Package ‘partition’

May 24, 2020

Type Package

Title Agglomerative Partitioning Framework for Dimension Reduction

Version 0.1.2

Maintainer Malcolm Barrett <malcolmbarrett@gmail.com>

Description A fast and flexible framework for agglomerative partitioning. 'partition' uses an approach called Direct-Measure-Reduce to create new variables that maintain the user-specified minimum level of information. Each reduced variable is also interpretable: the original variables map to one and only one variable in the reduced data set. 'partition' is flexible, as well: how variables are selected to reduce, how information loss is measured, and the way data is reduced can all be customized. 'partition' is based on the Partition framework discussed in Millstein et al. (2020) <doi: 10.1093/bioinformatics/btz661>.

License MIT + file LICENSE

BugReports https://github.com/USCbiostats/partition/issues

Depends R (>= 3.3.0)

Imports crayon, dplyr (>= 0.8.0), forcats, ggplot2 (>= 3.3.0), infotheo, magrittr, MASS, pillar, purrr, Rcpp, rlang, stringr, tibble, tidyr (>= 1.0.0)

Suggests covr, knitr, rmarkdown, spelling, testthat, ggcorrplot

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.1.0

NeedsCompilation yes
Author Joshua Millstein [aut],
Malcolm Barrett [aut, cre] (<https://orcid.org/0000-0003-0299-5825>)

Repository CRAN

Date/Publication 2020-05-24 21:40:03 UTC

R topics documented:

- as_director .. 3
- as_measure .. 4
- as_partitioner ... 5
- as_partition_step ... 6
- as_reducer .. 7
- baxter_data ... 8
- corr ... 9
- direct_distance ... 9
- direct_k_cluster .. 10
- filter_reduced .. 11
- icc .. 12
- is_partition ... 13
- is_partitioner ... 13
- is_partition_step ... 14
- mapping_key ... 14
- map_partition ... 15
- measure_icc ... 16
- measure_min_icc .. 17
- measure_min_r2 ... 17
- measure_std_mutualinfo 18
- measure_variance_explained 19
- mutual_information 19
- partition .. 20
- partition_scores ... 22
- part_icc .. 23
- part_kmeans ... 24
- part_minr2 .. 25
- part_pc1 ... 26
- part_stdmi .. 27
- permute_df .. 28
- plot_area_clusters 28
- plot_permutation ... 30
- reduce_cluster .. 31
- reduce_first_component 32
- reduce_kmeans .. 32
- reduce_scaled_mean 33
- replace_partitioner 34
- scaled_mean ... 35
- simulate_block_data 35
- test_permutation .. 36
as_director

Create a custom director

Description

Directors are functions that tell the partition algorithm what to try to reduce. `as_director()` is a helper function to create new directors to be used in partitioners. Partitioners can be created with `as_partitioner()`.

Usage

```r
as_director(.pairs, .target, ...)
```

Arguments

- `.pairs`: a function that returns a matrix of targets (e.g. a distance matrix of variables)
- `.target`: a function that returns a vector of targets (e.g. the minimum pair)
- `...`: Extra arguments passed to `.f`.

Value

A function to use in `as_partitioner()`

See Also

Other directors: `direct_distance()`, `direct_k_cluster()`

Examples

```r
# use euclidean distance to calculate distances
euc_dist <- function(.data) as.matrix(dist(t(.data)))

# find the pair with the minimum distance
min_dist <- function(.x) {
    indices <- arrayInd(which.min(.x), dim(as.matrix(.x)))
    c(
        colnames(.x)[indices[1]],
        colnames(.x)[indices[2]]
    )
}

as_director(euc_dist, min_dist)
```
as_measure

Create a custom metric

Description

Metrics are functions that tell how much information would be lost for a given reduction in the data. reduce. as_measure() is a helper function to create new metrics to be used in partitioners. partitioners can be created with as_partitioner().

Usage

as_measure(.f, ...)

Arguments

.f a function that returns either a numeric vector or a data.frame

... Extra arguments passed to .f.

Value

a function to use in as_partitioner()

See Also

Other metrics: measure_icc(), measure_min_icc(), measure_min_r2(), measure_std_mutualinfo(), measure_variance_explained()

Examples

inter_item_reliability <- function(.data) {
 corr(.data) %>%
 colMeans(na.rm = TRUE) %>%
 mean()
}

measure_iir <- as_measure(inter_item_reliability)
measure_iir
Description

Partitioners are functions that tell the partition algorithm 1) what to try to reduce 2) how to measure how much information is lost from the reduction and 3) how to reduce the data. In partition, functions that handle 1) are called directors, functions that handle 2) are called metrics, and functions that handle 3) are called reducers. partition has a number of pre-specified partitioners for agglomerative data reduction. Custom partitioners can be created with `as_partitioner()`.

Pass partitioner objects to the `partitioner` argument of `partition()`.

