Package ‘orderedLasso’

January 7, 2019
Title Ordered Lasso and Time-Lag Sparse Regression
Version 1.7.1
Author Jerome Friedman, Xiaotong Suo and Robert Tibshirani

Description Ordered lasso and time-lag sparse regression. Ordered Lasso fits a
linear model and imposes an order constraint on the coefficients. It writes
the coefficients as positive and negative parts, and requires positive
parts and negative parts are non-increasing and positive. Time-Lag Lasso
generalizes the ordered Lasso to a general data matrix with multiple
predictors. For more details, see Suo, X.,Tibshirani, R., (2014) 'An
Ordered Lasso and Sparse Time-lagged Regression'.

Maintainer Xiaotong Suo <xiaotong@stanford.edu>
Depends R (>= 3.0.0), Matrix

Imports Iso,quadprog,ggplot2,reshape?

License GPL-2

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-01-07 12:21:23 UTC

R topics documented:

orderedLasso e 2
orderedlLasso.Ccv 3
orderedLasso.path L 4
predict.orderedLasso 6
predict.orderedLasso.path 6
predict.timelaglasso e 7
predict.timeLaglasso.path L 8
timeLaglasso 8
timeLaglasso.cv L 10
timeLaglasso.path 12
time_lag matriX L e e e e e e 13
Index 14

2 orderedLasso

orderedLasso Fit an ordered lasso

Description

One of the main functions. Ordered Lasso builds a regression model with an L1-constraint imposed
on the coefficients. The coefficients are re-written as negative and positive parts and the model
requires positive and negative parts are monotone non-increasing and positive.

Usage

orderedLasso(x, y, lambda, intercept = TRUE, b@ = NULL, beta_pos = NULL,
beta_neg = NULL, method = c("Solve.QP", "GG"), strongly.ordered = FALSE,
standardize = TRUE, trace = FALSE, niter = 500, iter.gg = 100,
epsilon = 1e-08)

Arguments
X A matrix of predictors, where the rows are the samples and the columns are the
predictors
y A vector of observations, where length(y) equals nrow(x)
lambda Regularization parameter(>0)
intercept TRUE if there is an intercept in the model.
bo Initial value for the intercept.
beta_pos Optional vector of initialization of the positive part of the coefficients.
beta_neg Optional vector of initialization of the negative part of the coefficients.
method Two options available, Solve.QP and Generalized Gradient. Solve.QP uses the

package quadprog to solve a quadratic programming problem. GG stands for ge-
nearlized gradient. GG uses proximal genearalized gradient algorithm to solve
the problem. Detailed can be seen in the paper refered in the description.

strongly.ordered
An option which allows users to order the coefficients in absolute value. The
coefficients returned by the orderedLasso may not be monotone non-increasing
in absolute value even though the positive parts and negative parts are mono-
tone non-increasing. Details can be seen in the paper referred in the Descrip-
tion. Strongly.ordered options returns the coefficients monotone non-increasing
in absolute value.

standardize Standardize the data matrix x

trace Output option; trace = TRUE gives verbose output

niter Maximum number of iterations; default 500.

iter.gg Number of iterations of genearalized gradient; default 100

epsilon Error tolerance parameter for convergence criterion ; default 1e-05.

orderedlLasso.cv 3

Value
bp Estimated coefficients- positive part
bn Estimated coefficients- negative part
beta Estimated coefficients, which are equal to bp - bn
bo Estimated intercept, if there is one in the model.
fitted Fitted values of y
type Type of model fit, "gaussian"
call The call to orderedLasso
Examples

set.seed(3)

n = 50

b =c¢(7,3,1,0)

p = length(b)

x = matrix(rnorm(n*p),nrow = n)

sigma = 4

y = X %*% b + sigma * rnorm(n, 0, 1)

resultl = orderedLasso(x,y, lambda = 1, intercept =TRUE, standardize = TRUE,
method = "GG", strongly.ordered = TRUE)

result?2 = orderedLasso(x,y, lambda = 1, intercept = TRUE, standardize =TRUE,
strongly.ordered = TRUE)

print(resultl)

print(result2)

orderedLasso.cv Cross-validation function for the ordered lasso

Description

Uses cross-validation to estimate the regularization parameter for the ordered lasso model.

