Package ‘parameters’

August 10, 2022

Type Package

Title Processing of Model Parameters

Version 0.18.2

Maintainer Daniel Lüdecke <d.luedecke@uke.de>

Description Utilities for processing the parameters of various statistical models. Beyond computing p values, CIs, and other indices for a wide variety of models (see list of supported models using the function `insight::supported_models()`), this package implements features like bootstrapping or simulating of parameters and models, feature reduction (feature extraction and variable selection) as well as functions to describe data and variable characteristics (e.g. skewness, kurtosis, smoothness or distribution).

License GPL-3

URL https://easystats.github.io/parameters/

BugReports https://github.com/easystats/parameters/issues

Depends R (>= 3.5)

Imports bayestestR (>= 0.12.1), datawizard (>= 0.5.0), insight (>= 0.18.0), graphics, methods, stats, utils

Suggests AER, afex, aod, BayesFactor, BayesFM, bbmle, betareg, biglm, blme, boot, brglm2, brms, broom, cAIC4, car, cgam, ClassDiscovery, clubSandwich, cluster, cplm, dbscan, domir (>= 0.2.0), drc, DRR, effectsize (>= 0.6.0), EGAnet (>= 0.7), emmeans (>= 1.7.0), factoextra, FactoMineR, fastICA, fixest, fpc, gam, gamlss, gee, geepack, ggplot2, GLMMadaptive, glmmTMB, GPArotation, gt, httr, Hmisc, ivprobit, ivreg, knitr, lavaan, lavaSearch2, lfe, lm.beta, lme4, lmerTest, lqtest, logspline, lqmm, M3C, magrittr, marginaleffects, MASS, Matrix, mclust, MCMCglmm, mediation, merDeriv, metaBMA, metafor, mfx, mgcv, mice, multcomp, MuMIn, NbClust, nFactors, nlme, nnet, openxlsx, ordinal, panelr, pbkrtest, PCDimension, performance (>= 0.8.0), plm, PMCMRplus, poorman, posterior, PRepreg, pscl, psych, pvcplot, quantreg, randomForest, rmarkdown, rms, rstanarm,
sandwich, see (>= 0.6.9), sjstats, survey, survival, testthat, TMB, truncreg, VGAM, WRS2

VignetteBuilder knitr

Encoding UTF-8
Language en-US
RoxygenNote 7.2.1
Config/testthat/edition 3

NeedsCompilation no

Author Daniel Lüdecke [aut, cre] (https://orcid.org/0000-0002-8895-3206>, @strengjacke),
Dominique Makowski [aut] (https://orcid.org/0000-0001-5375-9967>, @Dom_Makowski),
Mattan S. Ben-Shachar [aut] (https://orcid.org/0000-0002-4287-4801>,
Indrajeet Patil [aut] (https://orcid.org/0000-0003-1995-6531>, @patilindrajeets),
Søren Højsgaard [aut],
Brenton M. Wiernik [aut] (https://orcid.org/0000-0001-9560-6336>,
@bmwiernik),
Zen J. Lau [ctb],
Vincent Arel-Bundock [ctb] (https://orcid.org/0000-0003-1995-6531>,
@vincentab),
Jeffrey Girard [ctb] (https://orcid.org/0000-0002-7359-3746>,
@jeffreymgirard),
Christina Maimone [rev],
Niels Ohlsen [rev] (@Niels_Bremen),
Douglas Ezra Morrison [ctb] (https://orcid.org/0000-0002-7195-830X>,
@demstats1),
Joseph Luchman [ctb] (https://orcid.org/0000-0002-8886-9717>)

Repository CRAN
Date/Publication 2022-08-10 15:50:02 UTC

R topics documented:

bootstrap_model .. 4
bootstrap_parameters ... 6
check_clusterstructure .. 8
check_factorstructure ... 9
check_heterogeneity .. 10
check_kmo .. 10
check_sphericity_bartlett 11
ci.default ... 12
ci_betwithin ... 16
ci_kenward ... 17
ci_ml1 .. 19
ci_satterthwaite .. 20
R topics documented:

- cluster_analysis ... 21
- cluster_centers ... 24
- cluster_discrimination 25
- cluster_meta .. 26
- cluster_performance .. 27
- compare_parameters .. 28
- convert_efa_to_cfa .. 32
- degrees_of_freedom ... 33
- display.parameters_model 34
- dominance_analysis ... 39
- equivalence_test.lm ... 42
- factor_analysis .. 45
- fish ... 49
- format_df_adjust ... 49
- format_order .. 50
- format_parameters ... 50
- format_p_adjust .. 51
- get_scores ... 52
- model_parameters .. 53
- model_parameters.aov .. 59
- model_parameters.befa 64
- model_parameters.BFBayesFactor 65
- model_parameters.cgam 68
- model_parameters.cpglmm 72
- model_parameters.dbscan 84
- model_parameters.default 87
- model_parameters.DirichletRegModel 95
- model_parameters.htest 98
- model_parameters.MCMCglmm 101
- model_parameters.mipo 110
- model_parameters.PCA 114
- model_parameters.PMCMR 120
- model_parameters.rma 135
- model_parameters.zcpglm 138
- n_clusters .. 141
- n_factors .. 145
- parameters_type ... 148
- pool_parameters ... 149
- predict.parameters_clusters 151
- print.parameters_model 152
- p_value ... 156
- p_value.BFBayesFactor 160
- p_value.DirichletRegModel 161
- p_value.poissonmfx .. 162
- p_value.zcpglm ... 163
- qol_cancer .. 164
- random_parameters .. 164
- reduce_parameters ... 166
Description

Bootstrap a statistical model n times to return a data frame of estimates.

Usage

bootstrap_model(model, iterations = 1000, ...)

Default S3 method:
bootstrap_model(
 model,
 iterations = 1000,
 type = "ordinary",
 parallel = c("no", "multicore", "snow"),
 n_cpus = 1,
 verbose = FALSE,
 ...
)

S3 method for class 'merMod'
bootstrap_model(
 model,
 iterations = 1000,
 type = "parametric",
 parallel = c("no", "multicore", "snow"),
 n_cpus = 1,
 verbose = FALSE,
 ...
)
Arguments

- **model**
 - Statistical model.
- **iterations**
 - The number of draws to simulate/bootstrap.
- **type**
 - Character string specifying the type of bootstrap. For mixed models of class `merMod` or `glmmTMB`, may be "parametric" (default) or "semiparametric" (see `?lme4::bootMer` for details). For all other models, see argument `sim` in `?boot::boot` (defaults to "ordinary").
- **parallel**
 - The type of parallel operation to be used (if any).
- **n_cpus**
 - Number of processes to be used in parallel operation.
- **verbose**
 - Toggle warnings and messages.

Details

By default, `boot::boot()` is used to generate bootstraps from the model data, which are then used to `update()` the model, i.e. refit the model with the bootstrapped samples. For `merMod` objects (`lme4`) or models from `glmmTMB`, the `lme4::bootMer()` function is used to obtain bootstrapped samples. `bootstrap_parameters()` summarizes the bootstrapped model estimates.

Value

A data frame of bootstrapped estimates.

Using with emmeans

The output can be passed directly to the various functions from the `emmeans` package, to obtain bootstrapped estimates, contrasts, simple slopes, etc. and their confidence intervals. These can then be passed to `model_parameter()` to obtain standard errors, p-values, etc. (see example).

Note that that p-values returned here are estimated under the assumption of translation equivariance: that shape of the sampling distribution is unaffected by the null being true or not. If this assumption does not hold, p-values can be biased, and it is suggested to use proper permutation tests to obtain non-parametric p-values.

See Also

`bootstrap_parameters()`, `simulate_model()`, `simulate_parameters()`

Examples

```r
# Not run:
if (require("boot", quietly = TRUE)) {
  model <- lm(mpg ~ wt + factor(cyl), data = mtcars)
  b <- bootstrap_model(model)
  print(head(b))

  if (require("emmeans", quietly = TRUE)) {
    est <- emmeans(b, consec ~ cyl)
```
bootstrap_parameters

Parameters bootstrapping

Description

Compute bootstrapped parameters and their related indices such as Confidence Intervals (CI) and p-values.

Usage

bootstrap_parameters(
 model,
 iterations = 1000,
 centrality = "median",
 ci = 0.95,
 ci_method = "quantile",
 test = "p-value",
 ...
)

Arguments

model Statistical model.
iterations The number of draws to simulate/bootstrap.
centrality The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".
ci Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to .95 (95%).
ci_method The type of index used for Credible Interval. Can be "ETI" (default, see eti()), "HDI" (see hdi()), "BCI" (see bci()), "SPI" (see spi()), or "SI" (see si()).
test The indices to compute. Character (vector) with one or more of these options: "p-value" (or "p"), "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding bayestestR function is called (e.g. bayestestR::rope() or bayestestR::p_direction()) and its results included in the summary output.
... Arguments passed to or from other methods.
Details

This function first calls `bootstrap_model()` to generate bootstrapped coefficients. The resulting replicated for each coefficient are treated as "distribution", and is passed to `bayestestR::describe_posterior()` to calculate the related indices defined in the "test" argument.

Note that that p-values returned here are estimated under the assumption of translation equivariance: that shape of the sampling distribution is unaffected by the null being true or not. If this assumption does not hold, p-values can be biased, and it is suggested to use proper permutation tests to obtain non-parametric p-values.

Value

A data frame summarizing the bootstrapped parameters.

Using with emmeans

The output can be passed directly to the various functions from the `emmeans` package, to obtain bootstrapped estimates, contrasts, simple slopes, etc. and their confidence intervals. These can then be passed to `model_parameters()` to obtain standard errors, p-values, etc. (see example).

Note that that p-values returned here are estimated under the assumption of translation equivariance: that shape of the sampling distribution is unaffected by the null being true or not. If this assumption does not hold, p-values can be biased, and it is suggested to use proper permutation tests to obtain non-parametric p-values.

References

See Also

`bootstrap_model()`, `simulate_parameters()`, `simulate_model()`

Examples

```r
## Not run:
if (require("boot", quietly = TRUE)) {
  set.seed(2)
  model <- lm(Sepal.Length ~ Species * Petal.Width, data = iris)
  b <- bootstrap_parameters(model)
  print(b)

  if (require("emmeans")) {
    est <- emmeans(b, trt.vs.ctrl ~ Species)
    print(model_parameters(est))
  }
}
## End(Not run)
```
check_clusterstructure

Check suitability of data for clustering

Description

This checks whether the data is appropriate for clustering using the Hopkins’ H statistic of given data. If the value of Hopkins statistic is close to 0 (below 0.5), then we can reject the null hypothesis and conclude that the dataset is significantly clusterable. A value for H lower than 0.25 indicates a clustering tendency at the 90% confidence level. The visual assessment of cluster tendency (VAT) approach (Bezdek and Hathaway, 2002) consists in investigating the heatmap of the ordered dissimilarity matrix. Following this, one can potentially detect the clustering tendency by counting the number of square shaped blocks along the diagonal.

Usage

check_clusterstructure(x, standardize = TRUE, distance = ”euclidean”, ...)

Arguments

x A data frame.
standardize Standardize the dataframe before clustering (default).
distance Distance method used. Other methods than ”euclidean” (default) are exploratory in the context of clustering tendency. See stats::dist() for list of available methods.
... Arguments passed to or from other methods.

Value

The H statistic (numeric)

References

See Also

check_kmo(), check_sphericity_bartlett() and check_factorstructure().
check_factorstructure

Examples

```r
library(parameters)
check_clusterstructure(iris[, 1:4])
plot(check_clusterstructure(iris[, 1:4]))
```

check_factorstructure Check suitability of data for Factor Analysis (FA)

Description

This checks whether the data is appropriate for Factor Analysis (FA) by running the Bartlett’s Test of Sphericity and the Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA).

Usage

```r
check_factorstructure(x, ...)
```

Arguments

- `x` A dataframe.
- `...` Arguments passed to or from other methods.

Value

A list of lists of indices related to sphericity and KMO.

See Also

`check_kmo()`, `check_sphericity_bartlett()` and `check_clusterstructure()`.

Examples

```r
library(parameters)
check_factorstructure(mtcars)
```
check_heterogeneity

Check model predictor for heterogeneity bias

Description

`check_heterogeneity()` checks if model predictors or variables may cause a heterogeneity bias, i.e. if variables have a within- and/or between-effect.

Usage

```r
check_heterogeneity(x, select = NULL, group = NULL)
```

Arguments

- `x`: A data frame or a mixed model object.
- `select`: Character vector (or formula) with names of variables to select that should be checked. If `x` is a mixed model object, this argument will be ignored.
- `group`: Character vector (or formula) with the name of the variable that indicates the group- or cluster-ID. If `x` is a model object, this argument will be ignored.

Note

This function will be removed in a future update. Please use `performance::check_heterogeneity_bias()`.

See Also

For further details, see documentation for `datawizard::demean`.

check_kmo

Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA) for Factor Analysis

Description

Kaiser (1970) introduced a Measure of Sampling Adequacy (MSA), later modified by Kaiser and Rice (1974). The Kaiser-Meyer-Olkin (KMO) statistic, which can vary from 0 to 1, indicates the degree to which each variable in a set is predicted without error by the other variables.

Usage

```r
check_kmo(x, ...)
```

Arguments

- `x`: A dataframe.
- `...`: Arguments passed to or from other methods.
Details

A value of 0 indicates that the sum of partial correlations is large relative to the sum correlations, indicating factor analysis is likely to be inappropriate. A KMO value close to 1 indicates that the sum of partial correlations is not large relative to the sum of correlations and so factor analysis should yield distinct and reliable factors.

Kaiser (1974) suggested that KMO > .9 were marvelous, in the .80s, meritorious, in the .70s, middling, in the .60s, mediocre, in the .50s, miserable, and less than .5, unacceptable. Hair et al. (2006) suggest accepting a value > 0.5. Values between 0.5 and 0.7 are mediocre, and values between 0.7 and 0.8 are good.

This function is strongly inspired by the `kmo` function in the `psych` package (Revelle, 2016). All credit goes to its author.

Value

A list of indices related to KMO.

References

Examples

```r
library(parameters)
check_kmo(mtcars)
```

Description

Bartlett’s (1951) test of sphericity tests whether a matrix (of correlations) is significantly different from an identity matrix. The test provides probability that the correlation matrix has significant correlations among at least some of the variables in a dataset, a prerequisite for factor analysis to work. In other words, before starting with factor analysis, one needs to check whether Bartlett’s test of sphericity is significant.

Usage

```r
check_sphericity_bartlett(x, ...)
```
ci.default

Arguments

x A dataframe.
... Arguments passed to or from other methods.

Details
This function is strongly inspired by the cortest.bartlett() function in the psych package (Revelle, 2016). All credit goes to its author.

Value
A list of indices related to sphericity.

References

Examples

library(parameters)
check_sphericity_bartlett(mtcars)

ci.default Confidence Intervals (CI)

Description
Compute confidence intervals (CI) for frequentist models.

Usage

Default S3 method:
\texttt{ci(x, ci = 0.95, dof = NULL, method = NULL, ...)}

S3 method for class 'glmmTMB'
\texttt{ci(}
 x,
 ci = 0.95,
 dof = NULL,
 method = "wald",
 component = "all",
 verbose = TRUE,
 ...
 \texttt{)}

S3 method for class 'merMod'
\texttt{ci(x, ci = 0.95, dof = NULL, method = "wald", iterations = 500, ...)}
Arguments

- `x`: A statistical model.
- `ci`: Confidence Interval (CI) level. Default to \(0.95\) (95%).
- `dof`: Number of degrees of freedom to be used when calculating confidence intervals. If NULL (default), the degrees of freedom are retrieved by calling `degrees_of_freedom()` with approximation method defined in `method`. If not NULL, use this argument to override the default degrees of freedom used to compute confidence intervals.
- `method`: Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in `model_parameters()` for further details.
- `...`: Additional arguments
- `component`: Model component for which parameters should be shown. See the documentation for your object’s class in `model_parameters()` or `p_value()` for further details.
- `verbose`: Toggle warnings and messages.
- `iterations`: The number of bootstrap replicates. Only applies to models of class `merMod` when `method=boot`.

Value

A data frame containing the CI bounds.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The `ci_method` argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:

Classical inference is generally based on the Wald method. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald":

- Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.
• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

Methods for mixed models:

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.

"kenward"

• Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution with m-l-1 approximated df. See ci_ml1().

"betwithin"

• Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See ci_betwithin().

Likelihood-based methods:

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a χ^2-squared distribution to compute CIs and p-values.

"profile"

• Applies to non-Bayesian models of class glm, polr or glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"uniroot"
• Applies to non-Bayesian models of class \texttt{glmmTMB}. CIs computed by \textit{profiling the likelihood curve for a parameter}, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a \textit{normal-distribution} (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on \textit{resampling} and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See \texttt{bayestestR::eti()}.

"hdi"

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See \texttt{bayestestR::hdi()}.

"bci" (or "bcai")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See \texttt{bayestestR::bci()}.

"si"

• Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See \texttt{bayestestR::si()}.

"boot"

• Applies to non-Bayesian models of class \texttt{merMod}. CIs computed using \textit{parametric bootstrapping} (simulating data from the fitted model); p-values computed using the Wald method with a \textit{normal-distribution} (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (\texttt{bayestestR::p_direction()}), which is converted into a p-value using \texttt{bayestestR::pd_to_p()}.
Examples

library(parameters)
if (require("glmmTMB")) {
 model <- glmmTMB(
 count ~ spp + mined + (1 | site),
 ziformula = ~mined,
 family = poisson(),
 data = Salamanders
)

 ci(model)
 ci(model, component = "zi")
}

ci_betwithin

Between-within approximation for SEs, CIs and p-values

Description

Approximation of degrees of freedom based on a "between-within" heuristic.

Usage

```r
ci_betwithin(model, ci = 0.95, ...)
dof_betwithin(model)
p_value_betwithin(model, dof = NULL, ...)
```

Arguments

- `model` A mixed model.
- `ci` Confidence Interval (CI) level. Default to 0.95 (95%).
- `...` Additional arguments
- `dof` Degrees of Freedom.

Details

Small Sample Cluster corrected Degrees of Freedom: Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed models when the number of clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended to approximate a more accurate number of degrees of freedom for such inferential statistics (see *Li and Redden 2015*). The *Between-within* denominator degrees of freedom approximation is recommended in particular for (generalized) linear mixed models with repeated measurements (longitudinal design). `dof_betwithin()` implements a heuristic based on the between-within
Note that this implementation does not return exactly the same results as shown in Li and Redden 2015, but similar.

Degrees of Freedom for Longitudinal Designs (Repeated Measures): In particular for repeated measure designs (longitudinal data analysis), the *between-within* heuristic is likely to be more accurate than simply using the residual or infinite degrees of freedom, because `dof_betwithin()` returns different degrees of freedom for within-cluster and between-cluster effects.

Value

A data frame.

References

See Also

`dof_betwithin()` is a small helper-function to calculate approximated degrees of freedom of model parameters, based on the "between-within" heuristic.

Examples

```r
if (require("lme4")) {
  data(sleepstudy)
  model <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
  dof_betwithin(model)
  p_value_betwithin(model)
}
```

ci_kenward

Kenward-Roger approximation for SEs, CIs and p-values

Description

An approximate F-test based on the Kenward-Roger (1997) approach.
Usage

```r
ci_kenward(model, ci = 0.95)
dof_kenward(model)
p_value_kenward(model, dof = NULL)
se_kenward(model)
```

Arguments

- `model`: A statistical model.
- `ci`: Confidence Interval (CI) level. Default to 0.95 (95%).
- `dof`: Degrees of Freedom.

Details

Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed models when the number of clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended to approximate a more accurate number of degrees of freedom for such inferential statistics. Unlike simpler approximation heuristics like the "m-l-1" rule (dof_ml1), the Kenward-Roger approximation is also applicable in more complex multilevel designs, e.g. with cross-classified clusters. However, the "m-l-1" heuristic also applies to generalized mixed models, while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.

Value

A data frame.

References

See Also

- `dof_kenward()` and `se_kenward()` are small helper-functions to calculate approximated degrees of freedom and standard errors for model parameters, based on the Kenward-Roger (1997) approach.
- `dof_satterthwaite()` and `dof_ml1()` approximate degrees of freedom based on Satterthwaite’s method or the "m-l-1" rule.

Examples

```r
if (require("lme4", quietly = TRUE)) {
  model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
  p_value_kenward(model)
}
```
ci_ml1

"m-l-1" approximation for SEs, CIs and p-values

Description

Approximation of degrees of freedom based on a "m-l-1" heuristic as suggested by Elff et al. (2019).

Usage

```r
ci_ml1(model, ci = 0.95, ...)
dof_ml1(model)
p_value_ml1(model, dof = NULL, ...)
```

Arguments

- `model`: A mixed model.
- `ci`: Confidence Interval (CI) level. Default to 0.95 (95%).
- `...`: Additional arguments
- `dof`: Degrees of Freedom.

Details

Small Sample Cluster corrected Degrees of Freedom: Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed models when the number of clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended to approximate a more accurate number of degrees of freedom for such inferential statistics (see Li and Redden 2015). The \(m-l-1 \) heuristic is such an approach that uses a t-distribution with fewer degrees of freedom (\(\text{dof}_{\text{ml1}}() \)) to calculate p-values (\(\text{p-value}_{\text{ml1}}() \)) and confidence intervals (\(\text{ci}(\text{method} = \text{"ml1"}) \)).

Degrees of Freedom for Longitudinal Designs (Repeated Measures): In particular for repeated measure designs (longitudinal data analysis), the \(m-l-1 \) heuristic is likely to be more accurate than simply using the residual or infinite degrees of freedom, because \(\text{dof}_{\text{ml1}}() \) returns different degrees of freedom for within-cluster and between-cluster effects.

Limitations of the "m-l-1" Heuristic: Note that the "m-l-1" heuristic is not applicable (or at least less accurate) for complex multilevel designs, e.g. with cross-classified clusters. In such cases, more accurate approaches like the Kenward-Roger approximation (\(\text{dof}_{\text{kenward}}() \)) is recommended. However, the "m-l-1" heuristic also applies to generalized mixed models, while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.

Value

A data frame.
References

See Also
dof_ml1() is a small helper-function to calculate approximated degrees of freedom of model parameters, based on the "m-l-1" heuristic.

Examples

```r
if (require("lme4")) {
  model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
  p_value_ml1(model)
}
```

`ci_satterthwaite`
Satterthwaite approximation for SEs, CIs and p-values

Description

An approximate F-test based on the Satterthwaite (1946) approach.

Usage

```r
ci_satterthwaite(model, ci = 0.95, ...)
dof_satterthwaite(model)
p_value_satterthwaite(model, dof = NULL, ...)
se_satterthwaite(model)
```

Arguments

- `model`: A statistical model.
- `ci`: Confidence Interval (CI) level. Default to `0.95` (95%).
- `...`: Additional arguments
- `dof`: Degrees of Freedom.
Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed models when the number of clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended to approximate a more accurate number of degrees of freedom for such inferential statistics. Unlike simpler approximation heuristics like the "m-l-1" rule (dof_ml1), the Satterthwaite approximation is also applicable in more complex multilevel designs. However, the "m-l-1" heuristic also applies to generalized mixed models, while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.

A data frame.

dof_satterthwaite() and se_satterthwaite() are small helper-functions to calculate approximated degrees of freedom and standard errors for model parameters, based on the Satterthwaite (1946) approach.

dof_kenward() and dof_ml1() approximate degrees of freedom based on Kenward-Roger’s method or the "m-l-1" rule.

if (require("lme4", quietly = TRUE)) {
 model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
 p_value_satterthwaite(model)
}

Compute hierarchical or kmeans cluster analysis and return the group assignment for each observation as vector.
Usage

```r
cluster_analysis(
  x,
  n = NULL,
  method = "kmeans",
  include_factors = FALSE,
  standardize = TRUE,
  verbose = TRUE,
  distance_method = "euclidean",
  hclust_method = "complete",
  kmeans_method = "Hartigan-Wong",
  dbscan_eps = 15,
  iterations = 100,
  ...
)
```

Arguments

x
A data frame.

n
Number of clusters used for supervised cluster methods. If NULL, the number of clusters to extract is determined by calling `n_clusters()`. Note that this argument does not apply for unsupervised clustering methods like `dbscan`, `hdbscan`, `mixture`, `pvclust`, or `pamk`.

method
Method for computing the cluster analysis. Can be "kmeans" (default; k-means using `kmeans()`), "hkmeans" (hierarchical k-means using `factoextra::hkmeans()`), pam (K-Medoids using `cluster::pam()`), pamk (K-Medoids that finds out the number of clusters), "hclust" (hierarchical clustering using `hclust()` or `pvclust::pvclust()`), dbscan (DBSCAN using `dbscan::dbscan()`), hdbscan (Hierarchical DBSCAN using `dbscan::hdbscan()`), or mixture (Mixture modeling using `mclust::Mclust()`, which requires the user to run `library(mclust)` before).

include_factors
Logical, if TRUE, factors are converted to numerical values in order to be included in the data for determining the number of clusters. By default, factors are removed, because most methods that determine the number of clusters need numeric input only.

standardize
Standardize the dataframe before clustering (default).

verbose
Toggle warnings and messages.

distance_method
Distance measure to be used for methods based on distances (e.g., when method = "hclust" for hierarchical clustering. For other methods, such as "kmeans", this argument will be ignored). Must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". See `dist()` and `pvclust::pvclust()` for more information.

hclust_method
Agglomeration method to be used when method = "hclust" or method = "hkmeans" (for hierarchical clustering). This should be one of "ward", "ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid". Default is "complete" (see `hclust()`).
cluster_analysis

 kmeans_method Algorithm used for calculating kmeans cluster. Only applies, if method = "kmeans". May be one of "Hartigan-Wong" (default), "Lloyd" (used by SPSS), or "MacQueen". See kmeans() for details on this argument.

 dbscan_eps The 'eps' argument for DBSCAN method. See n_clusters_dbscan().

 iterations The number of replications.

 ... Arguments passed to or from other methods.

Details

The print() and plot() methods show the (standardized) mean value for each variable within each cluster. Thus, a higher absolute value indicates that a certain variable characteristic is more pronounced within that specific cluster (as compared to other cluster groups with lower absolute mean values).

Clusters classification can be obtained via print(x, newdata = NULL, ...).

Value

The group classification for each observation as vector. The returned vector includes missing values, so it has the same length as nrow(x).

Note

There is also a plot()-method implemented in the see-package.

References

See Also

- n_clusters() to determine the number of clusters to extract.
- cluster_discrimination() to determine the accuracy of cluster group classification via linear discriminant analysis (LDA).
- check_clusterstructure() to check suitability of data for clustering.