Usage

```r
as_partitioner(direct, measure, reduce)
```

Arguments

- `direct` a function that directs, possibly created by `as_director()`
- `measure` a function that measures, possibly created by `as_measure()`
- `reduce` a function that reduces, possibly created by `as_reducer()`

Value

a partitioner

See Also

Other partitioners: `part_icc()`, `part_kmeans()`, `part_minr2()`, `part_pc1()`, `part_stdmi()`, `replace_partitioner()`

Examples

```r
as_partitioner(
  direct = direct_distance_pearson,
  measure = measure_icc,
  reduce = reduce_scaled_mean
)
```
as_partition_step(*Create a partition object from a data frame*

Description

`as_partition_step()` creates a `partition_step` object. `partition_steps` are used while iterating through the partition algorithm: it stores necessary information about how to proceed in the partitioning, such as the information threshold. `as_partition_step()` is primarily called internally by `partition()` but can be helpful while developing partitioners.

Usage

```r
as_partition_step(
  .x, 
  threshold = NA, 
  reduced_data = NA, 
  target = NA, 
  metric = NA, 
  tolerance = 0.01, 
  var_prefix = NA, 
  partitioner = NA, 
  ...
)
```

Arguments

- `x`: a `data.frame` or `partition_step` object
- `threshold`: The minimum information loss allowable
- `reduced_data`: A data set with reduced variables
- `target`: A character or integer vector: the variables to reduce
- `metric`: A measure of information
- `tolerance`: A tolerance around the threshold to accept a reduction
- `var_prefix`: Variable name for reduced variables
- `partitioner`: A partitioner, a `part_*()` function or one created with `as_partitioner()`.
- `...`: Other objects to store during the partition step

Value

A `partition_step` object

Examples

```r
.df <- data.frame(x = rnorm(100), y = rnorm(100))
as_partition_step(.df, threshold = .6)
```
as_reducer

Create a custom reducer

Description

Reducers are functions that tell the partition algorithm how to reduce the data. as_reducer() is a helper function to create new reducers to be used in partitioners. partitioners can be created with as_partitioner().

Usage

as_reducer(.f, ..., returns_vector = TRUE, first_match = NULL)

Arguments

.f
 a function that returns either a numeric vector or a data.frame

...
 Extra arguments passed to .f.

returns_vector
 logical. Does .f return a vector? TRUE by default. If FALSE, assumes that .f returns a data.frame.

first_match
 logical. Should the partition algorithm stop when it finds a reduction that is equal to the threshold? Default is TRUE for reducers that return a data.frame and FALSE for reducers that return a vector.

Value

a function to use in as_partitioner()

See Also

Other reducers: reduce_first_component(), reduce_kmeans(), reduce_scaled_mean()

Examples

reduce_row_means <- as_reducer(rowMeans)
reduce_row_means
Clinical and microbiome data derived from "Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions" by Baxter et al. (2016). These data represent a subset of 172 health participants. `baxter_clinical` contains 8 clinical variables for each of the participants: `sample_name`, `id`, `age`, `bmi`, `gender`, `height`, `total_reads`, and `disease_state` (all `H` for healthy). `baxter_otu` has 1,234 columns, where each column represents an Operational Taxonomic Unit (OTU). OTUs are species-like relationships among bacteria determined by analyzing their RNA. The cells are logged counts for how often the OTU was detected in a participant’s stool sample. Each column name is a shorthand name, e.g., `otu1`; you can find the true name of the OTU mapped in `baxter_data_dictionary`. `baxter_family` and `baxter_genus` are also logged counts but instead group OTUs at the family and genus level, respectively, a common approach to reducing microbiome data. Likewise, the column names are shorthands, which you can find mapped in `baxter_data_dictionary`.

Usage

- `baxter_clinical`
- `baxter_otu`
- `baxter_family`
- `baxter_genus`
- `baxter_data_dictionary`

Format

5 data frames

- An object of class `tbl_df` (inherits from `tbl.data.frame`) with 172 rows and 1234 columns.
- An object of class `tbl_df` (inherits from `tbl.data.frame`) with 172 rows and 35 columns.
- An object of class `tbl_df` (inherits from `tbl.data.frame`) with 172 rows and 82 columns.
- An object of class `tbl_df` (inherits from `tbl.data.frame`) with 1351 rows and 3 columns.

Source

corr

Efficiently fit correlation coefficient for matrix or two vectors

Description

Efficiently fit correlation coefficient for matrix or two vectors

Usage

```r
corr(x, y = NULL, spearman = FALSE)
```

Arguments

- `x`: a matrix or vector
- `spearman`: Logical. Use Spearman’s correlation?

Value

A numeric vector, the correlation coefficient

Examples

```r
library(dplyr)
# fit for entire data set
iris %>%
  select_if(is.numeric) %>%
  corr()

# just fit for two vectors
corr(iris$Sepal.Length, iris$Sepal.Width)
```

direct_distance

Target based on minimum distance matrix

Description

Directors are functions that tell the partition algorithm what to try to reduce. `as_director()` is a helper function to create new directors to be used in partitioners. partitioners can be created with `as_partitioner()`.

