Package ‘penMSM’

February 20, 2015

Type Package
Title Estimating Regularized Multi-state Models Using L1 Penalties
Version 0.99
Date 2015-01-12
Author Holger Reulen
Maintainer Holger Reulen <hreulen@uni-goettingen.de>
Description Structured fusion Lasso penalized estimation of multi-state models with the penalty applied to absolute effects and absolute effect differences (i.e., effects on transition-type specific hazard rates).
License GPL (>= 2)
Imports Rcpp (>= 0.11.3)
LinkingTo Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-01-12 14:41:14

R topics documented:

buildrisksets .. 2
dapproxpenalty ... 3
ddlpl ... 3
dlpl .. 4
dpenaltyfunction ... 5
fishercpp ... 6
fisherinfo .. 7
fisherinfoP ... 8
llp ... 8
lpl .. 9
penaltymatrix .. 10
penMSM .. 11
plmatrix .. 12
scorevector .. 13
Description

This function calculates the risksets needed to calculate the partial likelihood of a multistate model, and/or its derivatives.

Usage

buildrisksets(entry, exit, trans, event, trace)

Arguments

- **entry**: vector with entry times.
- **exit**: vector with exit times.
- **trans**: vector with transition types.
- **event**: vector with noncensoring event indicators.
- **trace**: logical triggering printout of status information during the fitting process.

Details

This function calculates risksets.

Value

A list of length 2 with elements Ci and Ri, each vectors of length n.

Author(s)

Holger Reulen
dapproxpenalty

First derivative of the locally quadratic approximated penalty.

Description

This function calculates the first derivative of the locally quadratic approximated penalty.

Usage

dapproxpenalty(psv, beta, constant)

Arguments

psv
penalty structure vector that determines the l-th penalty component when multiplied with beta.

beta
vector of regression coefficients.

constant
constant that is needed for the locally (in the neighborhood of 0) quadratical approximation of the absolute value function.

Details

This function calculates the first derivative of the locally quadratic approximated penalty.

Value

The value of the derivative.

Author(s)

Holger Reulen

Examples

Not run: almatrix(psv, beta, constant)

ddlpl

ddlpl.

Description

Second partial derivative of the log partial likelihood with respect to the linear predictor.

Usage

ddlpl(b, X, Ri, Ci)
Arguments

- **b**: vector of regression coefficients.
- **X**: design matrix.
- **Ri**: list of length n with vectors as list elements, with the i-th element being the riskset belonging to the i-th spell.
- **Ci**: list of length n with vectors as list elements, with the i-th element capturing the indexes of risksets in which spell i is included.

Details

This function calculates the second partial derivative of the log partial likelihood.

Value

A vector with second gradients.

Author(s)

Holger Reulen

Examples

```r
## Not run: ddpl(b, X, Ri, Ci)
```

dlpl

First derivative of the Log Partial Likelihood.

Description

Calculates the first partial derivative of the log partial likelihood with respect to the linear predictor.

Usage

```r
dlpl(event, b, X, Ri, Ci)
```

Arguments

- **event**: non-censoring event indicator.
- **b**: vector of regression coefficients
- **X**: design matrix
- **Ri**: list of length n with vectors as list elements, with the i-th element being the riskset belonging to the i-th spell.
- **Ci**: list of length n with vectors as list elements, with the i-th element capturing the indexes of risksets in which spell i is included.
Details

This function calculates the first derivative of the log partial likelihood of a Cox type multistate model.

Value

A vector with the values of the partial first derivatives of the log partial likelihood with respect to the regression effects.

Author(s)

Holger Reulen

Examples

```r
## Not run: dlpl(event, b, X, Ri, Ci)
```

Description

This function implements the first derivative of the penalty function.

Usage

`dpenaltyfunction(psv, beta)`

Arguments

- `psv` penalty structure vector.
- `beta` estimated regression effects.

Details

This function implements the first derivative of the penalty function with respect to the penalty. The term 'penalty function' is described in detail on p. 4 in Oelker, Tutz (2013): A General Family of Penalties for Combining Differing Types of Penalties in Generalized Structured Models.

Value

Value of the first derivative of the penalty function (note: this is always 1, since the penalty function $p(x) = x$ is just the identity).

Author(s)

Holger Reulen
fishercpp

Fisher information matrix of the log partial likelihood of a multistate model.

Description

This function provides a fast implementation for the calculation of the Fisher information matrix needed for the estimation of fusion lasso penalized multi-state models in a piece-wise exponential framework.

Usage

fishercpp(xcppL, mucpp)

Arguments

 xcpp ...
 mucpp ...