Examples

 set.seed(33)
 # K-Means ---
 rez <- cluster_analysis(iris[1:4], n = 3, method = "kmeans")
 rez # Show results
 predict(rez) # Get clusters
 summary(rez) # Extract the centers values (can use 'plot()' on that)
 if (requireNamespace("MASS", quietly = TRUE)) {
 cluster_discrimination(rez) # Perform LDA
 }
Hierarchical k-means (more robust k-means)
if (require("factoextra", quietly = TRUE)) {
 rez <- cluster_analysis(iris[1:4], n = 3, method = "hkmeans")
 rez # Show results
 predict(rez) # Get clusters
}

Hierarchical Clustering (hclust) ===========================
rez <- cluster_analysis(iris[1:4], n = 3, method = "hclust")
rez # Show results
predict(rez) # Get clusters

K-Medoids (pam) ==
if (require("cluster", quietly = TRUE)) {
 rez <- cluster_analysis(iris[1:4], n = 3, method = "pam")
 rez # Show results
 predict(rez) # Get clusters
}

PAM with automated number of clusters
if (require("fpc", quietly = TRUE)) {
 rez <- cluster_analysis(iris[1:4], method = "pamk")
 rez # Show results
 predict(rez) # Get clusters
}

DBSCAN ==
if (require("dbscan", quietly = TRUE)) {
 # Note that you can assimilate more outliers (cluster 0) to neighbouring
 # clusters by setting borderPoints = TRUE.
 rez <- cluster_analysis(iris[1:4], method = "dbscan", dbscan_eps = 1.45)
 rez # Show results
 predict(rez) # Get clusters
}

Mixture ==
if (require("mclust", quietly = TRUE)) {
 library(mclust) # Needs the package to be loaded
 rez <- cluster_analysis(iris[1:4], method = "mixture")
 rez # Show results
 predict(rez) # Get clusters
}

cluster_centers

Find the cluster centers in your data

Description

For each cluster, computes the mean (or other indices) of the variables. Can be used to retrieve the centers of clusters. Also returns the within Sum of Squares.
cluster_discrimination

Usage

cluster_centers(data, clusters, fun = mean, ...)

Arguments

data A data.frame.
clusters A vector with clusters assignments (must be same length as rows in data).
fun What function to use, mean by default.
... Other arguments to be passed to or from other functions.

Value

A dataframe containing the cluster centers. Attributes include performance statistics and distance between each observation and its respective cluster centre.

Examples

k <- kmeans(iris[1:4], 3)
cluster_centers(iris[1:4], clusters = k$cluster)
cluster_centers(iris[1:4], clusters = k$cluster, fun = median)

cluster_discrimination

Compute a linear discriminant analysis on classified cluster groups

Description

Computes linear discriminant analysis (LDA) on classified cluster groups, and determines the goodness of classification for each cluster group. See MASS::lda() for details.

Usage

cluster_discrimination(x, cluster_groups = NULL, ...)

Arguments

x A data frame
cluster_groups Group classification of the cluster analysis, which can be retrieved from the cluster_analysis() function.
... Other arguments to be passed to or from.

See Also

n_clusters() to determine the number of clusters to extract, cluster_analysis() to compute a cluster analysis and check_clusterstructure() to check suitability of data for clustering.
Examples

```r
if (requireNamespace("MASS", quietly = TRUE)) {
  # Retrieve group classification from hierarchical cluster analysis
  clustering <- cluster_analysis(iris[, 1:4], n = 3)

  # Goodness of group classification
  cluster_discrimination(clustering)
}
```

cluster_meta
Metaclustering

Description

One of the core "issue" of statistical clustering is that, in many cases, different methods will give different results. The **metaclustering** approach proposed by easystats (that finds echoes in consensus clustering; see Monti et al., 2003) consists of treating the unique clustering solutions as an ensemble, from which we can derive a probability matrix. This matrix contains, for each pair of observations, the probability of being in the same cluster. For instance, if the 6th and the 9th row of a dataframe has been assigned to a similar cluster by 5 out of 10 clustering methods, then its probability of being grouped together is 0.5.

Metaclustering is based on the hypothesis that, as each clustering algorithm embodies a different prism by which it sees the data, running an infinite amount of algorithms would result in the emergence of the "true" clusters. As the number of algorithms and parameters is finite, the probabilistic perspective is a useful proxy. This method is interesting where there is no obvious reason to prefer one over another clustering method, as well as to investigate how robust some clusters are under different algorithms.

This metaclustering probability matrix can be transformed into a dissimilarity matrix (such as the one produced by `dist()`) and submitted for instance to hierarchical clustering (`hclust()`). See the example below.

Usage

```r
cluster_meta(list_of_clusters, rownames = NULL, ...)
```

Arguments

- `list_of_clusters`: A list of vectors with the clustering assignments from various methods.
- `rownames`: An optional vector of row.names for the matrix.
- `...`: Currently not used.

Value

A matrix containing all the pairwise (between each observation) probabilities of being clustered together by the methods.
Examples

```r
## Not run:
data <- iris[1:4]
rez1 <- cluster_analysis(data, n = 2, method = "kmeans")
rez2 <- cluster_analysis(data, n = 3, method = "kmeans")
rez3 <- cluster_analysis(data, n = 6, method = "kmeans")

list_of_clusters <- list(rez1, rez2, rez3)
m <- cluster_meta(list_of_clusters)

# Visualize matrix without reordering
heatmap(m, Rowv = NA, Colv = NA, scale = "none") # Without reordering
# Reordered heatmap
heatmap(m, scale = "none")

# Extract 3 clusters
predict(m, n = 3)

# Convert to dissimilarity
d <- as.dist(abs(m - 1))
model <- hclust(d)
plot(model, hang = -1)

## End(Not run)
```

cluster_performance
Performance of clustering models

Description

Compute performance indices for clustering solutions.

Usage

```r
cluster_performance(model, ...)
```

S3 method for class 'kmeans'
cluster_performance(model, ...)

S3 method for class 'hclust'
cluster_performance(model, data, clusters, ...)

S3 method for class 'dbscan'
cluster_performance(model, data, ...)

S3 method for class 'parameters_clusters'
cluster_performance(model, ...)
```
Arguments

model  Cluster model.
...  Arguments passed to or from other methods.
data  A data.frame.
clusters  A vector with clusters assignments (must be same length as rows in data).

Examples

# kmeans
model <- kmeans(iris[1:4], 3)
cluster_performance(model)
# hclust
data <- iris[1:4]
model <- hclust(dist(data))
clusters <- cutree(model, 3)
rez <- cluster_performance(model, data, clusters)
rez
# DBSCAN
if (require("dbscan", quietly = TRUE)) {
  model <- dbscan::dbscan(iris[1:4], eps = 1.45, minPts = 10)
  rez <- cluster_performance(model, iris[1:4])
  rez
}
# Retrieve performance from parameters
params <- model_parameters(kmeans(iris[1:4], 3))
cluster_performance(params)

Description

Compute and extract model parameters of multiple regression models. See \texttt{model_parameters()} for further details.

Usage

\begin{verbatim}
compare_parameters(
  ..., 
  ci = 0.95,
  effects = "fixed",
  component = "conditional",
  standardize = NULL,
  exponentiate = FALSE,
  ci_method = "wald",
\end{verbatim}
compare_parameters

p_adjust = NULL,
style = NULL,
column_names = NULL,
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
df_method = ci_method
)

compare_models(
  ..., 
  ci = 0.95,
  effects = 'fixed',
  component = 'conditional',
  standardize = NULL,
  exponentiate = FALSE,
  ci_method = 'wald',
  p_adjust = NULL,
  style = NULL,
  column_names = NULL,
  keep = NULL,
  drop = NULL,
  parameters = keep,
  verbose = TRUE,
  df_method = ci_method
)

Arguments

... One or more regression model objects, or objects returned by model_parameters(). Regression models may be of different model types. Model objects may be passed comma separated, or as a list. If model objects are passed with names or the list has named elements, these names will be used as column names.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

effects Should parameters for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. If the calculation of random effects parameters takes too long, you may use effects = "fixed".

component Model component for which parameters should be shown. See documentation for related model class in model_parameters().

standardize The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters().

Important:

- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages
compare_parameters

(such as `lm.beta`) or other software packages (like SPSS), to mimic such
behaviours, either use `standardize="basic"` or standardize the data with
`datawizard::standardize(force=TRUE) before fitting the model.

• For mixed models, when using methods other than "refit", only the fixed
effects will be returned.

• Robust estimation (i.e., vcov set to a value other than NULL) of standardized
parameters only works when `standardize="refit"`.

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
certainty intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = `TRUE` for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For `compare_parameters()`, `exponentiate`
= "nongaussian" will only exponentiate coefficients from non-Gaussian fam-

ci_method Method for computing degrees of freedom for p-values and confidence intervals
(CI). See documentation for related model class in `model_parameters()`.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
`stats::p.adjust()` for details. Further possible adjustment methods are "tukey",
"scheffe", "sidak" and "none" to explicitly disable adjustment for `emmGrid`
objects (from `emmeans`).

style String, indicating which style of output is requested. Following templates are
possible:

• "ci": Estimate and confidence intervals, no asterisks for p-values.
• "se": Estimate and standard errors, no asterisks for p-values.
• "ci_p": Estimate, confidence intervals and asterisks for p-values.
• "se_p": Estimate, standard errors and asterisks for p-values.
• "ci_p2": Estimate, confidence intervals and numeric p-values, in two columns.
• "se_p2": Estimate, standard errors and numeric p-values, in two columns.

column_names Character vector with strings that should be used as column headers. Must be of
same length as number of models in ....

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular expre-
sion in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where `model_parameters()` returns multiple columns with parameter components, like in `model_parameters.lavaan()`. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the `$Parameter` column of the parameters table to get the exact parameter names.

- **drop**
  - See `keep`.

- **parameters**
  - Deprecated, alias for `keep`.

- **verbose**
  - Toggle warnings and messages.

- **df_method**
  - Deprecated. Please use `ci_method`.

### Details

This function is in an early stage and does not yet cope with more complex models, and probably does not yet properly render all model components. It should also be noted that when including models with interaction terms, not only do the values of the parameters change, but so does their meaning (from main effects, to simple slopes), thereby making such comparisons hard. Therefore, you should not use this function to compare models with interaction terms with models without interaction terms.

### Value

A data frame of indices related to the model’s parameters.

### Examples

```r
data(iris)
lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
compare_parameters(lm1, lm2)

data(mtcars)
m1 <- lm(mpg ~ wt, data = mtcars)
m2 <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial")
compare_parameters(m1, m2)
Not run:

exponentiate coefficients, but not for lm
compare_parameters(m1, m2, exponentiate = "nongaussian")

change column names
compare_parameters("linear model" = m1, "logistic reg." = m2)
compare_parameters(m1, m2, column_names = c("linear model", "logistic reg."))

or as list
compare_parameters(list(m1, m2))
compare_parameters(list("linear model" = m1, "logistic reg." = m2))
End(Not run)
```
convert_efa_to_cfa  

Conversion between EFA results and CFA structure

Description

Enables a conversion between Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) lavaan-ready structure.

Usage

convert_efa_to_cfa(model, ...)

## S3 method for class 'fa'
convert_efa_to_cfa(model, threshold = "max", names = NULL, ...)

efa_to_cfa(model, ...)

Arguments

model  
An EFA model (e.g., a psych::fa object).

...  
Arguments passed to or from other methods.

threshold  
A value between 0 and 1 indicates which (absolute) values from the loadings should be removed. An integer higher than 1 indicates the n strongest loadings to retain. Can also be "max", in which case it will only display the maximum loading per variable (the most simple structure).

names  
Vector containing dimension names.

Value

Converted index.

Examples

library(parameters)
if (require("psych") && require("lavaan")) {
  efa <- psych::fa(attitude, nfactors = 3)

  model1 <- efa_to_cfa(efa)
  model2 <- efa_to_cfa(efa, threshold = 0.3)

  anova(
    lavaan::cfa(model1, data = attitude),
    lavaan::cfa(model2, data = attitude)
  )
}


**degrees_of_freedom**

*Degrees of Freedom (DoF)*

---

**Description**

Estimate or extract degrees of freedom of models parameters.

**Usage**

```r
degrees_of_freedom(model, ...)
Default S3 method:
degrees_of_freedom(model, method = "analytical", ...)
dof(model, ...)
```

**Arguments**

- **model**
  - A statistical model.
- **...**
  - Currently not used.
- **method**
  - Can be "analytical" (default, DoFs are estimated based on the model type), "residual" in which case they are directly taken from the model if available (for Bayesian models, the goal (looking for help to make it happen) would be to refit the model as a frequentist one before extracting the DoFs), "ml1" (see `dof_ml1()`), "betwithin" (see `dof_betwithin()`), "satterthwaite" (see `dof_satterthwaite()`), "kenward" (see `dof_kenward()`) or "any", which tries to extract DoF by any of those methods, whichever succeeds. See 'Details'.

**Details**

Methods for calculating degrees of freedom:

- "analytical" for models of class `lmerMod`, Kenward-Roger approximated degrees of freedoms are calculated, for other models, n-k (number of observations minus number of parameters).
- "residual" tries to extract residual degrees of freedom, and returns Inf if residual degrees of freedom could not be extracted.
- "any" first tries to extract residual degrees of freedom, and if these are not available, extracts analytical degrees of freedom.
- "nokr" same as "analytical", but does not Kenward-Roger approximation for models of class `lmerMod`. Instead, always uses n-k to calculate df for any model.
- "normal" returns Inf.
- "wald" returns residual df for models with t-statistic, and Inf for all other models.
- "kenward" calls `dof_kenward()`.
- "satterthwaite" calls `dof_satterthwaite()`.
- "ml1" calls `dof_ml1()`.
- "betwithin" calls `dof_betwithin()`.

For models with z-statistic, the returned degrees of freedom for model parameters is Inf (unless `method = "ml1"` or `method = "betwithin"`), because there is only one distribution for the related test statistic.

**Note**

In many cases, `degrees_of_freedom()` returns the same as `df.residuals()`, or n-k (number of observations minus number of parameters). However, `degrees_of_freedom()` refers to the model’s parameters degrees of freedom of the distribution for the related test statistic. Thus, for models with z-statistic, results from `degrees_of_freedom()` and `df.residuals()` differ. Furthermore, for other approximation methods like "kenward" or "satterthwaite", each model parameter can have a different degree of freedom.

**Examples**

```r
model <- lm(Sepal.Length ~ Petal.Length * Species, data = iris)
dof(model)

model <- glm(vs ~ mpg * cyl, data = mtcars, family = "binomial")
dof(model)
Not run:
if (require("lme4", quietly = TRUE)) {
 model <- lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
 dof(model)
}

if (require("rstanarm", quietly = TRUE)) {
 model <- stan_glm(
 Sepal.Length ~ Petal.Length * Species,
 data = iris,
 chains = 2,
 refresh = 0
)
 dof(model)
}
End(Not run)
```

---

**display.parameters_model**

*Print tables in different output formats*

**Description**

Prints tables (i.e. data frame) in different output formats. `print_md()` is a alias for `display(format = "markdown")`. 
Usage

## S3 method for class 'parameters_model'
display(
  object,
  format = "markdown",
  pretty_names = TRUE,
  split_components = TRUE,
  select = NULL,
  caption = NULL,
  subtitle = NULL,
  footer = NULL,
  align = NULL,
  digits = 2,
  ci_digits = 2,
  p_digits = 3,
  footer_digits = 3,
  ci_brackets = c("\(\), \(\)"),
  show_sigma = FALSE,
  show_formula = FALSE,
  zap_small = FALSE,
  verbose = TRUE,
  ...
)

## S3 method for class 'parameters_sem'
display(
  object,
  format = "markdown",
  digits = 2,
  ci_digits = 2,
  p_digits = 3,
  ci_brackets = c("\(\), \(\)"),
  ...
)

## S3 method for class 'parameters_efasummary'
display(object, format = "markdown", digits = 3, ...)

## S3 method for class 'parameters_efa'
display(
  object,
  format = "markdown",
  digits = 2,
  sort = FALSE,
  threshold = NULL,
  labels = NULL,
  ...
)
## S3 method for class 'equivalence_test_lm'

\[ \text{display}(\text{object, format = "markdown", digits = 2, ...}) \]

## S3 method for class 'parameters_model'

\[ \text{format}(\text{x, pretty_names = TRUE, split_components = TRUE, select = NULL, digits = 2, ci_digits = 2, p_digits = 3, ci_width = NULL, ci_brackets = NULL, zap_small = FALSE, format = NULL, groups = NULL, ...}) \]

## S3 method for class 'parameters_model'

\[ \text{print_html}(\text{x, pretty_names = TRUE, split_components = TRUE, select = NULL, caption = NULL, subtitle = NULL, footer = NULL, align = NULL, digits = 2, ci_digits = 2, p_digits = 3, footer_digits = 3, ci_brackets = c("",""), show_sigma = FALSE, show_formula = FALSE, zap_small = FALSE, groups = NULL, verbose = TRUE, ...}) \]

## S3 method for class 'parameters_model'

\[ \text{print_md}(\text{x, pretty_names = TRUE, ...}) \]
**Arguments**

- **object**
  An object returned by `model_parameters()`, `simulate_parameters()`, `equivalence_test()` or `principal_components()`.

- **format**
  String, indicating the output format. Can be "markdown" or "html".

- **pretty_names**
  Return "pretty" (i.e. more human readable) parameter names.

- **split_components**
  Logical, if TRUE (default), For models with multiple components (zero-inflation, smooth terms, ...), each component is printed in a separate table. If FALSE, model parameters are printed in a single table and a Component column is added to the output.

- **select**
  Character vector (or numeric index) of column names that should be printed. If NULL (default), all columns are printed. The shortcut select = "minimal" prints coefficient, confidence intervals and p-values, while select = "short" prints coefficient, standard errors and p-values.

- **caption**
  Table caption as string. If NULL, no table caption is printed.

- **subtitle**
  Table title (same as caption) and subtitle, as strings. If NULL, no title or subtitle is printed, unless it is stored as attributes (table_title, or its alias table_caption, and table_subtitle). If x is a list of data frames, caption may be a list of table captions, one for each table.

- **footer**
  Table footer, as string. For markdown-formatted tables, table footers, due to the limitation in markdown rendering, are actually just a new text line under the table. If x is a list of data frames, footer may be a list of table captions, one for each table.

- **align**
  Only applies to HTML tables. May be one of "left", "right" or "center".

- **digits, ci_digits, p_digits**
  Number of digits for rounding or significant figures. May also be "signif" to return significant figures or "scientific" to return scientific notation. Control
the number of digits by adding the value as suffix, e.g. digits = "scientific4" to have scientific notation with 4 decimal places, or digits = "signif5" for 5 significant figures (see also signif()).

`footer_digits` Number of decimal places for values in the footer summary.

`ci_brackets` Logical, if TRUE (default), CI-values are encompassed in square brackets (else in parentheses).

`show_sigma` Logical, if TRUE, adds information about the residual standard deviation.

`show_formula` Logical, if TRUE, adds the model formula to the output.

`zap_small` Logical, if TRUE, small values are rounded after digits decimal places. If FALSE, values with more decimal places than digits are printed in scientific notation.

`verbose` Toggle messages and warnings.

`...` Arguments passed to or from other methods.

`sort` Sort the loadings.

`threshold` A value between 0 and 1 indicates which (absolute) values from the loadings should be removed. An integer higher than 1 indicates the n strongest loadings to retain. Can also be "max", in which case it will only display the maximum loading per variable (the most simple structure).

`labels` A character vector containing labels to be added to the loadings data. Usually, the question related to the item.

`x` An object returned by `model_parameters()`.

`ci_width` Minimum width of the returned string for confidence intervals. If not NULL and width is larger than the string’s length, leading whitespaces are added to the string. If width="auto", width will be set to the length of the longest string.

`groups` Named list, can be used to group parameters in the printed output. List elements may either be character vectors that match the name of those parameters that belong to one group, or list elements can be row numbers of those parameter rows that should belong to one group. The names of the list elements will be used as group names, which will be inserted as "header row". A possible use case might be to emphasize focal predictors and control variables, see 'Examples'. Parameters will be re-ordered according to the order used in groups, while all non-matching parameters will be added to the end.

**Details**

display() is useful when the table-output from functions, which is usually printed as formatted text-table to console, should be formatted for pretty table-rendering in markdown documents, or if knitted from rmarkdown to PDF or Word files. See vignette for examples.

**Value**

If format = "markdown", the return value will be a character vector in markdown-table format. If format = "html", an object of class gt_tbl.
Examples

```r
model <- lm(mpg ~ wt + cyl, data = mtcars)
mp <- model_parameters(model)
display(mp)
```

---

**Description**

Computes Dominance Analysis Statistics and Designations

**Usage**

```r
dominance_analysis(
 model,
 sets = NULL,
 all = NULL,
 conditional = TRUE,
 complete = TRUE,
 quote_args = NULL,
 ...
)
```

**Arguments**

- `model` A model object supported by `performance::r2()`. See 'Details'.
- `sets` A (named) list of formula objects with no left hand side/response. If the list has names, the name provided each element will be used as the label for the set. Unnamed list elements will be provided a set number name based on its position among the sets as entered. Predictors in each formula are bound together as a set in the dominance analysis and dominance statistics and designations are computed for the predictors together. Predictors in `sets` must be present in the model submitted to the `model` argument and cannot be in the `all` argument.
- `all` A formula with no left hand side/response. Predictors in the formula are included in each subset in the dominance analysis and the R2 value associated with them is subtracted from the overall value. Predictors in `all` must be present in the model submitted to the `model` argument and cannot be in the `sets` argument.
- `conditional` Logical. If `FALSE` then conditional dominance matrix is not computed. If conditional dominance is not desired as an importance criterion, avoiding computing the conditional dominance matrix can save computation time.
- `complete` Logical. If `FALSE` then complete dominance matrix is not computed. If complete dominance is not desired as an importance criterion, avoiding computing complete dominance designations can save computation time.
quote_args  A character vector of arguments in the model submitted to model to quote() prior to submitting to the dominance analysis. This is necessary for data masked arguments (e.g., weights) to prevent them from being evaluated before being applied to the model and causing an error.

...  Not used at current.

Details
Computes two decompositions of the model’s R2 and returns a matrix of designations from which predictor relative importance determinations can be obtained.

Note in the output that the "constant" subset is associated with a component of the model that does not directly contribute to the R2 such as an intercept. The "all" subset is apportioned a component of the fit statistic but is not considered a part of the dominance analysis and therefore does not receive a rank, conditional dominance statistics, or complete dominance designations.

The input model is parsed using insight::find_predictors(), does not yet support interactions, transformations, or offsets applied in the R formula, and will fail with an error if any such terms are detected.

The model submitted must accept an formula object as a formula argument. In addition, the model object must accept the data on which the model is estimated as a data argument. Formulas submitted using object references (i.e., lm(mtcars$mpg ~ mtcars$vs)) and functions that accept data as a non-data argument (e.g., survey::svyglm() uses design) will fail with an error.

Models that return TRUE for the insight::model_info() function’s values "is_bayesian", "is_mixed", "is_gam", is_multivariate", "is_zero_inflated", or "is_hurdle" are not supported at current.

When performance::r2() returns multiple values, only the first is used by default.

The underlying domir::domin() function that implements the dominance statistic and designation computations has only been tested to R version 3.5 and will fail with an error if called in R versions < 3.5.

Value
Object of class "parameters_da".
An object of class "parameters_da" is a list of data.frames composed of the following elements:

General A data.frame which associates dominance statistics with model parameters. The variables in this data.frame include:

Parameter Parameter names.
General_Dominance Vector of general dominance statistics. The R2 ascribed to variables in the all argument are also reported here though they are not general dominance statistics.
Percent Vector of general dominance statistics normalized to sum to 1.
Ranks Vector of ranks applied to the general dominance statistics.
Subset Names of the subset to which the parameter belongs in the dominance analysis. Each other data.frame returned will refer to these subset names.

Conditional A data.frame of conditional dominance statistics. Each observation represents a subset and each variable represents an the average increment to R2 with a specific number of subsets in the model. NULL if conditional argument is FALSE.
Complete a data.frame of complete dominance designations. The subsets in the observations are compared to the subsets referenced in each variable. Whether the subset in each variable dominates the subset in each observation is represented in the logical value. NULL if complete argument is FALSE.

Author(s)

Joseph Luchman

References


See Also
domir::domin()

Examples

if (getRversion() >= "3.5.0" && require("domir") && require("performance")) {
  data(mtcars)

  # Dominance Analysis with Logit Regression
  model <- glm(vs ~ cyl + carb + mpg, data = mtcars, family = binomial())
  performance::r2(model)
  dominance_analysis(model)

  # Dominance Analysis with Weighted Logit Regression
  model_wt <- glm(vs ~ cyl + carb + mpg, data = mtcars, weights = wt, family = binomial())
  dominance_analysis(model_wt, quote_args = "weights")
}

**Description**

Compute the (conditional) equivalence test for frequentist models.

**Usage**

```r
S3 method for class 'lm'
equivalence_test(
x,
range = "default",
ci = 0.95,
rule = "classic",
verbose = TRUE,
...
)
```

```r
S3 method for class 'merMod'
equivalence_test(
x,
range = "default",
ci = 0.95,
rule = "classic",
effects = c("fixed", "random"),
verbose = TRUE,
...
)
```

**Arguments**

- **x**
  - A statistical model.

- **range**
  - The range of practical equivalence of an effect. May be "default", to automatically define this range based on properties of the model’s data.

- **ci**
  - Confidence Interval (CI) level. Default to 0.95 (95%).

- **rule**
  - Character, indicating the rules when testing for practical equivalence. Can be "bayes", "classic" or "cet". See 'Details'.

- **verbose**
  - Toggle warnings and messages.

- **effects**
  - Should parameters for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. If the calculation of random effects parameters takes too long, you may use effects = "fixed".
Details

In classical null hypothesis significance testing (NHST) within a frequentist framework, it is not possible to accept the null hypothesis, $H_0$ - unlike in Bayesian statistics, where such probability statements are possible. "... one can only reject the null hypothesis if the test statistics falls into the critical region(s), or fail to reject this hypothesis. In the latter case, all we can say is that no significant effect was observed, but one cannot conclude that the null hypothesis is true." (Pernet 2017).

One way to address this issues without Bayesian methods is Equivalence Testing, as implemented in `equivalence_test()`. While you either can reject the null hypothesis or claim an inconclusive result in NHST, the equivalence test adds a third category, "accept". Roughly speaking, the idea behind equivalence testing in a frequentist framework is to check whether an estimate and its uncertainty (i.e. confidence interval) falls within a region of "practical equivalence". Depending on the rule for this test (see below), statistical significance does not necessarily indicate whether the null hypothesis can be rejected or not, i.e. the classical interpretation of the p-value may differ from the results returned from the equivalence test.

Calculation of equivalence testing:

"bayes" - Bayesian rule (Kruschke 2018) This rule follows the “HDI+ROPE decision rule” (Kruschke, 2014, 2018) used for the Bayesian counterpart(). This means, if the confidence intervals are completely outside the ROPE, the "null hypothesis" for this parameter is "rejected". If the ROPE completely covers the CI, the null hypothesis is accepted. Else, it’s undecided whether to accept or reject the null hypothesis. Desirable results are low proportions inside the ROPE (the closer to zero the better).

"classic" - The TOST rule (Lakens 2017) This rule follows the “TOST rule”, i.e. a two one-sided test procedure (Lakens 2017). Following this rule, practical equivalence of an effect (i.e. $H_0$) is rejected, when the coefficient is statistically significant and the narrow confidence intervals (i.e. $1-2\alpha$) include or exceed the ROPE boundaries. Practical equivalence is assumed (i.e. $H_0$ accepted) when the narrow confidence intervals are completely inside the ROPE, no matter if the effect is statistically significant or not. Else, the decision whether to accept or reject $H_0$ is undecided.

"cet" - Conditional Equivalence Testing (Campbell/Gustafson 2018) The Conditional Equivalence Testing as described by Campbell and Gustafson 2018. According to this rule, practical equivalence is rejected when the coefficient is statistically significant. When the effect is not significant and the narrow confidence intervals are completely inside the ROPE, we accept $H_0$, else it is undecided.

Levels of Confidence Intervals used for Equivalence Testing: For `rule = "classic", "narrow"` confidence intervals are used for equivalence testing. "Narrow" means, the intervals is not $1 - \alpha$, but $1 - 2 \times \alpha$. Thus, if `ci = .95`, alpha is assumed to be 0.05 and internally a ci-level of 0.90 is used. `rule = "cet"` uses both regular and narrow confidence intervals, while `rule = "bayes"` only uses the regular intervals.

p-Values: The equivalence p-value is the area of the (cumulative) confidence distribution that is outside of the region of equivalence. It can be interpreted as p-value for rejecting the alternative hypothesis and accepting the null hypothesis.

Second Generation p-Value (SGPV): Second generation p-values (SGPV) were proposed as a statistic that represents “the proportion of data-supported hypotheses that are also null hypotheses” (Blume et al. 2018). This statistic is actually computed in the same way as the percentage inside
the ROPE as returned by `equivalence_test()` (see Lakens and Delacre 2020 for details on computation of the SGPV). Thus, the "inside ROPE" column reflects the SGPV.

**ROPE range:** Some attention is required for finding suitable values for the ROPE limits (argument `range`). See 'Details' in `bayestestR::rope_range()` for further information.

### Value

A data frame.

### Note

There is also a `plot()`-method implemented in the `see`-package.

### References


### See Also

For more details, see `bayestestR::equivalence_test()`. Further readings can be found in the references.

### Examples

