and plate labels to plot the normalised values in the form of microtitre plates. Works for 96, 384 and 1536 well plates.

Usage

```r
b_grid(
  data,
  well,
  plate_id,
  plate = 96,
  eps = 0.01,
  maxiter = 10,
  trace.iter = FALSE,
  na.rm = FALSE,
  ...
)
```

Arguments

- `data` Numerical values to be plotted
- `well` Vector of well identifiers e.g. "A01"
- `plate_id` Vector of plate identifiers e.g. "Plate_1"
- `plate` Number of wells in complete plate (96, 384 or 1536)
- `eps` real number greater than 0. A tolerance for divergence
- `maxiter` int, the maximum number of iterations
- `trace.iter` Boolean, should progress in convergence be reported?
- `na.rm` Boolean, should missing values be removed?
- `...` additional parameters to plot wrappers

Value

ggplot plot

Examples

```r
df01 <- data.frame(well = num_to_well(1:96),
  vals = rnorm(96),
  plate = 1)
```
Description

Transforms numerical values using the b-score normalisation process to account for row and column effects. Uses well labels to plot the normalised values in the form of a microtitre plate. Works for 6, 12, 24, 48, 96, 384 or 1536 well plates.

Usage

```r
b_map(
  data,  # Numerical values in the form of a vector to be normalised
  well,  # Vector of well identifiers, e.g "A01"
  normalise = FALSE,  # Boolean, if TRUE then the residual values will be divided by the plate median absolute deviation as per Malo et al.
  plate = 96,  # integer, 6, 12, 24, 48, 96, 384 or 1536
  eps = 0.01,  # real number greater than 0. A tolerance for divergence
  maxiter = 10,  # int, the maximum number of iterations
  trace.iter = FALSE,  # Boolean, should progress in convergence be reported?
  na.rm = TRUE,  # Boolean, should missing values be removed?
  ...  # additional parameters to plot wrappers
)
```

Arguments

- `data`: Numerical values in the form of a vector to be normalised.
- `well`: Vector of well identifiers, e.g "A01".
- `normalise`: Boolean, if TRUE then the residual values will be divided by the plate median absolute deviation as per Malo et al.
- `plate`: Integer, 6, 12, 24, 48, 96, 384 or 1536.
- `eps`: Real number greater than 0. A tolerance for divergence.
- `maxiter`: Integer, the maximum number of iterations.
- `trace.iter`: Boolean, should progress in convergence be reported?
- `na.rm`: Boolean, should missing values be removed?
- `...`: Additional parameters to plot wrappers.
Value

ggplot plot

Examples

df <- data.frame(well = num_to_well(1:96),
vals = rnorm(96))

b_map(data = df$vals,
well = df$well,
plate = 96)

df_384 <- data.frame(
 well = num_to_well(1:384, plate = 384),
 vals = rnorm(384))

b_map(data = df_384$vals,
 well = df_384$well,
 plate = 384)

b_score 2 way median polish

Description

2 way median polish to remove plate effects such as row/column/edge effects. Given a dataframe containing alpha-numeric wellIDs and numerical values, this b_score will return a dataframe of the same structure after a two-way median smooth.

Usage

b_score(data, well, plate)

Arguments

data numeric data, either a vector or dataframe column
well alpha-numeric wellIDs. e.g 'A01'
plate numeric, number of wells within a plate

Examples

df <- data.frame(well = num_to_well(1:96),
vals = rnorm(96))

b_score(data = df$vals,
 well = df$well,
 plate = 96)
check_plate_input checks plate input for dodgy well plate combinations

Description
checks plate input for dodgy well plate combinations

Usage
check_plate_input(well, plate)

Arguments
- well vector of well labels
- plate integer, number of wells in full plate

dist_map Plots distributions per well in a plate layout

Description
Produces distribution plots faceted in a plate-layout format.

Usage
dist_map(well, data)

Arguments
- well vector of alphanumeric wellIDs e.g `A01`
- data numeric vector

Value
ggplot plot
fill_plate
Fill in missing wells

Description

Fills in missing wells with rows of NA values. Useful for any functions that require a complete plate such as 'b_score'.

