Package ‘opGMMassessment’

April 14, 2024

Type Package

Title Optimized Automated Gaussian Mixture Assessment

Version 0.4

Author Jorn Lotsch [aut,cre] (<https://orcid.org/0000-0002-5818-6958>),
Sebastian Malkusch [aut] (<https://orcid.org/0000-0001-6766-140X>),
Martin Maechler [ctb],
Peter Rousseeuw [ctb],
Anja Struyf [ctb],
Mia Hubert [ctb],
Kurt Hornik [ctb]

Maintainer Jorn Lotsch <j.lotsch@em.uni-frankfurt.de>

Description Necessary functions for optimized automated evaluation of the number and parameters of Gaussian mixtures in one-dimensional data. Various methods are available for parameter estimation and for determining the number of modes in the mixture. A detailed description of the methods can be found in Lotsch, J., Malkusch, S. and A. Ultsch. (2022) <doi:10.1016/j.imu.2022.101113>.

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

LazyData true

Imports AdaptGauss, DataVisualizations, DistributionOptimization, cluster, mixtools, grDevices, methods, foreach, stats, utils, rlang, ggplot2, parallel, caTools, dplyr, mclust, mixAK, multimode, NbClust, ClusterR, doParallel

NeedsCompilation no

Repository CRAN

Date/Publication 2024-04-14 17:10:02 UTC

R topics documented:

Chromatogram .. 2
Chromatogram

Example data of lysophosphatidic acids, LPA.

Description

Data set containing times of detector hits after chromatographic separation of five different lysophosphatidic acids (Classes CLs = LPA 16:0, 18:0, 18:3, 20:0, and 20:4).

Usage

data("Chromatogram")

Details

Size 1166 x 3, stored in Chromatogram$[Cls, Time, Lipids]

Examples

data(Chromatogram)
str(Chromatogram)

GMMplotGG

Plot of Gaussian mixtures

Description

The function plots the components of a Gaussian mixture and superimposes them on a histogram of the data.

Usage

GMMplotGG(Data, Means, SDs, Weights, BayesBoundaries, SingleGausses = TRUE, Hist = FALSE, Bounds = TRUE, SumModes = TRUE, PDE = TRUE)
Arguments
 Data the data as a vector.
 Means a list of mean values for a Gaussian mixture.
 SDs a list of standard deviations for a Gaussian mixture.
 Weights a list of weights for a Gaussian mixture.
 BayesBoundaries a list of Bayesian boundaries for a Gaussian mixture.
 SingleGausses whether to plot the single Gaussian components as separate lines.
 Hist whether to plot a histogram of the original data.
 Bounds whether to plot the Bayesian boundaries for a Gaussian mixture as vertical lines.
 SumModes whether to plot the summed-up mixes.
 PDE whether to use the Pareto density estimation instead of the standard R density function.

Value
 Returns a ggplot2 object.

p1 the plot of Gaussian mixtures.

Author(s)
 Jorn Lotsch and Sebastian Malkusch

References

Examples
 ## example 1
 data(iris)
 Means0 <- tapply(X = as.vector(iris[,3]), INDEX = as.integer(iris$Species), FUN = mean)
 SDs0 <- tapply(X = as.vector(iris[,3]), INDEX = as.integer(iris$Species), FUN = sd)
 Weights0 <- c(1/3, 1/3, 1/3)
 GMM.Sepal.Length <- GMMplotGG(Data = as.vector(iris[3]),
 Means = Means0,
 SDs = SDs0,
 Weights = Weights0,
 Hist = TRUE)
Mixture3

Example Gaussian mixture data.

Description

Data set containing 1000 instances distributed according to a Gaussian mixture with \(m = [-10, 0, 10]\), \(s = [1, 2, 3]\), \(w = [0.07, 0.05, 0.88]\).

Usage

```r
data("Mixture3")
```

Details

Size 1000 x 1

Examples

```r
data(Mixture3)
str(Mixture3)
```

opGMMassessment

Gaussian mixture assessment

Description

The package provides the necessary functions for optimized automated evaluation of the number and parameters of Gaussian mixtures in one-dimensional data. It provides various methods for parameter estimation and for determining the number of modes in the mixture.

Usage

```r
opGMMassessment(Data, FitAlg = "MCMC", Criterion = "LR", MaxModes = 8, MaxCores = getOption("mc.cores", 2L), PlotIt = FALSE, KS = TRUE, Seed)
```

Arguments

- **Data**
 the data as a vector.

- **FitAlg**
 which fit algorithm to use: "ClusterRGMM" = GMM from ClusterR, "densityMclust" from mclust, "DO" from DistributionOptimization (slow), "MCMC" = NMixMCMC from mixAK, or "normalmixEM" from mixtools.

- **Criterion**
 which criterion should be used to establish the number of modes from the best GMM fit: "AIC", "BIC", "FM", "GAP", "LR" (likelihood ratio test), "NbClust" (from NbClust), "SI" (Silverman).

- **MaxModes**
 the maximum number of modes to be tried.
opGMMassessment

- **MaxCores**: the maximum number of processor cores used under Unix.
- **PlotIt**: whether to plot the fit directly (plot will be stored nevertheless).
- **KS**: perform a Kolmogorov-Smirnov test of the fit versus original distribution.
- **Seed**: optional seed parameter set internally.

Value

Returns a list of Gaussian modes.

- **Cls**: the classes to which the cases are assigned according to the Gaussian mode membership.
- **Means**: means of the Gaussian modes.
- **SDs**: standard deviations of the Gaussian modes.
- **Weights**: weights of the Gaussian modes.
- **Boundaries**: Bayesian boundaries between the Gaussian modes.
- **Plot**: Plot of the obtained mixture.
- **KS**: Results of the Kolmogorov-Smirnov test.

Author(s)

Jorn Lotsch and Sebastian Malkusch

References

Examples

```r
## example 1
data(iris)
opGMMassessment(Data = iris$Petal.Length,
FitAlg = "normalmixEM",
Criterion = "BIC",
PlotIt = TRUE,
MaxModes = 5,
MaxCores = 1,
Seed = 42)
```
Index

* Clustering
 opGMMassessment, 4
* GMMplotGG
 GMMplotGG, 2
* data visualization
 GMMplotGG, 2
* opGMMassessment
 opGMMassessment, 4

Chromatogram, 2
GMMplotGG, 2
Mixture3, 4
opGMMassessment, 4