```r
data(qol_cancer)
model <- lm(QoL ~ time + age + education, data = qol_cancer)

default rule
equivalence_test(model)

conditional equivalence test
equivalence_test(model, rule = "cet")

plot method
```
factor_analysis

Principal Component Analysis (PCA) and Factor Analysis (FA)

Description

The functions principal_components() and factor_analysis() can be used to perform a principal component analysis (PCA) or a factor analysis (FA). They return the loadings as a data frame, and various methods and functions are available to access / display other information (see the Details section).

Usage

factor_analysis(
  x,
  n = "auto",
  rotation = "none",
  sort = FALSE,
  threshold = NULL,
  standardize = TRUE,
  cor = NULL,
  ...
)

principal_components(
  x,
  n = "auto",
  rotation = "none",
  sort = FALSE,
  threshold = NULL,
  standardize = TRUE,
  ...
)

rotated_data(pca_results)

## S3 method for class 'parameters_efa'
predict(object, newdata = NULL, names = NULL, keep_na = TRUE, ...)

## S3 method for class 'parameters_efa'
print(x, digits = 2, sort = FALSE, threshold = NULL, labels = NULL, ...)

## S3 method for class 'parameters_efa'
sort(x, ...)

closest_component(pca_results)

Arguments

x A data frame or a statistical model.

n Number of components to extract. If n="all", then n is set as the number of
variables minus 1 (ncol(x)-1). If n="auto" (default) or n=NULL, the number
of components is selected through n_factors() resp. n_components(). In
reduce_parameters(), can also be "max", in which case it will select all the
components that are maximally pseudo-loaded (i.e., correlated) by at least one
variable.

rotation If not "none", the PCA / FA will be computed using the psych package. Possible
options include "varimax", "quartimax", "promax", "oblimin", "simplimax",
or "cluster" (and more). See psych::fa() for details.

sort Sort the loadings.

threshold A value between 0 and 1 indicates which (absolute) values from the loadings
should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
loading per variable (the most simple structure).

standardize A logical value indicating whether the variables should be standardized (cen-
tered and scaled) to have unit variance before the analysis (in general, such
scaling is advisable).

cor An optional correlation matrix that can be used (note that the data must still be
passed as the first argument). If NULL, will compute it by running cor() on the
passed data.

... Arguments passed to or from other methods.

pca_results The output of the principal_components() function.

object An object of class parameters_pca or parameters_efa

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

names Optional character vector to name columns of the returned data frame.

keep_na Logical, if TRUE, predictions also return observations with missing values from
the original data, hence the number of rows of predicted data and original data
is equal.

digits, labels Arguments for print().

Details

Methods and Utilities:

• n_components() and n_factors() automatically estimates the optimal number of dimen-
sions to retain.

• check_factorstructure() checks the suitability of the data for factor analysis using the
sphericity() and the sphericity() KMO measure.
• `performance::check_itemscale()` computes various measures of internal consistencies applied to the (sub)scales (i.e., components) extracted from the PCA.

• Running `summary()` returns information related to each component/factor, such as the explained variance and the Eigenvalues.

• Running `get_scores()` computes scores for each subscale.

• Running `closest_component()` will return a numeric vector with the assigned component index for each column from the original data frame.

• Running `rotated_data()` will return the rotated data, including missing values, so it matches the original data frame.

• Running `plot()` visually displays the loadings (that requires the `see-package` to work).

**Complexity:** Complexity represents the number of latent components needed to account for the observed variables. Whereas a perfect simple structure solution has a complexity of 1 in that each item would only load on one factor, a solution with evenly distributed items has a complexity greater than 1 (Hofman, 1978; Pettersson and Turkheimer, 2010).

**Uniqueness:** Uniqueness represents the variance that is ‘unique’ to the variable and not shared with other variables. It is equal to 1 minus communality (variance that is shared with other variables). A uniqueness of 0.20 suggests that 20% of that variable’s variance is not shared with other variables in the overall factor model. The greater ‘uniqueness’ the lower the relevance of the variable in the factor model.

**MSA:** MSA represents the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (Kaiser and Rice, 1974) for each item. It indicates whether there is enough data for each factor give reliable results for the PCA. The value should be > 0.6, and desirable values are > 0.8 (Tabachnick and Fidell, 2013).

**PCA or FA?:** There is a simplified rule of thumb that may help do decide whether to run a factor analysis or a principal component analysis:

• Run `factor analysis` if you assume or wish to test a theoretical model of latent factors causing observed variables.

• Run `principal component analysis` If you want to simply reduce your correlated observed variables to a smaller set of important independent composite variables.

(Source: CrossValidated)

**Computing Item Scores:** Use `get_scores()` to compute scores for the "subscales" represented by the extracted principal components. `get_scores()` takes the results from `principal_components()` and extracts the variables for each component found by the PCA. Then, for each of these "subscales", raw means are calculated (which equals adding up the single items and dividing by the number of items). This results in a sum score for each component from the PCA, which is on the same scale as the original, single items that were used to compute the PCA. One can also use `predict()` to back-predict scores for each component, to which one can provide `newdata` or a vector of names for the components.

**Explained Variance and Eigenvalues:** Use `summary()` to get the Eigenvalues and the explained variance for each extracted component. The eigenvectors and eigenvalues represent the "core" of a PCA: The eigenvectors (the principal components) determine the directions of the new feature space, and the eigenvalues determine their magnitude. In other words, the eigenvalues explain the variance of the data along the new feature axes.
factor_analysis

Value

A data frame of loadings.

References


Examples

library(parameters)

# Principal Component Analysis (PCA) -------------------
if (require("psych")) {
in principal_components(mtcars[, 1:7], n = "all", threshold = 0.2)
in principal_components(mtcars[, 1:7],
in  n = 2, rotation = "oblimin",
in   threshold = "max", sort = TRUE)
in principal_components(mtcars[, 1:7], n = 2, threshold = 2, sort = TRUE)
}

pca <- principal_components(mtcars[, 1:5], n = 2, rotation = "varimax")
pca # Print loadings
summary(pca) # Print information about the factors
predict(pca, names = c("Component1", "Component2")) # Back-predict scores

# which variables from the original data belong to which extracted component?
closest_component(pca)
# rotated_data(pca) # TODO: doesn't work

# Automated number of components
principal_components(mtcars[, 1:4], n = "auto")

# Factor Analysis (FA) -------------------
if (require("psych")) {
in factor_analysis(mtcars[, 1:7], n = "all", threshold = 0.2)
in factor_analysis(mtcars[, 1:7], n = 2, rotation = "oblimin", threshold = "max", sort = TRUE)
in factor_analysis(mtcars[, 1:7], n = 2, threshold = 2, sort = TRUE)
}
efa <- factor_analysis(mtcars[, 1:5], n = 2)
summary(efa)
predict(efa)

# Automated number of components
factor_analysis(mtcars[, 1:4], n = "auto")

fish  Sample data set

Description
A sample data set, used in tests and some examples.

format_df_adjust Format the name of the degrees-of-freedom adjustment methods

Description
Format the name of the degrees-of-freedom adjustment methods.

Usage
format_df_adjust(
  method,
  approx_string = "-approximated",
  dof_string = " degrees of freedom"
)

Arguments
method Name of the method.
approx_string, dof_string
Suffix added to the name of the method in the returned string.

Value
A formatted string.

Examples
library(parameters)

format_df_adjust("kenward")
format_df_adjust("kenward", approx_string = ",", dof_string = " DoF")
format_order

Order (first, second, ...) formatting

Description
Format order.

Usage
format_order(order, textual = TRUE, ...)

Arguments
- order: value or vector of orders.
- textual: Return number as words. If FALSE, will run insight::format_value() if textual is FALSE.
- ...: Arguments to be passed to insight::format_value() if textual is FALSE.

Value
A formatted string.

Examples
format_order(2)
format_order(8)
format_order(25, textual = FALSE)

format_parameters
Parameter names formatting

Description
This function formats the names of model parameters (coefficients) to make them more human-readable.

Usage
format_parameters(model, ...)

## Default S3 method:
format_parameters(model, brackets = c("[", "]"), ...)

Arguments
- model: A statistical model.
- ...: Currently not used.
- brackets: A character vector of length two, indicating the opening and closing brackets.
Value

A (names) character vector with formatted parameter names. The value names refer to the original names of the coefficients.

Interpretation of Interaction Terms

Note that the interpretation of interaction terms depends on many characteristics of the model. The number of parameters, and overall performance of the model, can differ or not between a * b a : b, and a / b, suggesting that sometimes interaction terms give different parameterizations of the same model, but other times it gives completely different models (depending on a or b being factors of covariates, included as main effects or not, etc.). Their interpretation depends of the full context of the model, which should not be inferred from the parameters table alone - rather, we recommend to use packages that calculate estimated marginal means or marginal effects, such as modelbased, emmeans, ggeffects, or marginaleffects. To raise awareness for this issue, you may use print(..., show_formula=TRUE) to add the model-specification to the output of the print() method for model_parameters().

Examples

```r
model <- lm(Sepal.Length ~ Species * Sepal.Width, data = iris)
format_parameters(model)

model <- lm(Sepal.Length ~ Petal.Length + (Species / Sepal.Width), data = iris)
format_parameters(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2), data = iris)
format_parameters(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2, raw = TRUE), data = iris)
format_parameters(model)
```

---

format_p_adjust Format the name of the p-value adjustment methods

Description

Format the name of the p-value adjustment methods.

Usage

format_p_adjust(method)

Arguments

method Name of the method.
get_scores

Value

A string with the full surname(s) of the author(s), including year of publication, for the adjustment-
method.

Examples

library(parameters)

format_p_adjust("holm")
format_p_adjust("bonferroni")

---

get_scores

Get Scores from Principal Component Analysis (PCA)

Description

get_scores() takes n_items amount of items that load the most (either by loading cutoff or num-
ber) on a component, and then computes their average.

Usage

get_scores(x, n_items = NULL)

Arguments

x An object returned by principal_components().
n_items Number of required (i.e. non-missing) items to build the sum score. If NULL, the
value is chosen to match half of the number of columns in a data frame.

Details

get_scores() takes the results from principal_components() and extracts the variables for each
component found by the PCA. Then, for each of these "subscales", row means are calculated (which
equals adding up the single items and dividing by the number of items). This results in a sum score
for each component from the PCA, which is on the same scale as the original, single items that were
used to compute the PCA.

Value

A data frame with subscales, which are average sum scores for all items from each component.
Examples

```r
if (require("psych")) {
 pca <- principal_components(mtcars[, 1:7], n = 2, rotation = "varimax")

 # PCA extracted two components
 pca

 # assignment of items to each component
 closest_component(pca)

 # now we want to have sum scores for each component
 get_scores(pca)

 # compare to manually computed sum score for 2nd component, which
 # consists of items "hp" and "qsec"
 (mtcars$hp + mtcars$qsec) / 2
}
```

Description

Compute and extract model parameters. The available options and arguments depend on the modeling package and model class. Follow one of these links to read the model-specific documentation:

- **Default method**: `lm`, `glm`, `stats`, `censReg`, `MASS`, `survey`, ...
- **Additive models**: `bamlss`, `gamss`, `mgcv`, `scam`, `VGAM`, `Gam`, `gamm`, ...
- **ANOVA**: `afex`, `aov`, `anova`, ...
- **Bayesian**: `BayesFactor`, `blavaan`, `brms`, `MCMCglmm`, `posterior`, `rstanarm`, `bayesQR`, `bcpml`, `BGGM`, `blrm`, `brm`, `mcmc.list`, `MCMCglmm`, ...
- **Clustering**: `hclust`, `kmeans`, `mclust`, `pam`, ...
- **Correlations, t-tests, etc.**: `lmtest`, `htest`, `pairwise.htest`, ...
- **Meta-Analysis**: `metaBMA`, `metafor`, `metaplus`, ...
- **Mixed models**: `cplm`, `glmmTMB`, `lme4`, `lmerTest`, `nlme`, `ordinal`, `robustlmm`, `spaMM`, `mixed`, `MixMod`, ...
- **Multinomial, ordinal and cumulative link**: `brglm2`, `DirichletReg`, `nnet`, `ordinal`, `m1m`, ...
- **Multiple imputation**: `mice`
- **PCA, FA, CFA, SEM**: `FactoMineR`, `lavaan`, `psych`, `sem`, ...
- **Zero-inflated and hurdle**: `cplm`, `mhurdle`, `pscl`, ...
- **Other models**: `aod`, `bbmle`, `betareg`, `emmeans`, `epiR`, `ggeffects`, `glmx`, `ivfixed`, `ivprobit`, `JRM`, `lmodel2`, `logitsf`, `marginaleffects`, `margins`, `maxLik`, `mediation`, `mfx`, `multcomp`, `mvord`, `plm`, `PMCMRplus`, `quartreg`, `selection`, `systemfit`, `tidymodels`, `varEST`, `WRS2`, `bfsl`, `deltaMethod`, `fitdistr`, `mjoint`, `mle`, `model.avg`, ...
model_parameters

Usage

model_parameters(model, ...)  
parameters(model, ...)

Arguments

model                   Statistical Model.
...                     Arguments passed to or from other methods. Non-documented arguments are
digits, p_digits, ci_digits and footer_digits to set the number of digits for the output. group can also be passed to the print() method. See details in print.parameters_model() and 'Examples' in model_parameters.default().

Value

A data frame of indices related to the model’s parameters.

Standardization of model coefficients

Standardization is based on standardize_parameters(). In case of standardize = "refit", the data used to fit the model will be standardized and the model is completely refitted. In such cases, standard errors and confidence intervals refer to the standardized coefficient. The default, standardize = "refit", never standardizes categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages or other software packages (like SPSS). To mimic behaviour of SPSS or packages such as lm.beta, use standardize = "basic".

Standardization Methods

- **refit**: This method is based on a complete model re-fit with a standardized version of the data. Hence, this method is equal to standardizing the variables before fitting the model. It is the "purest" and the most accurate (Neter et al., 1989), but it is also the most computationally costly and long (especially for heavy models such as Bayesian models). This method is particularly recommended for complex models that include interactions or transformations (e.g., polynomial or spline terms). The robust (default to FALSE) argument enables a robust standardization of data, i.e., based on the median and MAD instead of the mean and SD. See standardize() for more details. Note that standardize_parameters(method = "refit") may not return the same results as fitting a model on data that has been standardized with standardize(): standardize_parameters() used the data used by the model fitting function, which might not be same data if there are missing values. see the remove_na argument in standardize().

- **posthoc**: Post-hoc standardization of the parameters, aiming at emulating the results obtained by "refit" without refitting the model. The coefficients are divided by the standard deviation (or MAD if robust) of the outcome (which becomes their expression 'unit'). Then, the coefficients related to numeric variables are additionally multiplied by the standard deviation (or MAD if robust) of the related terms, so that they correspond to changes of 1 SD of the predictor (e.g., "A change in 1 SD of x is related to a change of 0.24 of the SD of y"). This does not apply to binary variables or factors, so the coefficients are still related to changes in levels. This method is not accurate and tend to give aberrant results when interactions are specified.
• **basic**: This method is similar to method = "posthoc", but treats all variables as continuous: it also scales the coefficient by the standard deviation of model’s matrix’ parameter of factors levels (transformed to integers) or binary predictors. Although being inappropriate for these cases, this method is the one implemented by default in other software packages, such as `lm.beta::lm.beta()`.

• **smart** (Standardization of Model’s parameters with Adjustment, Reconnaissance and Transformation - *experimental*): Similar to method = "posthoc" in that it does not involve model refitting. The difference is that the SD (or MAD if robust) of the response is computed on the relevant section of the data. For instance, if a factor with 3 levels A (the intercept), B and C is entered as a predictor, the effect corresponding to B vs. A will be scaled by the variance of the response at the intercept only. As a results, the coefficients for effects of factors are similar to a Glass’ delta.

• **pseudo** (*for 2-level (G)LMMs only*): In this (post-hoc) method, the response and the predictor are standardized based on the level of prediction (levels are detected with `performance::check_heterogeneity_bias()`): Predictors are standardized based on their SD at level of prediction (see also `datawizard::demean()`); The outcome (in linear LMMs) is standardized based on a fitted random-intercept-model, where $\sqrt{\text{random-intercept-variance}}$ is used for level 2 predictors, and $\sqrt{\text{residual-variance}}$ is used for level 1 predictors (Hoffman 2015, page 342). A warning is given when a within-group variable is found to have access between-group variance.

**Labeling the Degrees of Freedom**

Throughout the `parameters` package, we decided to label the residual degrees of freedom `df_error`. The reason for this is that these degrees of freedom not always refer to the residuals. For certain models, they refer to the estimate error - in a linear model these are the same, but in - for instance - any mixed effects model, this isn’t strictly true. Hence, we think that `df_error` is the most generic label for these degrees of freedom.

**Confidence intervals and approximation of degrees of freedom**

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The `ci_method` argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

**Classical methods:**

Classical inference is generally based on the **Wald method**. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald":

• Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a *t-distribution with residual df*); p-values computed using the Wald method with a *t-distribution with residual df*. For other models, CIs computed using the Wald method (SE and a *normal distribution*); p-values computed using the Wald method with a *normal distribution*.  

"normal"
- Applies to *non-Bayesian models*. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"

- Applies to *non-Bayesian models*. Compute Wald CIs and p-values, but always use a *t-distribution with residual df* when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

**Methods for mixed models:**

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

- Applies to *linear mixed models*. CIs computed using the Wald method (*SE* and a *t-distribution with Satterthwaite df*); p-values computed using the Wald method with a *t-distribution with Satterthwaite df*.

"kenward"

- Applies to *linear mixed models*. CIs computed using the Wald method (*Kenward-Roger SE* and a *t-distribution with Kenward-Roger df*); p-values computed using the Wald method with Kenward-Roger *SE* and *t-distribution with Kenward-Roger df*.

"ml1"

- Applies to *linear mixed models*. CIs computed using the Wald method (*SE* and a *t-distribution with m-l-1 approximated df*); p-values computed using the Wald method with a *t-distribution with m-l-1 approximated df*. See `ci_ml1()`.

"betwithin"

- Applies to *linear mixed models* and *generalized linear mixed models*. CIs computed using the Wald method (*SE* and a *t-distribution with between-within df*); p-values computed using the Wald method with a *t-distribution with between-within df*. See `ci_betwithin()`.

**Likelihood-based methods:**

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a $\chi^2$-squared distribution to compute CIs and p-values.

"profile"

- Applies to *non-Bayesian models* of class `glm`, `polr` or `glmmTMB`. CIs computed by *profiling the likelihood curve for a parameter*, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a *normal-distribution* (note: this might change in a future update!)

"uniroot"
• Applies to non-Bayesian models of class \texttt{glmmTMB}. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if \texttt{bootstrap = TRUE}. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See \texttt{bayestestR::eti()}. 

"hdi"

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if \texttt{bootstrap = TRUE}. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See \texttt{bayestestR::hdi()}. 

"bci" (or "bcai")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if \texttt{bootstrap = TRUE}. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See \texttt{bayestestR::bci()}. 

"si"

• Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See \texttt{bayestestR::si()}. 

"boot"

• Applies to non-Bayesian models of class \texttt{merMod}. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (\texttt{bayestestR::p_direction()}), which is converted into a p-value using \texttt{bayestestR::pd_to_p()}. 


Interpretation of Interaction Terms

Note that the interpretation of interaction terms depends on many characteristics of the model. The number of parameters, and overall performance of the model, can differ or not between \( a \times b \) and \( a / b \), suggesting that sometimes interaction terms give different parameterizations of the same model, but other times it gives completely different models (depending on \( a \) or \( b \) being factors of covariates, included as main effects or not, etc.). Their interpretation depends of the full context of the model, which should not be inferred from the parameters table alone - rather, we recommend to use packages that calculate estimated marginal means or marginal effects, such as `modelbased`, `emmeans`, `ggeffects`, or `marginaleffects`. To raise awareness for this issue, you may use `print(..., show_formula=TRUE)` to add the model-specification to the output of the `print()` method for `model_parameters()`.

Global Options to Customize Messages when Printing

The `verbose` argument can be used to display or silence messages and warnings for the different functions in the `parameters` package. However, some messages providing additional information can be displayed or suppressed using `options()`:

- `parameters_summary`: `options(parameters_summary = TRUE)` will override the summary argument in `model_parameters()` and always show the model summary for non-mixed models.
- `parameters_mixed_summary`: `options(parameters_mixed_summary = TRUE)` will override the summary argument in `model_parameters()` for mixed models, and will then always show the model summary.
- `parameters_cimethod`: `options(parameters_cimethod = TRUE)` will show the additional information about the approximation method used to calculate confidence intervals and p-values. Set to `FALSE` to hide this message when printing `model_parameters()` objects.
- `parameters_exponentiate`: `options(parameters_exponentiate = TRUE)` will show the additional information on how to interpret coefficients of models with log-transformed response variables or with log-/logit-links when the exponentiate argument in `model_parameters()` is not `TRUE`. Set this option to `FALSE` to hide this message when printing `model_parameters()` objects.

Note

The `print()` method has several arguments to tweak the output. There is also a `plot()`-method implemented in the `see`-package, and a dedicated method for use inside rmarkdown files, `print_md()`.

For developers, if speed performance is an issue, you can use the (undocumented) `pretty_names` argument, e.g. `model_parameters(..., pretty_names = FALSE)`. This will skip the formatting of the coefficient names and make `model_parameters()` faster.

References

model_parameters.aov

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

---

model_parameters.aov  Parameters from ANOVAs

Description

Parameters from ANOVAs

Usage

```r
S3 method for class 'aov'
model_parameters(
 model,
 omega_squared = NULL,
 eta_squared = NULL,
 epsilon_squared = NULL,
 df_error = NULL,
 type = NULL,
 ci = NULL,
 alternative = NULL,
 test = NULL,
 power = FALSE,
 keep = NULL,
 drop = NULL,
 parameters = keep,
 table_wide = FALSE,
 verbose = TRUE,
 ...
)

S3 method for class 'anova'
model_parameters(
 model,
 omega_squared = NULL,
 eta_squared = NULL,
 epsilon_squared = NULL,
 df_error = NULL,
 type = NULL,
 ci = NULL,
 alternative = NULL,
 test = NULL,
 power = FALSE,
 keep = NULL,
 drop = NULL,
 parameters = keep,
 table_wide = FALSE,
 verbose = TRUE,
 ...
)
```
parameters = keep,
    table_wide = FALSE,
    verbose = TRUE,
    ...
)

## S3 method for class 'aovlist'
model_parameters(
    model,
    omega_squared = NULL,
    eta_squared = NULL,
    epsilon_squared = NULL,
    df_error = NULL,
    type = NULL,
    ci = NULL,
    alternative = NULL,
    test = NULL,
    power = FALSE,
    keep = NULL,
    drop = NULL,
    parameters = keep,
    table_wide = FALSE,
    verbose = TRUE,
    ...
)

## S3 method for class 'afex_aov'
model_parameters(
    model,
    omega_squared = NULL,
    eta_squared = NULL,
    epsilon_squared = NULL,
    df_error = NULL,
    type = NULL,
    keep = NULL,
    drop = NULL,
    parameters = keep,
    verbose = TRUE,
    ...
)

## S3 method for class 'anova.rms'
model_parameters(
    model,
    omega_squared = NULL,
    eta_squared = NULL,
    epsilon_squared = NULL,
    df_error = NULL,
model_parameters.aov

    type = NULL,
    ci = NULL,
    alternative = NULL,
    test = NULL,
    power = FALSE,
    keep = NULL,
    drop = NULL,
    parameters = keep,
    table_wide = FALSE,
    verbose = TRUE,
    ...
)

## S3 method for class 'Anova.mlm'
model_parameters(
    model,
    omega_squared = NULL,
    eta_squared = NULL,
    epsilon_squared = NULL,
    df_error = NULL,
    type = NULL,
    ci = NULL,
    alternative = NULL,
    test = NULL,
    power = FALSE,
    keep = NULL,
    drop = NULL,
    parameters = keep,
    table_wide = FALSE,
    verbose = TRUE,
    ...
)

## S3 method for class 'maov'
model_parameters(
    model,
    omega_squared = NULL,
    eta_squared = NULL,
    epsilon_squared = NULL,
    df_error = NULL,
    type = NULL,
    ci = NULL,
    alternative = NULL,
    test = NULL,
    power = FALSE,
    keep = NULL,
    drop = NULL,
    parameters = keep,
table_wide = FALSE,
verbose = TRUE,
...
)

Arguments

model Object of class `aov()`, `anova()`, `aovlist`, `Gam`, `manova()`, `Anova.mlm`, `afex_aov` or `maov`.
omega_squared Compute omega squared as index of effect size. Can be "partial" (the default, adjusted for effect size) or "raw".
eta_squared Compute eta squared as index of effect size. Can be "partial" (the default, adjusted for effect size), "raw" or "adjusted" (the latter option only for ANOVA-tables from mixed models).
epsilon_squared Compute epsilon squared as index of effect size. Can be "partial" (the default, adjusted for effect size) or "raw".
df_error Denominator degrees of freedom (or degrees of freedom of the error estimate, i.e., the residuals). This is used to compute effect sizes for ANOVA-tables from mixed models. See 'Examples'. (Ignored for `afex_aov`.)
type Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3, ANOVA-tables using `car::Anova()` will be returned. (Ignored for `afex_aov`.)

ci Confidence Interval (CI) level for effect sizes `omega_squared`, `eta_squared` etc. The default, `NULL`, will compute no confidence intervals. `ci` should be a scalar between 0 and 1.
alternative A character string specifying the alternative hypothesis; Controls the type of CI returned: "two.sided" (default, two-sided CI), "greater" or "less" (one-sided CI). Partial matching is allowed (e.g., "g", "l", "two"...). See section One-Sided CIs in the effectsize_CIs vignette.
test String, indicating the type of test for `Anova.mlm` to be returned. If "multivariate" (or `NULL`), returns the summary of the multivariate test (that is also given by the `print`-method). If `test = "univariate"`, returns the summary of the univariate test.
power Logical, if TRUE, adds a column with power for each parameter.
keep Character containing a regular expression pattern that describes the parameters that should be included (for `keep`) or excluded (for `drop`) in the returned data frame. `keep` may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If `keep` is a character vector, every parameter name in the "Parameter" column that matches the regular expression in `keep` will be selected from the returned data frame (and vice versa, all parameter names matching `drop` will be excluded). Furthermore, if `keep` has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If `keep` is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where `model_parameters()` returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