Details

...

Value

...

Author(s)

Holger Reulen

Examples

Not run: fishercpp(xcppL, mucpp)
fisherinfo

Fisher information matrix of the log partial likelihood of a multistate model.

Description

This function calculates the Fisher information matrix needed for the estimation of multistate models using the Fisher scoring algorithm.

Usage

fisherinfo(beta, X, risksetlist, event)

Arguments

beta
vector of regression coefficients.

X
design matrix.

risksetlist
list of length n with vectors as list elements, with the i-th element being the riskset belonging to the i-th spell.

event
non-censoring event indicator.

Details

This function implements the Fisher scoring matrix (i.e., the second partial derivative of the log partial likelihood with respect to the components of the regression effect vector beta).

Value

Fisher information matrix info.

Author(s)

Holger Reulen

Examples

Not run: fisherinfo(beta, X, risksetlist, event)
fisherinfop

Fisher information matrix of the Poisson log likelihood.

Description
This function calculates the Fisher information matrix needed for the estimation of multistate models using the Fisher scoring algorithm.

Usage
fisherinfop(mu, X)

Arguments
mu
mu.
X
design matrix.

Details
This function implements the Fisher scoring matrix (i.e., the second partial derivative of the log partial likelihood with respect to the components of the regression effect vector beta).

Value
Fisher information matrix info.

Author(s)
Holger Reulen

Examples
Not run: fisherinfo(mu, X)

llP

Log Likelihood for Poisson Regression.

Description
Calculates the log likelihood for poisson regression.

Usage
llP(beta, X, event, offset)
Arguments

- **beta**: vector of regression coefficients.
- **x**: design matrix.
- **event**: non-censoring event indicator.
- **offset**: offset.

Details

This function calculates the Poisson log likelihood.

Value

The values of the Poisson log likelihood.

Author(s)

Holger Reulen

Examples

```r
## Not run: llp(beta, x, event, offset)
```

lpl

Log Partial Likelihood.

Description

Calculates the log partial likelihood.

Usage

```
lpl(beta, x, risksetlist, event)
```

Arguments

- **beta**: vector of regression coefficients.
- **x**: design matrix.
- **risksetlist**: list of length n with vectors as list elements, with the i-th element being the riskset belonging to the i-th spell.
- **event**: non-censoring event indicator.

Details

This function calculates the log partial likelihood of a Cox-type multistate model.
penaltymatrix

Value
The values of the spell-specific log partial likelihood contributions.

Author(s)
Holger Reulen

Examples
Not run: lpl(beta, X, risksetlist, event)

penaltymatrix

Penalty matrix for L1 penalized estimation of multistate models.

Description
This builds up a penalty matrix needed for the penalized estimation of multistate models.

Usage
penaltymatrix(lambdaL, psmL, betaL, wL, constant)

Arguments
- **lambda**
 - vector with penalty parameters for the respective penalty components.
- **PSM**
 - penalty structure matrix containing the penalty structure vectors psv as rows.
- **beta**
 - vector of regression coefficients.
- **w**
 - vector containing weights for the respective penalty components.
- **constant**
 - constat that is needed for the locally (in the neighborhood of 0) quadratical approximation of the absolute value function.

Details
This function calculates the penalty matrix needed for the penalized estimation of multistate models.

Value
A penalty matrix plambda.

Author(s)
Holger Reulen

Examples
Not run: penaltymatrix(lambdaL, PSM, betaL, wL, constant)
penMSM

Description

L1 penalized estimation of multistate models.

Usage

penMSM(type = "fused", d, X, PSM1, PSM2, lambda1, lambda2, w, betastart, nu = 0.5, tol = 1e-10, max.iter = 50, trace = TRUE, diagnostics = TRUE, family = "coxph", poissonresponse = NULL, poissonoffset = NULL, constant.approx = 1e-8)

Arguments

type character defining the type of penalty, either fused or lasso.
d data set with variables (mandatory) entry, exit, trans, and event.
X design matrix.
PSM1 penalty structure matrix containing the penalty structure vectors psv as rows (lasso part).
PSM2 penalty structure matrix containing the penalty structure vectors psv as rows (fusion part).
lambda1 vector with penalty parameters for the respective penalty components (lasso part).
lambda2 vector with penalty parameters for the respective penalty components (fusion part).
w vector containing weights for the respective penalty components.
betastart vector containing starting values for beta.
nu numeric value denoting the weight, i.e. a value between 0 and 1, of the Fisher scoring updates.
tol relative update tolerance for stopping of the estimation algorithm.
max.iter number of maximum iterations if tolerance is not reached.
trace logical triggering printout of status information during the fitting process.
diagnostics logical triggering that Fisher matrix, score vector, and approximated penalty matrix are returned with the results.
family character defining the likelihood to be used.
poissonresponse response values for poisson likelihood (if used).
poissonoffset offset values for poisson likelihood (if used).
constant.approx constant for locally squared approximation of the absolute value penalty function.
plmatrix

Details

This function is the core function of this package. It implements L1 penalized estimation of multistate models, with the penalty applied to absolute effects and absolute effect differences on transition-type specific hazard rates.