Usage

orderedLasso.cv(x, y, lamlist = NULL, minlam = NULL, maxlam = NULL,
nlam = 50, flmin = 5e-04, strongly.ordered = FALSE, intercept = TRUE,
standardize = TRUE, nfolds = 10, folds = NULL, niter = 500,
iter.gg = 100, method = c("Solve.QP", "GG"), trace = FALSE,
epsilon = 1e-05)

Arguments

X A matrix of predictors, where the rows are the samples and the columns are the
predictors

y A vector of observations, where length(y) equals nrow(x)

4 orderedLasso.path

lamlist Optional vector of values of lambda (the regularization parameter)

minlam Optional minimum value for lambda

maxlam Optional maximum value for lambda

nlam Number of values of lambda to be tried. Default nlam = 50.

flmin Fraction of maxlam minlam= flmin*maxlam. If computation is slow, try in-

creasing flmin to focus on the sparser part of the path. Default fimin = le-4.
strongly.ordered
An option which allows users to order the coefficients in absolute value.

intercept True if there is an intercept in the model.

standardize Standardize the data matrix.

nfolds Number of cross-validation folds.

folds (Optional) user-supplied cross-validation folds. If provided, nfolds is ignored.

niter Number of iterations the ordered lasso takes to converge. Default nither = 500.

iter.gg Number of iterations of generalized gradient method; default 100

method Two options available, Solve.QP and Generalized Gradient. Details of two op-
tions can be seen in the orderedLasso description.

trace Output option; trace=TRUE gives verbose output

epsilon Error tolerance parameter for convergence criterion; default le-5

Examples

set.seed(3)

n = 50

b = c(4,3,1,0)

p = length(b)

x = matrix(rnorm(n*p),nrow = n)

sigma = 5

y = x %*% b + sigma * rnorm(n, @, 1)

cvmodel = orderedLasso.cv(x,y, intercept = FALSE, trace = TRUE,
method = "Solve.QP", strongly.ordered = TRUE)

print(cvmodel)

plot(cvmodel)

orderedLasso.path Fit a path of ordered lasso models

Description

Fit a path of ordered lasso models over different values of the regularization parameter.

Usage

orderedLasso.path(x, y, lamlist = NULL, minlam = NULL, maxlam = NULL,
nlam = 50, flmin = 0.005, intercept = TRUE, standardize = TRUE,
method = c("Solve.QP", "GG"), niter = 500, iter.gg = 100,
strongly.ordered = FALSE, trace = FALSE, epsilon = 1e-05)

orderedLasso.path

Arguments

X

y
lamlist

minlam
maxlam
nlam

flmin

intercept
standardize
method
niter

iter.gg

A matrix of predictors, where the rows are the samples and the columns are the
predictors

A vector of observations, where length(y) equals nrow(x)
Optional vector of values of lambda (the regularization parameter)
Optional minimum value for lambda

Optional maximum value for lambda

Number of values of lambda to be tried. Default nlam = 50

Fraction of maxlam; minlam= flmin*maxlam. If computation is slow, try in-
creasing flmin to focus on the sparser part of the path

True if there is an intercept in the model.

Standardize the data matrix x. Default is TRUE.

Two options available, Solve.QP and Generalized Gradient.
Number of iterations of ordered lasso, initialized to 500.

Number of iterations of genearalized gradient; Default iter.gg = 100

strongly.ordered

trace

epsilon

Value
bp
bn
beta
bo
lamlist
err
call

Examples

set.seed(3)

n = 50
b =c(4,3,1,0)
p = length(b)

An option which allows users to order the coefficients non-decreasing in abso-
lute value. Details can be seen in the orderedLasso Description.

Output option; trace=TRUE gives verbose output

Error tolerance parameter for convergence criterion. Default is 1e-5

p by nlam matrix of estimated positive coefficients(p=#variables)
p by nlam matrix of estimated negative coefficients

p by nlam matrix of estimated coefficients

a length nlam vector of estimated intercepts

Vector of values of lambda used

Vector of errors

The call to orderedLasso.path

X = matrix(rnorm(n*p),nrow = n)

sigma = 5

y = X %*% b + sigma * rnorm(n, @, 1)
path1 = orderedLasso.path(x,y, intercept = FALSE,
method = "Solve.QP", strongly.ordered = TRUE)

plot(path1)
print(pathl)

6 predict.orderedLasso.path

predict.orderedLasso make predictions from a fitted "orderedLasso" object

Description

Similar to other predict methods, this functions predicts fitted values from a fitted "orderedLasso"

object.
Usage
S3 method for class 'orderedLasso'
predict(object, newdata, ...)
Arguments
object fitted "orderedLasso" model
newdata Matrix of new values for object at which predictions are to be made.

