Package ‘perccal’

June 14, 2016

Type Package

Title Implementing Double Bootstrap Linear Regression Confidence Intervals Using the ‘perc-cal’ Method

Version 1.0

Date 2016-06-14

Maintainer Daniel McCarthy <danielmc@wharton.upenn.edu>

URL http://www.danielminhmccarthy.com

Description Contains functions which allow the user to compute confidence intervals quickly using the double bootstrap-based percentile calibrated (‘perc-cal’) method for linear regression coefficients. ‘perccal_interval()’ is the primary user-facing function within this package.

License GPL-3

Imports Rcpp (>= 0.11.5)

LinkingTo Rcpp, RcppArmadillo, RcppEigen

NeedsCompilation yes

Author Daniel McCarthy [aut, cre, ctb]

Repository CRAN

Date/Publication 2016-06-14 20:34:32

R topics documented:

- perccal-package .. 2
- Cdboot_multi .. 2
- Cquantile ... 3
- perccal_interval .. 4
- sample_rcpp .. 5

Index 6
perccal-package

Computing Confidence Intervals Via Double Bootstrap 'perc-cal' Method

Description

Contains functions which allow the user to compute confidence intervals quickly using the double bootstrap-based percentile calibrated ('perc-cal') method for linear regression coefficients.

Details

<table>
<thead>
<tr>
<th>Package: perccal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Package</td>
</tr>
<tr>
<td>Version: 1.0</td>
</tr>
<tr>
<td>Date: 2016-06-14</td>
</tr>
<tr>
<td>License: GPL-3</td>
</tr>
</tbody>
</table>

Contains functions which allow users to compute confidence intervals quickly using the double bootstrap-based percentile calibrated ('perc-cal') method for linear regression coefficients.

The help of Justin Bleich is strongly acknowledged.

Author(s)

Daniel McCarthy

Maintainer: Daniel McCarthy <danielmc@wharton.upenn.edu>

References

Cdboot_multi

Fast computation of internal double bootstrap calculations

Description

This is the workhorse function of the package, speeding up computations within double bootstrap routine.
Cquantile

Usage

\[\text{Cdboot_multi}(xxyy, lgridlo, lgridhi, B, B2, G) \]

Arguments

- **xxyy**: \((n \times p+1)\) matrix for \(X\) (design matrix) and response vector \(y\).
- **lgridlo**: Lower quantile values of double bootstrap distribution to obtain.
- **lgridhi**: Upper quantile values of double bootstrap distribution to obtain.
- **B**: Number of 1st stage bootstrap samples.
- **B2**: Number of 2nd stage double bootstrap samples.
- **G**: Calculate quantile-based empirical coverage at this many grid points

Value

- \(\theta_{\text{hat_boot}}\) first-level bootstrap estimates of all slope coefficients
- \(\theta_{\text{qtl_lgrid_lo}}\) \((p+1 \times B \times G \times 1)\) matrix for lower quantiles at all grid points for all predictors over all bootstrap samples.
- \(\theta_{\text{qtl_lgrid_hi}}\) \((p+1 \times B \times G \times 1)\) matrix for upper quantiles at all grid points for all predictors over all bootstrap samples.

Cquantile

Fast computation of quantiles

Description

Helper function which takes as input a vector and obtains quantiles for it. Number of quantiles may be greater than one.

Usage

\[\text{Cquantile}(xx, p) \]

Arguments

- **xx**: Numeric vector we are obtaining quantiles for.
- **p**: Numeric vector of quantiles.

Value

Numeric vector containing quantiles, possibly greater than one.
Description

This is the main function of the package. It takes as inputs the predictor/response matrix appended together, which can be either a data frame or a matrix, along with the desired coverage and other settings, and outputs marginal confidence intervals for each of the predictors, including the intercept.

Usage

\[
\text{perccal_interval}(\text{Xy}, \alpha, G = 20, B = 999, B2 = 999)
\]

Arguments

- \text{Xy} \quad [n \times (p+1)] matrix: X in columns 1 to p, y in column p+1. X is the design matrix, and is assumed to not include a vector of one’s.
- \alpha \quad Target coverage desired.
- G \quad Number of grid points to evaluate calibrated percentile method on each side over.
- B \quad Number of 1st stage bootstrap samples.
- B2 \quad Number of 2nd stage double bootstrap samples.

Value

Return a (p+1)x2 matrix containing confidence intervals for all regression coefficients, estimated via the perc-cal method.

Examples

```r
set.seed(1234)
n = 32
B = 500
B2 = 500
G=20
x1=rnorm(n)
x2=rnorm(n)
eps=rnorm(n)
y = x1 + 2*x2 + eps
XY = cbind(X1,X2,y)
alpha = .025
perccal_interval(\text{XY}, \alpha, G, B, B2)
```
sample_rcpp

Sample from \([1,2,\ldots,N]\) with replacement \(n\text{samp}\) times in Rcpp.

Description

Helper function which samples from \([1,2,\ldots,N]\) with replacement \(n\text{samp}\) times in Rcpp.

Usage

```r
sample_rcpp(N, nsamp)
```

Arguments

- \(N\) : Largest integer to sample from.
- \(n\text{samp}\) : number of samples from \([1,2,\ldots,N]\) with replacement to obtain.

Value

`samps` nsamp-length vector of samples from \([1,2,\ldots,N]\) with replacement to obtain.
Index

*Topic package
 perccal-package, 2

cdbot_multi, 2
Cquantile, 3

perccal (perccal-package), 2
perccal-package, 2
perccal_interval, 4

sample_rcpp, 5