`direct_distance()` fits a distance matrix using either Pearson’s or Spearman’s correlation and finds the pair with the smallest distance to target. If the distance matrix already exists, `direct_distance()` only fits the distances for any new reduced variables. `direct_distance_pearson()` and `direct_distance_spearman()` are convenience functions that directly call the type of distance matrix.
Usage

direct_distance(.partition_step, spearman = FALSE)
direct_distance_pearson(.partition_step)
direct_distance_spearman(.partition_step)

Arguments

.partition_step
 a partition_step object
spearman Logical. Use Spearman’s correlation?

Value

a partition_step object

See Also

Other directors: as_director(), direct_k_cluster()

direct_k_cluster

Description

Directors are functions that tell the partition algorithm what to try to reduce. as_director() is a helper function to create new directors to be used in partitioners. partitioners can be created with as_partitioner().
direct_k_cluster() assigns each variable to a cluster using K-means. As the partition looks for the best reduction, direct_k_cluster() iterates through values of k to assign clusters. This search is handled by the binary search method by default and thus does not necessarily need to fit every value of k.

Usage

direct_k_cluster(
 .partition_step,
 algorithm = c("armadillo", "Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
 search = c("binary", "linear"),
 init_k = NULL,
 seed = 1L
)
filter_reduced

Arguments

.partition

partition_step

a partition_step object

group

algorithm

The K-Means algorithm to use. The default is a fast version of the LLoyd al-
group

gorithm written in armadillo. The rest are options in kmeans(). In general,
armadillo is fastest, but the other algorithms can be faster in high dimensions.

group

search

The search method. Binary search is generally more efficient but linear search
can be faster in very low dimensions.

group

init_k

The initial k to test. If NULL, then the initial k is the threshold times the number
group

of variables.

group

seed

The seed to set for reproducibility

Value

a partition_step object

See Also

Other directors: as_director(), direct_distance()

filter_reduced

Filter the reduced mappings

Description

filter_reduced() and unnest_reduced() are convenience functions to quickly retrieve the mapp-
group

ings for only the reduced variables. filter_reduced() returns a nested tibble while unnest_reduced() un-
group

ests it.

Usage

filter_reduced(.partition)

unnest_reduced(.partition)

Arguments

.partition

a partition object

Value

a tibble with mapping key
Examples

```r
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# fit partition
prt <- partition(df, threshold = .6)

# A tibble: 3 x 4
filter_reduced(prt)
# A tibble: 9 x 4
unnest_reduced(prt)
```

icc

Calculate the intraclass correlation coefficient

Description

icc() efficiently calculates the ICC for a numeric data set.

Usage

```r
icc(.x, method = c("r", "c"))
```

Arguments

- `.x` a data set
- `method` The method source: both the pure R and C++ versions are efficient

Value

a numeric vector of length 1

Examples

```r
library(dplyr)
iris %>%
  select_if(is.numeric) %>%
  icc()
```
`is_partition`

Description
Is this object a partition?

Usage
```r
is_partition(x)
```

Arguments
- `x`: an object to be tested

Value
logical: TRUE or FALSE

`is_partitioner`

Description
Is this object a partitioner?

Usage
```r
is_partitioner(x)
```

Arguments
- `x`: an object to be tested

Value
logical: TRUE or FALSE
is_partition_step

Is this object a partition_step?

Description
Is this object a partition_step?

Usage
is_partition_step(x)

Arguments
x an object to be tested

Value
logical: TRUE or FALSE

mapping_key

Return partition mapping key

Description
mapping_key() returns a data frame with each reduced variable and its mapping and information loss; the mapping and indices are represented as list-cols (so there is one row per variable in the reduced data set). unnest_mappings() unnests the list columns to return a tidy data frame. mapping_groups() returns a list of mappings (either the variable names or their column position).

Usage
mapping_key(.partition)
unnest_mappings(.partition)
mapping_groups(.partition, indices = FALSE)

Arguments
.partition a partition object
indices logical. Return just the indices instead of the names? Default is FALSE.

Value
a tibble
Examples

```r
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# fit partition
prt <- partition(df, threshold = .6)

# tibble: 6 x 4
mapping_key(prt)

# tibble: 12 x 4
unnest_mappings(prt)

# list: length 6
mapping_groups(prt)
```

map_partition

Map a partition across a range of minimum information

Description

`map_partition()` fits `partition()` across a range of minimum information values, specified in the `information` argument. The output is a tibble with a row for each value of `information`, a summary of the partition, and a list-col containing the partition object.

Usage

```r
map_partition(
  .data,
  partitioner = part_icc(),
  ...,  # arguments passed to `partition()`
  information = seq(0.1, 0.5, by = 0.1)
)
```

Arguments

- `.data` a data set to partition
- `partitioner` the partitioner to use. The default is `part_icc()`.
- `information` a vector of minimum information to fit in `partition()`

Value

- a tibble
Examples

```r
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)

map_partition(df, partitioner = part_pc1())
```

measure_icc

Measure the information loss of reduction using intraclass correlation coefficient

Description

Metrics are functions that tell how much information would be lost for a given reduction in the data. `as_measure()` is a helper function to create new metrics to be used in partitioners. Partitioners can be created with `as_partitioner()`.

`measure_icc()` assesses information loss by calculating the intraclass correlation coefficient for the target variables.

