Package ‘omu’

May 18, 2020

Title A Metabolomics Analysis Tool for Intuitive Figures and Convenient Metadata Collection

Version 1.0.4

Description Facilitates the creation of intuitive figures to describe metabolomics data by utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) hierarchy data, and gathers functional orthology and gene data using the package 'KEGGREST' to access the 'KEGG' API.

Depends R (>= 3.3.0)

biocViews

Imports plyr, dplyr, stringr, KEGGREST, reshape2, ggfortify, ggplot2, magrittr, tidyr

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Suggests knitr, rmarkdown

VignetteBuilder knitr

URL https://github.com/connor-reid-tiffany/Omu,
 https://www.kegg.jp/kegg/rest/keggapi.html

BugReports https://github.com/connor-reid-tiffany/Omu/issues

NeedsCompilation no

Author Connor Tiffany [aut, cre]

Maintainer Connor Tiffany <crtiffany@ucdavis.edu>

Repository CRAN

Date/Publication 2020-05-18 19:40:02 UTC
Description

Assigns hierarchy metadata to a metabolomics count matrix using identifier values. It can assign KEGG compound hierarchy, orthology hierarchy, or organism hierarchy data.

Usage

assign_hierarchy(count_data, keep_unknowns, identifier)

Arguments

count_data a metabolomics count data frame with either a KEGG compound, orthology, or a gene identifier column

keep_unknowns a boolean of either TRUE or FALSE. TRUE keeps unannotated compounds, FALSE removes them

identifier a string that is either "KEGG" for metabolite, "KO_Number" for orthology, "Prokaryote" for organism, or "Eukaryote" for organism

Examples

assign_hierarchy(count_data = c57_nos2KO_mouse_countDF, keep_unknowns = TRUE, identifier = "KEGG")
Description

A dataset containing metabolomics counts for an experiment done using c57b6J wild type and c57b6J nos2 knockout mice.

Usage

c57_nos2KO_mouse_countDF

Format

A data frame with 668 rows and 36 variables:

Description

A meta data file for the c57b6J metabolomics count matrix.

Usage

c57_nos2KO_mouse_metadata

Format

A data frame with 29 rows and 4 variables:
count_fold_changes Get counts for significant fold changes by metabolite class.

Description
Takes an input data frame from the output of omu_summary and creates a data frame of counts for significantly changed metabolites by class hierarchy data.

Usage
count_fold_changes(count_data, ..., column, sig_threshold, keep_unknowns)

Arguments
- count_data: Output dataframe from the omu_summary function
- ...: Either a Class or Subclass column as a string, i.e. "Class"
- column: The same value entered for the ... argument, i.e. column = "Class"
- sig_threshold: Significance threshold for compounds that go towards the count, sig_threshold = 0.05
- keep_unknowns: TRUE or FALSE for whether to drop compounds that weren’t assigned hierarchy metadata

Examples
```r
c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, numerator = "Strep", denominator = "Mock", response_variable = "Metabolite", Factor = "Treatment", log_transform = TRUE, p_adjust = "BH", test_type = "welch")

fold_change_counts <- count_fold_changes(count_data = t_test_df, "Class", column = "Class", sig_threshold = 0.05, keep_unknowns = "FALSE")
```

KEGG_gather Gather metadata from KEGG for metabolites

Description
Method for gathering metadata from the KEGG API.
Usage

KEGG_gather(count_data)

S3 method for class 'cpd'
KEGG_gather(count_data)

S3 method for class 'rxn'
KEGG_gather(count_data)

S3 method for class 'KO'
KEGG_gather(count_data)

Arguments

count_data A metabolomics count dataframe with a KEGG identifier columns

Examples

count_data <- assign_hierarchy(count_data = c57_nos2KO_mouse_countDF,
keep_unknowns = TRUE, identifier = "KEGG")

count_data <- subset(count_data, Subclass_2=="Aldoses")

count_data <- KEGG_gather(count_data = count_data)

make_omelette Get metadata from KEGG API

Description

Internal function for KEGG_Gather

Usage

make_omelette(count_data, column, req)

Arguments

count_data The metabolomics count data
column The name of the KEGG identifier being sent to the KEGG API
req The character vector with variables to pull out of the metadata
Perform anova Performs an anova across all response variables. The function can take a maximum of 2 independent variables and perform an interaction term between them.