Value

A list with elements \mathbf{b} (matrix with estimated effects), aic (Akaike Information Criterion), gcv (GCV criterion), df (degrees of freedom), and (if diagnostics are requested) \mathbf{f} (Fisher matrix), \mathbf{s} (score vector), and \mathbf{a} (approximated penalty matrix).

Author(s)

Holger Reulen

Examples

```r
## Not run: penMSMtype = "fused", d, X, PSM1, PSM2, lambda1, lambda2, w,
betastart, nu = 0.5, tol = 1e-10, max.iter = 50, trace = TRUE,
diagnostics = TRUE, family = "coxph", poissonresponse = NULL,
poissonoffset = NULL, constant.approx = 1e-8)
## End(Not run)
```

plmatrix

plmatrix.

Description

This function establishes the single vectors that set up the penalty matrix in function `penaltymatrix`.

Usage

```r
plmatrix(psv, beta, constant)
```

Arguments

- `psv`: index vector that determines the l-th penalty component when multiplied with `beta`.
- `beta`: vector of regression coefficients.
- `constant`: constant that is needed for the locally (in the neighborhood of 0) quadratical approximation of the absolute value function.

Details

This function calculates the value of the l-th penalty component, which is a locally (in the neighborhood of 0) quadratical approximation of the absolute value of a regression coefficient, or the difference between two coefficients, respectively.
Value
The object result takes the value of the l-th penalty component.

Author(s)
Holger Reulen

Examples
Not run: plmatrix(psv, beta, constant)

scorevector | Score vector of the log partial likelihood of a multistate model.

Description
This function calculates the score vector needed for the estimation of multistate models using the Fisher scoring algorithm.

Usage
scorevector(beta, X, risksetlist, event)

Arguments
- `beta`: vector of regression coefficients.
- `X`: design matrix.
- `risksetlist`: list of length n with vectors as list elements, with the i-th element being the riskset belonging to the i-th spell.
- `event`: non-censoring event indicator.

Details
This function implements the score vector (i.e., the first partial derivative of the log partial likelihood with respect to the components of the regression effect vector beta).

Value
Score vector scorevector.

Author(s)
Holger Reulen

Examples
Not run: scorevector(beta, X, risksetlist, event)
scorevectorP

Score vector of the Poisson log likelihood.

Description

This function calculates the score vector needed for the estimation of multistate models using the Fisher scoring algorithm.

Usage

```
scorevectorP(mu, X, event)
```

Arguments

- `mu`
 mu.
- `X`
 design matrix.
- `event`
 non-censoring event indicator.

Details

This function implements the score vector (i.e., the first partial derivative of the Poisson log likelihood with respect to the components of the regression effect vector beta).

Value

Score vector scorevector.

Author(s)

Holger Reulen

Examples

```R
## Not run: scorevectorP(beta, X, event)
```

sF

Score vector and Fisher information matrix of the Poisson log likelihood.

Description

This function calculates the score vector and the Fisher information matrix needed for the estimation of multistate models using the Fisher scoring algorithm.
Usage

\texttt{sF(mu, X, event)}

Arguments

\begin{itemize}
 \item \texttt{mu} \hspace{1cm} \text{mu.}
 \item \texttt{X} \hspace{1cm} \text{design matrix.}
 \item \texttt{event} \hspace{1cm} \text{non-censoring event indicator.}
\end{itemize}

Details

This function implements the score vector and Fisher information matrix.

Value

\textit{s} and \textit{F}.

Author(s)

Holger Reulen

Examples

\texttt{## Not run: sF(mu, X, event)}
Index

buildrisksets, 2

dapproxpenalty, 3
ddlpl, 3
dlpl, 4
dpenaltyfunction, 5

fishercpp, 6
fisherinfo, 7
fisherinfoP, 8

l1P, 8
lpl, 9

penaltymatrix, 10
penMSM, 11
plmatrix, 12

scorevector, 13
scorevectorP, 14
sf, 14