Usage

```r
measure_icc(.partition_step)
```

Arguments

- `.partition_step`

 A partition_step object

Value

A partition_step object

See Also

Other metrics: `as_measure()`, `measure_min_icc()`, `measure_min_r2()`, `measure_std_mutualinfo()`, `measure_variance_explained()`
measure_min_icc

Measure the information loss of reduction using the minimum intra-class correlation coefficient

Description

Metrics are functions that tell how much information would be lost for a given reduction in the data. `as_measure()` is a helper function to create new metrics to be used in partitioners. Partitioners can be created with `as_partitioner()`.

`measure_min_icc()` assesses information loss by calculating the intraclass correlation coefficient for each set of the target variables and finding their minimum.

Usage

```r
measure_min_icc(.partition_step, search_method = c("binary", "linear"))
```

Arguments

- `.partition_step`:
 - A partition_step object
- `search_method`:
 - The search method. Binary search is generally more efficient but linear search can be faster in very low dimensions.

Value

A partition_step object

See Also

Other metrics: `as_measure()`, `measure_icc()`, `measure_min_r2()`, `measure_std_mutualinfo()`, `measure_variance_explained()`

measure_min_r2

Measure the information loss of reduction using minimum R-squared

Description

Metrics are functions that tell how much information would be lost for a given reduction in the data. `as_measure()` is a helper function to create new metrics to be used in partitioners. Partitioners can be created with `as_partitioner()`.

`measure_min_r2()` assesses information loss by calculating the minimum R-squared for the target variables.

Usage

```r
measure_min_r2(.partition_step)
```
measure_std_mutualinfo

Arguments

.partition_step
 a partition_step object

Value

a partition_step object

See Also

Other metrics: as_measure(), measure_icc(), measure_min_icc(), measure_std_mutualinfo(), measure_variance_explained()

Description

Metrics are functions that tell how much information would be lost for a given reduction in the data. reduce. as_measure() is a helper function to create new metrics to be used in partitioners. partitioners can be created with as_partitioner().

measure_std_mutualinfo() assesses information loss by calculating the standardized mutual information for the target variables. See mutual_information().

Usage

measure_std_mutualinfo(.partition_step)

Arguments

.partition_step
 a partition_step object

Value

a partition_step object

See Also

Other metrics: as_measure(), measure_icc(), measure_min_icc(), measure_min_r2(), measure_variance_explained()
measure_variance_explained

Measure the information loss of reduction using the variance explained

Description

Metrics are functions that tell how much information would be lost for a given reduction in the data. reduce. as_measure() is a helper function to create new metrics to be used in partitioners. partitioners can be created with as_partitioner().

measure_variance_explained() assesses information loss by calculating the variance explained by the first component of a principal components analysis.

Usage

measure_variance_explained(.partition_step)

Arguments

.partition_step

a partition_step object

Value

a partition_step object

See Also

Other metrics: as_measure(), measure_icc(), measure_min_icc(), measure_min_r2(), measure_std_mutualinfo()

mutual_information

Calculate the standardized mutual information of a data set

Description

mutual_information calculate the standardized mutual information of a data set using the infotheo package.

Usage

mutual_information(.data)

Arguments

.data

a dataframe of numeric values
Value

a list containing the standardized MI and the scaled row means

Examples

```r
library(dplyr)
iris %>%
  select_if(is.numeric) %>%
  mutual_information()
```

Description

`partition()` reduces data while minimizing information loss using an agglomerative partitioning algorithm. The partition algorithm is fast and flexible: at every iteration, `partition()` uses an approach called Direct-Measure-Reduce (see Details) to create new variables that maintain the user-specified minimum level of information. Each reduced variable is also interpretable: the original variables map to one and only one variable in the reduced data set.

Usage

```r
partition(
  .data, threshold, partitioner = part_icc(),
  tolerance = 1e-04,
  niter = NULL, x = "reduced_var",
  .sep = "_
  
)
```

Arguments

- `.data`: a data.frame to partition
- `threshold`: the minimum proportion of information explained by a reduced variable; threshold sets a boundary for information loss because each reduced variable must explain at least as much as `threshold` as measured by the metric.
- `partitioner`: a partitioner. See the `part_*()` functions and `as_partitioner()`.
- `tolerance`: a small tolerance within the threshold; if a reduction is within the threshold plus/minus the tolerance, it will reduce.
- `niter`: the number of iterations. By default, it is calculated as 20% of the number of variables or 10, whichever is larger.
- `x`: the prefix of the new variable names
- `.sep`: a character vector that separates `x` from the number (e.g. "reduced_var_1").
Details

`partition()` uses an approach called Direct-Measure-Reduce. Directors tell the partition algorithm what to reduce, metrics tell it whether or not there will be enough information left after the reduction, and reducers tell it how to reduce the data. Together these are called a partitioner. The default partitioner for `partition()` is `part_icc()`: it finds pairs of variables to reduce by finding the pair with the minimum distance between them, it measures information loss through ICC, and it reduces data using scaled row means. There are several other partitioners available (`part_*()` functions), and you can create custom partitioners with `as_partitioner()` and `replace_partitioner()`.

