Package ‘pRF’

January 11, 2016

Title Permutation Significance for Random Forests

Version 1.2

Type Package

Date 2015-10-02

Author Ankur Chakravarthy

Maintainer Ankur Chakravarthy <ankur.chakravarthy.10@ucl.ac.uk>

Description Estimate False Discovery Rates (FDRs) for importance metrics from random forest runs.

License GPL-3

Depends R(>= 3.1.0)

Imports ggplot2, permute, randomForest, reshape2, dplyr(>= 0.4.1), multtest(>= 2.25.0)

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2016-01-11 17:12:20

R topics documented:

 pRF-package ... 2
 pRF ... 2
 sigplot ... 4

Index 6
Description

Functions to estimate the statistical significance of the Increase in MSE and Decrease in Gini Coefficient metrics of random forest feature importance. The main functions are pRF and sigplot. See documentation on these functions for information on how to use them.

Details

- Package: pRF
- Type: Package
- Version: 1.0
- Date: 2015-02-23
- License: GPL-3

Author(s)

Ankur Chakravarthy

Maintainer: ankur.chakravarthy.10@ucl.ac.uk

References

The concept of permuting response variables is loosely based off

Description

The workhorse function - estimates statistical significance of feature importance by permuting the response variable

Usage

```r
pRF(response, predictors, n.perms, alpha = 0.05,
  mtry = NULL, type = c("classification", "regression"),
  ntree = 500, seed=12345, ...)
```
Arguments

response: a character vector or a factor for classification containing the group memberships for classification, a numeric vector for regression.

predictors: A matrix consisting of features (measurements) corresponding to samples. The orientation per se does not matter - the function orients them correctly for Random Forest learning.

n.perms: Number of permutations to estimate significance. If the number of all possible permutations is less than this the latter will be used for estimation.

alpha: The significance level threshold of p.values for estimating false discovery rate using the two-step BH method for correlated test statistics, as implemented in the multtest package’s mt.rawp2adjp function.

mtry: see ?randomForest for details - defines how many features are randomly sampled for building trees.

type: string, set to "classification" or "regression"

ntree: number of trees in the random forest, see documentation from the randomForest package for details.

seed: set seed to ensure reproducibility from run to run and to standardise runs on actual and permuted data.

... Arguments to pass on to the randomForest function

Value

A standardised list containing

Res.table: A data.frame containing significance, FDR, and the feature name. b= number of permutations yielding a higher importance than observed + 1, m= number of permutations + 1

obs: named numeric vector, contains observed importances

perms: data.frame, contains importance values from permutations

Model: the randomForest model that was fit to the original data

Author(s)

Ankur Chakravarthy

References

The main function is based on the idea presented in

The permutation p.values in the package are exact, calculated according to
False discovery rates account for correlations using the Two-Step BH procedure, initially reported in
Yoav Benjamini, Abba M. Krieger, and Daniel Yekutieli, 'Adaptive Linear Step-up Procedures That
Control the False Discovery Rate', Biometrika, 93 (2006), 491-507.

Examples

Load the iris dataset
data(iris)

Set up the predictors object
predictors=iris[,c(1:4)]
colnames(predictors)<-colnames(iris[1:4])

Execute the main pRF function
p.test<-prf(response=factor(iris$Species),
predictors=iris[,c(1:4)],n.perms=20,mtry=3,
type="classification",alpha=0.05)

Put together a dataframe that consists of the
significance stats and observed importance metrics
df<-cbind(p.test$Res.table,p.test$obs)

Description

Plots observed importance and null distribution for a pRF output list.

Usage

sigplot(pRF.list,threshold)

Arguments

pRF.list output from a pRF run.
threshold False Discovery Rate cutoff for plotting. Default is 0.05

Value

a ggplot2 plot
sigplot

Author(s)
Ankur Chakravarthy

See Also
pRF

Examples

```r
# Load the iris dataset
data(iris)

# Set up the predictors object
predictors <- iris[,c(1:4)]
colnames(predictors) <- colnames(iris[1:4])

# Execute the main pRF function
p.test <- pRF(response = factor(iris$Species),
              predictors = iris[,c(1:4)], n.perms = 20, mtry = 3,
              type = "classification", alpha = 0.05)

# Plot

sigplot(pRF.list = p.test, threshold = 0.1)
```
Index

pRF, 2
pRF-package, 2

sigplot, 4