Usage

```r
omu_anova(
  count_data,
  metadata,
  response_variable,
  var1,
  var2,
  interaction,
  log_transform,
  p_adjust
)
```

Arguments

- `count_data`: A metabolomics count data frame
- `metadata`: Metadata dataframe for the metabolomics count data frame
- `response_variable`: String of the column header for the response variables, usually "Metabolite"
- `var1`: String of the first independent variable you wish to test
- `var2`: String of the second independent variable you wish to test. Optional parameter
- `interaction`: Boolean of TRUE or FALSE for whether or not you wish to model an interaction between independent variables. Optional parameter
- `log_transform`: Boolean of TRUE or FALSE for whether or not you wish to log transform your metabolite counts
- `p_adjust`: Method for p value adjustment, i.e. "BH"

Examples

```r
anova_df <- omu_anova(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, response_variable = "Metabolite", var1 = "Treatment", var2 = "Background", log_transform = TRUE, p_adjust = "BH", interaction = TRUE)
```
omu_summary

omu_summary Performs comparison of means between two independent variables, standard deviation, standard error, FDR correction, fold change, log2FoldChange. The order effects the fold change values

Description

omu_summary Performs comparison of means between two independent variables, standard deviation, standard error, FDR correction, fold change, log2FoldChange. The order effects the fold change values

Usage

```r
omu_summary(
  count_data,  
  metadata,  
  numerator,  
  denominator,  
  response_variable,  
  Factor,  
  log_transform,  
  p_adjust,  
  test_type
)
```

Arguments

- **count_data** should be a metabolomics count data frame
- **metadata** is meta data
- **numerator** is the variable you wish to compare against the denominator, in quotes
- **denominator** see above, in quotes
- **response_variable** the name of the column with your response variables
- **Factor** the column name for your independent variables
- **log_transform** TRUE or FALSE value for whether or not log transformation of data is performed before the t test
- **p_adjust** Method for adjusting the p value, i.e. "BH"
- **test_type** One of "mwu", "students", or "welch" to determine which means comparison model to use

Examples

```r
omu_summary(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, numerator = "Strep", denominator = "Mock", response_variable = "Metabolite", Factor = "Treatment", log_transform = TRUE, p_adjust = "BH", test_type = "welch")
```
PCA_plot

Create a PCA plot

Description

Performs an ordination and outputs a PCA plot using a metabolomics count data frame and metabolomics metadata.

Usage

PCA_plot(count_data, metadata, variable, color, response_variable)

Arguments

count_data: Metabolomics count data
metadata: Metabolomics metadata
variable: The independent variable you wish to compare and contrast
color: String of what you want to color by. Usually should be the same as variable.
response_variable: String of the response_variable, usually should be "Metabolite"

Examples

PCA_plot(count_data = c57_nos2K0_mouse_countDF, metadata = c57_nos2K0_mouse_metadata, variable = "Treatment", color = "Treatment", response_variable = "Metabolite")

pie_chart

Create a pie chart

Description

Creates a pie chart as ggplot2 object using the output from ra_table.

Usage

pie_chart(ratio_data, variable, column, color)

Arguments

ratio_data: a dataframe object of percents. output from ra_table function
variable: The metadata variable you are measuring, i.e. "Class"
column: either "Increase", "Decrease", or "Significant_Changes"
color: string denoting color for outline. use NA for no outline
Examples

```r
plate_omelette <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, numerator = "Strep", denominator = "Mock", response_variable = "Metabolite", Factor = "Treatment", log_transform = TRUE, p_adjust = "BH", test_type = "welch")

fold_change_counts <- count_fold_changes(count_data = t_test_df, "Class", column = "Class", sig_threshold = 0.05, keep_unknowns = FALSE)

ra_table <- ra_table(fc_data = fold_change_counts, variable = "Class")
pie_chart(ratio_data = ra_table, variable = "Class", column = "Decrease", color = "black")
```