Value

a partition object

References

See Also

`part_icc()`, `part_kmeans()`, `part_minr2()`, `part_pc1()`, `part_stdmi()`, `as_partitioner()`, `replace_partitioner()`

Examples

```r
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)

# don't accept reductions where information < .6
prt <- partition(df, threshold = .6)
prt

# return reduced data
partition_scores(prt)

# access mapping keys
mapping_key(prt)
unnest_mappings(prt)

# use a lower threshold of information loss
partition(df, threshold = .5, partitioner = part_kmeans())

# use a custom partitioner
part_icc_rowmeans <- replace_partitioner(part_icc, reduce = as_reducer(rowMeans))
partition(df, threshold = .6, partitioner = part_icc_rowmeans)
```
`partition_scores`
Return the reduced data from a partition

Description

The reduced data is stored as `reduced_data` in the partition object and can thus be returned by sub-setting `object$reduced_data`. Alternatively, the functions `partition_score()` and `fitted()` also return the reduced data.

Usage

```r
partition_scores(object, ...)
```

```r
## S3 method for class 'partition'
fitted(object, ...)
```

Arguments

- `object`
 a partition object
- `...`
 not currently used (for S3 consistency with `fitted()`)

Value

a tibble containing the reduced data for the partition

Examples

```r
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# fit partition
prt <- partition(df, threshold = .6)

# three ways to retrieve reduced data
partition_scores(prt)
fitted(prt)
prt$reduced_data
```
partition

Description

Partitioners are functions that tell the partition algorithm 1) what to try to reduce 2) how to measure how much information is lost from the reduction and 3) how to reduce the data. In partition, functions that handle 1) are called directors, functions that handle 2) are called metrics, and functions that handle 3) are called reducers. partition has a number of pre-specified partitioners for agglomerative data reduction. Custom partitioners can be created with as_partitioner().

Pass partitioner objects to the partitioner argument of partition().

part_icc() uses the following direct-measure-reduce approach:

- **direct**: direct_distance(), Minimum Distance
- **measure**: measure_icc(), Intraclass Correlation
- **reduce**: reduce_scaled_mean(), Scaled Row Means

Usage

part_icc(spearman = FALSE)

Arguments

spearman logical. Use Spearman’s correlation for distance matrix?

Value

a partitioner

See Also

Other partitioners: as_partitioner(), part_kmeans(), part_minr2(), part_pc1(), part_stdmi(), replace_partitioner()

Examples

set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)

fit partition using part_icc()
partition(df, threshold = .6, partitioner = part_icc())
Description

Partitioners are functions that tell the partition algorithm 1) what to try to reduce 2) how to measure how much information is lost from the reduction and 3) how to reduce the data. In partition, functions that handle 1) are called directors, functions that handle 2) are called metrics, and functions that handle 3) are called reducers. partition has a number of pre-specified partitioners for agglomerative data reduction. Custom partitioners can be created with \texttt{as_partitioner()}.

Pass partitioner objects to the partitioner argument of \texttt{partition()}. \texttt{part_kmeans()} uses the following direct-measure-reduce approach:

- **direct**: \texttt{direct_k_cluster()}, K-Means Clusters
- **measure**: \texttt{measure_min_icc()}, Minimum Intraclass Correlation
- **reduce**: \texttt{reduce_kmeans()}, Scaled Row Means

Usage

```r
part_kmeans(
  algorithm = c("armadillo", "Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
  search = c("binary", "linear"),
  init_k = NULL,
  n_hits = 4
)
```

Arguments

- **algorithm**: The K-Means algorithm to use. The default is a fast version of the LLoyd algorithm written in armadillo. The rest are options in \texttt{kmeans()}. In general, armadillo is fastest, but the other algorithms can be faster in high dimensions.
- **search**: The search method. Binary search is generally more efficient but linear search can be faster in very low dimensions.
- **init_k**: The initial k to test. If NULL, then the initial k is the threshold times the number of variables.
- **n_hits**: In linear search method, the number of iterations that should be under the threshold before reducing; useful for preventing false positives.

Value

\texttt{a partitioner}

See Also

Other partitioners: \texttt{as_partitioner()}, \texttt{part_icc()}, \texttt{part_minr2()}, \texttt{part_pc1()}, \texttt{part_stdmi()}, \texttt{replace_partitioner()}
part_minr2

Examples

```r
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)

# fit partition using part_kmeans()
partition(df, threshold = .6, partitioner = part_kmeans())
```

part_minr2
Partitioner: distance, minimum R-squared, scaled means

Description

Partitioners are functions that tell the partition algorithm 1) what to try to reduce 2) how to measure how much information is lost from the reduction and 3) how to reduce the data. In partition, functions that handle 1) are called directors, functions that handle 2) are called metrics, and functions that handle 3) are called reducers. `partition` has a number of pre-specified partitioners for agglomerative data reduction. Custom partitioners can be created with `as_partitioner()`.

Pass `partitioner` objects to the `partitioner` argument of `partition()`.