Usage

```r
fill_plate(df, well, plate = 96)
```

Arguments

- `df`
dataframe
- `well`
Column containing well identifiers i.e "A01"
- `plate`
Number of wells in complete plate (96, 384 or 1536)

Value

dataframe

Examples

```r
vals <- rnorm(96) ; wells <- num_to_well(1:96)
df <- data.frame(wells, vals)
df_missing <- df[-c(1:10), ]
fill_plate(df_missing, "wells")
```

hit_grid
Plots multiple platemaps with and identifies hits

Description

Converts numerical values and well labels into 'hits' in the form of multiple plate maps. Hits are calculated as wells above or below a specified number of standard deviations from the overall average.
hit_grid

Usage

hit_grid(
 data,
 well,
 plate_id,
 threshold = 2,
 ncols = 2,
 plate = 96,
 each = FALSE,
 scale_each = FALSE,
 palette = "Spectral",
 ...)

Arguments

data Numerical values to be scaled and plotted
well Vector of well identifiers. e.g "A01"
plate_id Vector of plate identifiers e.g "Plate_1"
threshold Numerical value of standard deviations from the mean for a well to be classified
 as a 'hit'. Default it +/- 2 SD
ncols Number of columns in the grid of plates
plate Number of wells in the complete plates (96, 384 or 1536)
each boolean, allowed for backwards compatibility, scale_each is now the preferred
 argument name
scale_each boolean, if true scales each plate individually, if false will scale the pooled values
 of data
palette RColorBrewer palette
... additional arguments for plot wrappers

Value

ggplot plot

Examples

df01 <- data.frame(well = num_to_well(1:96),
 vals = rnorm(96),
 plate = 1)

df02 <- data.frame(well = num_to_well(1:96),
 vals = rnorm(96),
 plate = 2)

df <- rbind(df01, df02)

hit_grid(data = df$vals,
hit_map

Platemap to identify 'hits' in a screen

Description

Produces a plot in the form of a micro-titre layout, with colours indicating wells above or below a nominated threshold.

Usage

hit_map(data, well, plate = 96, threshold = 2, palette = "Spectral", ...)

Arguments

data Vector of numerical values to score
well Vector of well identifiers e.g "A01"
plate Number of wells in complete plate (6, 12, 24, 48, 96, 384 or 1536)
threshold Numerical value of standard deviations from the mean for a well to be classified as a 'hit'. Default it +/- 2 SD
palette RColorBrewer palette
...
additional parameters for plot wrappers

Value

ggplot plot

Examples

df <- data.frame(vals = rnorm(1:384),
 well = num_to_well(1:384, plate = 384))

hit_map(data = df$vals,
 well = df$well,
 plate = 384,
 threshold = 3)
is_1536

Description

internal 1536 plate function for plate_map

Usage

is_1536(well)

Arguments

- **well**: vector of alphanumeric well labels

is_old_ggplot

Description

after ggplot2 v3.3.0, using scale_y_reverse() also reverses the order of the ylim arguments in coord_fixed()

Usage

is_old_ggplot()

legend_title

Description

Change the legend title. This can be done in ggplot but there are a million incomprehensible ways to do it.

Usage

legend_title(title)

Arguments

- **title**: string new title

Value

ggplot object
list_to_dataframe

Converts list to a dataframe in a sensible way

Description

Given a list of dataframes with the same columns, this function will row bind them together, and if passed a col_name argument, will produce a column containing their original element name

Usage

list_to_dataframe(l, col_name = NULL)

Arguments

l
 list of dataframes to be converted into single dataframe

col_name
 (optional) name of column to put element names under

Value

dataframe

med_smooth

2-way median smooth

Description

Given a platemap produced by plate_map, will return a dataframe with after values have been transformed into a matrix mirroring the plate structure and undergoing a 2-way median polish to remove row or column effects

Usage

med_smooth(
 platemap,
 plate,
 eps = 0.01,
 maxiter = 10,
 trace.iter = FALSE,
 na.rm = TRUE
)
missing_wells

Arguments

- **platemap**: dataframe produced by `plate_map`
- **plate**: numeric, number of wells in plate, either 96 or 384
- **eps**: real number greater than 0. A tolerance for divergence
- **maxiter**: int, the maximum number of iterations
- **trace.iter**: Boolean, should progress in convergence be reported?
- **na.rm**: Boolean, should missing values be removed?