plate_omelette Internal method for KEGG_Gather

Description

plate_omelette Internal method for KEGG_Gather

Usage

```r
plate_omelette(count_data)
```

S3 method for class 'rxn'
```r
plate_omelette(count_data)
```

S3 method for class 'genes'
```r
plate_omelette(count_data)
```

Arguments

- `count_data` The metabolomics count dataframe

plate_omelette_rxnko Clean up orthology metadata

Description

Internal function for KEGG_Gather.rxn method KEGG_Gather.rxn requires dispatch on multiple elements, so there was no way to incorporate as a method
Usage

plate_omelette_rxnko(count_data, matrix)

Arguments

count_data
Metabolomics count data

matrix
the matrix of KEGG metadata

plot_bar
Create a bar plot

Description

Creates a ggplot2 object using the output file from the count_fold_changes function

Usage

plot_bar(fc_data, fill, size, color)

Arguments

fc_data
The output file from Count_Fold_Changes

fill
A character vector of length 2 containing colors for filling the bars, the first color is for the "Decrease" bar while the second is for "Increase"

size
A character vector of 2 numbers for the size of the bar outlines.

color
A character vector of length 2 containing colors for the bar outlines

Examples

c57_nos2K0_mouse_countDF <- assign_hierarchy(c57_nos2K0_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2K0_mouse_countDF,
metadata = c57_nos2K0_mouse_metadata, numerator = "Strep", denominator = "Mock",
response_variable = "Metabolite", Factor = "Treatment",
log_transform = TRUE, p_adjust = "BH", test_type = "welch")

fold_change_counts <- count_fold_changes(count_data = t_test_df, "Class",
column = "Class", sig_threshold = 0.05, keep_unknowns = FALSE)

plot_bar(fc_data = fold_change_counts, fill = c("firebrick2", "dodgerblue2"),
color = c("black", "black"), size = c(1,1))
plot_boxplot

Create a box plot

Description

Takes a metabolomics count data frame and creates boxplots. It is recommended to either subset, truncate, or agglomerate by hierarchical metadata.

Usage

plot_boxplot(
 count_data, # A metabolomics count data frame, either from read_metabo or omu_summary
 metadata, # The descriptive meta data for the samples
 aggregate_by, # Hierarchical metadata value to sum metabolite values by, i.e. "Class"
 log_transform, # TRUE or FALSE. Recommended for visualization purposes. If true data is transformed by the natural log
 Factor, # The column name for the experimental variable
 response_variable, # The response variable for the data, i.e. "Metabolite"
 fill_list # Colors for the plot which is colored by Factor, in the form of c(""
)

Arguments

- **count_data**: A metabolomics count data frame, either from read_metabo or omu_summary
- **metadata**: The descriptive meta data for the samples
- **aggregate_by**: Hierarchical metadata value to sum metabolite values by, i.e. "Class"
- **log_transform**: TRUE or FALSE. Recommended for visualization purposes. If true data is transformed by the natural log
- **Factor**: The column name for the experimental variable
- **response_variable**: The response variable for the data, i.e. "Metabolite"
- **fill_list**: Colors for the plot which is colored by Factor, in the form of c(""

Examples

c57_nos2KO_mouse_countDF <- c57_nos2KO_mouse_countDF[1:5,]
c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

plot_boxplot(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, log_transform = TRUE, Factor = "Treatment", response_variable = "Metabolite", aggregate_by = "Subclass_2", fill_list = c("darkgoldenrod1", "dodgerblue2"))
plot_heatmap

Create a heatmap

Description

Takes a metabolomics count data frame and creates a heatmap. It is recommended to either subset, truncate, or agglomerate by hierarchical metadata to reduce noise.