`part_minr2()` uses the following direct-measure-reduce approach:

- **direct**: `direct_distance()`, Minimum Distance
- **measure**: `measure_min_r2()`, Minimum R-Squared
- **reduce**: `reduce_scaled_mean()`, Scaled Row Means

Usage

```r
part_minr2(spearman = FALSE)
```

Arguments

- `spearman`
 logical. Use Spearman's correlation for distance matrix?

Value

a partitioner

See Also

Other partitioners: `as_partitioner()`, `part_icc()`, `part_kmeans()`, `part_pc1()`, `part_stdmi()`, `replace_partitioner()`
Examples

```r
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)

# fit partition using part_minr2()
partition(df, threshold = .6, partitioner = part_minr2())
```

part_pc1

Partitioner: distance, first principal component, scaled means

Description

Partitioners are functions that tell the partition algorithm 1) what to try to reduce 2) how to measure how much information is lost from the reduction and 3) how to reduce the data. In partition, functions that handle 1) are called directors, functions that handle 2) are called metrics, and functions that handle 3) are called reducers. partition has a number of pre-specified partitioners for agglomerative data reduction. Custom partitioners can be created with `as_partitioner()`.

Pass `partitioner` objects to the `partitioner` argument of `partition()`.

`part_pc1()` uses the following direct-measure-reduce approach:

- **direct**: `direct_distance()`, Minimum Distance
- **measure**: `measure_variance_explained()`, Variance Explained (PCA)
- **reduce**: `reduce_first_component()`, First Principal Component

Usage

```r
part_pc1(spearman = FALSE)
```

Arguments

- **spearman** logical. Use Spearman’s correlation for distance matrix?

Value

a partitioner

See Also

Other partitioners: `as_partitioner()`, `part_icc()`, `part_kmeans()`, `part_minr2()`, `part_stdmi()`, `replace_partitioner()`
Examples

```r
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)

# fit partition using part_pc1()
partition(df, threshold = .6, partitioner = part_pc1())
```

Description

Partitioners are functions that tell the partition algorithm 1) what to try to reduce 2) how to measure how much information is lost from the reduction and 3) how to reduce the data. In `partition`, functions that handle 1) are called directors, functions that handle 2) are called metrics, and functions that handle 3) are called reducers. `partition` has a number of pre-specified partitioners for agglomerative data reduction. Custom partitioners can be created with `as_partitioner()`.

Pass `partitioner` objects to the `partitioner` argument of `partition()`.

`part_stdmi()` uses the following direct-measure-reduce approach:

- **direct**: `direct_distance()`, Minimum Distance
- **measure**: `measure_std_mutualinfo()`, Standardized Mutual Information
- **reduce**: `reduce_scaled_mean()`, Scaled Row Means

Usage

`part_stdmi(spearman = FALSE)`

Arguments

- **spearman**

 logical. Use Spearman’s correlation for distance matrix?

Value

- a `partitioner`

See Also

Other partitioners: `as_partitioner()`, `part_icc()`, `part_kmeans()`, `part_minr2()`, `part_pc1()`, `replace_partitioner()`
Examples

```r
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)

# fit partition using part_stdmi()
partition(df, threshold = .6, partitioner = part_stdmi())
```

permute_df

Permute a data set

 permute_df() permutes a data set: it randomizes the order within each variable, which breaks any association between them. Permutation is useful for testing against null statistics.

Usage

```r
permute_df(.data)
```

Arguments

- `.data` a data.frame

Value

a permuted data.frame

Examples

```r
permute_df(iris)
```

plot_area_clusters

Plot partitions

plot_stack_area_clusters() and plot_area_clusters() plot the partition against a permuted partition. plot_ncluster() plots the number of variables per cluster. If .partition is the result of `map_partition()` or `test_permutation()`, plot_ncluster() facets the plot by each partition. plot_information() plots a histogram or density plot of the information of each variable in the partition. If .partition is the result of `map_partition()` or `test_permutation()`, `plot_information()` plots a scatterplot of the targeted vs. observed information with a 45 degree line indicating perfect alignment.
plot_area_clusters

Usage

```r
plot_area_clusters(
  .data, 
  partitioner = part_icc(),
  information = seq(0.1, 0.5, length.out = 25),
  ..., 
  obs_color = "#E69F00",
  perm_color = "#56B4E9"
)
```

```r
plot_stacked_area_clusters(
  .data, 
  partitioner = part_icc(),
  information = seq(0.1, 0.5, length.out = 25),
  ..., 
  stack_colors = c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00")
)
```

```r
plot_ncluster(
  .partition,
  show_n = 100, 
  fill = "#0172B1",
  color = NA,
  labeller = "target information:"
)
```

```r
plot_information(
  .partition,
  fill = "#0172B1",
  color = NA,
  geom = ggplot2::geom_density
)
```

Arguments

- `.data` a data.frame to partition
- `partitioner` a partitioner. See the part_*() functions and `as_partitioner()`.
- `information` a vector of minimum information to fit in `partition()`
- `...` arguments passed to `partition()`
- `obs_color` the color of the observed partition
- `perm_color` the color of the permuted partition
- `stack_colors` the colors of the cluster sizes
- `.partition` either a partition or a tibble, the result of `map_partition()` or `test_permutation()`
- `show_n` the number of reduced variables to plot
- `fill` the color of the fill for geom
color: the color of the geom
labeller: the facet label
geom: the geom to use. The default is geom_density.