Value

A dataframe consisting of two columns, wellID and polished numeric values

Description

Returns a vector of wells that are missing from a complete plate.

Usage

```r
missing_wells(df, well, plate = 96)
```

Arguments

- **df**: dataframe
- **well**: Column containing well identifiers i.e "A01"
- **plate**: Number of wells in complete plate (96 or 384)

Value

vector of missing wells

Examples

```r
vals <- rnorm(96) ; wells <- num_to_well(1:96)
df <- data.frame(vals, wells)
df_missing <- df[-c(1:10), ]
missing_wells(df_missing, "wells")
```
num_to_well

Description

Converts numerical values to corresponding alpha-numeric well labels for 6, 12, 24, 48, 96, 384 or 1536 well plates. Note, it’s advisable to specify the number of wells in ‘plate’.

Usage

```r
num_to_well(x, plate = 96)
```

Arguments

- `x` Vector of numbers to be converted
- `plate` Number of wells in complete plate (96 or 384)

Value

Vector of alpha-numeric well labels

Examples

```r
grow_num_to_well(1:96)
grow_num_to_well(1:96, plate = 384)

grow <- c(1:10, 20:40, 60:96)
grow_num_to_well(grow)
```

pchit_grid

Description

Plots multiple heatmaps identifying hits from the first principal component

Usage

```r
pchit_grid(data, well, plate_id, ...)
```
pchit_map

Arguments

- **data**: Numerical values, either a dataframe or a matrix
- **well**: Vector of well identifiers e.g. "A01"
- **plate_id**: Vector of plate identifiers e.g. "Plate_1"
- ... additional arguments to `platetools::hit_grid()`

Value

- ggplot plot

Examples

```r
df01 <- data.frame(
  well = num_to_well(1:96),
  plate = 1,
  vals1 = rnorm(1:96),
  vals2 = rnorm(1:96))

df02 <- data.frame(
  well = num_to_well(1:96),
  plate = 2,
  vals1 = rnorm(1:96),
  vals2 = rnorm(1:96))

df <- rbind(df01, df02)

pchit_grid(data = df[,3:4],
           well = df$well,
           plate_id = df$plate,
           plate = 96)
```

Description

Converts numerical values and plate labels into a plate heatmap with z-scored principal components coloured dependent on a specified threshold of standard deviations above or below the average.

Usage

```
pchit_map(data, well, plate = 96, threshold = 2, palette = "Spectral", ...)
```
Arguments

- **data**: Numerical values, either a dataframe or a matrix
- **well**: Vector of well identifiers e.g. "A01"
- **plate**: Number of wells in complete plate (96, 384 or 1536)
- **threshold**: Threshold of +/- standard deviations from the average to determine a hit
- **palette**: RColorBrewer palette
- **...**: Additional arguments to `platetools::hit_map`

Value

`ggplot` plot

Examples

```r
v1 <- rnorm(1:96)
v2 <- rnorm(1:96)
v3 <- rnorm(1:96)
wells <- num_to_well(1:96)
df <- data.frame(wells, v1, v2, v3)

pchit_map(data = df[, 2:4],
          well = df$wells,
          threshold = 1.5)
```

pc_grid

Plots multiple platemaps as a heatmap of the first principal component.

Description

Converts multivariate data and well labels into a heatmap of the first principal component in the form of a grid of platemaps.