Not used. Other arguments to predict.

Value

yhat fitted y values

predict.orderedlLasso.path
make predictions from a fitted "orderedLasso.path" object

Description

Similar to other predict methods, this functions predicts fitted values from a fitted "orderedLasso"
object.

Usage

S3 method for class 'orderedLasso.path'
predict(object, newdata, s = NULL,
exact = FALSE, ...)

predict.timeLagl asso 7

Arguments
object fitted "orderedLasso.path" model
newdata Matrix of new values for object at which predictions are to be made.
s Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the entire sequence used to create the model.
exact If exact = TRUE, and predictions are to made at values of s not included in the
original fit, these values of s are merged with object$lambda, and the model is
refit before predictions are made. If exact = FALSE (default), then the predict
function uses linear interpolation to make predictions for values of s that do not
coincide with those used in the fitting algorithm. Note that exact = TRUE is frag-
ile when used inside a nested sequence of function calls. predict.orderedLasso()
needs to update the model, and expects the data used to create it to be around.
Not used. Other arguments to predict.
Value
nfit A matrix or a vector of fitted values

predict.timeLaglasso make predictions from a fitted "timeLagLasso" object

Description

Similar to other predict methods, this functions predicts fitted values from a fitted "timeLaglasso"

object.
Usage
S3 method for class 'timelaglasso'
predict(object, newdata = NULL, ...)
Arguments
object fitted "timeLagl.asso" model
newdata Matrix of new values for object at which predictions are to be made.

Not used. Other arguments to predict.

Value

yhat fitted y values

yhat.ordered fitted y values of the strongly ordered coefficients

8 timeLaglasso

predict.timelLaglasso.path
make predictions from a fitted "timeLagLasso.path" object

Description

Similar to other predict methods, this functions predicts fitted values from a fitted "timeLagLasso.path"
object.

Usage

S3 method for class 'timelaglLasso.path'
predict(object, newdata = NULL, s = NULL,

exact = FALSE, ...)
Arguments
object fitted "timeLagl.asso.path" model
newdata Matrix of new values for object at which predictions are to be made.
s Value(s) of the penalty parameter lambda at which predictions are required. De-

fault is the entire sequence used to create the model.

exact If exact = TRUE, and predictions are to made at values of s not included in the
original fit, these values of s are merged with object$lambda, and the model is
refit before predictions are made. If exact = FALSE (default), then the predict
function uses linear interpolation to make predictions for values of s that do not
coincide with those used in the fitting algorithm. Note that exact = TRUE is frag-
ile when used inside a nested sequence of function calls. predict.orderedLasso()
needs to update the model, and expects the data used to create it to be around.

Not used. Other arguments to predict.

Value

yhat A matrix or a vector of fitted values

yhat.ordered A matrix or a vector of fitted values of the strongly ordered lasso coefficients

timelLaglasso Fit a time-lag lasso

Description

Fit a time-lag lasso model. Builds a regression model with multiple predictors, where an ordered
constraint is imposed on each predictor.

timeLagl asso

Usage

timeLaglLasso(x, y, lambda, maxlag, intercept = TRUE, standardize = TRUE,

beta_pos
maxiter =

Arguments

X

y
lambda

maxlag
intercept

standardize
beta_pos
beta_neg

bo

NULL, beta_neg = NULL, b® = NULL, strongly.ordered = TRUE,
500, inneriter = 100, iter.gg = 100, method = c("Solve.QP",
"GG"), trace

= FALSE, epsilon = 1e-05)

A matrix of predictors, where the rows are the samples and the columns are the
predictors.

A vector of observations, where length(y) equals nrow(x).
Regularization parameter(>0).
maximum time-lag specified by user.

TRUE if there is an intercept in the model. center=FALSE should almost never
be used. This option is available for special uses only.

Standardize the data matrix x.