```
drop See keep.
parameters Deprecated, alias for keep.
table_wide Logical that decides whether the ANOVA table should be in wide format, i.e. should the numerator and denominator degrees of freedom be in the same row. Default: FALSE.
verbose Toggle warnings and messages.
... Arguments passed to or from other methods.
```

### Value

A data frame of indices related to the model’s parameters.

### Note

For ANOVA-tables from mixed models (i.e. `anova(lmer())`), only partial or adjusted effect sizes can be computed. Note that type 3 ANOVAs with interactions involved only give sensible and informative results when covariates are mean-centred and factors are coded with orthogonal contrasts (such as those produced by `contr.sum`, `contr.poly`, or `contr.helmert`, but not by the default `contr.treatment`).

### Examples

```r
if (requireNamespace("effectsize", quietly = TRUE)) {
 df <- iris
 df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")

 model <- aov(Sepal.Length ~ Sepal.Big, data = df)
 model_parameters(
 model,
 omega_squared = "partial",
 eta_squared = "partial",
 epsilon_squared = "partial"
)

 model_parameters(
 model,
 omega_squared = "partial",
 eta_squared = "partial",
 ci = .9
)

 model <- anova(lm(Sepal.Length ~ Sepal.Big, data = df))
 model_parameters(model)
 model_parameters(
 model,
 omega_squared = "partial",
```
model <- aov(Sepal.Length ~ Sepal.Big + Error(Species), data = df)
model_parameters(model)

## Not run:
if (require("lme4")) {
  mm <- lmer(Sepal.Length ~ Sepal.Big + Petal.Width + (1 | Species),
             data = df)
  model <- anova(mm)

  # simple parameters table
  model_parameters(model)

  # parameters table including effect sizes
  model_parameters(
    model,
    eta_squared = "partial",
    ci = .9,
    df_error = dof_satterthwaite(mm)[2:3]
  )
}
## End(Not run)

---

**model_parameters.befa**  
*Parameters from Bayesian Exploratory Factor Analysis*

**Description**

Format Bayesian Exploratory Factor Analysis objects from the BayesFM package.

**Usage**

```r
S3 method for class 'befa'
model_parameters(
 model,
 sort = FALSE,
 centrality = "median",
 dispersion = FALSE,
 ci = 0.95,
 ci_method = "eti",
 test = NULL,
 verbose = TRUE,
 ...
)
```

model_parameters.BFBayesFactor

Parameters from BayesFactor objects

Arguments

- **model**: Bayesian EFA created by the `BayesFM:::befa`.
- **sort**: Sort the loadings.
- **centrality**: The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".
- **dispersion**: Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD and MAD for mean and median, respectively).
- **ci**: Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to .95 (95%).
- **ci_method**: The type of index used for Credible Interval. Can be "ETI" (default, see `eti()`), "HDI" (see `hdi()`), "BCI" (see `bci()`), "SPI" (see `spi()`), or "SI" (see `si()`).
- **test**: The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding `bayestestR` function is called (e.g. `rope()` or `p_direction()`) and its results included in the summary output.
- **verbose**: Toggle warnings and messages.
- **...**: Arguments passed to or from other methods.

Value

A data frame of loadings.

Examples

```r
library(parameters)

if (require("BayesFM")) {
 efa <- BayesFM::befa(mtcars, iter = 1000)
 results <- model_parameters(efa, sort = TRUE)
 results
 efa_to_cfa(results)
}
```

Description

Parameters from BFBayesFactor objects from `{BayesFactor}` package.
Usage

```r
S3 method for class 'BFBayesFactor'
model_parameters(
 model,
 centrality = "median",
 dispersion = FALSE,
 ci = 0.95,
 ci_method = "etik",
 test = c("pd", "rope"),
 rope_range = "default",
 rope_ci = 0.95,
 priors = TRUE,
 cohens_d = NULL,
 cramers_v = NULL,
 include_proportions = FALSE,
 verbose = TRUE,
 ...
)
```

Arguments

- `model`: Object of class BFBayesFactor.
- `centrality`: The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".
- `dispersion`: Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD and MAD for mean and median, respectively).
- `ci`: Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to .95 (95%).
- `ci_method`: The type of index used for Credible Interval. Can be "ETI" (default, see eti()), "HDI" (see hdi()), "BCI" (see bci()), "SPI" (see spi()), or "SI" (see si()).
- `test`: The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding bayestestR function is called (e.g. rope() or p_direction()) and its results included in the summary output.
- `rope_range`: ROPE’s lower and higher bounds. Should be a list of two values (e.g., c(-0.1, 0.1)) or "default". If "default", the bounds are set to x ± 0.1*SD(response).
- `rope_ci`: The Credible Interval (CI) probability, corresponding to the proportion of HDI, to use for the percentage in ROPE.
- `priors`: Add the prior used for each parameter.
- `cohens_d`: If TRUE, compute Cohens’ d as index of effect size. Only applies to objects from ttestBF(). See effectsize::cohens_d() for details.
- `cramers_v`: Compute Cramer’s V or phi as index of effect size. Can be "raw" or "adjusted" (effect size will be bias-corrected). Only applies to objects from chisq.test().
include_proportions

Logical that decides whether to include posterior cell proportions/counts for Bayesian contingency table analysis (from `BayesFactor::contingencyTableBF()`). Defaults to `FALSE`, as this information is often redundant.

verbose

Toggle warnings and messages.

Additional arguments to be passed to or from methods.

Details

The meaning of the extracted parameters:

- For `BayesFactor::ttestBF()`: Difference is the raw difference between the means.
- For `BayesFactor::correlationBF()`: rho is the linear correlation estimate (equivalent to Pearson's $r$).
- For `BayesFactor::lmBF()`/`BayesFactor::generalTestBF()`/`BayesFactor::regressionBF()`/`BayesFactor::anovaBF()`: in addition to parameters of the fixed and random effects, there are: mu is the (mean-centered) intercept; sig2 is the model’s sigma; g / g_* are the g parameters; See the *Bayes Factors for ANOVAs* paper (doi:10.1016/j.jmp.2012.08.001).

Value

A data frame of indices related to the model’s parameters.

Examples

```r
if (require("BayesFactor")) {
 # Bayesian t-test
 model <- ttestBF(x = rnorm(100, 1, 1))
 model_parameters(model)
 model_parameters(model, cohens_d = TRUE, ci = .9)

 # Bayesian contingency table analysis
 data(raceDolls)
 bf <- contingencyTableBF(raceDolls, sampleType = "indepMulti", fixedMargin = "cols")
 model_parameters(bf,
 centrality = "mean",
 dispersion = TRUE,
 verbose = FALSE,
 cramers_v = TRUE)
}
```
Parameters from Generalized Additive (Mixed) Models

Description

Extract and compute indices and measures to describe parameters of generalized additive models (GAM(M)s).

Usage

```r
S3 method for class 'cgam'
model_parameters(
 model,
 ci = 0.95,
 ci_method = "residual",
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 parameters = keep,
 verbose = TRUE,
 ...
)

S3 method for class 'gam'
model_parameters(
 model,
 ci = 0.95,
 ci_method = "residual",
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 parameters = keep,
 verbose = TRUE,
 ...
)

S3 method for class 'gamlss'
model_parameters(
 model,
 ...
)
```
ci = 0.95,
ci_method = "residual",
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
...)

## S3 method for class 'gamm'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  verbose = TRUE,
  ...
)

## S3 method for class 'Gam'
model_parameters(
  model,
  omega_squared = NULL,
  eta_squared = NULL,
  epsilon_squared = NULL,
  df_error = NULL,
type = NULL,
table_wide = FALSE,
  verbose = TRUE,
  ...
)

## S3 method for class 'scam'
model_parameters(
  model,
  ci = 0.95,
  ci_method = "residual",
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
...
)

## S3 method for class 'vgam'
model_parameters(
  model,
  ci = 0.95,
  ci_method = "residual",
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  parameters = keep,
  verbose = TRUE,
  ...
)

Arguments

model  A gam/gamm model.

.ci  Confidence Interval (CI) level. Default to 0.95 (95%).

ci_method  Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirho", "m1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in \code{model_parameters()} for further details. When \code{ci_method=NULL}, in most cases "wald" is used then.

bootstrap  Should estimates be based on bootstrapped model? If \code{TRUE}, then arguments of Bayesian regressions apply (see also \code{bootstrap_parameters()}).

iterations  The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

standardize  The method used for standardizing the parameters. Can be \code{NULL} (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in \code{standardize_parameters()}. Important:

• The "refit" method does not standardized categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as \code{lm.beta}) or other software packages (like SPSS). To mimic such behaviours, either use \code{standardize="basic"} or standardize the data with \code{datawizard::standardize(force=TRUE) before} fitting the model.
• For mixed models, when using methods other than "refit", only the fixed effects will be returned.
• Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. **Note:** Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

keep Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop See keep.

parameters Deprecated, alias for keep.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model(), and arguments like ci_method are passed down to bayestestR::describe_posterior().

omega_squared Compute omega squared as index of effect size. Can be "partial" (the default, adjusted for effect size) or "raw".

eta_squared Compute eta squared as index of effect size. Can be "partial" (the default, adjusted for effect size), "raw" or "adjusted" (the latter option only for ANOVA-tables from mixed models).
epsilon_squared
Compute epsilon squared as index of effect size. Can be "partial" (the default, adjusted for effect size) or "raw".

df_error
Denominator degrees of freedom (or degrees of freedom of the error estimate, i.e., the residuals). This is used to compute effect sizes for ANOVA-tables from mixed models. See 'Examples'. (Ignored for afex_aov.)

type
Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3, ANOVA-tables using car::Anova() will be returned. (Ignored for afex_aov.)

table_wide
Logical that decides whether the ANOVA table should be in wide format, i.e. should the numerator and denominator degrees of freedom be in the same row. Default: FALSE.

Details
The reporting of degrees of freedom for the spline terms slightly differs from the output of summary(model), for example in the case of mgcv::gam(). The estimated degrees of freedom, column edf in the summary-output, is named df in the returned data frame, while the column df_error in the returned data frame refers to the residual degrees of freedom that are returned by df.residual(). Hence, the values in the the column df_error differ from the column Ref.df from the summary, which is intentional, as these reference degrees of freedom “is not very interpretable” (web).

Value
A data frame of indices related to the model’s parameters.

See Also
insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples
library(parameters)
if (require("mgcv")) {
  dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
  model <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
  model_parameters(model)
}

Description
Parameters from (linear) mixed models.
Usage

```r
S3 method for class 'cpglmm'
model_parameters(model,
 ci = 0.95,
 ci_method = NULL,
 ci_random = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 effects = "all",
 group_level = FALSE,
 exponentiate = FALSE,
 p_adjust = NULL,
 include_sigma = FALSE,
 verbose = TRUE,
 df_method = ci_method,
 ...
)
```

```r
S3 method for class 'glmmTMB'
model_parameters(model,
 ci = 0.95,
 ci_method = "wald",
 ci_random = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 effects = "all",
 component = "all",
 group_level = FALSE,
 exponentiate = FALSE,
 p_adjust = NULL,
 wb_component = TRUE,
 summary = getOption("parameters_mixed_summary", FALSE),
 keep = NULL,
 drop = NULL,
 parameters = keep,
 verbose = TRUE,
 df_method = ci_method,
 include_sigma = FALSE,
 ...
)
```

```r
S3 method for class 'merMod'
model_parameters(model,
 ...
)
```
ci = 0.95,
ci_method = NULL,
ci_random = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
effects = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
wb_component = TRUE,
summary = getOption("parameters_mixed_summary", FALSE),
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
df_method = ci_method,
include_sigma = FALSE,
vcov = NULL,
vcov_args = NULL,
...)

## S3 method for class 'merModList'
model_parameters(
  model,
  ci = 0.95,
exponentiate = FALSE,
p_adjust = NULL,
verbose = TRUE,
...)

## S3 method for class 'mixed'
model_parameters(
  model,
  ci = 0.95,
ci_method = "wald",
ci_random = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
effects = "all",
component = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
wb_component = TRUE,
model_parameters.cpglm

summary = getOption("parameters_mixed_summary", FALSE),
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
df_method = ci_method,
include_sigma = FALSE,
... )

## S3 method for class 'MixMod'
model_parameters(  
  model,
  ci = 0.95,
  ci_method = "wald",
  ci_random = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  effects = "all",
  component = "all",
  group_level = FALSE,
  exponentiate = FALSE,
  p_adjust = NULL,
  wb_component = TRUE,
  summary = getOption("parameters_mixed_summary", FALSE),
  keep = NULL,
  drop = NULL,
  parameters = keep,
  verbose = TRUE,
  df_method = ci_method,
  include_sigma = FALSE,
  ...
)

## S3 method for class 'mixor'
model_parameters(  
  model,
  ci = 0.95,
  effects = "all",
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  verbose = TRUE,
  include_sigma = FALSE,
  ...
)
## S3 method for class 'lme'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  ci_random = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  effects = "all",
  group_level = FALSE,
  exponentiate = FALSE,
  p_adjust = NULL,
  wb_component = TRUE,
  summary = getOption("parameters_mixed_summary", FALSE),
  keep = NULL,
  drop = NULL,
  parameters = keep,
  verbose = TRUE,
  df_method = ci_method,
  include_sigma = FALSE,
  vcov = NULL,
  vcov_args = NULL,
  ...
)

## S3 method for class 'clmm2'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "scale"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'clmm'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  ci_random = NULL,
  bootstrap = FALSE,
model_parameters.cpglmm

    iterations = 1000,
    standardize = NULL,
    effects = "all",
    group_level = FALSE,
    exponentiate = FALSE,
    p_adjust = NULL,
    include_sigma = FALSE,
    verbose = TRUE,
    df_method = ci_method,
...
)

## S3 method for class 'rlmerMod'
model_parameters(
    model,
    ci = 0.95,
    ci_method = NULL,
    ci_random = NULL,
    bootstrap = FALSE,
    iterations = 1000,
    standardize = NULL,
    effects = "all",
    group_level = FALSE,
    exponentiate = FALSE,
    p_adjust = NULL,
    include_sigma = FALSE,
    verbose = TRUE,
    df_method = ci_method,
...
)

## S3 method for class 'HLfit'
model_parameters(
    model,
    ci = 0.95,
    ci_method = NULL,
    bootstrap = FALSE,
    iterations = 1000,
    standardize = NULL,
    exponentiate = FALSE,
    p_adjust = NULL,
    summary = getOption("parameters_summary", FALSE),
    keep = NULL,
    drop = NULL,
    parameters = keep,
    verbose = TRUE,
    vcov = NULL,
    vcov_args = NULL,
Arguments

model
A mixed model.

ci
Confidence Interval (CI) level. Default to 0.95 (95%).

ci_method
Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirout", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in **model_parameters()** for further details. When ci_method = NULL, in most cases "wald" is used then.

ci_random
Logical, if TRUE, includes the confidence intervals for random effects parameters. Only applies if effects is not "fixed" and if ci is not NULL. Set ci_random = FALSE if computation of the model summary is too much time consuming. By default, ci_random = NULL, which uses a heuristic to guess if computation of confidence intervals for random effects is fast enough or not. For models with larger sample size and/or more complex random effects structures, confidence intervals will not be computed by default, for simpler models or fewer observations, confidence intervals will be included. Set explicitly to TRUE or FALSE to enforce or omit calculation of confidence intervals.

bootstrap
Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also **bootstrap_parameters()**).

iterations
The number of draws to simulate/bootstrap.

standardize
The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in **standardize_parameters()**.

**Important:**
- The "refit" method does not standardized categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as **lm.beta**) or other software packages (like SPSS). to mimic such behaviours, either use standardize="basic" or standardize the data with **datawizard::standardize(force=TRUE)** before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed effects will be returned.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

effects
Should parameters for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. If the calculation of random effects parameters takes too long, you may use effects = "fixed".

group_level
Logical, for multilevel models (i.e. models with random effects) and when effects = "all" or effects = "random", include the parameters for each group level from random effects. If group_level = FALSE (the default), only information on SD and COR are shown.
exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

include_sigma Logical, if TRUE, includes the residual standard deviation. For mixed models, this is defined as the sum of the distribution-specific variance and the variance for the additive overdispersion term (see insight::get_variance() for details). Defaults to FALSE for mixed models due to the longer computation time.

verbose Toggle warnings and messages.

df_method Deprecated. Please use ci_method.

... Arguments passed to or from other methods.

component Should all parameters, parameters for the conditional model, for the zero-inflated part of the model, or the dispersion model be returned? Applies to models with zero-inflated and/or dispersion component. Component may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.

wb_component Logical, if TRUE and models contains within- and between-effects (see datawizard::demean()), the Component column will indicate which variables belong to the within-effects, between-effects, and cross-level interactions. By default, the Component column indicates, which parameters belong to the conditional or zero-inflated component of the model.

summary Logical, if TRUE, prints summary information about the model (model formula, number of observations, residual standard deviation and more).

keep Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter
components, like in \texttt{model_parameters.lavaan()}. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $\$Parameter column of the parameters table to get the exact parameter names.

\textbf{drop parameters}  
See \texttt{keep}.

\textbf{vcov}  
Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., \texttt{stats::vcov()})
- A string which indicates the kind of uncertainty estimates to return.
  - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See \texttt{sandwich::vcovHC}.
  - Cluster-robust: "vcovCR", "CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3". See \texttt{clubSandwich::vcovCR}.
  - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See \texttt{sandwich::vcovBS}.
  - Other \texttt{sandwich} package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

\textbf{vcov_args}  
List of arguments to be passed to the function identified by the \texttt{vcov} argument. This function is typically supplied by the \texttt{sandwich} or \texttt{clubSandwich} packages. Please refer to their documentation (e.g., \texttt{sandwich::vcovHAC}) to see the list of available arguments.

\textbf{Value}  
A data frame of indices related to the model’s parameters.

\textbf{Confidence intervals for random effect variances}  
For models of class \texttt{merMod} and \texttt{glmmTMB}, confidence intervals for random effect variances can be calculated.

- For models of from package \texttt{lme4}, when \texttt{ci_method} is either "profile" or "boot", and \texttt{effects} is either "random" or "all", profiled resp. bootstrapped confidence intervals are computed for the random effects.

- For all other options of \texttt{ci_method}, and only when the \texttt{merDeriv} package is installed, confidence intervals for random effects are based on normal-distribution approximation, using the delta-method to transform standard errors for constructing the intervals around the log-transformed SD parameters. These are than back-transformed, so that random effect variances, standard errors and confidence intervals are shown on the original scale. Due to the transformation, the intervals are asymmetrical, however, they are within the correct bounds (i.e. no negative interval for the SD, and the interval for the correlations is within the range from -1 to +1).

- For models of class \texttt{glmmTMB}, confidence intervals for random effect variances always use a Wald t-distribution approximation.
Dispersion parameters in glmmTMB

For some models from package glmmTMB, both the dispersion parameter and the residual variance from the random effects parameters are shown. Usually, these are the same but presented on different scales, e.g.

```r
model <- glmmTMB(Sepal.Width ~ Petal.Length + (1|Species), data = iris)
exp(fixef(model)$disp) # 0.09902987
sigma(model)^2 # 0.09902987
```

For models where the dispersion parameter and the residual variance are the same, only the residual variance is shown in the output.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The `ci_method` argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

**Classical methods:**

Classical inference is generally based on the Wald method. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

- "wald":
  - Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.

- "normal"
  - Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

- "residual"
  - Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

**Methods for mixed models:**

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

- "satterthwaite"
• Applies to **linear mixed models**. CIs computed using the Wald method (SE and a *t*-distribution with Satterthwaite df); p-values computed using the Wald method with a *t*-distribution with Satterthwaite df.

"kenward"

• Applies to **linear mixed models**. CIs computed using the Wald method (*Kenward-Roger SE* and a *t*-distribution with *Kenward-Roger df*); p-values computed using the Wald method with *Kenward-Roger SE* and *t*-distribution with *Kenward-Roger df*.

"ml1"

• Applies to **linear mixed models**. CIs computed using the Wald method (SE and a *t*-distribution with *m-l-1 approximated df*); p-values computed using the Wald method with a *t*-distribution with *m-l-1 approximated df*. See `ci_ml1()`.

"betwithin"

• Applies to **linear mixed models** and **generalized linear mixed models**. CIs computed using the Wald method (SE and a *t*-distribution with *between-within df*); p-values computed using the Wald method with a *t*-distribution with *between-within df*. See `ci_betwithin()`.

**Likelihood-based methods:**

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a χ-squared distribution to compute CIs and p-values.

"profile"

• Applies to **non-Bayesian models** of class `glm`, `polr` or `glmmTMB`. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"uniroot"

• Applies to **non-Bayesian models** of class `glmmTMB`. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

**Methods for bootstrapped or Bayesian models:**

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution. "quantile" (or "eti")
- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See `bayestestR::eti()`.

"hdi"

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See `bayestestR::hdi()`.

"bci" (or "bcai")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See `bayestestR::bci()`.

"si"

- Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See `bayestestR::si()`.

"boot"

- Applies to non-Bayesian models of class `merMod`. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (`bayestestR::p_direction()`), which is converted into a p-value using `bayestestR::pd_to_p()`.

**Note**

If the calculation of random effects parameters takes too long, you may use `effects = "fixed"`. There is also a `plot()`-method implemented in the `see-package`.

**See Also**

`insight::standardize_names()` to rename columns into a consistent, standardized naming scheme.

**Examples**

```r
library(parameters)
if (require("lme4")) {
 data(mtcars)
 model <- lmer(mpg ~ wt + (1 | gear), data = mtcars)
 model_parameters(model)
}
if (require("glmmTMB")) {
```
data(Salamanders)
model <- glmmTMB(
  count ~ spp + mined + (1 | site),
  ziformula = ~mined,
  family = poisson(),
  data = Salamanders
)
model_parameters(model, effects = "all")

if (require("lme4")) {
  model <- lmer(mpg ~ wt + (1 | gear), data = mtcars)
  model_parameters(model, bootstrap = TRUE, iterations = 50)
}

---

model_parameters.dbscan

Parameters from Cluster Models (k-means, ...)

Description

Format cluster models obtained for example by `kmeans()`.

Usage

## S3 method for class 'dbscan'
model_parameters(model, data = NULL, clusters = NULL, ...)

## S3 method for class 'hclust'
model_parameters(model, data = NULL, clusters = NULL, ...)

## S3 method for class 'pvclust'
model_parameters(model, data = NULL, clusters = NULL, ci = 0.95, ...)

## S3 method for class 'kmeans'
model_parameters(model, ...)

## S3 method for class 'hkmeans'
model_parameters(model, ...)

## S3 method for class 'Mclust'
model_parameters(model, data = NULL, clusters = NULL, ...)

## S3 method for class 'pam'
model_parameters(model, data = NULL, clusters = NULL, ...)

Arguments

model  Cluster model.
data  A data.frame.
clusters  A vector with clusters assignments (must be same length as rows in data).
...  Arguments passed to or from other methods.
ci  Confidence Interval (CI) level. Default to 0.95 (95%).

Examples

```r
DBSCAN ---------------------------
if (require("dbscan", quietly = TRUE)) {
 model <- dbscan::dbscan(iris[1:4], eps = 1.45, minPts = 10)

 rez <- model_parameters(model, iris[1:4])
 rez

 # Get clusters
 predict(rez)

 # Clusters centers in long form
 attributes(rez)$means

 # Between and Total Sum of Squares
 attributes(rez)$Sum_Squares_Total
 attributes(rez)$Sum_Squares_Between

 # HDBSCAN
 model <- dbscan::hdbscan(iris[1:4], minPts = 10)
 model_parameters(model, iris[1:4])
}

Hierarchical clustering (hclust) ---------------------------
data <- iris[1:4]
model <- hclust(dist(data))
clusters <- cutree(model, 3)

rez <- model_parameters(model, data, clusters)
rez

 # Get clusters
 predict(rez)

 # Clusters centers in long form
 attributes(rez)$means

 # Between and Total Sum of Squares
 attributes(rez)$Total_Sum_Squares
 attributes(rez)$Between_Sum_Squares
```
model_parameters.dbscan

# pvclust (finds "significant" clusters) ---------------------------
if (require("pvclust", quietly = TRUE)) {
  data <- iris[,1:4]
  # NOTE: pvclust works on transposed data
  model <- pvclust::pvclust(datawizard::data_transpose(data),
    method.dist = "euclidean",
    nboot = 50,
    quiet = TRUE
  )

  rez <- model_parameters(model, data, ci = 0.90)
  rez

  # Get clusters
  predict(rez)

  # Clusters centers in long form
  attributes(rez)$means

  # Between and Total Sum of Squares
  attributes(rez)$Sum_Squares_Total
  attributes(rez)$Sum_Squares_Between
}

## Not run:

# K-means -------------------------------
model <- kmeans(iris[,1:4], centers = 3)
rez <- model_parameters(model)
rez

# Get clusters
predict(rez)

# Clusters centers in long form
attributes(rez)$means

# Between and Total Sum of Squares
attributes(rez)$Sum_Squares_Total
attributes(rez)$Sum_Squares_Between

## End(Not run)

## Not run:

# Hierarchical K-means (factoextra::hkclust) ----------------------
if (require("factoextra", quietly = TRUE)) {
  data <- iris[,1:4]
  model <- factoextra::hkmeans(data, k = 3)

  rez <- model_parameters(model)
  rez
model_parameters.default

Parameters from (General) Linear Models

Description

Extract and compute indices and measures to describe parameters of (general) linear models (GLMs).

Usage

## Default S3 method:
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
)
```r
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
vcov = NULL,
vcov_args = NULL,
...)