Usage

plot_heatmap(
 count_data, # A metabolomics count data frame.
 metadata, # The descriptive meta data for the samples.
 Factor, # The column name for the experimental variable.
 response_variable, # The response variable for the data, i.e. "Metabolite"
 log_transform, # TRUE or FALSE. Recommended for visualization purposes. If true data is transformed by the natural log.
 high_color, # Color for high abundance values
 low_color, # Color for low abundance values
 aggregate_by # Hierarchical metadata value to sum metabolite values by, i.e. "Class"
)

Arguments

count_data # A metabolomics count data frame.
metadata # The descriptive meta data for the samples.
Factor # The column name for the experimental variable.
response_variable # The response variable for the data, i.e. "Metabolite"
log_transform # TRUE or FALSE. Recommended for visualization purposes. If true data is transformed by the natural log.
high_color # Color for high abundance values
low_color # Color for low abundance values
aggregate_by # Hierarchical metadata value to sum metabolite values by, i.e. "Class"

Examples

c57_nos2K0_mouse_countDF <- assign_hierarchy(c57_nos2K0_mouse_countDF, TRUE, "KEGG")

plot_heatmap(count_data = c57_nos2K0_mouse_countDF, metadata = c57_nos2K0_mouse_metadata, log_transform = TRUE, Factor = "Treatment", response_variable = "Metabolite", aggregate_by = "Subclass_2", high_color = "darkgoldenrod1", low_color = "dodgerblue2")
plot_volcano

Description

Creates a volcano plot as ggplot2 object using the output of omu_summary

Usage

plot_volcano(
 count_data,
 column,
 size,
 strpattern,
 fill,
 sig_threshold,
 alpha,
 shape,
 color
)

Arguments

count_data The output file from the omu_summary function.
column The column with metadata you want to highlight points in the plot with, i.e. "Class"
size Size of the points in the plot
strpattern A character vector of levels of the column you want the plot to focus on, i.e. strpattern = c("Carbohydrates", "Organicacids")
fill A character vector of colors you want your points to be. Levels of a factor are organized alphabetically. All levels not in the strpattern argument will be set to NA.
sig_threshold An integer. Creates a horizontal dashed line for a significance threshold. i.e. sig_threshold = 0.05. Default value is 0.05
alpha A character vector for setting transparency of factor levels.
shape A character vector for setting the shapes for your column levels. See ggplot2 for an index of shape values.
color A character vector of colors for the column levels. If you choose to use shapes with outlines, this list will set the outline colors.

Examples

c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF,
ra_table

Creates a ratio table from the count_fold_changes function output.

Description

Create a ratio table

Usage

ra_table(fc_data, variable)

Arguments

fc_data : data frame output from the count_fold_changes function
variable : metadata from count_fold_changes, i.e. "Class"

Examples

c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF,
metadata = c57_nos2KO_mouse_metadata, numerator = "Strep", denominator = "Mock",
response_variable = "Metabolite", Factor = "Treatment",
log_transform = TRUE, p_adjust = "BH", test_type = "welch")

fold_change_counts <- count_fold_changes(count_data = t_test_df, "Class",
column = "Class", sig_threshold = 0.05, keep_unknowns = FALSE)

ra_table(fc_data = fold_change_counts, variable = "Class")
read_metabo

read_metabo
Import a metabolomics count data frame

Description

Wrapper for read.csv that appends the "cpd" class and sets blank cells to NA. Used to import metabolomics count data into R.

Usage

`read_metabo(filepath)`

Arguments

- `filepath`
a file path to your metabolomics count data

Examples

```r
filepath_to_yourdata = paste0(system.file(package = "omu"), "/extdata/read_metabo_test.csv")
count_data <- read_metabo(filepath_to_yourdata)
```
Index

*Topic datasets
 c57_nos2KO_mouse_countDF, 3
 c57_nos2KO_mouse_metadata, 3

assign_hierarchy, 2

c57_nos2KO_mouse_countDF, 3
c57_nos2KO_mouse_metadata, 3
count_fold_changes, 4

KEGG_gather, 4

make_omelette, 5

omu_anova, 6
omu_summary, 7

PCA_plot, 8
pie_chart, 8
plate_omelette, 9
plate_omelette_rxnko, 9
plot_bar, 10
plot_boxplot, 11
plot_heatmap, 12
plot_volcano, 13

ra_table, 14
read_metabo, 15