Value
a ggplot

Examples
```
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
df %>%
  partition(.6, partitioner = part_pc1()) %>%
  plot_ncluster()
```

plot_permutation

Plot permutation tests

Description

plot_permutation() takes the results of test_permutation() and plots the distribution of permuted partitions compared to the observed partition.

Usage

```
plot_permutation(
  permutations,
  .plot = c("information", "nclusters", "nreduced"),
  labeller = "target information:",
  perm_color = "#56B4EA",
  obs_color = "#CC78A8",
  geom = ggplot2::geom_density
)
```

Arguments

- permutations: a tibble, the result of test_permutation()
- .plot: the variable to plot: observed information, the number of clusters created, or the number of observed variables reduced
- labeller: the facet label
- perm_color: the color of the permutation fill
- obs_color: the color of the observed statistic line
- geom: the geom to use. The default is geom_density.
Value

a ggplot

Description

`reduce_cluster()` and `map_cluster()` apply the data reduction to the targets found in the director step. They only do so if the metric is above the threshold, however. `reduce_cluster()` is for functions that return vectors while `map_cluster()` is for functions that return data.frames. If you’re using `as_reducer()`, there’s no need to call these functions directly.

Usage

`reduce_cluster(.partition_step, .f, first_match = FALSE)`

`map_cluster(.partition_step, .f, rewind = FALSE, first_match = FALSE)`

Arguments

- `.partition_step` a partition_step object
- `.f` a function to reduce the data to either a vector or a data.frame
- `first_match` logical. Should the partition algorithm stop when it finds a reduction that is equal to the threshold? Default is TRUE for reducers that return a data.frame and FALSE for reducers that return a vector
- `rewind` logical. Should the last target be used instead of the current target?

Value

a partition_step object

Examples

```r
reduce_row_means <- function(.partition_step, .data) {
  reduce_cluster(.partition_step, rowMeans)
}
replace_partitioner(
  part_icc,
  reduce = reduce_row_means
)
```
reduce_first_component
Reduce selected variables to first principal component

Description
Reducers are functions that tell the partition algorithm how to reduce the data. `as_reducer()` is a helper function to create new reducers to be used in partitioners. partitioners can be created with `as_partitioner()`.
reduce_first_component() returns the first component from the principal components analysis of the target variables.

Usage
reduce_first_component(.partition_step)

Arguments
.partition_step
 a partition_step object

Value
a partition_step object

See Also
Other reducers: `as_reducer()`, `reduce_kmeans()`, `reduce_scaled_mean()`

reduce_kmeans
Reduce selected variables to scaled means

Description
Reducers are functions that tell the partition algorithm how to reduce the data. `as_reducer()` is a helper function to create new reducers to be used in partitioners. partitioners can be created with `as_partitioner()`.
reduce_kmeans() is efficient in that it doesn’t reduce until the closest k to the information threshold is found.

Usage
reduce_kmeans(.partition_step, search = c("binary", "linear"), n_hits = 4)
reduce_scaled_mean

Arguments

- **.partition_step**
 - A partition_step object
- **search**
 - The search method. Binary search is generally more efficient but linear search can be faster in very low dimensions.
- **n_hits**
 - In linear search method, the number of iterations that should be under the threshold before reducing; useful for preventing false positives.

Value

A partition_step object

See Also

Other reducers: `as_reducer()`, `reduce_first_component()`, `reduce_scaled_mean()`

reduce_scaled_mean
Reduce selected variables to scaled means

Description

Reducers are functions that tell the partition algorithm how to reduce the data. `as_reducer()` is a helper function to create new reducers to be used in partitioners. Partitioners can be created with `as_partitioner()`.

`reduce_scaled_mean()` returns the scaled row means of the target variables to reduce.

Usage

`reduce_scaled_mean(.partition_step)`

Arguments

- **.partition_step**
 - A partition_step object

Value

A partition_step object

See Also

Other reducers: `as_reducer()`, `reduce_first_component()`, `reduce_kmeans()`
replace_partitioner Replace the director, metric, or reducer for a partitioner

Description

Replace the director, metric, or reducer for a partitioner

Usage

replace_partitioner(partitioner, direct = NULL, measure = NULL, reduce = NULL)

Arguments

- partitioner: a partitioner
- direct: a function that directs, possibly created by as_director()
- measure: a function that measures, possibly created by as_measure()
- reduce: a function that reduces, possibly created by as_reducer()

Value

a partitioner

See Also

Other partitioners: as_partitioner(), part_icc(), part_kmeans(), part_minr2(), part_pc1(), part_stdm()

Examples

replace_partitioner(
 part_icc,
 reduce = as_reducer(rowMeans)
)
scaled_mean

Average and scale rows in a data.frame

Description

scaled_mean() calculates scaled row means for a dataframe.