S3 method for class 'glm'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
df_method = ci_method,
vcov = NULL,
vcov_args = NULL,
verbose = TRUE,
...)

S3 method for class 'censReg'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
vcov = NULL,
vcov_args = NULL,
...)
```
## S3 method for class 'ridgelm'
model_parameters(model, verbose = TRUE, ...)

## S3 method for class 'polr'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary =getOption("parameters_summary", FALSE),
  df_method = ci_method,
  vcov = NULL,
  vcov_args = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'negbin'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary =getOption("parameters_summary", FALSE),
  df_method = ci_method,
  vcov = NULL,
  vcov_args = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'svyglm'
model_parameters(
  model,
  ci = 0.95,
  ci_method = "wald",
  bootstrap = FALSE,
  iterations = 1000,
model_parameters.default

```r
model_parameters.default

 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)
```

### Arguments

- **model**: Model object.
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).
- **ci_method**: Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirho", "ml", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in `model_parameters()` for further details. When ci_method=NULL, in most cases "wald" is used then.
- **bootstrap**: Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also `bootstrap_parameters()`).
- **iterations**: The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
- **standardize**: The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in `standardize_parameters()`. **Important:**
  - The "refit" method does not standardized categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as `lm.beta`) or other software packages (like SPSS). to mimic such behaviours, either use standardize="basic" or standardize the data with `datawizard::standardize(force=TRUE)` before fitting the model.
  - For mixed models, when using methods other than "refit", only the fixed effects will be returned.
  - Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".
- **exponentiate**: Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. **Note:** Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For `compare_parameters()`, exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.
p_adjust  Character vector, if not NULL, indicates the method to adjust p-values. See `stats::p.adjust()` for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for `emmeans` objects.

summary  Logical, if TRUE, prints summary information about the model (model formula, number of observations, residual standard deviation and more).

keep  Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where `model_parameters()` returns multiple columns with parameter components, like in `model_parameters.lavaan()`. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop  See keep.

parameters  Deprecated, alias for keep.

verbose  Toggle warnings and messages.

vcov  Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., `stats::vcov()`)
- A string which indicates the kind of uncertainty estimates to return.
  - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.
  - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See ?sandwich::vcovBS.
  - Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

vcov_args  List of arguments to be passed to the function identified by the vcov argument. This function is typically supplied by the `sandwich` or `clubSandwich` packages. Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list of available arguments.
Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model(), and arguments like ci_method are passed down to bayestestR::describe_posterior().

df_method

Deprecated. Please use ci_method.

Value

A data frame of indices related to the model’s parameters.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The ci_method argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:

Classical inference is generally based on the Wald method. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald"

- Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

- Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"

- Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

Methods for mixed models:

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

- Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.

"kenward"
- Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

- Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution with m-l-1 approximated df. See ci_ml1().

"betwithin"

- Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See ci_betwithin().

Likelihood-based methods:
Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a $\chi^2$-squared distribution to compute CIs and p-values.

"profile"

- Applies to non-Bayesian models of class glm, polr or glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"uniroot"

- Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:
Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter's sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::eti().

"hdi"
- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")
- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::bci().

"si"
- Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See bayestestR::si().

"boot"
- Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which is converted into a p-value using bayestestR::pd_to_p().

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
model <- lm(mpg ~ wt + cyl, data = mtcars)

model_parameters(model)

# bootstrapped parameters
if (require("boot", quietly = TRUE)) {
  model_parameters(model, bootstrap = TRUE)
}

# standardized parameters
model_parameters(model, standardize = "refit")

# robust, heteroskedasticity-consistent standard errors
if (require("sandwich") && require("clubSandwich")) {
  model_parameters(model, vcov = "HC3")
}

model_parameters(model,
  vcov = "vcovCL",
  vcov_args = list(cluster = mtcars$cyl))
# different p-value style in output
model_parameters(model, p_digits = 5)
model_parameters(model, digits = 3, ci_digits = 4, p_digits = "scientific")

# logistic regression model
model <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial")
model_parameters(model)

# show odds ratio / exponentiated coefficients
model_parameters(model, exponentiate = TRUE)
model_parameters.DirichletRegModel

```r
exponentiate = FALSE,
p_adjust = NULL,
verbose = TRUE,
...
)

S3 method for class 'mlm'
model_parameters(
 model,
 ci = 0.95,
 vcov = NULL,
 vcov_args = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
p_adjust = NULL,
verbose = TRUE,
...
)

S3 method for class 'clm2'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "scale"),
 standardize = NULL,
 exponentiate = FALSE,
p_adjust = NULL,
verbose = TRUE,
...
)
```

**Arguments**

- `model` A model with multinomial or categorical response value.
- `ci` Confidence Interval (CI) level. Default to 0.95 (95%).
- `bootstrap` Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also `bootstrap_parameters()`).
- `iterations` The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
- `component` Should all parameters, parameters for the conditional model, for the zero-inflated part of the model, or the dispersion model be returned? Applies to models with zero-inflated and/or dispersion component. component may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.
standardize

The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters().

Important:

- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS), to mimic such behaviours, either use standardize="basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed effects will be returned.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

exponentiate

Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

verbose

Toggle warnings and messages.

Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model(), and arguments like ci_method are passed down to bayestestR::describe_posterior().

p_adjust

Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

vcov

Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., stats::vcov())
- A string which indicates the kind of uncertainty estimates to return.
  - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.
  - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See ?sandwich::vcovBS.
model_parameters.htest

- Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

vcov_args List of arguments to be passed to the function identified by the vcov argument. This function is typically supplied by the sandwich or clubSandwich packages. Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list of available arguments.

Details

Multinomial or cumulative link models, i.e. models where the response value (dependent variable) is categorical and has more than two levels, usually return coefficients for each response level. Hence, the output from model_parameters() will split the coefficient tables by the different levels of the model’s response.

Value

A data frame of indices related to the model’s parameters.

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

```r
library(parameters)
if (require("brglm2", quietly = TRUE)) {
 data("stemcell")
 model <- bracl(
 research ~ as.numeric(religion) + gender,
 weights = frequency,
 data = stemcell,
 type = "ML"
)
 model_parameters(model)
}
```

model_parameters.htest

**Parameters from hypothesis tests**

Description

Parameters of h-tests (correlations, t-tests, chi-squared, ...).
Usage

```r
S3 method for class 'htest'
model_parameters(
 model,
 cramers_v = NULL,
 phi = NULL,
 standardized_d = NULL,
 hedges_g = NULL,
 omega_squared = NULL,
 eta_squared = NULL,
 epsilon_squared = NULL,
 cohens_g = NULL,
 rank_biserial = NULL,
 rank_epsilon_squared = NULL,
 kendalls_w = NULL,
 ci = 0.95,
 alternative = NULL,
 bootstrap = FALSE,
 verbose = TRUE,
 ...
)
```

```r
S3 method for class 'pairwise.htest'
model_parameters(model, verbose = TRUE, ...)
```

```r
S3 method for class 'coeftest'
model_parameters(model, ci = 0.95, ci_method = "wald", verbose = TRUE, ...)
```

Arguments

- `model`: Object of class `htest` or `pairwise.htest`.
- `cramers_v`, `phi`: Compute Cramer’s V or phi as index of effect size. Can be “raw” or "adjusted" (effect size will be bias-corrected). Only applies to objects from `chisq.test()`.
- `standardized_d`: If TRUE, compute standardized d as index of effect size. Only applies to objects from `t.test()`. Calculation of d is based on the t-value (see `effectsize::t_to_d()`) for details.
- `hedges_g`: If TRUE, compute Hedge’s g as index of effect size. Only applies to objects from `t.test()`.
- `omega_squared`, `eta_squared`, `epsilon_squared`: Logical, if TRUE, returns the non-partial effect size Omega, Eta or Epsilon squared. Only applies to objects from `oneway.test()`.
- `cohens_g`: If TRUE, compute Cohen’s g as index of effect size. Only applies to objects from `mcnemar.test()`.
- `rank_biserial`: If TRUE, compute the rank-biserial correlation as effect size measure. Only applies to objects from `wilcox.test()`.
rank_epsilon_squared
If TRUE, compute the rank epsilon squared as effect size measure. Only applies
to objects from kruskal.test().

kendalls_w
If TRUE, compute the Kendall's coefficient of concordance as effect size measure.
Only applies to objects from friedman.test().

ci
Level of confidence intervals for effect size statistic. Currently only applies to
objects from chisq.test() or oneway.test().

alternative
A character string specifying the alternative hypothesis; Controls the type of
CI returned: "two.sided" (default, two-sided CI), "greater" or "less" (one-
sided CI). Partial matching is allowed (e.g., "g", "l", "two"...). See section
One-Sided CIs in the effectsize_CIs vignette.

bootstrap
Should estimates be bootstrapped?

verbose
Toggle warnings and messages.

... Arguments passed to or from other methods.

ci_method
Method for computing degrees of freedom for confidence intervals (CI) and
the related p-values. Allowed are following options (which vary depending on
for further details. When ci_method=NULL, in most cases "wald" is used then.

Value
A data frame of indices related to the model's parameters.

Examples

model <- cor.test(mtcars$mpg, mtcars$cyl, method = "pearson")
model_parameters(model)

model <- t.test(iris$Sepal.Width, iris$Sepal.Length)
model_parameters(model, hedges_g = TRUE)

model <- t.test(mtcars$mpg ~ mtcars$vs)
model_parameters(model, hedges_g = TRUE)

model <- t.test(iris$Sepal.Width, mu = 1)
model_parameters(model, standardized_d = TRUE)

data(airquality)
airquality$Month <- factor(airquality$Month, labels = month.abb[5:9])
model <- pairwise.t.test(airquality$Ozone, airquality$Month)
model_parameters(model)

smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
model <- pairwise.prop.test(smokers, patients)
model <- stats::chisq.test(table(mtcars$am, mtcars$cyl))
model_parameters(model, cramers_v = "adjusted")

---

**Parameters from Bayesian Models**

**Description**

Parameters from Bayesian models.

**Usage**

```r
S3 method for class 'MCMCglmm'
model_parameters(
 model,
 centrality = "median",
 dispersion = FALSE,
 ci = 0.95,
 ci_method = "eti",
 test = c("pd", "rope"),
 rope_range = "default",
 rope_ci = 0.95,
 bf_prior = NULL,
 diagnostic = c("ESS", "Rhat"),
 priors = TRUE,
 keep = NULL,
 drop = NULL,
 parameters = keep,
 verbose = TRUE,
 ...
)
```

```r
S3 method for class 'bamlss'
model_parameters(
 model,
 centrality = "median",
 dispersion = FALSE,
 ci = 0.95,
 ci_method = "eti",
 test = c("pd", "rope"),
 rope_range = "default",
 rope_ci = 0.95,
 component = "all",

```
exponentiate = FALSE,
standardize = NULL,
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
...
)

## S3 method for class 'data.frame'
model_parameters(model, as_draws = FALSE, verbose = TRUE, ...)

## S3 method for class 'bayesQR'
model_parameters(
  model,
  centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = c("pd", "rope"),
rope_range = "default",
rope_ci = 0.95,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = TRUE,
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
...
)

## S3 method for class 'brmsfit'
model_parameters(
  model,
  centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = c("pd", "rope"),
rope_range = "default",
rope_ci = 0.95,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = FALSE,
effects = "fixed",
component = "all",
exponentiate = FALSE,
model_parameters.MCMCglmm

standardize = NULL,
group_level = FALSE,
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
...
)

## S3 method for class 'mcmc.list'
model_parameters(model, as_draws = FALSE, verbose = TRUE, ...)

## S3 method for class 'bcplm'
model_parameters(
  model,
  centrality = "median",
dispersion = FALSE,
  ci = 0.95,
ci_method = "eti",
test = c("pd", "rope"),
rope_range = "default",
rope_ci = 0.95,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = TRUE,
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
...
)

## S3 method for class 'blrm'
model_parameters(
  model,
  centrality = "median",
dispersion = FALSE,
  ci = 0.95,
ci_method = "eti",
test = c("pd", "rope"),
rope_range = "default",
rope_ci = 0.95,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = TRUE,
keep = NULL,
drop = NULL,
parameters = keep,
```r
model_parameters.MCMCglmm

S3 method for class 'draws'
model_parameters(
 model,
 centrality = "median",
 dispersion = FALSE,
 ci = 0.95,
 ci_method = "eti",
 test = c("pd", "rope"),
 rope_range = "default",
 rope_ci = 0.95,
 keep = NULL,
 drop = NULL,
 parameters = keep,
 verbose = TRUE,
 ...
)

S3 method for class 'stanfit'
model_parameters(
 model,
 centrality = "median",
 dispersion = FALSE,
 ci = 0.95,
 ci_method = "eti",
 test = c("pd", "rope"),
 rope_range = "default",
 rope_ci = 0.95,
 diagnostic = c("ESS", "Rhat"),
 effects = "fixed",
 exponentiate = FALSE,
 standardize = NULL,
 group_level = FALSE,
 keep = NULL,
 drop = NULL,
 parameters = keep,
 verbose = TRUE,
 ...
)

S3 method for class 'stanreg'
model_parameters(
 model,
 centrality = "median",
 dispersion = FALSE,
 ...
ci = 0.95,
ci_method = "eti",
test = c("pd", "rope"),
rope_range = "default",
rope_ci = 0.95,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = TRUE,
effects = "fixed",
exponentiate = FALSE,
standardize = NULL,
group_level = FALSE,
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
...
)

Arguments

model Bayesian model (including SEM from blavaan. May also be a data frame with posterior samples, however, as_draws must be set to TRUE (else, for data frames NULL is returned).

centrality The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD and MAD for mean and median, respectively).

ci Credible Interval (CI) level. Default to 0.95 (95%). See bayestestR::ci() for further details.

ci_method Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirho", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in model_parameters() for further details. When ci_method=NULL, in most cases "wald" is used then.

test The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding bayestestR function is called (e.g. rope() or p_direction()) and its results included in the summary output.

rope_range ROPE’s lower and higher bounds. Should be a list of two values (e.g., c(-0.1, 0.1)) or "default". If "default", the bounds are set to \(x \pm 0.1 \times SD(\text{response})\).

rope_ci The Credible Interval (CI) probability, corresponding to the proportion of HDI, to use for the percentage in ROPE.
bf_prior Distribution representing a prior for the computation of Bayes factors / SI. Used if the input is a posterior, otherwise (in the case of models) ignored.

diagnostic Diagnostic metrics to compute. Character (vector) or list with one or more of these options: "ESS", "Rhat", "MCSE" or "all".

priors Add the prior used for each parameter.

keep Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop See keep.

parameters Deprecated, alias for keep.

verbose Toggle messages and warnings.

... Currently not used.

component Which type of parameters to return, such as parameters for the conditional model, the zero-inflated part of the model, the dispersion term, or other auxiliary parameters be returned? Applies to models with zero-inflated and/or dispersion formula, or if parameters such as sigma should be included. May be abbreviated. Note that the conditional component is also called count or mean component, depending on the model. There are three convenient shortcuts: component = "all" returns all possible parameters. If component = "location", location parameters such as conditional, zero_inflated, or smooth_terms, are returned (everything that are fixed or random effects - depending on the effects argument - but no auxiliary parameters). For component = "distributional" (or "auxiliary"), components like sigma, dispersion, or beta (and other auxiliary parameters) are returned.

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate
model_parameters.MCMCglmm

= "nongaussian" will only exponentiate coefficients from non-Gaussian families.

standardize
The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters().

Important:
- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). To mimic such behaviours, either use standardize="basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed effects will be returned.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

as_draws
Logical, if TRUE and model is of class data.frame, the data frame is treated as posterior samples and handled similar to Bayesian models. All arguments in ... are passed to model_parameters.draws().

effects
Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.

group_level
Logical, for multilevel models (i.e. models with random effects) and when effects = "all" or effects = "random", include the parameters for each group level from random effects. If group_level = FALSE (the default), only information on SD and COR are shown.

Value
A data frame of indices related to the model’s parameters.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The ci_method argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:
Classical inference is generally based on the **Wald method**. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald":

- Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a *t-distribution with residual df*); p-values computed using the Wald method with a *t-distribution with residual df*. For other models, CIs computed using the Wald method (SE and a *normal distribution*); p-values computed using the Wald method with a *normal distribution*.
"normal"
 • Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"
 • Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a \(t \)-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

Methods for mixed models:

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"
 • Applies to linear mixed models. CIs computed using the Wald method (SE and a \(t \)-distribution with Satterthwaite df); p-values computed using the Wald method with a \(t \)-distribution with Satterthwaite df.

"kenward"
 • Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a \(t \)-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and \(t \)-distribution with Kenward-Roger df.

"ml1"
 • Applies to linear mixed models. CIs computed using the Wald method (SE and a \(t \)-distribution with \(m-l-1 \) approximated df); p-values computed using the Wald method with a \(t \)-distribution with \(m-l-1 \) approximated df. See ci_ml1().

"betwithin"
 • Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a \(t \)-distribution with between-within df); p-values computed using the Wald method with a \(t \)-distribution with between-within df. See ci_betwithin().

Likelihood-based methods:

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a \(\chi^2 \)-squared distribution to compute CIs and p-values.

"profile"
 • Applies to non-Bayesian models of class glm, polr or glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)
"uniroot"

- Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrapping-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::eti().

"hdi"

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::bci().

"si"

- Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See bayestestR::si().

"boot"

- Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution) (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which is converted into a p-value using bayestestR::pd_to_p().
model_parameters.mipo

Note

When standardize = "refit", columns diagnostic, bf_prior and priors refer to the original model. If model is a data frame, arguments diagnostic, bf_prior and priors are ignored.

There is also a plot()-method implemented in the see-package.

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

```r
## Not run:
library(parameters)
if (require("rstanarm")) {
  model <- stan_glm(
    Sepal.Length ~ Petal.Length * Species,
    data = iris, iter = 500, refresh = 0
  )
  model_parameters(model)
}
## End(Not run)
```

model_parameters.mipo Parameters from multiply imputed repeated analyses

Description

Format models of class mira, obtained from mice::width.mids().

Usage

```r
## S3 method for class 'mipo'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary = getOption("parameters_summary", FALSE),
  keep = NULL,
  drop = NULL,
  parameters = keep,
  verbose = TRUE,
)```
model_parameters(mipo)

vcov = NULL,
vcov_args = NULL,
...
)

## S3 method for class 'mira'
model_parameters(
  model,
  ci = 0.95,
  exponentiate = FALSE,
  p_adjust = NULL,
  verbose = TRUE,
  ...
)

Arguments

model An object of class mira.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

ci_method Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirho", "ml", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in model_parameters() for further details. When ci_method=NULL, in most cases "wald" is used then.

bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).

iterations The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

standardize The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters().

Important:

- The "refit" method does not standardized categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). To mimic such behaviours, either use standardize="basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed effects will be returned.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. 

Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

p_adjust
Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

summary
Logical, if TRUE, prints summary information about the model (model formula, number of observations, residual standard deviation and more).

keep
Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop
See keep.

parameters
Deprecated, alias for keep.

verbose
Toggle warnings and messages.

vcov
Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., stats::vcov())
- A string which indicates the kind of uncertainty estimates to return.
  - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.
  - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See ?sandwich::vcovBS.
model_parameters.mipo

- Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

vcov_args
List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list of available arguments.

... Arguments passed to or from other methods.

Details

model_parameters() for objects of class mira works similar to summary(mice::pool()), i.e. it generates the pooled summary of multiple imputed repeated regression analyses.

Examples

library(parameters)
if (require("mice", quietly = TRUE)) {
  data(nhanes2)
  imp <- mice(nhanes2)
  fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
  model_parameters(fit)
}
## Not run:
# model_parameters() also works for models that have no "tidy"-method in mice
if (require("mice", quietly = TRUE) && require("gee", quietly = TRUE)) {
  data(warpbreaks)
  set.seed(1234)
  warpbreaks$tension[sample(1:nrow(warpbreaks), size = 10)] <- NA
  imp <- mice(warpbreaks)
  fit <- with(data = imp, expr = gee(breaks ~ tension, id = wool))

  # does not work:
  # summary(pool(fit))
  model_parameters(fit)
}
## End(Not run)

# and it works with pooled results
if (require("mice")) {
  data("nhanes2")
  imp <- mice(nhanes2)
  fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
  pooled <- pool(fit)
  model_parameters(pooled)
}
Parameters from PCA, FA, CFA, SEM

Description

Format structural models from the psych or FactoMineR packages.

Usage

```r
S3 method for class 'PCA'
model_parameters(
 model,
 sort = FALSE,
 threshold = NULL,
 labels = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'FAMD'
model_parameters(
 model,
 sort = FALSE,
 threshold = NULL,
 labels = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'lavaan'
model_parameters(
 model,
 ci = 0.95,
 standardize = FALSE,
 component = c("regression", "correlation", "loading", "defined"),
 keep = NULL,
 drop = NULL,
 parameters = keep,
 verbose = TRUE,
 ...
)

S3 method for class 'principal'
model_parameters(
 model,
 sort = FALSE,
 threshold = NULL,
```
model_parameters.PCA

labels = NULL,
verbose = TRUE,
...
)

## S3 method for class 'omega'
model_parameters(model, verbose = TRUE, ...)

## S3 method for class 'sem'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary =getOption("parameters_summary", FALSE),
  keep = NULL,
  drop = NULL,
  parameters = keep,
  verbose = TRUE,
  vcov = NULL,
  vcov_args = NULL,
  ...
)

Arguments

model Model object.
sort Sort the loadings.
threshold A value between 0 and 1 indicates which (absolute) values from the loadings
should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
loading per variable (the most simple structure).
labels A character vector containing labels to be added to the loadings data. Usually,
the question related to the item.
verbose Toggle warnings and messages.
Arguments passed to or from other methods.
cia
standardize Return standardized parameters (standardized coefficients). Can be TRUE (or
"all" or "std.all") for standardized estimates based on both the variances of
observed and latent variables; "latent" (or "std.lv") for standardized estimates
based on the variances of the latent variables only; or "no_exogenous"
(or "std.nox") for standardized estimates based on both the variances of observed and latent variables, but not the variances of exogenous covariates. See lavaan::standardizedsolution for details.

```
component
```
What type of links to return. Can be "all" or some of c("regression", "correlation", "loading", "variance", "mean").

```
keep
```
Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

```
drop
```
See keep.

```
parameters
```
Deprecated, alias for keep.

```
ci_method
```
Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in model_parameters() for further details. When ci_method=NULL, in most cases "wald" is used then.

```
bootstrap
```
Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).

```
iterations
```
The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

```
exponentiate
```
Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.
### p_adjust
Character vector, if not NULL, indicates the method to adjust p-values. See `stats::p.adjust()` for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for `emmeans` objects.

### summary
Logical, if TRUE, prints summary information about the model (model formula, number of observations, residual standard deviation and more).

### vcov
Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., `stats::vcov()`)
- A string which indicates the kind of uncertainty estimates to return.
  - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See `sandwich::vcovHC`.
  - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See `sandwich::vcovBS`.
  - Other `sandwich` package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

### vcov_args
List of arguments to be passed to the function identified by the vcov argument. This function is typically supplied by the `sandwich` or `clubSandwich` packages. Please refer to their documentation (e.g., `?sandwich::vcovHAC`) to see the list of available arguments.

### Details
For the structural models obtained with `psych`, the following indices are present:

- **Complexity** (Hoffman’s, 1978; Pettersson and Turkheimer, 2010) represents the number of latent components needed to account for the observed variables. Whereas a perfect simple structure solution has a complexity of 1 in that each item would only load on one factor, a solution with evenly distributed items has a complexity greater than 1.

- **Uniqueness** represents the variance that is ‘unique’ to the variable and not shared with other variables. It is equal to 1 communality (variance that is shared with other variables). A uniqueness of 0.20 suggests that 20% or that variable’s variance is not shared with other variables in the overall factor model. The greater ‘uniqueness’ the lower the relevance of the variable in the factor model.

- **MSA** represents the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (Kaiser and Rice, 1974) for each item. It indicates whether there is enough data for each factor give reliable results for the PCA. The value should be > 0.6, and desirable values are > 0.8 (Tabachnick and Fidell, 2013).

### Value
A data frame of indices or loadings.
Note

There is also a `plot()`-method for lavaan models implemented in the see-package.

References


Examples

```r
library(parameters)
if (require("psych", quietly = TRUE)) {
 # Principal Component Analysis (PCA) ---------
 pca <- psych::principal(attitude)
 model_parameters(pca)

 pca <- psych::principal(attitude, nfactors = 3, rotate = "none")
 model_parameters(pca, sort = TRUE, threshold = 0.2)

 principal_components(attitude, n = 3, sort = TRUE, threshold = 0.2)

 # Exploratory Factor Analysis (EFA) ---------
 efa <- psych::fa(attitude, nfactors = 3)
 model_parameters(efa, threshold = "max", sort = TRUE, labels = as.character(1:ncol(attitude)))

 # Omega ---------
 omega <- psych::omega(mtcars, nfactors = 3)
 params <- model_parameters(omega)
 params
 summary(params)
}

FactoMineR ---------
if (require("FactoMineR", quietly = TRUE)) {
 model <- FactoMineR::PCA(iris[, 1:4], ncp = 2)
 model_parameters(model)
 attributes(model_parameters(model))$scores
}
model <- FactoMineR::FAMD(iris, ncp = 2)
model_parameters(model)

lavaan
library(parameters)

lavaan -------------------------------------
if (require("lavaan", quietly = TRUE)) {
 # Confirmatory Factor Analysis (CFA) ---------
 structure <- " visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
 speed =~ x7 + x8 + x9"
 model <- lavaan::cfa(structure, data = HolzingerSwineford1939)
 model_parameters(model)
 model_parameters(model, standardize = TRUE)

 # filter parameters
 model_parameters(
 model,
 parameters = list(
 To = "^(?!visual)",
 From = "^(?!x7|x8)"
)
)

 # Structural Equation Model (SEM) ------------
 structure <- "
 # latent variable definitions
 ind60 =~ x1 + x2 + x3
dem60 =~ y1 + ay2 + by3 + cy4
dem65 =~ y5 + ay6 + by7 + cy8
 # regressions
 dem60 ~ ind60
dem65 ~ ind60 + dem60
 # residual correlations
 y1 ~~ y5
 y2 ~~ y4 + y6
 y3 ~~ y7
 y4 ~~ y8
 y6 ~~ y8
 "
 model <- lavaan::sem(structure, data = PoliticalDemocracy)
 model_parameters(model)
 model_parameters(model, standardize = TRUE)
}

Parameters from special models

Parameters from special regression models not listed under one of the previous categories yet.
Parameters from Hypothesis Testing.

Usage

S3 method for class 'PMCMR'
model_parameters(model, ...)