Usage

```r
pc_grid(data, well, plate_id, ncols = 2, plate = 96, ...)
```

Arguments

- **data**: Numerical values to be transformed, scaled and plotted as a colour
- **well**: Vector of well identifiers e.g. "A01"
- **plate_id**: Vector of plate labels or identifiers e.g. "plate_1"
- **ncols**: Number of columns to plot multiple platemaps
- **plate**: Number of wells in complete plate (96, 384 or 1536)
- **...**: Additional arguments to be passed to `z_grid`
Value

ggplot plot

Examples

```r
df01 <- data.frame(
    well = num_to_well(1:96),
    plate = 1,
    vals1 = rnorm(1:96),
    vals2 = rnorm(1:96))

df02 <- data.frame(
    well = num_to_well(1:96),
    plate = 2,
    vals1 = rnorm(1:96),
    vals2 = rnorm(1:96))

df <- rbind(df01, df02)

pc_grid(data = df[, 3:4],
    well = df$well,
    plate_id = df$plate,
    plate = 96)
```

Description

Takes the values and well identifiers, calculates the first principal component, scales and plots the component as a heatmap in the form of a 96 or 384-well plate. A way to quickly show variation of multi-parametric data within a plate.

Usage

```r
pc_map(data, well, plate = 96, ...)
```

Arguments

data Vector of numerical data to calculate the first principal component
well Vector of well identifiers e.g "A01"
plate Number of wells in complete plate (96, 384 or 1536)
... additional parameters to platetools::z_map

Value

ggplot plot
Examples

```r
df <- data.frame(
    well = num_to_well(1:96),
    vals1 = rnorm(1:96),
    vals2 = rnorm(1:96))

pc_map(data = df[, 2:3],
       well = df$well,
       plate = 96)
```

plate_effect

Two way-median smooth on a plate map

Description

Given a platemap produced by `plate_map`, this will perform a two way median smooth, and return the results of `medpolish`. Useful for row and column effects, as well as the raw residuals.

Usage

```r
plate_effect(platemap, plate)
```

Arguments

- `platemap`: platemap produced by `plate_map`
- `plate`: integer, the number of wells in a single plate

plate_map

creates dataframe of row, column, data from wellID and data

Description

internal function

Usage

```r
plate_map(data, well)
```

Arguments

- `data`: numeric data to be used as colour scale
- `well`: alpha-numeric well IDs, e.g `’A01’`

Value

dataframe
plate_map_grid

creates dataframe of row, column, plate_id from data regarding wellIDs

Description
internal function

Usage

plate_map_grid(data, well, plate_id)

Arguments

data numerical data to be used as colour scale
well alpha-numeric wellIDs, e.g 'A01'
plate_id plate identifiers e.g 'plate_1'

Value
dataframe

plate_map_grid_scale

creates dataframe of row, column, plate_id from data regarding wellIDs

Description
internal function

Usage

plate_map_grid_scale(data, well, plate_id, each)

Arguments

data numerical data to be used as colour scale
well alpha-numeric wellIDs, e.g 'A01'
plate_id plate identifiers e.g 'plate_1'
each boolean, if true scales each plate individually, if false will scale the pooled values of data

Value
dataframe
plate_map_multiple

Description
Generates a dataframe for multiple features, given a wellID column and multiple features

Usage
```
plate_map_multiple(data, well)
```

Arguments
- **data**: vector or dataframe of numeric data
- **well**: vector of alphanumeric well IDs e.g 'A01'

plate_map_scale

Description
Internal function

Usage
```
plate_map_scale(data, well)
```

Arguments
- **data**: numeric data to be used as colour scale
- **well**: alpha-numeric well IDs, e.g 'A01'

Value
dataframe
plate_matrix

plate_matrix plate layout matrix from well IDs

Description

Given a dataframe of alpha-numeric well IDs e.g. ("A01"), and values, this function will produce a matrix in the form of a plate layout.