Usage

```r
scaled_mean(.x, method = c("r", "c"))
```

Arguments

- `.x` a data.frame
- `method` The method source: both the pure R and C++ versions are efficient

Value

a numeric vector

Examples

```r
library(dplyr)
iris %>%
  select_if(is.numeric) %>%
  scaled_mean()
```

simulate_block_data

Simulate correlated blocks of variables

Description

simulate_block_data() creates a dataset of blocks of data where variables within each block are correlated. The correlation for each pair of variables is sampled uniformly from `lower_corr` to `upper_corr`, and the values of each are sampled using `MASS::mvrnorm()`.

Usage

```r
simulate_block_data(
  block_sizes, 
  lower_corr, 
  upper_corr, 
  n, 
  block_name = "block", 
  sep = "_", 
  var_name = "x"
)
```
Arguments

- **block_sizes**: a vector of block sizes. The size of each block is the number of variables within it.
- **lower_corr**: the lower bound of the correlation within each block
- **upper_corr**: the upper bound of the correlation within each block
- **n**: the number of observations or rows
- **block_name**: description prepended to the variable to indicate the block it belongs to
- **sep**: a character, what to separate the variable names with
- **var_name**: the name of the variable within the block

Value

a tibble with \(\text{sum(block_sizes)} \) columns and \(n \) rows.

Examples

```r
# create a 100 x 15 data set with 3 blocks
simulate_block_data(
    block_sizes = rep(5, 3),
    lower_corr = .4,
    upper_corr = .6,
    n = 100
)
```

Description

test_permutation() permutes data and partitions the results to generate a distribution of null statistics for observed information, number of clusters, and number of observed variables reduced to clusters. The result is a tibble with a summary of the observed data results and the averages of the permuted results. The partitions and and permutations are also available in list-cols.

test_permutation() tests across a range of target information values, as specified in the information argument.

Usage

```r
test_permutation(
    .data,
    information = seq(0.1, 0.6, by = 0.1),
    partitioner = part_icc(),
    ...,  
    nperm = 100
)
```
Arguments

.data a data set to partition
information a vector of minimum information to fit in \texttt{partition()}
partitioner the partitioner to use. The default is \texttt{part ICC()}
... arguments passed to \texttt{partition()}
nperm Number of permuted data sets to test. Default is 100.

Value

a tibble with summaries on observed and permuted data (the means of the permuted summaries), as well as list-cols containing them
Index

*Topic datasets
 baxter_data, 8
 as_director, 3, 10, 11
 as_director(), 3, 5, 9, 10, 34
 as_measure, 4, 16–19
 as_measure(), 4, 5, 16–19, 34
 as_partition_step, 6
 as_partitioner, 5, 23–27, 34
 as_partitioner(), 3–7, 9, 10, 16–21, 23–27, 29, 32, 33
 as_reducer, 7, 32, 33
 as_reducer(), 5, 7, 31–34
 baxter_clinical (baxter_data), 8
 baxter_data, 8
 baxter_data_dictionary (baxter_data), 8
 baxter_family (baxter_data), 8
 baxter_genus (baxter_data), 8
 baxter_otu (baxter_data), 8
 corr, 9
 direct_distance, 3, 9, 11
 direct_distance_pearson
 (direct_distance), 9
 direct_distance_spearman
 (direct_distance), 9
 direct_k_cluster, 3, 10, 10
 filter_reduced, 11
 fitted.partition (partition_scores), 22
 icc, 12
 is_partition, 13
 is_partition_step, 14
 is_partitioner, 13
 kmeans(), 11, 24
 map_cluster (reduce_cluster), 31
 map_partition, 15
 map_partition(), 28, 29
 mapping_groups (mapping_key), 14
 mapping_key, 14
 MASS::mvnorm(), 35
 measure_icc, 4, 16, 17–19
 measure_min_icc, 4, 16, 17, 18, 19
 measure_min_r2, 4, 16, 17, 18, 19
 measure_std Mutual_info, 4, 16–18, 18, 19
 measure_variance_explained, 4, 16–18, 19
 mutual_information, 19
 mutual_information(), 18
 part_icc, 5, 23, 24–27, 34
 part_icc(), 15, 21, 37
 part_kmeans, 5, 23, 24, 25–27, 34
 part_kmeans(), 21
 part_min2, 5, 23, 24, 25, 26, 27, 34
 part_min2(), 21
 part_pc1, 5, 23–25, 26, 27, 34
 part_pc1(), 21
 part_stdmi, 5, 23–26, 27, 34
 part_stdmi(), 21
 partition, 20
 partition(), 5, 15, 23–27, 29, 37
 partition_scores, 22
 permute_df, 28
 plot_area_clusters, 28
 plot_information (plot_area_clusters), 28
 plot_ncluster (plot_area_clusters), 28
 plot_permutation, 30
 plot_stacked_area_clusters (plot_area_clusters), 28
 reduce_cluster, 31
 reduce_first_component, 7, 32, 33
 reduce_kmeans, 7, 32, 33
 reduce_scaled_mean, 7, 32, 33
 replace_partitioner, 5, 23–27, 34
INDEX

replace_partitioner(), 21

scaled_mean, 35
simulate_block_data, 35

test_permutation, 36
test_permutation(), 28–30

unnest_mappings (mapping_key), 14
unnest_reduced (filter_reduced), 11