S3 method for class 'glimML'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("conditional", "random", "dispersion", "all"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'averaging'
model_parameters(
 model,
 ci = 0.95,
 component = c("conditional", "full"),
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'mle2'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
S3 method for class 'betareg'

```r
model_parameters(
    model,
    ci = 0.95,
    bootstrap = FALSE,
    iterations = 1000,
    component = c("conditional", "precision", "all"),
    standardize = NULL,
    exponentiate = FALSE,
    p_adjust = NULL,
    verbose = TRUE,
    ...
)
```

S3 method for class 'bfsl'

```r
model_parameters(
    model,
    ci = 0.95,
    ci_method = "residual",
    p_adjust = NULL,
    verbose = TRUE,
    ...
)
```

S3 method for class 'deltaMethod'

```r
model_parameters(model, p_adjust = NULL, verbose = TRUE, ...)
```

S3 method for class 'emmGrid'

```r
model_parameters(
    model,
    ci = 0.95,
    centrality = "median",
    dispersion = FALSE,
    ci_method = "eti",
    test = c("pd", "rope"),
    rope_range = "default",
    rope_ci = 0.95,
    ...
)
```
model.parameters(PMCMR)

```r
model_parameters(
  model,
  exponentiate = FALSE,
  p_adjust = NULL,
  parameters = NULL,
  verbose = TRUE,
  ...)
```

```r
## S3 method for class 'emm_list'
model_parameters(
  model,
  ci = 0.95,
  exponentiate = FALSE,
  p_adjust = NULL,
  verbose = TRUE,
  ...)
```

```r
## S3 method for class 'epi.2by2'
model_parameters(model, verbose = TRUE, ...)
```

```r
## S3 method for class 'fitdistr'
model_parameters(model, exponentiate = FALSE, verbose = TRUE, ...)
```

```r
## S3 method for class 'ggeffects'
model_parameters(model, parameters = NULL, verbose = TRUE, ...)
```

```r
## S3 method for class 'SemiParBIV'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  verbose = TRUE,
  ...)
```

```r
## S3 method for class 'glmm'
model_parameters(
  model,
  ci = 0.95,
  effects = c("all", "fixed", "random"),
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  ...)
```
model_parameters.PMCMR

```r
verbose = TRUE,
... )

## S3 method for class 'glmx'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "extra"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'ivFixed'
model_parameters(model, ci = 0.95, ci_method = "wald", verbose = TRUE, ...)

## S3 method for class 'ivprobit'
model_parameters(model, ci = 0.95, ci_method = "wald", verbose = TRUE, ...)

## S3 method for class 'lmodel2'
model_parameters(
  model,
  ci = 0.95,
  exponentiate = FALSE,
  p_adjust = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'logistf'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary = getOption("parameters_summary", FALSE),
  df_method = ci_method,
  vcov = NULL,
  vcov_args = NULL,
  ...
)
```
verbose = TRUE,
...)

S3 method for class 'lqmm'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'marginaleffects'
model_parameters(model, ci = 0.95, ...)

S3 method for class 'comparisons'
model_parameters(model, ci = 0.95, ...)

S3 method for class 'marginalmeans'
model_parameters(model, ci = 0.95, ...)

S3 method for class 'deltamethod'
model_parameters(model, ci = 0.95, ...)

S3 method for class 'margins'
model_parameters(
 model,
 ci = 0.95,
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'maxLik'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 ...
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
vcov = NULL,
vcov_args = NULL,
...
)

S3 method for class 'maxim'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 parameters = keep,
 verbose = TRUE,
 vcov = NULL,
 vcov_args = NULL,
 ...
)

S3 method for class 'mediate'
model_parameters(model, ci = 0.95, exponentiate = FALSE, verbose = TRUE, ...)

S3 method for class 'metaplus'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 include_studies = TRUE,
 verbose = TRUE,
 ...
)

S3 method for class 'meta_random'
model_parameters(
 model,
ci = 0.95,
ci_method = "eti",
exponentiate = FALSE,
include_studies = TRUE,
verbose = TRUE,
...
)

S3 method for class 'meta_fixed'
model_parameters(
 model,
 ci = 0.95,
 ci_method = "eti",
 exponentiate = FALSE,
 include_studies = TRUE,
 verbose = TRUE,
 ...
)

S3 method for class 'meta_bma'
model_parameters(
 model,
 ci = 0.95,
 ci_method = "eti",
 exponentiate = FALSE,
 include_studies = TRUE,
 verbose = TRUE,
 ...
)

S3 method for class 'logitor'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = TRUE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'poissonirr'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
model_parameters.PMCMR

 iterations = 1000,
 standardize = NULL,
 exponentiate = TRUE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'negbinirr'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = TRUE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'poissonmfx'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "marginal"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'logitmfx'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "marginal"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)
S3 method for class 'probitmfx'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "marginal"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'negbinmfx'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "marginal"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'betaor'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("conditional", "precision", "all"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'betamfx'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
model_parameters.PMCMR

iterations = 1000,
component = c("all", "conditional", "precision", "marginal"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
verbose = TRUE,
...
)

S3 method for class 'mjoint'
model_parameters(
 model,
 ci = 0.95,
effects = "fixed",
component = c("all", "conditional", "survival"),
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
...
)

S3 method for class 'model_fit'
model_parameters(
 model,
 ci = 0.95,
effects = "fixed",
component = "conditional",
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
verbose = TRUE,
...
)

S3 method for class 'glht'
model_parameters(model, ci = 0.95, exponentiate = FALSE, verbose = TRUE, ...)

S3 method for class 'mvord'
model_parameters(
 model,
 ci = 0.95,
component = c("all", "conditional", "thresholds", "correlation"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
verbose = TRUE,
...
)

S3 method for class 'pgmm'
model_parameters(
 model,
 ci = 0.95,
 component = c("conditional", "all"),
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
...
)

S3 method for class 'rqss'
model_parameters(
 model,
 ci = 0.95,
ci_method = "residual",
bootstrap = FALSE,
iters = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
...
)

S3 method for class 'rqs'
model_parameters(
 model,
 ci = 0.95,
bootstrap = FALSE,
iters = 1000,
standardize = NULL,
exponentiate = FALSE,
verbose = TRUE,
...
mode_parameters(PMCMR)

S3 method for class 'selection'
model_parameters(
 model,
 ci = 0.95,
 component = c("all", "selection", "outcome", "auxiliary"),
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'mle'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 df_method = ci_method,
 vcov = NULL,
 vcov_args = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'systemfit'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = FALSE,
 verbose = TRUE,
 ...
)
S3 method for class 'varest'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 't1way'
model_parameters(model, keep = NULL, verbose = TRUE, ...)

S3 method for class 'med1way'
model_parameters(model, verbose = TRUE, ...)

S3 method for class 'dep.effect'
model_parameters(model, keep = NULL, verbose = TRUE, ...)

S3 method for class 'yuen'
model_parameters(model, verbose = TRUE, ...)

Arguments

- **model**: Object from WRS2 package.
- **...**: Arguments passed to or from other methods.
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).
- **bootstrap**: Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).
- **iterations**: The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
- **component**: Model component for which parameters should be shown. May be one of "conditional", "precision" (betareg), "scale" (ordinal), "extra" (glm), "marginal" (mfx), "conditional" or "full" (for MuMIn::model.avg()) or "all".
- **standardize**: The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters().

Important:
- The "refit" method does not standardized categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). To mimic such
behaviours, either use standardize="basic" or standardize the data with
datawizard::standardize(force=TRUE) before fitting the model.

- For mixed models, when using methods other than "refit", only the fixed
effects will be returned.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized
parameters only works when standardize="refit".

exponentiate

Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. **Note:**
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncertainty
for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

p_adjust

Character vector, if not NULL, indicates the method to adjust p-values. See
stats::p.adjust() for details. Further possible adjustment methods are "tukey",
"scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid
objects (from emmeans).

verbose

Toggle warnings and messages.

ci_method

Method for computing degrees of freedom for confidence intervals (CI) and
the related p-values. Allowed are following options (which vary depending on
the model class): "residual", "normal", "likelihood", "satterthwaite",
"kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin",
"hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confid-
ence intervals and approximation of degrees of freedom in model_parameters()
for further details. When ci_method=NULL, in most cases "wald" is used then.

summary

Logical, if TRUE, prints summary information about the model (model formula,
number of observations, residual standard deviation and more).

df_method

Deprecated. Please use ci_method.

vcov

Variance-covariance matrix used to compute uncertainty estimates (e.g., for ro-
bust standard errors). This argument accepts a covariance matrix, a function
which returns a covariance matrix, or a string which identifies the function to be
used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., stats::vcov())
- A string which indicates the kind of uncertainty estimates to return.

 - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2",
 "HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.
 See ?clubSandwich::vcovCR.
 - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See ?sandwich::vcovBS.
model_parameters.PMCMR

- Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

vcov_args

List of arguments to be passed to the function identified by the vcov argument. This function is typically supplied by the sandwich or clubSandwich packages. Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list of available arguments.

centrality

The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".

dispersion

Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD and MAD for mean and median, respectively).

test

The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding bayestestR function is called (e.g. rope() or p_direction()) and its results included in the summary output.

rope_range

ROPE's lower and higher bounds. Should be a list of two values (e.g., c(-0.1, 0.1)) or "default". If "default", the bounds are set to x ± 0.1*SD(response).

rope_ci

The Credible Interval (CI) probability, corresponding to the proportion of HDI, to use for the percentage in ROPE.

parameters

Deprecated, alias for keep.

effects

Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.

keep

Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, they will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop

See keep.

include_studies

Logical, if TRUE (default), includes parameters for all studies. Else, only parameters for overall-effects are shown.

Value

A data frame of indices related to the model’s parameters.
A data frame of indices related to the model's parameters.
A data frame of indices related to the model's parameters.

See Also

`insight::standardize_names()` to rename columns into a consistent, standardized naming scheme.

Examples

```r
library(parameters)
if (require("brglm2", quietly = TRUE)) {
  data("stemcell")
  model <- bracl(
    research ~ as.numeric(religion) + gender,
    weights = frequency,
    data = stemcell,
    type = "ML"
  )
  model_parameters(model)
}

if (require("multcomp", quietly = TRUE)) {
  # multiple linear model, swiss data
  lmod <- lm(Fertility ~ ., data = swiss)
  mod <- glht(
    model = lmod,
    linfct = c(
      "Agriculture = 0",
      "Examination = 0",
      "Education = 0",
      "Catholic = 0",
      "Infant.Mortality = 0"
    )
  )
  model_parameters(mod)
}
if (require("PMCMRplus", quietly = TRUE)) {
  model <- kwAllPairsConoverTest(count ~ spray, data = InsectSprays)
  model_parameters(model)
}
if (require("WRS2") && packageVersion("WRS2") >= "1.1.3") {
  model <- t1way(libido ~ dose, data = viagra)
  model_parameters(model)
}
```
Description

Extract and compute indices and measures to describe parameters of meta-analysis models.

Usage

```r
## S3 method for class 'rma'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  include_studies = TRUE,
  verbose = TRUE,
  ...  )
```

Arguments

- **model**: Model object.
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).
- **bootstrap**: Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also `bootstrap_parameters()`).
- **iterations**: The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
- **standardize**: The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in `standardize_parameters()`.

Important:

- The "refit" method does not standardized categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as `lm.beta`) or other software packages (like SPSS). To mimic such behaviours, either use standardize="basic" or standardize the data with `datawizard::standardize(force=TRUE) before fitting the model.`
- For mixed models, when using methods other than "refit", only the fixed effects will be returned.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

- **exponentiate**: Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. **Note:** Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For `compare_parameters()`, `exponentiate = "nongaussian"` will only exponentiate coefficients from non-Gaussian families.

`include_studies`
Logical, if TRUE (default), includes parameters for all studies. Else, only parameters for overall-effects are shown.

`verbose`
Toggle warnings and messages.

Arguments passed to or from other methods. For instance, when `bootstrap = TRUE`, arguments like `type` or `parallel` are passed down to `bootstrap_model()`, and arguments like `ci_method` are passed down to `bayestestR::describe_posterior()`.

Value

A data frame of indices related to the model’s parameters.

Examples

```r
library(parameters)
mydat <- data.frame(
  effectsize = c(-0.393, 0.675, 0.282, -1.398),
  stderr = c(0.317, 0.317, 0.13, 0.36)
)
if (require("metafor", quietly = TRUE)) {
  model <- rma(yi = effectsize, sei = stderr, method = "REML", data = mydat)
  model_parameters(model)
}
## Not run:
# with subgroups
if (require("metafor", quietly = TRUE)) {
  data(dat.bcg)
  dat <- escalc(
    measure = "RR",
    ai = tpos,
    bi = tneg,
    ci = cpos,
    di = cneg,
    data = dat.bcg
  )
  dat$alloc <- ifelse(dat$alloc == "random", "random", "other")
  model <- rma(yi, vi, mods = ~alloc, data = dat, digits = 3, slab = author)
  model_parameters(model)
}
if (require("metaBMA", quietly = TRUE)) {
  data(towels)
  m <- meta_random(logOR, SE, study, data = towels)
  model_parameters(m)
}
## End(Not run)
```
Parameters from zero-inflated models (from packages like \texttt{pscl}, \texttt{cplm} or \texttt{countreg}).

Usage

```r
## S3 method for class 'zcpglm'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "zi", "zero_inflated"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  parameters = keep,
  summary = getOption("parameters_summary", FALSE),
  verbose = TRUE,
  ...
)

## S3 method for class 'mhurdle'
model_parameters(
  model,
  ci = 0.95,
  component = c("all", "conditional", "zi", "zero_inflated", "infrequent_purchase", "ip", "auxiliary"),
  exponentiate = FALSE,
  p_adjust = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'zeroinfl'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "zi", "zero_inflated"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  parameters = keep,
  summary = getOption("parameters_summary", FALSE),
  verbose = TRUE,
  ...
)
```
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
parameters = keep,
summary = getOption("parameters_summary", FALSE),
verbose = TRUE,
...)

S3 method for class 'hurdle'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "zi", "zero_inflated"),
 standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
parameters = keep,
summary = getOption("parameters_summary", FALSE),
verbose = TRUE,
...)

S3 method for class 'zerocount'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "zi", "zero_inflated"),
 standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
parameters = keep,
summary = getOption("parameters_summary", FALSE),
verbose = TRUE,
...)

Arguments

- **model**: A model with zero-inflation component.
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).
- **bootstrap**: Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also `bootstrap_parameters()`).
- **iterations**: The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
- **component**: Should all parameters, parameters for the conditional model, for the zero-inflated part of the model, or the dispersion model be returned? Applies to models with zero-inflated and/or dispersion component. component may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.
- **standardize**: The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in `standardize_parameters()`.

Important:
- The "refit" method does not standardized categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as `lm.beta`) or other software packages (like SPSS). to mimic such behaviours, either use standardize="basic" or standardize the data with `datawizard::standardize(force=TRUE) before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed effects will be returned.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

- **exponentiate**: Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For `compare_parameters()`, exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

- **p_adjust**: Character vector, if not NULL, indicates the method to adjust p-values. See `stats::p.adjust()` for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for `emmeans` objects (from `emmeans`).

- **keep**: Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa,
n_clusters

Find number of clusters in your data

Description

Similarly to `n_factors()` for factor / principal component analysis, `n_clusters` is the main function to find out the optimal numbers of clusters present in the data based on the maximum consensus of a large number of methods.

Essentially, there exist many methods to determine the optimal number of clusters, each with pros and cons, benefits and limitations. The main `n_clusters` function proposes to run all of them, and
find out the number of clusters that is suggested by the majority of methods (in case of ties, it will select the most parsimonious solution with fewer clusters).
Note that we also implement some specific, commonly used methods, like the Elbow or the Gap method, with their own visualization functionalities. See the examples below for more details.

Usage

```r
n_clusters(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  package = c("easystats", "NbClust", "mclust"),
  fast = TRUE,
  nbclust_method = "kmeans",
  n_max = 10,
  ...
)
```

```r
n_clusters_elbow(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  clustering_function = stats::kmeans,
  n_max = 10,
  ...
)
```

```r
n_clusters_gap(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  clustering_function = stats::kmeans,
  n_max = 10,
  gap_method = "firstSEmax",
  ...
)
```

```r
n_clusters_silhouette(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  clustering_function = stats::kmeans,
  n_max = 10,
  ...
)
```

```r
n_clusters_dbscan(
  x,
  standardize = TRUE,
)
include_factors = FALSE,
method = c("kNN", "SS"),
min_size = 0.1,
eps_n = 50,
eps_range = c(0.1, 3),
...
)

n_clusters_hclust(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  distance_method = "correlation",
  hclust_method = "average",
  ci = 0.95,
  iterations = 100,
  ...
)

Arguments

x A data frame.
standardize Standardize the dataframe before clustering (default).
include_factors Logical, if TRUE, factors are converted to numerical values in order to be in-
cluded in the data for determining the number of clusters. By default, factors 
are removed, because most methods that determine the number of clusters need numeric input only.
package Package from which methods are to be called to determine the number of clusters. Can be "all" or a vector containing "easystats", "NbClust", "mclust", and "M3C".
fast If FALSE, will compute 4 more indices (sets index = "allong" in NbClust). This has been deactivated by default as it is computationally heavy.
nbclust_method The clustering method (passed to NbClust::NbClust() as method).
n_max Maximal number of clusters to test.
... Arguments passed to or from other methods.
clustering_function, gap_method Other arguments passed to other functions. clustering_function is used by 
fviz_nbclust and can be kmeans, codecluster::pam, codecluster::clara, codeclus-
ter::fanny, and more. gap_method is used by cluster::maxSE to extract the 
optimal numbers of clusters (see its method argument).
method, min_size, eps_n, eps_range Arguments for DBSCAN algorithm.
distance_method The distance method (passed to dist()). Used by algorithms relying on the 
distance matrix, such as hclust or dbscan.
hclust_method The hierarchical clustering method (passed to `hclust()`).

ci Confidence Interval (CI) level. Default to 0.95 (95%).

iterations The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

Note

There is also a `plot()`-method implemented in the `see-package`.

Examples

```r
Not run:
library(parameters)

The main 'n_clusters' function ================
if (require("mclust", quietly = TRUE) && require("NbClust", quietly = TRUE) &&
 require("cluster", quietly = TRUE) && require("see", quietly = TRUE)) {
 n <- n_clusters(iris[, 1:4], package = c("NbClust", "mclust")) # package can be "all"
 summary(n)
 as.data.frame(n) # Duration is the time elapsed for each method in seconds
 plot(n)

 # The following runs all the method but it significantly slower
 # n_clusters(iris[1:4], standardize = FALSE, package = "all", fast = FALSE)
}

End(Not run)

Specific Methods =========================
Elbow method -----------------------------
if (require("openxlsx", quietly = TRUE) &&
 require("see", quietly = TRUE) &&
 require("factoextra", quietly = TRUE)) {
 x <- n_clusters_elbow(iris[1:4])
 x
 as.data.frame(x)
 plot(x)
}

Gap method -----------------------------
if (require("see", quietly = TRUE) &&
 require("cluster", quietly = TRUE) &&
 require("factoextra", quietly = TRUE)) {
 x <- n_clusters_gap(iris[1:4])
 x
 as.data.frame(x)
 plot(x)
}
```
# Silhouette method --------------------------
if (require("factoextra", quietly = TRUE)) {
  x <- n_clusters_silhouette(iris[1:4])
  x
  as.data.frame(x)
  plot(x)
}

# DBSCAN method ----------------
if (require("dbscan", quietly = TRUE)) {
  # NOTE: This actually primarily estimates the 'eps' parameter, the number of
  # clusters is a side effect (it's the number of clusters corresponding to
  # this 'optimal' EPS parameter).
  x <- n_clusters_dbscan(iris[1:4], method = "kNN", min_size = 0.05) # 5 percent
  x
  head(as.data.frame(x))
  plot(x)

  x <- n_clusters_dbscan(iris[1:4], method = "SS", eps_n = 100, eps_range = c(0.1, 2))
  x
  head(as.data.frame(x))
  plot(x)
}

# hclust method -------------------------------
if (require("pvclust", quietly = TRUE) &&
  getRversion() >= "3.6.0") {
  # iterations should be higher for real analyses
  x <- n_clusters_hclust(iris[1:4], iterations = 50, ci = 0.90)
  x
  head(as.data.frame(x), n = 10) # Print 10 first rows
  plot(x)
}

---

<table>
<thead>
<tr>
<th>n_factors</th>
<th>Number of components/factors to retain in PCA/FA</th>
</tr>
</thead>
</table>

**Description**

This function runs many existing procedures for determining how many factors to retain/extract from factor analysis (FA) or dimension reduction (PCA). It returns the number of factors based on the maximum consensus between methods. In case of ties, it will keep the simplest model and select the solution with the fewer factors.
Usage

```r
n_factors(
 x,
 type = "FA",
 rotation = "varimax",
 algorithm = "default",
 package = c("nFactors", "psych"),
 cor = NULL,
 safe = TRUE,
 n_max = NULL,
 ...
)
```

```r
n_components(
 x,
 type = "PCA",
 rotation = "varimax",
 algorithm = "default",
 package = c("nFactors", "psych"),
 cor = NULL,
 safe = TRUE,
 ...
)
```

Arguments

- **x**: A data frame.
- **type**: Can be "FA" or "PCA", depending on what you want to do.
- **rotation**: Only used for VSS (Very Simple Structure criterion, see `psych::VSS()`). The rotation to apply. Can be "none", "varimax", "quartimax", "bentlerT", "equamax", "varimin", "geominT" and "bifactor" for orthogonal rotations, and "promax", "oblimin", "simplimax", "bentlerQ", "geominQ", "biquartimin" and "cluster" for oblique transformations.
- **algorithm**: Factoring method used by VSS. Can be "pa" for Principal Axis Factor Analysis, "minres" for minimum residual (OLS) factoring, "mle" for Maximum Likelihood FA and "pc" for Principal Components. "default" will select "minres" if type = "FA" and "pc" if type = "PCA".
- **package**: Package from which respective methods are used. Can be "all" or a vector containing "nFactors", "psych", "PCDimension", "fit" or "EGA.net". Note that "fit" (which actually also relies on the psych package) and "EGA.net" can be very slow for bigger datasets. Thus, the default is c("nFactors", "psych"). You must have the respective packages installed for the methods to be used.
- **cor**: An optional correlation matrix that can be used (note that the data must still be passed as the first argument). If NULL, will compute it by running `cor()` on the passed data.
- **safe**: If TRUE, the function will run all the procedures in try blocks, and will only return those that work and silently skip the ones that may fail.
n_factors

n_max

If set to a value (e.g., 10), will drop from the results all methods that suggest a higher number of components. The interpretation becomes 'from all the methods that suggested a number lower than n_max, the results are ...'.

Details

n_components is actually an alias for n_factors, with different defaults for the function arguments.

Value

A data frame.

Note

There is also a plot()-method implemented in the see-package. n_components() is a convenient short for n_factors(type = "PCA").

References

Parameters

Description

In a regression model, the parameters do not all have the meaning. For instance, the intercept has to be interpreted as theoretical outcome value under some conditions (when predictors are set to 0), whereas other coefficients are to be interpreted as amounts of change. Others, such as interactions, represent changes in another of the parameter. The parameters_type function attempts to retrieve information and meaning of parameters. It outputs a dataframe of information for each parameters, such as the Type (whether the parameter corresponds to a factor or a numeric predictor, or whether it is a (regular) interaction or a nested one), the Link (whether the parameter can be interpreted as a mean value, the slope of an association or a difference between two levels) and, in the case of interactions, which other parameters is impacted by which parameter.

Usage

parameters_type(model, ...)

Arguments

model A statistical model.
...

Arguments passed to or from other methods.

Value

A data frame.
### Examples

```r
library(parameters)

model <- lm(Sepal.Length ~ Petal.Length + Species, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2), data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2, raw = TRUE), data = iris)
parameters_type(model)

Interactions
model <- lm(Sepal.Length ~ Sepal.Width * Species, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Sepal.Width * Species * Petal.Length, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species * Sepal.Width, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species / Sepal.Width, data = iris)
parameters_type(model)

Complex interactions
data <- iris
data$fac2 <- ifelse(data$Sepal.Width > mean(data$Sepal.Width), "A", "B")
model <- lm(Sepal.Length ~ Species / fac2 / Petal.Length, data = data)
parameters_type(model)

model <- lm(Sepal.Length ~ Species / fac2 * Petal.Length, data = data)
parameters_type(model)
```

---

### pool_parameters

**Pool Model Parameters**

### Description

This function "pools" (i.e. combines) model parameters in a similar fashion as `mice::pool()`. However, this function pools parameters from `parameters_model` objects, as returned by `model_parameters()`.

### Usage

```r
pool_parameters(
 x,
 exponentiate = FALSE,
 effects = "fixed",
)```
component = "conditional",
verbose = TRUE,
...
)

Arguments

x A list of parameters_model objects, as returned by model_parameters(), or
a list of model-objects that is supported by model_parameters().

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

effects Should parameters for fixed effects ("fixed"), random effects ("random"), or
both ("all") be returned? Only applies to mixed models. May be abbreviated.
If the calculation of random effects parameters takes too long, you may use
effects = "fixed".

component Should all parameters, parameters for the conditional model, for the zero-inflated
part of the model, or the dispersion model be returned? Applies to models
with zero-inflated and/or dispersion component. component may be one of
"conditional", "zi", "zero-inflated", "dispersion" or "all" (default).
May be abbreviated.

verbose Toggle warnings and messages.
...

Details

Averaging of parameters follows Rubin’s rules (Rubin, 1987, p. 76). The pooled degrees of freedom
is based on the Barnard-Rubin adjustment for small samples (Barnard and Rubin, 1999).

Value

A data frame of indices related to the model’s parameters.

Note

Models with multiple components, (for instance, models with zero-inflation, where predictors ap-
ppear in the count and zero-inflated part) may fail in case of identical names for coefficients in the
different model components, since the coefficient table is grouped by coefficient names for pooling.
In such cases, coefficients of count and zero-inflated model parts would be combined. Therefore,
the component argument defaults to "conditional" to avoid this.
predict.parameters_clusters

References

Examples

example for multiple imputed datasets
if (require("mice")) {
 data("nhanes2")
 imp <- mice(nhanes2, printFlag = FALSE)
 models <- lapply(1:5, function(i) {
 lm(bmi ~ age + hyp + chl, data = complete(imp, action = i))
 })
 pool_parameters(models)

 # should be identical to:
 m <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
 summary(pool(m))
}

predict.parameters_clusters

Predict method for parameters_clusters objects

Description

Predict method for parameters_clusters objects

Usage

S3 method for class 'parameters_clusters'
predict(object, newdata = NULL, names = NULL, ...)

Arguments

object a model object for which prediction is desired.
newdata data.frame
names character vector or list
... additional arguments affecting the predictions produced.
print.parameters_model

Print model parameters

Description

A print()-method for objects from model_parameters().