Usage

plate_matrix(data, well, plate = 96)

Arguments

data vector of data to be placed in matrix
well vector of alphanumeric well IDs. e.g. ("A01")
plate number of wells in plate (6, 12, 24, 48, 96 or 384, 1536)

Value

matrix

Examples

a <- 1:96
wells <- num_to_well(1:96)
plate_matrix(data = a, well = wells)

x <- rnorm(384)
wells <- num_to_well(1:384, plate = 384)
plate_matrix(data = x, well = wells, plate = 384)

plt12 ggplot plate object

Description

internal function
Usage

```r
plt12(
    platemap, 
    size = 38, 
    shape = 21, 
    na_fill = "white", 
    na_alpha = 0.1, 
    na_size_ratio = 0.9
)
```

Arguments

- `platemap`: platemap dataframe produced by `plate_map`
- `size`: int, size parameter for `ggplot2::geom_point`
- `shape`: int, shape parameter for `ggplot2::geom_point`
- `na_fill`: string, fill colour for na or missing values
- `na_alpha`: float, alpha transparency for missing or na values
- `na_size_ratio`: float, size ratio for missing values, set to 1 for same size as normal values.

Value

`ggplot` object

Description

internal function

Usage

```r
plt1536(
    platemap, 
    size = 3.5, 
    shape = 22, 
    na_fill = "white", 
    na_size_ratio = 0.95, 
    na_alpha = 0.1
)
```
plt24

Arguments

- **platemap**: platemap dataframe produced by `plate_map`
- **size**: int, size parameter for `ggplot2::geom_point`
- **shape**: int, shape parameter for `ggplot2::geom_point`
- **na_fill**: string, fill colour for na or missing values
- **na_size_ratio**: float, size ratio for missing values, set to 1 for same size as normal values.
- **na_alpha**: float, alpha transparency for missing or na values

Value

`ggplot object`

plt24

`ggplot plate object`

Description

internal function

Usage

```r
plt24(
  platemap,
  size = 26,
  shape = 21,
  na_fill = "white",
  na_size_ratio = 0.9,
  na_alpha = 0.1
)
```

Arguments

- **platemap**: platemap dataframe produced by `plate_map`
- **size**: int, size parameter for `ggplot2::geom_point`
- **shape**: int, shape parameter for `ggplot2::geom_point`
- **na_fill**: string, fill colour for na or missing values
- **na_size_ratio**: float, size ratio for missing values, set to 1 for same size as normal values.
- **na_alpha**: float, alpha transparency for missing or na values

Value

`ggplot object`
plt384

ggplot plate object

Description

internal function

Usage

```r
plt384(
  platemap,
  size = 5,
  shape = 22,
  na_fill = "white",
  na_size_ratio = 0.95,
  na_alpha = 0.1
)
```

Arguments

- **platemap**: platemap dataframe produced by `plate_map`
- **size**: int, size parameter for `ggplot2::geom_point`
- **shape**: int, shape parameter for `ggplot2::geom_point`
- **na_fill**: string, fill colour for na or missing values
- **na_size_ratio**: float, size ratio for missing values, set to 1 for same size as normal values.
- **na_alpha**: float, alpha transparency for missing or na values

Value

`ggplot` object

plt48

ggplot plate object

Description

internal function
Usage

plt48(
 platemap,
 size = 18,
 shape = 21,
 na_fill = "white",
 na_size_ratio = 0.9,
 na_alpha = 0.1
)

Arguments

platemap platemap dataframe produced by plate_map
size int, size parameter for ggplot2::geom_point
shape int, shape parameter for ggplot2::geom_point
na_fill string, fill colour for na or missing values
na_size_ratio float, size ratio for missing values, set to 1 for same size as normal values.
na_alpha float, alpha transparancy for missing or na values

Value

ggplot object

Description

internal function

Usage

plt6(
 platemap,
 size = 50,
 shape = 21,
 na_fill = "white",
 na_alpha = 0.1,
 na_size_ratio = 0.9
)
Arguments

platemap: platemap dataframe produced by plate_map
size: int, size parameter for ggplot2::geom_point
shape: int, shape parameter for ggplot2::geom_point
na_fill: string, fill colour for na or missing values
na_alpha: float, alpha transparency for missing or na values
na_size_ratio: float, size ratio for missing values, set to 1 for same size as normal values.