Optional vector of initialization of the positive part of the coefficients.
Optional vector of initialization of the negative part of the coefficients.
Initialization of the intercept.

strongly.ordered

maxiter
inneriter
iter.gg
method
trace
epsilon

Details

An option which allows users to order each predictor coefficients non-increasing
in absolute value. Details can be seen in the orderedLasso description; default
TRUE.

Maximum iterations run by time-lag lasso. Initialized to 500.
Maximum iterations run by orderedLasso. Initialized to 100.
Maximum iterations run by generalized gradient. Intialized to 100
Two options available, Solve.QP and Generalized Gradient
Output option; trace = TRUE gives verbose output.

Error tolerance parameter for convergence criterion; default le-5.

First transfer the data matrix x to the correct format corresponding to the maxlag specified by user.
Then use coordinate descent method by calling orderedLasso to get updates for each predictor.

Value
bp
bn
beta
bo
fitted
maxlag

type

Estimated coefficients of the positive part

Estimated coefficients of the negative part

Estimated coefficients of predictors, which are equal to bp - bn
Estimated intercept if there is one in the model

Fitted values of y

Maximum time-lag

The number of predictors

Type of model fit, "gaussian" in this case

10

timeLaglasso.cv

Examples
set.seed(3)
n = 50
maxlag = 5
num_rows_needed = n + maxlag + 1
sigma = 4
x = matrix(rnorm(num_rows_needed * 4), nrow = num_rows_needed)
x_new = time_lag_matrix(x, maxlag)
b =c¢(3,1,1,0,0,
4,1,0,0,0,
3,2,1,0,0,
1,0,0,0,0)
y = x_new %*% b + sigmax rnorm(nrow(x_new))
y = as.vector(y)
y = c(y, rnorm(maxlag + 1))
modell = timelLaglLasso(x = x, y =y, lambda = 1, maxlag = maxlag,
method = "Solve.QP", strongly.ordered = TRUE)
timelLaglasso.cv Cross-validation function for timeLagLasso
Description

Uses cross-validation to estimate the regularization parameter for timeLaglasso model

Usage

timelLaglasso.cv(x, y, maxlag, lamlist = NULL, minlam = NULL,
maxlam = NULL, nlam = 10, flmin = .01, flmax = 1, intercept = TRUE,
standardize = TRUE, method = c("”Solve.QP", "GG"),
strongly.ordered = TRUE, nfolds = 10, folds = NULL, maxiter = 500,
inneriter = 100, iter.gg = 100, trace = FALSE, epsilon = 1e-04)

Arguments
X A matrix of predictors, where the rows are the samples and the columns are the
predictors
y A vector of observations, where length(y) equals nrow(x)
maxlag Maximum time-lag variable chosen by user
lamlist Optional vector of values of lambda (the regularization parameter)
minlam Optional minimum value for lambda
maxlam Optional maximum value for lambda
nlam Number of values of lambda to be tried
flmin Fraction of maxlam minlam= flmin*maxlam. If computation is slow, try in-

creasing flmin to focus on the sparser part of the path; default le-2

timeLagl asso.cv

11

flmax Multiplication of maxlam maxlam = flmax * maxlam; default 1

intercept True if there is an intercept in the model.

standardize Standardize the data matrix x.

method Two options available, Solve.QP and Generalized Gradient. Details about two

options can be seen in the orderedLasso description.

strongly.ordered

An option which allows users to order the coefficients in absolute value.

nfolds Number of cross-validation folds

folds (Optional) user-supplied cross-validation folds. If provided, nfolds is ignored.

maxiter maximum iterations run by time-lag lasso. Initialized to 500.

inneriter maximum iterations run by orderedLasso. Initialized to 100.

iter.gg Maximum iterations run by generalized gradient. Intialized to 100

trace Output option; trace = TRUE gives verbose output.

epsilon Error tolerance parameter for convergence criterion; default 1e-5
Value

lamlist Vector of lambda values tried

cv.err Estimate of cross-validation error

cv.se Estimated standard error of cross-validation estimate

lamhat lambda value minimizing cv.err

folds Indices of folds used in cross-validation

lamhat.1se

largest lambda value with cv.err less than or equal to min(cv.err)+ SE

nonzero Vector giving number of non-zero coefficients for each lambda value
call The call to timeLaglLasso.cv
Examples

set.seed(3)

n = 50

maxlag = 5

num_rows_needed = n + maxlag + 1
sigma = 4

x = matrix(rnorm(num_rows_needed * 4), nrow = num_rows_needed)
x_new = time_lag_matrix(x, maxlag)
b =c¢(3,1,1,0,0,
4,1,0,0,0,
3,2,1,0,0,
1,0,0,0,0)
y = x_new %*% b + sigmax rnorm(nrow(x_new))
y = as.vector(y)
y = c(y, rnorm(maxlag + 1))
cvmodel = timelLaglLasso.cv(x= x, y =y, maxlag = 5, method = "Solve.QP")