Usage

```r
## S3 method for class 'parameters_model'
print(
  x,
  pretty_names = TRUE,
  split_components = TRUE,
  select = NULL,
  caption = NULL,
  digits = 2,
  ci_digits = 2,
  p_digits = 3,
  footer_digits = 3,
  show_sigma = FALSE,
  show_formula = FALSE,
  zap_small = FALSE,
  groups = NULL,
  column_width = NULL,
  ci_brackets = c("[", "]"),
  ...
)

## S3 method for class 'parameters_model'
summary(object, ...)
```

Arguments

- **x, object**: An object returned by model_parameters().
- **pretty_names**: Return "pretty" (i.e. more human readable) parameter names.
- **split_components**: Logical, if TRUE (default), For models with multiple components (zero-inflation, smooth terms,...), each component is printed in a separate table. If FALSE, model parameters are printed in a single table and a Component column is added to the output.
- **select**: Character vector (or numeric index) of column names that should be printed. If NULL (default), all columns are printed. The shortcut select = "minimal" prints coefficient, confidence intervals and p-values, while select = "short" prints coefficient, standard errors and p-values.
caption: Table caption as string. If NULL, no table caption is printed.

digits, ci_digits, p_digits:
Number of digits for rounding or significant figures. May also be "signif" to return significant figures or "scientific" to return scientific notation. Control the number of digits by adding the value as suffix, e.g. digits = "scientific4" to have scientific notation with 4 decimal places, or digits = "signif5" for 5 significant figures (see also signif()).

footer_digits: Number of decimal places for values in the footer summary.

show_sigma: Logical, if TRUE, adds information about the residual standard deviation.

show_formula: Logical, if TRUE, adds the model formula to the output.

zap_small: Logical, if TRUE, small values are rounded after digits decimal places. If FALSE, values with more decimal places than digits are printed in scientific notation.

groups: Named list, can be used to group parameters in the printed output. List elements may either be character vectors that match the name of those parameters that belong to one group, or list elements can be row numbers of those parameter rows that should belong to one group. The names of the list elements will be used as group names, which will be inserted as "header row". A possible use case might be to emphasize focal predictors and control variables, see 'Examples'. Parameters will be re-ordered according to the order used in groups, while all non-matching parameters will be added to the end.

column_width: Width of table columns. Can be either NULL, a named numeric vector, or "fixed". If NULL, the width for each table column is adjusted to the minimum required width. If a named numeric vector, value names are matched against column names, and for each match, the specified width is used. If "fixed", and table is split into multiple components, columns across all table components are adjusted to have the same width.

...: Arguments passed to or from other methods.

Details:

summary() is a convenient shortcut for print(object, select = "minimal", show_sigma = TRUE, show_formula = TRUE).

Value:

Invisibly returns the original input object.

Global Options to Customize Messages when Printing:

The verbose argument can be used to display or silence messages and warnings for the different functions in the parameters package. However, some messages providing additional information can be displayed or suppressed using options().
• parameters_summary: options(parameters_summary = TRUE) will override the summary argument in model_parameters() and always show the model summary for non-mixed models.

• parameters_mixed_summary: options(parameters_mixed_summary = TRUE) will override the summary argument in model_parameters() for mixed models, and will then always show the model summary.

• parameters_cimethod: options(parameters_cimethod = TRUE) will show the additional information about the approximation method used to calculate confidence intervals and p-values. Set to FALSE to hide this message when printing model_parameters() objects.

• parameters_exponentiate: options(parameters_exponentiate = TRUE) will show the additional information on how to interpret coefficients of models with log-transformed response variables or with log-/logit-links when the exponentiate argument in model_parameters() is not TRUE. Set this option to FALSE to hide this message when printing model_parameters() objects.

Interpretation of Interaction Terms

Note that the interpretation of interaction terms depends on many characteristics of the model. The number of parameters, and overall performance of the model, can differ or not between a * b a : b and a / b, suggesting that sometimes interaction terms give different parameterizations of the same model, but other times it gives completely different models (depending on a or b being factors of covariates, included as main effects or not, etc.). Their interpretation depends of the full context of the model, which should not be inferred from the parameters table alone - rather, we recommend to use packages that calculate estimated marginal means or marginal effects, such as modelbased, emmeans, ggeffects, or marginaleffects. To raise awareness for this issue, you may use print(...,show_formula=TRUE) to add the model-specification to the output of the print() method for model_parameters().

Labeling the Degrees of Freedom

Throughout the parameters package, we decided to label the residual degrees of freedom df_error. The reason for this is that these degrees of freedom not always refer to the residuals. For certain models, they refer to the estimate error - in a linear model these are the same, but in - for instance - any mixed effects model, this isn’t strictly true. Hence, we think that df_error is the most generic label for these degrees of freedom.

See Also

There is a dedicated method to use inside rmarkdown files, print_md().

Examples

```r
library(parameters)
if (require("glmmTMB", quietly = TRUE)) {
  model <- glmmTMB(
    count ~ spp + mined + (1 | site),
    ziformula = ~mined,
    family = poisson(),
```
```r
print(parameters_model)

data = Salamanders
mp <- model_parameters(model)
print(mp, pretty_names = FALSE)
print(mp, split_components = FALSE)
print(mp, select = c("Parameter", "Coefficient", "SE"))
print(mp, select = "minimal")

# group parameters -----
data(iris)
model <- lm(
  Sepal.Width ~ Sepal.Length + Species + Petal.Length,
  data = iris
)
# don't select "Intercept" parameter
mp <- model_parameters(model, parameters = "^(?!\(Intercept\))")
groups <- list(
  "Focal Predictors" = c("Speciesversicolor", "Speciesvirginica"),
  "Controls" = c("Sepal.Length", "Petal.Length")
)
print(mp, groups = groups)

# or use row indices
print(mp, groups = list(
  "Focal Predictors" = c(1, 4),
  "Controls" = c(2, 3)
))

# only show coefficients, CI and p,
# put non-matched parameters to the end
data(mtcars)
mtcars$cyl <- as.factor(mtcars$cyl)
mtcars$gear <- as.factor(mtcars$gear)
model <- lm(mpg ~ hp + gear * vs + cyl + drat, data = mtcars)
# don't select "Intercept" parameter
mp <- model_parameters(model, parameters = "^(?!\(Intercept\))")
print(mp, groups = list(
  "Engine" = c("cyl6", "cyl8", "vs", "hp"),
  "Interactions" = c("gear4:vs", "gear5:vs")
))
```

p_value

p_values

Description
This function attempts to return, or compute, p-values of a model’s parameters. See the documentation for your object’s class:

- **Bayesian models** (*rstanarm, brms, MCMCglmm,...*)
- **Zero-inflated models** (*hurdle, zeroinfl, zero count,...*)
- **Marginal effects models** (*mfx*)
- **Models with special components** (*DirichletRegModel, clm2, cgam,...*)

Usage

```r
p_value(model, ...)  
## Default S3 method:  
p_value(model,  
  dof = NULL,  
  method = NULL,  
  component = "all",  
  vcov = NULL,  
  vcov_args = NULL,  
  verbose = TRUE,  
  ...  
)
## S3 method for class 'emmGrid'  
p_value(model, ci = 0.95, adjust = "none", ...)
```

Arguments

- **model** A statistical model.
- **...** Additional arguments
- **dof** Number of degrees of freedom to be used when calculating confidence intervals.
 If NULL (default), the degrees of freedom are retrieved by calling `degrees_of_freedom()` with approximation method defined in method. If not NULL, use this argument to override the default degrees of freedom used to compute confidence intervals.
- **method** Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "uniroot", "mll", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section *Confidence intervals and approximation of degrees of freedom* in `model_parameters()` for further details.
p_value

component
Model component for which parameters should be shown. See the documentation for your object’s class in `model_parameters()` or `p_value()` for further details.

vcov
Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., `stats::vcov()`)
- A string which indicates the kind of uncertainty estimates to return.
 - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See `sandwich::vcovHC`.
 - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See `sandwich::vcovBS`.
 - Other `sandwich` package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

vcov_args
List of arguments to be passed to the function identified by the `vcov` argument. This function is typically supplied by the `sandwich` or `clubSandwich` packages. Please refer to their documentation (e.g., `?sandwich::vcovHAC`) to see the list of available arguments.

verbose
Toggle warnings and messages.

ci
Confidence Interval (CI) level. Default to 0.95 (95%).

adjust
Character value naming the method used to adjust p-values or confidence intervals. See `?emmeans::summary.emmGrid` for details.

Value

A data frame with at least two columns: the parameter names and the p-values. Depending on the model, may also include columns for model components etc.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The `ci_method` argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:

Classical inference is generally based on the **Wald method.** The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald":

"wald":
• Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

Methods for mixed models:
Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.

"kenward"

• Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and a t-distribution with Kenward-Roger df.

"ml1"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with $m-l-1$ approximated df); p-values computed using the Wald method with a t-distribution with $m-l-1$ approximated df. See `ci_ml1()`.

"betwithin"

• Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See `ci_betwithin()`.

Likelihood-based methods:
Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a χ^2-squared distribution to compute CIs and p-values.

"profile"
• Applies to non-Bayesian models of class glm, polr or glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"uniroot"

• Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::eti().

"hdi"

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::bci().

"si"

• Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See bayestestR::si().

"boot"

• Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which is converted into a p-value using bayestestR::pd_to_p().
Examples

data(iris)
model <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
p_value(model)

p_value.BFBayesFactor p-values for Bayesian Models

Description

This function attempts to return, or compute, p-values of Bayesian models.

Usage

S3 method for class 'BFBayesFactor'
p_value(model, ...)

Arguments

model A statistical model.
...
 Additional arguments

Details

For Bayesian models, the p-values corresponds to the probability of direction (bayestestR::p_direction()), which is converted to a p-value using bayestestR::convert_pd_to_p().

Value

The p-values.

Examples

data(iris)
model <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
p_value(model)
Description

This function attempts to return, or compute, p-values of models with special model components.

Usage

```r
## S3 method for class 'DirichletRegModel'
p_value(model, component = c("all", "conditional", "precision"), ...)
```

```r
## S3 method for class 'averaging'
p_value(model, component = c("conditional", "full"), ...)
```

```r
## S3 method for class 'betareg'
p_value(  
  model,  
  component = c("all", "conditional", "precision"),  
  verbose = TRUE,  
  ...  
)
```

```r
## S3 method for class 'cgam'
p_value(model, component = c("all", "conditional", "smooth_terms"), ...)
```

```r
## S3 method for class 'clm2'
p_value(model, component = c("all", "conditional", "scale"), ...)
```

Arguments

- **model**: A statistical model.
- **component**: Should all parameters, parameters for the conditional model, precision- or scale-component or smooth_terms be returned? component may be one of "conditional", "precision", "scale", "smooth_terms", "full" or "all" (default).
- **...**: Additional arguments
- **verbose**: Toggle warnings and messages.

Value

The p-values.
p_value.poissonmfx
p-values for Marginal Effects Models

Description

This function attempts to return, or compute, p-values of marginal effects models from package `mfx`.

Usage

```r
## S3 method for class 'poissonmfx'
p_value(model, component = c("all", "conditional", "marginal"), ...)

## S3 method for class 'betaor'
p_value(model, component = c("all", "conditional", "precision"), ...)

## S3 method for class 'betamfx'
p_value(
  model,
  component = c("all", "conditional", "precision", "marginal"),
  ...
)
```

Arguments

- `model`: A statistical model.
- `component`: Should all parameters, parameters for the conditional model, precision-component or marginal effects be returned? `component` may be one of "conditional", "precision", "marginal" or "all" (default).
- `...`: Currently not used.

Value

A data frame with at least two columns: the parameter names and the p-values. Depending on the model, may also include columns for model components etc.

Examples

```r
if (require("mfx", quietly = TRUE)) {
  set.seed(12345)
  n <- 1000
  x <- rnorm(n)
  y <- rnegbin(n, mu = exp(1 + 0.5 * x), theta = 0.5)
  d <- data.frame(y, x)
  model <- poissonmfx(y ~ x, data = d)
  p_value(model)
}
```
This function attempts to return, or compute, p-values of hurdle and zero-inflated models.

Usage

```r
## S3 method for class 'zcpglm'
p_value(model, component = c("all", "conditional", "zi", "zero_inflated"), ...)

## S3 method for class 'zeroinfl'
p_value(
  model,
  component = c("all", "conditional", "zi", "zero_inflated"),
  method = NULL,
  verbose = TRUE,
  ...
)
```

Arguments

- `model` A statistical model.
- `component` Model component for which parameters should be shown. See the documentation for your object’s class in `model_parameters()` or `p_value()` for further details.
- `...` Additional arguments
- `method` Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirout", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in `model_parameters()` for further details.
- `verbose` Toggle warnings and messages.

Value

A data frame with at least two columns: the parameter names and the p-values. Depending on the model, may also include columns for model components etc.
Examples

```r
if (require("pscl", quietly = TRUE)) {
  data("bioChemists")
  model <- zeroinfl(art ~ fem + mar + kid5 | kid5 + phd, data = bioChemists)
  p_value(model)
  p_value(model, component = "zi")
}
```

qol_cancer
Sample data set

Description

A sample data set with longitudinal data, used in the vignette describing the `datawizard::demean()` function. Health-related quality of life from cancer-patients was measured at three time points (pre-surgery, 6 and 12 months after surgery).

Format

A data frame with 564 rows and 7 variables:

- **ID** Patient ID
- **QoL** Quality of Life Score
- **time** Timepoint of measurement
- **age** Age in years
- **phq4** Patients’ Health Questionnaire, 4-item version
- **hospital** Hospital ID, where patient was treated
- **education** Patients’ educational level

random_parameters
Summary information from random effects

Description

This function extracts the different variance components of a mixed model and returns the result as a data frame.

Usage

```r
random_parameters(model, component = "conditional")
```
Arguments

- **model**: A mixed effects model (including `stanreg` models).
- **component**: Should all parameters, parameters for the conditional model, for the zero-inflated part of the model, or the dispersion model be returned? Applies to models with zero-inflated and/or dispersion component. `component` may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.

Details

The variance components are obtained from `insight::get_variance()` and are denoted as following:

Within-group (or residual) variance: The residual variance, σ^2, is the sum of the distribution-specific variance and the variance due to additive dispersion. It indicates the within-group variance.

Between-group random intercept variance: The random intercept variance, or between-group variance for the intercept (τ_{00}), is obtained from `VarCorr()`. It indicates how much groups or subjects differ from each other.

Between-group random slope variance: The random slope variance, or between-group variance for the slopes (τ_{11}) is obtained from `VarCorr()`. This measure is only available for mixed models with random slopes. It indicates how much groups or subjects differ from each other according to their slopes.

Random slope-intercept correlation: The random slope-intercept correlation (ρ_{01}) is obtained from `VarCorr()`. This measure is only available for mixed models with random intercepts and slopes.

Note: For the within-group and between-group variance, variance and standard deviations (which are simply the square root of the variance) are shown.

Value

A data frame with random effects statistics for the variance components, including number of levels per random effect group, as well as complete observations in the model.

Examples

```r
if (require("lme4")) {
  data(sleepstudy)
  model <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
  random_parameters(model)
}
```
reduce_parameters | Dimensionality reduction (DR) / Features Reduction

Description

This function performs a reduction in the parameter space (the number of variables). It starts by creating a new set of variables, based on the given method (the default method is "PCA", but other are available via the method argument, such as "cMDS", "DRR" or "ICA"). Then, it names this new dimensions using the original variables that correlates the most with it. For instance, a variable named \(V1_0.97/V4_-0.88 \) means that the V1 and the V4 variables correlate maximally (with respective coefficients of .97 and -.88) with this dimension. Although this function can be useful in exploratory data analysis, it's best to perform the dimension reduction step in a separate and dedicated stage, as this is a very important process in the data analysis workflow. `reduce_data()` is an alias for `reduce_parameters.data.frame()`.

Usage

```
reduce_parameters(x, method = "PCA", n = "max", distance = "euclidean", ...)
reduce_data(x, method = "PCA", n = "max", distance = "euclidean", ...)
```

Arguments

- `x` | A data frame or a statistical model.
- `method` | The feature reduction method. Can be one of "PCA", "cMDS", "DRR", "ICA" (see the 'Details' section).
- `n` | Number of components to extract. If `n="all"`, then `n` is set as the number of variables minus 1 (ncol(x)-1). If `n="auto"` (default) or `n=NULL`, the number of components is selected through `n_factors()` resp. `n_components()`. In `reduce_parameters()`, can also be "max", in which case it will select all the components that are maximally pseudo-loaded (i.e., correlated) by at least one variable.
- `distance` | The distance measure to be used. Only applies when `method = "cMDS"`. This must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring can be given.
- `...` | Arguments passed to or from other methods.

Details

The different methods available are described below:

Supervised Methods:

- **PCA**: See `principal_components()`.
- **cMDS / PCoA**: Classical Multidimensional Scaling (cMDS) takes a set of dissimilarities (i.e., a distance matrix) and returns a set of points such that the distances between the points are approximately equal to the dissimilarities.
• **DRR**: Dimensionality Reduction via Regression (DRR) is a very recent technique extending PCA (Laparra et al., 2015). Starting from a rotated PCA, it predicts redundant information from the remaining components using non-linear regression. Some of the most notable advantages of performing DRR are avoidance of multicollinearity between predictors and overfitting mitigation. DRR tends to perform well when the first principal component is enough to explain most of the variation in the predictors. Requires the DRR package to be installed.

• **ICA**: Performs an Independent Component Analysis using the FastICA algorithm. Contrary to PCA, which attempts to find uncorrelated sources (through least squares minimization), ICA attempts to find independent sources, i.e., the source space that maximizes the "non-gaussianity" of all sources. Contrary to PCA, ICA does not rank each source, which makes it a poor tool for dimensionality reduction. Requires the fastICA package to be installed.

See also package vignette.

References

Examples

```r
data(iris)
model <- lm(Sepal.Width ~ Species * Sepal.Length + Petal.Width, data = iris)
model
reduce_parameters(model)

out <- reduce_data(iris, method = "PCA", n = "max")
head(out)
```

reshape_loadings

Reshape loadings between wide/long formats

Description

Reshape loadings between wide/long formats.

Usage

```r
reshape_loadings(x, ...)
```

S3 method for class 'parameters_efa'

```r
reshape_loadings(x, threshold = NULL, ...)
```

S3 method for class 'data.frame'

```r
reshape_loadings(x, threshold = NULL, loadings_columns = NULL, ...)
```
Arguments

- x: A data frame or a statistical model.
- ...: Arguments passed to or from other methods.
- threshold: A value between 0 and 1 indicates which (absolute) values from the loadings should be removed. An integer higher than 1 indicates the n strongest loadings to retain. Can also be "max", in which case it will only display the maximum loading per variable (the most simple structure).
- loadings_columns: Vector indicating the columns corresponding to loadings.

Examples

```r
if (require("psych")) {
  pca <- model_parameters(psych::fa(attitude, nfactors = 3))
  loadings <- reshape_loadings(pca)

  loadings
  reshape_loadings(loadings)
}
```

select_parameters: Automated selection of model parameters

Description

This function performs an automated selection of the 'best' parameters, updating and returning the "best" model.

Usage

```r
select_parameters(model, ...)
```

S3 method for class 'lm'
```r
select_parameters(model, direction = "both", steps = 1000, k = 2, ...)
```

S3 method for class 'merMod'
```r
select_parameters(model, direction = "backward", steps = 1000, ...)
```

Arguments

- model: A statistical model (of class lm, glm, or merMod).
- ...: Arguments passed to or from other methods.
- direction: the mode of stepwise search, can be one of "both", "backward", or "forward", with a default of "both". If the scope argument is missing the default for direction is "backward". Values can be abbreviated.
steps the maximum number of steps to be considered. The default is 1000 (essentially as many as required). It is typically used to stop the process early.

k the multiple of the number of degrees of freedom used for the penalty. Only \(k = 2 \) gives the genuine AIC: \(k = \log(n) \) is sometimes referred to as BIC or SBC.

Details

Classical lm and glm: For frequentist GLMs, `select_parameters()` performs an AIC-based stepwise selection.

Mixed models: For mixed-effects models of class `merMod`, stepwise selection is based on `cAIC4::stepcAIC()`. This step function only searches the "best" model based on the random-effects structure, i.e. `select_parameters()` adds or excludes random-effects until the cAIC can’t be improved further.

Value

The model refitted with optimal number of parameters.

Examples

```r
model <- lm(mpg ~ ., data = mtcars)
select_parameters(model)

model <- lm(mpg ~ cyl * disp * hp * wt, data = mtcars)
select_parameters(model)
```

```r
# lme4 -------------------------------------------
if (require("lme4")) {
  model <- lmer(
    Sepal.Width ~ Sepal.Length * Petal.Width * Petal.Length + (1 | Species),
    data = iris
  )
  select_parameters(model)
}
```

simulate_model

Simulated draws from model coefficients

Description

Simulate draws from a statistical model to return a data frame of estimates.
Usage

simulate_model(model, iterations = 1000, ...)

S3 method for class 'glmmTMB'
simulate_model(
 model,
 iterations = 1000,
 component = c("all", "conditional", "zi", "zero_inflated", "dispersion"),
 verbose = FALSE,
 ...
)

Arguments

- **model**: Statistical model (no Bayesian models).
- **iterations**: The number of draws to simulate/bootstrap.
- **...**: Arguments passed to or from other methods.
- **component**: Should all parameters, parameters for the conditional model, for the zero-inflated part of the model, or the dispersion model be returned? Applies to models with zero-inflated and/or dispersion component. Component may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.
- **verbose**: Toggle warnings and messages.

Details

Technical Details: `simulate_model()` is a computationally faster alternative to `bootstrap_model()`. Simulated draws for coefficients are based on a multivariate normal distribution (`MASS::mvrnorm()`) with mean \(\mu = \text{coef}(model) \) and variance \(\Sigma = \text{vcov}(model) \).

Models with Zero-Inflation Component: For models from packages `glmmTMB`, `pscl`, `GLMMadaptive` and `countreg`, the `component` argument can be used to specify which parameters should be simulated. For all other models, parameters from the conditional component (fixed effects) are simulated. This may include smooth terms, but not random effects.

Value

A data frame.

See Also

`simulate_parameters()`, `bootstrap_model()`, `bootstrap_parameters()`

Examples

```r
model <- lm(Sepal.Length ~ Species * Petal.Width + Petal.Length, data = iris)
head(simulate_model(model))
```
simulate_parameters.glmmTMB

Simulate Model Parameters

Description

Compute simulated draws of parameters and their related indices such as Confidence Intervals (CI) and p-values. Simulating parameter draws can be seen as a (computationally faster) alternative to bootstrapping.

Usage

```r
## S3 method for class 'glmmTMB'
simulate_parameters(
  model,
  iterations = 1000,
  centrality = "median",
  ci = 0.95,
  ci_method = "quantile",
  test = "p-value",
  ...
)
```

```r
## Default S3 method:
simulate_parameters(
  model,
  iterations = 1000,
  centrality = "median",
  ci = 0.95,
  ci_method = "quantile",
  test = "p-value",
  ...
)
```
Arguments

- **model**: Statistical model (no Bayesian models).
- **iterations**: The number of draws to simulate/bootstrap.
- **centrality**: The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".
- **ci**: Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to .95 (95%).
- **ci_method**: The type of index used for Credible Interval. Can be "ETI" (default, see eti()), "HDI" (see hdi()), "BCI" (see bci()), "SPI" (see spi()), or "SI" (see si()).
- **test**: The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding bayestestR function is called (e.g. rope() or p_direction()) and its results included in the summary output.
- ... Arguments passed to or from other methods.

Details

Technical Details: simulate_parameters() is a computationally faster alternative to bootstrap_parameters(). Simulated draws for coefficients are based on a multivariate normal distribution (MASS::mvrnorm()) with mean mu = coef(model) and variance Sigma = vcov(model).

Models with Zero-Inflation Component: For models from packages glmmTMB, pscl, GLMMADAPTIVE and countreg, the component argument can be used to specify which parameters should be simulated. For all other models, parameters from the conditional component (fixed effects) are simulated. This may include smooth terms, but not random effects.

Value

A data frame with simulated parameters.

Note

There is also a plot()-method implemented in the see-package.

References

See Also

bootstrap_model(), bootstrap_parameters(), simulate_model()
sort_parameters

Examples

```r
model <- lm(Sepal.Length ~ Species * Petal.Width + Petal.Length, data = iris)
simulate_parameters(model)

## Not run:
if (require("glmmTMB", quietly = TRUE)) {
mmodel <- glmmTMB(
  count ~ spp + mined + (1 | site),
  ziformula = ~mined,
  family = poisson(),
  data = Salamanders
)
simulate_parameters(model, centrality = "mean")
simulate_parameters(model, ci = c(.8, .95), component = "zero_inflated")
}
## End(Not run)
```

sort_parameters

Sort parameters by coefficient values

Description

Sort parameters by coefficient values

Usage

```r
sort_parameters(x, ...)

## Default S3 method:
sort_parameters(x, sort = "none", column = "Coefficient", ...)
```

Arguments

- `x` A data frame or a `parameters_model` object.
- `...` Arguments passed to or from other methods.
- `sort` If "none" (default) do not sort, "ascending" sort by increasing coefficient value, or "descending" sort by decreasing coefficient value.
- `column` The column containing model parameter estimates. This will be "Coefficient" (default) in easystats packages, "estimate" in broom package, etc.

Value

A sorted data frame or original object.
Examples

creating object to sort (can also be a regular data frame)
mod <- model_parameters(stats::lm(wt ~ am * cyl, data = mtcars))

original output
mod

sorted outputs
sort_parameters(mod, sort = "ascending")
sort_parameters(mod, sort = "descending")

standardize_info

Get Standardization Information

Description

This function extracts information, such as the deviations (SD or MAD) from parent variables, that are necessary for post-hoc standardization of parameters. This function gives a window on how standardized are obtained, i.e., by what they are divided. The "basic" method of standardization uses.

Usage

```r
standardize_info(
  model,
  robust = FALSE,
  two_sd = FALSE,
  include_pseudo = FALSE,
  ...
)
```

Arguments

- **model**: A statistical model.
- **robust**: Logical, if TRUE, centering is done by subtracting the median from the variables and dividing it by the median absolute deviation (MAD). If FALSE, variables are standardized by subtracting the mean and dividing it by the standard deviation (SD).
- **two_sd**: If TRUE, the variables are scaled by two times the deviation (SD or MAD depending on robust). This method can be useful to obtain model coefficients of continuous parameters comparable to coefficients related to binary predictors, when applied to the predictors (not the outcome) (Gelman, 2008).
- **include_pseudo** (For (G)LMMs) Should Pseudo-standardized information be included?
- **...**: Arguments passed to or from other methods.
Value

A data frame with information on each parameter (see `parameters_type()`), and various standardization coefficients for the post-hoc methods (see `standardize_parameters()`) for the predictor and the response.

See Also

Other standardize: `standardize_parameters()`

Examples

```r
model <- lm(mpg ~ ., data = mtcars)
standardize_info(model)
standardize_info(model, robust = TRUE)
standardize_info(model, two_sd = TRUE)
```

`standardize_parameters`

Parameters standardization

Description

Compute standardized model parameters (coefficients).