Value

ggplot object

Description

internal function

Usage

plt96(platemap,
 size = 10,
 shape = 21,
 na_fill = "white",
 na_size_ratio = 0.9,
 na_alpha = 0.1
)

Arguments

platemap: platemap dataframe produced by plate_map
size: int, size parameter for ggplot2::geom_point
shape: int, shape parameter for ggplot2::geom_point
na_fill: string, fill colour for na or missing values
na_size_ratio: float, size ratio for missing values, set to 1 for same size as normal values.
na_alpha: float, alpha transparency for missing or na values

Value

ggplot object
raw_grid

Plots multiple platemaps with heatmap of raw values

Description

Converts numerical values, well labels, and plate labels into multiple plate heatmaps.

Usage

`raw_grid(data, well, plate_id, ncols = 2, plate = 96, ...)`

Arguments

- **data**: Numerical values to be plotted
- **well**: Vector of well identifiers e.g. "A01"
- **plate_id**: Vector of plate identifiers e.g. "Plate_1"
- **ncols**: Number of columns to display multiple heatmaps
- **plate**: Number of wells in complete plate (96, 384 or 1536)
- **...**: additional parameters to plot wrappers

Value

`ggplot` plot

Examples

```r
df01 <- data.frame(well = num_to_well(1:96),
                    vals = rnorm(96),
                    plate = 1)

df02 <- data.frame(well = num_to_well(1:96),
                    vals = rnorm(96),
                    plate = 2)

df <- rbind(df01, df02)

raw_grid(data = df$vals,
          well = df$well,
          plate_id = df$plate,
          plate = 96)
```
raw_map

Plots a platemap with heatmap of raw values

Description

Converts numerical values and well labels into multiple plate heatmaps

Usage

raw_map(data, well, plate = 96, ...)

Arguments

data Numerical values to be plotted
well Vector of well identifiers e.g "A01"
plate Number of wells in complete plate (6, 12, 24, 48, 96, 384 or 1536)
... additional parameters to plot wrappers

Value

ggplot plot

Examples

df <- data.frame(vals = rnorm(1:384),
 well = num_to_well(1:384, plate = 384))

raw_map(data = df$vals,
 well = df$well,
 plate = 384)

readmap_data

example data in a plate map form

Description

eexample data in a plate map form

Usage

readmap_data

Format

96 integers structured in a the form of a 96-well plate
read_map

Source
none

read_map Annotates dataframe with metadata in a platemap matrix

Description
Annotates a dataframe containing well identifiers with metadata in the form of a platemap matrix, matching the existing well-labels to the well position in the platemap.

Usage
```
read_map(data, map, verbose = TRUE, new_col_name = "header")
```

Arguments
- `data`: existing dataframe, with wellIDs under the column name of 'well'
- `map`: Matrix of metadata to be added to the dataframe, N.B NO MISSING Wells!
- `verbose`: Boolean, if TRUE will add row and column numbers to dataframe
- `new_col_name`: What to call the added metadata

Value
dataframe with new column named after 'new_col_name'

rotate_plate rotates matrix by 180 degrees

Description
If someone (no names) puts in a plate upside down, this function will rotate a plate matrix produced by `plate_matrix` to be the correct way up. i.e. if A01 is in the bottom right hand corner rather than the top left.

Usage
```
rotate_plate(m)
```

Arguments
- `m`: matrix

Value
matrix
set_block

Set values in rectangular areas of a plate

Description

Updates a table representing a multiwell plate, by setting a given value for all wells in a block or a list of blocks defined by the well coordinates of their upper-left and bottom-right corners.

Usage

set_block(plate, block, what, value)

Arguments

- **plate**: A table representing a multiwell plate, with one column named "well" representing the well identifiers.
- **block**: Coordinates of a rectangular block (such as "A01~B02"), or a vector of coordinates.
- **what**: A column name in the table.
- **value**: The value to set.

Value

Returns the 'plate' table, where the values for the wells indicated in the blocks have been updated.