12 timeLagl asso.path

timelLaglasso.path Fit a path of time-lasso models

Description

Fit a path of time-lasso models

Usage

timelLaglasso.path(x, y, lamlist = NULL, minlam = NULL, maxlam = NULL,
nlam = 19, flmin = 0.01, strongly.ordered = TRUE, flmax = 1, maxlag,
intercept = TRUE, standardize = TRUE, method = c("Solve.QP", "GG"),
maxiter = 500, inneriter = 100, iter.gg = 100, trace = FALSE,
epsilon = 1e-05)

Arguments
X A matrix of predictors, where the rows are the samples and the columns are the
predictors
y A vector of observations, where length(y) equals nrow(x)
lamlist Optional vector of values of lambda (the regularization parameter)
minlam Optional minimum value for lambda
maxlam Optional maximum value for lambda
nlam Number of values of lambda to be tried
flmin Fraction of maxlam minlam= flmin*maxlam. If computation is slow, try in-

creasing flmin to focus on the sparser part of the path; default = le-2.

strongly.ordered
An option which allows users to order the coefficients in absolute value.

flmax Multiplication of maxlam maxlam = flmax * maxlam. Default = 1
maxlag Maximum time-lag chosen by user.

intercept True if there is an intercept in the model.

standardize Standardize the data matrix x.

method Two options available, Solve.QP and Generalized Gradient
maxiter Maximum iterations run by time-lag lasso. Initiazlied to 500.
inneriter maximum iterations run by orderedLasso. Initialized to 100.
iter.gg Maximum iterations run by generalized gradient. Intialized to 100
trace Output option; trace = TRUE gives verbose output.

epsilon Error tolerance parameter for convergence criterion; default 1e-5

time_lag_matrix 13

Value
bp p by nlam matrix of estimated positive coefficients(p=#variables)
bn p by nlam matrix of estimated negative coefficients
beta p by nlam matrix of estimated coefficients
bo a vector of length nlam of estimated intercept
lamlist Vector of values of lambda used
err Vector of errors
maxlag Maximum time-lag variable
p The number of predictors
fited a length(y) by nlam matrix of fitted values
call The call to "timeLaglasso.path"
Examples

set.seed(3)

n = 50

maxlag = 5

num_rows_needed = n + maxlag + 1
sigma = 4

x = matrix(rnorm(num_rows_needed * 4), nrow = num_rows_needed)
x_new = time_lag_matrix(x, maxlag)
b =c¢(3,1,1,0,0,
4,1,0,0,0,
3,2,1,0,0,
1,0,0,0,0)
y = x_new %*% b + sigmax rnorm(nrow(x_new))
y = as.vector(y)
y = c(y, rnorm(maxlag + 1))
pathl = timelLaglLasso.path(x= x, y =y, maxlag = 5, method = "Solve.QP"”, strongly.ordered = TRUE)
plot(patht)

time_lag_matrix time_lag_matrix

Description

Build the time lag matrix for the data matrix x.

Usage

time_lag_matrix(x, maxlag)

Arguments

X A matrix of predictors, where the rows are the samples and the columns are the
predictors

maxlag maximum time lag variable.

Index

orderedLasso, 2
orderedLasso.cv, 3
orderedLasso.path, 4

predict.orderedLasso, 6
predict.orderedLasso.path, 6
predict.timelLaglasso, 7
predict.timelLaglasso.path, 8

time_lag_matrix, 13
timelLaglLasso, 8
timelLaglLasso.cv, 10
timelLaglasso.path, 12

14

	orderedLasso
	orderedLasso.cv
	orderedLasso.path
	predict.orderedLasso
	predict.orderedLasso.path
	predict.timeLagLasso
	predict.timeLagLasso.path
	timeLagLasso
	timeLagLasso.cv
	timeLagLasso.path
	time_lag_matrix
	Index