Usage

```r
standardize_parameters(
  model,  # model object
  method = "refit",  # method of standardization
  ci = 0.95,  # alpha level for confidence intervals
  robust = FALSE,  # use robust standardization
  two_sd = FALSE,  # two-sigma standardization
  include_response = TRUE,  # include response in the output
  verbose = TRUE,  # print progress information
  ...  # additional arguments
)
```

```r
standardize_posteriors(
  model,  # model object
  method = "refit",  # method of standardization
  robust = FALSE,  # use robust standardization
  two_sd = FALSE,  # two-sigma standardization
  include_response = TRUE,  # include response in the output
  verbose = TRUE,  # print progress information
  ...  # additional arguments
)
```
Arguments

model A statistical model.
method The method used for standardizing the parameters. Can be "refit" (default), "posthoc", "smart", "basic" or "pseudo". See 'Details'.
ci Confidence Interval (CI) level
robust Logical, if TRUE, centering is done by subtracting the median from the variables and dividing it by the median absolute deviation (MAD). If FALSE, variables are standardized by subtracting the mean and dividing it by the standard deviation (SD).
two_sd If TRUE, the variables are scaled by two times the deviation (SD or MAD depending on robust). This method can be useful to obtain model coefficients of continuous parameters comparable to coefficients related to binary predictors, when applied to the predictors (not the outcome) (Gelman, 2008).
include_response If TRUE (default), the response value will also be standardized. If FALSE, only the predictors will be standardized. For GLMs the response value will never be standardized (see Generalized Linear Models section).
verbose Toggle warnings and messages on or off.
...

For standardize_parameters(), arguments passed to model_parameters(), such as:
• ci_method, centrality for Mixed models and Bayesian models...
• exponentiate, ...
• etc.

Value

A data frame with the standardized parameters (Std_*, depending on the model type) and their CIs (CI.low and CI.high). Where applicable, standard errors (SEs) are returned as an attribute (attr(x, "standard_error")).

Standardization Methods

• refit: This method is based on a complete model re-fit with a standardized version of the data. Hence, this method is equal to standardizing the variables before fitting the model. It is the "purest" and the most accurate (Neter et al., 1989), but it is also the most computationally costly and long (especially for heavy models such as Bayesian models). This method is particularly recommended for complex models that include interactions or transformations (e.g., polynomial or spline terms). The robust (default to FALSE) argument enables a robust standardization of data, i.e., based on the median and MAD instead of the mean and SD. See standardize() for more details.
 – Note that standardize_parameters(method = "refit") may not return the same results as fitting a model on data that has been standardized with standardize(); standardize_parameters() used the data used by the model fitting function, which might not be same data if there are missing values. see the remove_na argument in standardize().
• **posthoc**: Post-hoc standardization of the parameters, aiming at emulating the results obtained by "refit" without refitting the model. The coefficients are divided by the standard deviation (or MAD if robust) of the outcome (which becomes their expression 'unit'). Then, the coefficients related to numeric variables are additionally multiplied by the standard deviation (or MAD if robust) of the related terms, so that they correspond to changes of 1 SD of the predictor (e.g., "A change in 1 SD of x is related to a change of 0.24 of the SD of y"). This does not apply to binary variables or factors, so the coefficients are still related to changes in levels. This method is not accurate and tend to give aberrant results when interactions are specified.

• **basic**: This method is similar to method = "posthoc", but treats all variables as continuous: it also scales the coefficient by the standard deviation of model’s matrix’ parameter of factors levels (transformed to integers) or binary predictors. Although being inappropriate for these cases, this method is the one implemented by default in other software packages, such as `lm.beta::lm.beta()`.

• **smart** (Standardization of Model’s parameters with Adjustment, Reconnaissance and Transformation - experimental): Similar to method = “posthoc” in that it does not involve model refitting. The difference is that the SD (or MAD if robust) of the response is computed on the relevant section of the data. For instance, if a factor with 3 levels A (the intercept), B and C is entered as a predictor, the effect corresponding to B vs. A will be scaled by the variance of the response at the intercept only. As a results, the coefficients for effects of factors are similar to a Glass’ delta.

• **pseudo** (for 2-level (G)LMMs only): In this (post-hoc) method, the response and the predictor are standardized based on the level of prediction (levels are detected with `performance::check_heterogeneity_bias()`. Predictors are standardized based on their SD at level of prediction (see also `datawizard::demean()`); The outcome (in linear LMMs) is standardized based on a fitted random-intercept-model, where `sqrt(random-intercept-variance)` is used for level 2 predictors, and `sqrt(residual-variance)` is used for level 1 predictors (Hoffman 2015, page 342). A warning is given when a within-group variable is found to have access between-group variance.

Transformed Variables

When the model’s formula contains transformations (e.g. `y ~ exp(X)`) method = "refit" will give different results compared to method = "basic" ("posthoc" and "smart" do not support such transformations). While "refit" standardizes the data prior to the transformation (e.g. equivalent to `exp(scale(X))`), the "basic" method standardizes the transformed data (e.g. equivalent to `scale(exp(X))`).

See the Transformed Variables section in `standardize.default()` for more details on how different transformations are dealt with when method = "refit".

Confidence Intervals

The returned confidence intervals are re-scaled versions of the unstandardized confidence intervals, and not "true" confidence intervals of the standardized coefficients (cf. Jones & Waller, 2015).

Generalized Linear Models

Standardization for generalized linear models (GLM, GLMM, etc) is done only with respect to the predictors (while the outcome remains as-is, unstandardized) - maintaining the interpretability of
the coefficients (e.g., in a binomial model: the exponent of the standardized parameter is the OR of a change of 1 SD in the predictor, etc.)

Dealing with Factors

standardize(model) or standardize_parameters(model, method = "refit") do not standardize categorical predictors (i.e., factors) / their dummy-variables, which may be a different behaviour compared to other `R` packages (such as `lm.beta`) or other software packages (like SPSS). To mimic such behaviours, either use standardize_parameters(model, method = "basic") to obtain post-hoc standardized parameters, or standardize the data with `datawizard::standardize(data, force = TRUE)` before fitting the model.

References

See Also

Other standardize: `standardize_info()`

Examples

```r
model <- lm(len ~ supp * dose, data = ToothGrowth)
standardize_parameters(model, method = "refit")

standardize_parameters(model, method = "posthoc")
standardize_parameters(model, method = "smart")
standardize_parameters(model, method = "basic")

# Robust and 2 SD
standardize_parameters(model, robust = TRUE)
standardize_parameters(model, two_sd = TRUE)

model <- glm(am ~ cyl * mpg, data = mtcars, family = "binomial")
standardize_parameters(model, method = "refit")
standardize_parameters(model, method = "posthoc")
standardize_parameters(model, method = "basic", exponentiate = TRUE)

if (require("lme4")) {
  m <- lme4::lmer(mpg ~ cyl + am + vs + (1 | cyl), mtcars)
  standardize_parameters(m, method = "pseudo", ci_method = "satterthwaite")
```

```r
}  
## Not run:
if (require("rstanarm")) {
  model <- rstanarm::stan_glm(rating ~ critical + privileges, data = attitude, refresh = 0)
  standardize_posteriors(model, method = "refit")
  standardize_posteriors(model, method = "posthoc")
  standardize_posteriors(model, method = "smart")
  head(standardize_posteriors(model, method = "basic"))
}  
## End(Not run)

---

**standard_error**

**Standard Errors**

**Description**

standard_error() attempts to return standard errors of model parameters

**Usage**

standard_error(model, ...)

## Default S3 method:
standard_error(
  model,
  component = "all",
  vcov = NULL,
  vcov_args = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'factor'
standard_error(model, force = FALSE, verbose = TRUE, ...)

## S3 method for class 'glmmTMB'
standard_error(
  model,
  effects = "fixed",
  component = "all",
  verbose = TRUE,
  ...
)

## S3 method for class 'merMod'

```
standard_error(
 model,
 effects = "fixed",
 method = NULL,
 vcov = NULL,
 vcov_args = NULL,
 ...
)

Arguments

model A model.

... Arguments passed to or from other methods.

component Model component for which standard errors should be shown. See the documentation for your object’s class in \code{model_parameters()} or \code{p_value()} for further details.

vcov Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., \code{stats::vcov()})
- A string which indicates the kind of uncertainty estimates to return.
 - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See \code{?sandwich::vcovHC}.
 - Cluster-robust: "vcovCR", "CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3". See \code{?clubSandwich::vcovCR}.
 - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See \code{?sandwich::vcovBS}.
 - Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

vcov_args List of arguments to be passed to the function identified by the \code{vcov} argument. This function is typically supplied by the \code{sandwich} or \code{clubSandwich} packages. Please refer to their documentation (e.g., \code{?sandwich::vcovHAC}) to see the list of available arguments.

verbose Toggle warnings and messages.

force Logical, if \code{TRUE}, factors are converted to numerical values to calculate the standard error, with the lowest level being the value 1 (unless the factor has numeric levels, which are converted to the corresponding numeric value). By default, \code{NA} is returned for factors or character vectors.

effects Should standard errors for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. When standard errors for random effects are requested, for each grouping factor a list of standard errors (per group level) for random intercepts and slopes is returned.
Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in model_parameters() for further details.

Value

A data frame with at least two columns: the parameter names and the standard errors. Depending on the model, may also include columns for model components etc.

Note

For Bayesian models (from rstanarm or brms), the standard error is the SD of the posterior samples.

Examples

```r
model <- lm(Petal.Length ~ Sepal.Length * Species, data = iris)
standard_error(model)

if (require("sandwich") && require("clubSandwich")) {
  standard_error(model, vcov = "HC3")

  standard_error(model,
    vcov = "vcovCL",
    vcov_args = list(cluster = iris$Species)
  )
}

standard_error_robust Robust standard errors. Supersedes the vcov* arguments in standard_error()

Description

Robust standard errors. Supersedes the vcov* arguments in standard_error()

Usage

```
standard_error_robust(
 model,
 vcov = "HC3",
 vcov_args = NULL,
 component = "conditional",
 ...)
```
Arguments

model
A model.

vcov
Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.
- A covariance matrix
- A function which returns a covariance matrix (e.g., stats::vcov())
- A string which indicates the kind of uncertainty estimates to return.
  - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.
  - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See ?sandwich::vcovBS.
  - Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

vcov_args
List of arguments to be passed to the function identified by the vcov argument. This function is typically supplied by the sandwich or clubSandwich packages. Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list of available arguments.

component
Model component for which standard errors should be shown. See the documentation for your object's class in model_parameters() or p_value() for further details.

...
Arguments passed to or from other methods.
Index

* data
  fish, 49
  qol_cancer, 164
* effect size indices
  standardize_parameters, 175
* standardize
  standardize_info, 174
  standardize_parameters, 175
..., 43
Additive models, 53
ANOVA, 53
anova(), 62
aov(), 62
Bartlett’s Test of Sphericity, 9
BayesFactor::anovaBF(), 67
BayesFactor::correlationBF(), 67
BayesFactor::generalTestBF(), 67
BayesFactor::lmBF(), 67
BayesFactor::regressionBF(), 67
BayesFactor::ttestBF(), 67
Bayesian, 53
Bayesian models, 156
Bayesian regressions, 70, 78, 90, 96, 111, 116, 132, 136, 140
bayestestR::bci(), 15, 57, 83, 94, 109, 159
bayestestR::ci(), 105
bayestestR::describe_posterior(), 7, 71, 92, 97, 137, 141
bayestestR::equivalence_test(), 44
bayestestR::eti(), 15, 57, 83, 94, 109, 159
bayestestR::hdi(), 15, 57, 83, 94, 109, 159
bayestestR::p_direction(), 6, 15, 57, 83, 94, 109, 159, 160
bayestestR::pd_to_p(), 15, 57, 83, 94, 109, 159
bayestestR::rope(), 6
bayestestR::rope_range(), 44
bayestestR::si(), 15, 57, 83, 94, 109, 159
bci(), 6, 65, 66, 172
bootstrap_model, 4
bootstrap_model(), 7, 170, 172
bootstrap_parameters, 6
bootstrap_parameters(), 5, 70, 78, 90, 96, 111, 116, 132, 136, 140, 170, 172
cAIC4::stepAIC(), 169
check_clusterstructure, 8
check_clusterstructure(), 9, 23, 25
check_factorstructure, 9
check_factorstructure(), 8, 46
check_heterogeneity, 10
check_kmo, 10
check_kmo(), 8, 9
check_sphericity_bartlett, 11
check_sphericity_bartlett(), 8, 9
ci.default, 12
ci.glmmTMB(ci.default), 12
ci.merMod(ci.default), 12
ci_betwithin, 16
ci_betwithin(), 14, 56, 82, 93, 108, 158
ci_kentward, 17
ci_ml1, 19
ci_ml1(), 14, 56, 82, 93, 108, 158
ci_satterthwaite, 20
closest_component(factor_analysis), 45
closest_component(), 47
cluster_analysis, 21
cluster_analysis(), 25
cluster_centers, 24
cluster_discrimination, 25
cluster_discrimination(), 23
cluster_meta, 26
cluster_performance, 27
Clustering, 53
compare_models(compare_parameters), 28
compare_parameters, 28
convert_efa_to_cfa, 32
Correlations, t-tests, etc., 53
datawizard::demean(), 55, 177
Default method, 53
degrees_of_freedom, 33
degrees_of_freedom(), 13, 156
display.equivalence_test_lm
(display.parameters_model), 34
display.parameters_efa
(display.parameters_model), 34
display.parameters_efa_summary
(display.parameters_model), 34
display.parameters_model, 34
display.parameters_sem
(display.parameters_model), 34
dist(), 22, 143
dof (degrees_of_freedom), 33
dof_betwithin (ci_betwithin), 16
dof_betwithin(), 33, 34
dof_kemenward (ci_kemenward), 17
dof_kemenward(), 21, 33
dof_ml1 (ci_ml1), 19
dof_ml1(), 78, 21, 33, 34
dof_satterthwaita (ci_satterthwaita), 20
dof_satterthwaita(), 18, 33
dominance_analysis, 39
domin::domin(), 41
efa_to_cfa (convert_efa_to_cfa), 32
effectsize::t_to_d(), 99
equivalence_test(), 37
equivalence_test.lm, 42
equivalence_test.merMod
(equivalence_test.lm), 42
eti(), 6, 65, 66, 172
factor_analysis, 45
fish, 49
format.parameters_model
(display.parameters_model), 34
format_df_adjust, 49
format_order, 50
format_p_adjust, 51
format_parameters, 50
get_scores, 52
get_scores(), 47
hclust(), 22, 144
hdi(), 6, 65, 66, 172
insight::get_variance(), 79, 165
insight::standardize_names(), 59, 72, 83, 94, 98, 110, 135, 141
Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA), 9
kmeans(), 23, 84
lm.beta::lm.beta(), 55, 177
manova(), 62
Marginal effects models, 156
Meta-Analysis, 53
Mixed models, 53
model_parameters, 53
model_parameters(), 13, 28–30, 37, 38, 70, 78, 90, 100, 105, 111, 116, 133, 149, 150, 152, 156, 157, 163, 176, 180–182
model_parameters.afex_aov
(model_parameters.aov), 59
model_parameters.anova
(model_parameters.aov), 59
model_parameters.Anova.mlm
(model_parameters.aov), 59
model_parameters.anova.rms
(model_parameters.aov), 59
model_parameters.aov, 59
model_parameters.aovlist
(model_parameters.aov), 59
model_parameters.averaging
(model_parameters.PMCMR), 120
model_parameters.bamlss
(model_parameters.MCMCglmm), 101
model_parameters.bayesQR
(model_parameters.MCMCglmm), 101
model_parameters.bcplm
(model_parameters.PMCMR), 120
model_parameters.befa, 64
model_parameters.betamfx
(model_parameters.PMCMR), 120
model_parameters.betaor
(model_parameters.PMCMR), 120
model_parameters.BFBayesFactor, 65
<table>
<thead>
<tr>
<th>Function</th>
<th>Package</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>model_parameters.bfsl</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.bifeAPEs</td>
<td>PMCMR</td>
<td>95</td>
</tr>
<tr>
<td>model_parameters.blrm</td>
<td>MCMCglmm</td>
<td>101</td>
</tr>
<tr>
<td>model_parameters.bracl</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.brmsfit</td>
<td>MCMCglmm</td>
<td>101</td>
</tr>
<tr>
<td>model_parameters.censReg</td>
<td>default</td>
<td>87</td>
</tr>
<tr>
<td>model_parameters.cgm</td>
<td>default</td>
<td>87</td>
</tr>
<tr>
<td>model_parameters.clm2</td>
<td>DirichletRegModel</td>
<td>95</td>
</tr>
<tr>
<td>model_parameters.clmm</td>
<td>DirichletRegModel</td>
<td>95</td>
</tr>
<tr>
<td>model_parameters.clmm2</td>
<td>DirichletRegModel</td>
<td>95</td>
</tr>
<tr>
<td>model_parameters.cplmm</td>
<td>DirichletRegModel</td>
<td>95</td>
</tr>
<tr>
<td>model_parameters.cplmm2</td>
<td>DirichletRegModel</td>
<td>95</td>
</tr>
<tr>
<td>model_parameters.coeftest</td>
<td>htest</td>
<td>98</td>
</tr>
<tr>
<td>model_parameters.comparisons</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.cpglmm</td>
<td>cpglmm</td>
<td>72</td>
</tr>
<tr>
<td>model_parameters.data.frame</td>
<td>MCMCglmm</td>
<td>101</td>
</tr>
<tr>
<td>model_parameters.dbscan</td>
<td>dbscan</td>
<td>84</td>
</tr>
<tr>
<td>model_parameters.default</td>
<td>default</td>
<td>87</td>
</tr>
<tr>
<td>model_parameters.default()</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>model_parameters.deltaMethod</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.deltamethod</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.dep.effect</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.DirichletRegModel</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.draws</td>
<td>MCMCglmm</td>
<td>101</td>
</tr>
<tr>
<td>model_parameters.emm_list</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.emmGrid</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.epi.2by2</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.FAMD</td>
<td>PCA</td>
<td>114</td>
</tr>
<tr>
<td>model_parameters.fitdistr</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.Gam</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.gamlss</td>
<td>cgam</td>
<td>68</td>
</tr>
<tr>
<td>model_parameters.gamma</td>
<td>cgam</td>
<td>68</td>
</tr>
<tr>
<td>model_parameters.ggeffects</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.glht</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.glm</td>
<td>glm</td>
<td>87</td>
</tr>
<tr>
<td>model_parameters.glmm</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.glmmTMB</td>
<td>cpglmm</td>
<td>72</td>
</tr>
<tr>
<td>model_parameters.glmx</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.hclust</td>
<td>cpglmm</td>
<td>72</td>
</tr>
<tr>
<td>model_parameters.hkmeans</td>
<td>dbscan</td>
<td>84</td>
</tr>
<tr>
<td>model_parameters.HLfit</td>
<td>cpglmm</td>
<td>72</td>
</tr>
<tr>
<td>model_parameters.htest</td>
<td>htest</td>
<td>98</td>
</tr>
<tr>
<td>model_parameters.hurdle</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.ivFixed</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.ivprobit</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.kmeans</td>
<td>dbscan</td>
<td>84</td>
</tr>
<tr>
<td>model_parameters.lavaan</td>
<td>PMCMR</td>
<td>120</td>
</tr>
<tr>
<td>model_parameters.lavaan()</td>
<td>PCA</td>
<td>114</td>
</tr>
<tr>
<td>model_parameters.lavaan().</td>
<td></td>
<td>31, 63, 71, 80, 91, 106, 112, 116, 134, 141</td>
</tr>
</tbody>
</table>
model_parameters.lme
(model_parameters.cpglmm), 72
model_parameters.lmodel2
(model_parameters.PMCMR), 120
model_parameters.logistf
(model_parameters.PMCMR), 120
model_parameters.logitmfx
(model_parameters.PMCMR), 120
model_parameters.logitor
(model_parameters.PMCMR), 120
model_parameters.lqmm
(model_parameters.PMCMR), 120
model_parameters.maov
(model_parameters.aov), 59
model_parameters.marginalmeans
(model_parameters.PMCMR), 120
model_parameters.margins
(model_parameters.PMCMR), 120
model_parameters.maxim
(model_parameters.PMCMR), 120
model_parameters.maxLik
(model_parameters.PMCMR), 120
model_parameters.Mclust
(model_parameters.dbscan), 84
model_parameters.mcmc.list
(model_parameters.MCMCglmm), 101
model_parameters.MCMCglmm, 101
model_parameters.med1way
(model_parameters.PMCMR), 120
model_parameters.mediate
(model_parameters.PMCMR), 120
model_parameters.merMod
(model_parameters.cpglmm), 72
model_parameters.merModList
(model_parameters.cpglmm), 72
model_parameters.meta_bma
(model_parameters.PMCMR), 120
model_parameters.meta_fixed
(model_parameters.PMCMR), 120
model_parameters.meta_random
(model_parameters.PMCMR), 120
model_parameters.metaplus
(model_parameters.PMCMR), 120
model_parameters.mhurdle
(model_parameters.zcpglm), 138
model_parameters.mipo
(model_parameters.mira), 110
model_parameters.miro
(model_parameters.mira), 110
model_parameters.mixed
(model_parameters.cpglmm), 72
model_parameters.MixMod
(model_parameters.cpglmm), 72
model_parameters.mixor
(model_parameters.cpglmm), 72
model_parameters.mjoint
(model_parameters.PMCMR), 120
model_parameters.mle
(model_parameters.PMCMR), 120
model_parameters.mle2
(model_parameters.PMCMR), 120
model_parameters.mlmm
(model_parameters.D DIRichletRegModel), 95
model_parameters.model_fit
(model_parameters.PMCMR), 120
model_parameters.mvord
(model_parameters.PMCMR), 120
model_parameters.negbin
(model_parameters.default), 87
model_parameters.negbinirr
(model_parameters.PMCMR), 120
model_parameters.negbinmfx
(model_parameters.PMCMR), 120
model_parameters.omega
(model_parameters.PCA), 114
model_parameters.pairwise.htest
(model_parameters.h test), 98
model_parameters.pam
(model_parameters.dbscan), 84
model_parameters.PCA, 114
model_parameters.pgmm
(model_parameters.PMCMR), 120
model_parameters.PMCMR, 120
model_parameters.poissonirr
(model_parameters.PMCMR), 120
model_parameters.poissonmfx
(model_parameters.PMCMR), 120
model_parameters.polr
(model_parameters.default), 87
model_parameters.principal
(model_parameters.PCA), 114
model_parameters.probitemfx
(model_parameters.PMCMR), 120
model_parameters.pvclust
  (model_parameters.dbclust), 84
model_parameters.ridgelm
  (model_parameters.default), 87
model_parameters.rlmerMod
  (model_parameters.cpglmm), 72
model_parameters.rma
  , 135
model_parameters.rqs
  (model_parameters.PMCMR), 120
model_parameters.rqss
  (model_parameters.PMCMR), 120
model_parameters.scam
  (model_parameters.cgam), 68
model_parameters.selection
  (model_parameters.PMCMR), 120
model_parameters.sem
  (model_parameters.PCA), 114
model_parameters.SemiParBIV
  (model_parameters.PMCMR), 120
model_parameters.stanfit
  (model_parameters.MCMCglmm), 101
model_parameters.stanreg
  (model_parameters.MCMCglmm), 101
model_parameters.svyglm
  (model_parameters.default), 87
model_parameters.systemfit
  (model_parameters.PMCMR), 120
model_parameters.t1way
  (model_parameters.PMCMR), 120
model_parameters.varest
  (model_parameters.PMCMR), 120
model_parameters.vgam
  (model_parameters.cgam), 68
model_parameters.yuen
  (model_parameters.PMCMR), 120
model_parameters.zcpglm
  (model_parameters.PMCMR), 120
model_parameters.zerocount
  (model_parameters.zcpglm), 138
model_parameters.zeroinfl
  (model_parameters.zcpglm), 138
Models with special components, 156
  Multinomial, ordinal and cumulative link, 53
  Multiple imputation, 53
n_clusters, 141
n_clusters(), 22, 23, 25
n_clusters_dbclust(n_clusters), 141
n_clusters_dbclust(), 23
n_clusters_elbow(n_clusters), 141
n_clusters_gap(n_clusters), 141
n_clusters_hclust(n_clusters), 141
n_clusters_silhouette(n_clusters), 141
n_components(n_factors), 145
n_components(), 46, 166
n_factors, 145
n_factors(), 46, 141, 166

Other models, 53

p_direction(), 65, 66, 105, 134, 172
p_value, 156
p_value(), 13, 157, 163, 180, 182
p_value.averaging
  (p_value.DirichletRegModel), 161
p_value.betamfx(p_value.poissonmfx), 162
p_value.betaor(p_value.poissonmfx), 162
p_value.betareg
  (p_value.DirichletRegModel), 161
p_value.BFBayesFactor, 160
p_value.cgam
  (p_value.DirichletRegModel), 161
p_value.clm2
  (p_value.DirichletRegModel), 161
p_value.DirichletRegModel, 161
p_value.poissonmfx, 162
p_value.zcpglm, 163
p_value.zeroinfl(p_value.zcpglm), 163
p_value.betwithin(ci_betwithin), 16
p_value.kenward(ci_kenward), 17
p_value.ml1(ci_ml1), 19
p_value.satterthwaite
  (ci_satterthwaite), 20
parameters(model_parameters), 53
parameters_type, 148
parameters_type(), 175
PCA, FA, CFA, SEM, 53
performance::check_heterogeneity_bias(), 55, 177
performance::check_itemscale(), 47
pool_parameters, 149
predict.parameters_clusters, 151
predict.parameters_efa
    (factor_analysis), 45
principal_components(factor_analysis), 45
principal_components(), 37, 52, 166
print(), 51, 58, 154
print.parameters_efa(factor_analysis), 45
print.parameters_model, 152
print.parameters_model(), 54
print_html.parameters_model
    (display.parameters_model), 34
print_md(), 58, 154
print_md.parameters_model
    (display.parameters_model), 34
psych::fa(), 46
psych::VSS(), 146
qol_cancer, 164
random_parameters, 164
reduce_data(reduce_parameters), 166
reduce_parameters, 166
reduce_parameters(), 46, 166
reshape_loadings, 167
rope(), 65, 66, 105, 134, 172
rotated_data(factor_analysis), 45
rotated_data(), 47
se_kenward(ci_kenward), 17
se_satterthwaite(ci_satterthwaite), 20
select_parameters, 168
si(), 6, 65, 66, 172
signif(), 38, 153
simulate_model, 169
simulate_model(), 5, 7, 172
simulate_parameters
    (simulate_parameters.glmmTMB), 171
simulate_parameters(), 5, 7, 37, 170
simulate_parameters.glmmTMB, 171
sort.parameters_efa(factor_analysis), 45
sort_parameters, 173
sphericity(), 46
spi(), 6, 65, 66, 172
standard_error, 179
standard_error_robust, 181
standardise_info(standardize_info), 174
standardise_parameters
    (standardize_parameters), 175
standardise_posteriors
    (standardize_parameters), 175
standardize(), 54, 176
standardize.default(), 177
standardize_info, 174, 178
standardize_parameters, 175, 175
standardize_parameters(), 29, 54, 70, 78,
    90, 97, 107, 111, 132, 136, 140, 175
standardize_posteriors
    (standardize_parameters), 175
stats::dist(), 8
stats::p.adjust(), 30, 71, 79, 91, 97, 112,
    117, 133, 140
summary.parameters_model
    (print.parameters_model), 152

Zero-inflated and hurdle, 53
Zero-inflated models, 156