Author(s)

Charles Plessy

See Also

num_to_well

Examples

```r
p <- data.frame(well = num_to_well(1:96))
head(p)

p <- set_block(p, c("A01~B02", "A05~D05"), "dNTP", 0.25)
p <- set_block(p, "A03", "dNTP", 0.50)
head(p)

# Be careful with the column names
p <- set_block(p, "A01~H12", "Mg2+", 3.0)
head(p)

## Not run:
# Chained updates with magrittr
```
well_to_num

Converting well labels to numbers

Description

Converts alpha-numeric well labels to numbers corresponding to positions within a microtitre plate. Either 96 or 384 well plate, in column-wise order or in a column snaking pattern.

Usage

well_to_num(wells, style = "normal", plate = 96)

Arguments

wells Vector of well identifiers e.g "A01"
style Either normal, starting at the left hand column at each row or in a snaking fashion. ("normal" or "snake")
plate Number of wells in the complete plate (96 or 384)

Value

Vector of numbers

Examples

well_to_num("A01")
well_to_num("P12", plate = 384)
well_to_num("P12", plate = 384, style = "snake")
wells <- c("A01", "A02", "A03")
well_to_num(wells)

p %<>%
setBlock("A01~C04", "dNTP", 0.5) %>%
setBlock("A01~C04", "Mg", 3.0)

End(Not run)
Description

Converts numerical values, well labels, and plate labels into multiple plate heatmaps

Usage

```r
z_grid(
  data,
  well,
  plate_id,
  ncols = 2,
  plate = 96,
  each = FALSE,
  scale_each = FALSE,
  ...
)
```

Arguments

- `data`: Numerical values to be plotted
- `well`: Vector of well identifiers e.g. "A01"
- `plate_id`: Vector of plate identifiers e.g. "Plate_1"
- `ncols`: Number of columns to display multiple heatmaps
- `plate`: Number of wells in complete plate (96, 384 or 1569)
- `each`: boolean, allowed for backwards compatibility, `scale_each` is now the preferred argument name
- `scale_each`: boolean, if true scales each plate individually, if false will scale the pooled values of data
- `...`: additional parameters to plot wrappers

Value

`ggplot` plot

Examples

```r
df01 <- data.frame(well = num_to_well(1:96),
  vals = rnorm(96),
  plate = 1)

df02 <- data.frame(well = num_to_well(1:96),
  vals = rnorm(96),
  plate = 2)
```
df <- rbind(df01, df02)

z_grid(data = df$vals,
 well = df$well,
 plate_id = df$plate,
 plate = 96)

z_map
Plots a platemap with heatmap of scaled values

Description
Converts numerical values and well labels into multiple plate heatmaps

Usage
z_map(data, well, plate = 96, ...)

Arguments
 data Numerical values to be plotted
 well Vector of well identifiers e.g "A01"
 plate Number of wells in complete plate (6, 12, 24, 48, 96, 384 or 1536)
 ... additional parameters to plot wrappers

Value
ggplot plot

Examples
df <- data.frame(vals = rnorm(1:384),
 well = num_to_well(1:384, plate = 384))

z_map(data = df$vals,
 well = df$well,
 plate = 384)
Index

* datasets
 readmap_data, 28
 b_grid, 4
 b_map, 5
 b_score, 6
 bhit_map, 2
 check_plate_input, 7
 dist_map, 7
 fill_plate, 8
 hit_grid, 8
 hit_map, 10
 is_1536, 11
 is_old_ggplot, 11
 legend_title, 11
 list_to_dataframe, 12
 med_smooth, 12
 missing_wells, 13
 num_to_well, 14, 30
 pc_grid, 16
 pc_map, 17
 pchit_grid, 14
 pchit_map, 15
 plate_effect, 18
 plate_map, 18
 plate_map_grid, 19
 plate_map_grid_scale, 19
 plate_map_multiple, 20
 plate_map_scale, 20
 plate_matrix, 21
 plt12, 21
 plt1536, 22
 plt24, 23
 plt384, 24
 plt48, 24
 plt6, 25
 plt96, 26
 raw_grid, 27
 raw_map, 28
 read_map, 29
 readmap_data, 28
 rotate_plate, 29
 set_block, 30
 well_to_num, 31
 z_grid, 32
 z_map, 33