Package ‘olsrr’

February 10, 2020

Type Package

Title Tools for Building OLS Regression Models

Version 0.5.3

Description Tools designed to make it easier for users, particularly beginner/intermediate R users to build ordinary least squares regression models. Includes comprehensive regression output, heteroskedasticity tests, collinearity diagnostics, residual diagnostics, measures of influence, model fit assessment and variable selection procedures.

Depends R(>= 3.3)

Imports car, data.table, ggplot2, goftest, graphics, gridExtra, nortest, Rcpp, stats, utils

Suggests covr, descriptr, knitr, rmarkdown, testthat, vdiffr, xplorerr

License MIT + file LICENSE

BugReports https://github.com/rsquaredacademy/olsrr/issues

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 6.1.1

LinkingTo Rcpp

NeedsCompilation yes

Author Aravind Hebbali [aut, cre]

Maintainer Aravind Hebbali <hebbali.aravind@gmail.com>

Repository CRAN

Date/Publication 2020-02-10 12:00:02 UTC
R topics documented:

auto .. 3
水泥 ... 4
fitness ... 4
hsb .. 4
olsrr .. 5
ols_aic .. 5
ols_apc .. 6
ols_coll_diag 7
ols_correlations 9
ols_fpe .. 10
ols_hadi .. 11
ols_hsp .. 12
ols_launch_app 13
ols_leverage 13
ols_mallows_cp 14
ols_msep .. 15
ols_plot_added_variable 16
ols_plot_comp_plus_resid 17
ols_plot_cooksd_bar 18
ols_plot_cooksd_chart 19
ols_plot_dfbetas 20
ols_plot_dffits 21
ols_plot_diagnostics 22
ols_plot_hadi 23
ols_plot_obs_fit 24
ols_plot_reg_line 24
ols_plot_resid_box 25
ols_plot_resid_fit 26
ols_plot_resid_fit_spread 27
ols_plot_resid_hist 28
ols_plot_resid_lev 28
ols_plot_resid_pot 29
ols_plot_resid_qq 30
ols_plot_resid_regressor 31
ols_plot_resid_stand 31
ols_plot_resid_stud 32
ols_plot_resid_stud_fit 33
ols_plot_response 34
ols_pred_rsq 35
ols_prep_avplot_data 35
ols_prep_cdplot_data 36
ols_prep_cdplot_outliers 36
ols_prep_dfbeta_data 37
ols_prep_dfbeta_outliers 37
ols_prep_drsrf_data 38
ols_prep_outlier_obs 38
auto

test

Description

Test Data Set

Usage

auto

Format

An object of class tbl_df (inherits from tbl, data.frame) with 74 rows and 11 columns.
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Test Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>cement</td>
<td></td>
</tr>
<tr>
<td>fitness</td>
<td></td>
</tr>
<tr>
<td>hsb</td>
<td></td>
</tr>
</tbody>
</table>

Description
- Test Data Set

Usage
- cement
- fitness
- hsb

Format
- An object of class `data.frame` with 13 rows and 6 columns.
- An object of class `data.frame` with 31 rows and 7 columns.
- An object of class `data.frame` with 200 rows and 15 columns.
olsrr

Description
Tools for teaching and learning OLS regression

Details
See the README on GitHub

ols_aic

Description
Akaike information criterion for model selection.

Usage

```
ols_aic(model, method = c("R", "STATA", "SAS"))
```

Arguments

- `model`: An object of class `lm`.
- `method`: A character vector; specify the method to compute AIC. Valid options include R, STATA and SAS.

Details

AIC provides a means for model selection. Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models. R and STATA use loglikelihood to compute AIC. SAS uses residual sum of squares. Below is the formula in each case:

For R & STATA:

\[
AIC = -2(\text{loglikelihood}) + 2p
\]

For SAS:

\[
AIC = n \times \ln(SSE/n) + 2p
\]

where \(n\) is the sample size and \(p\) is the number of model parameters including intercept.

Value

Akaike information criterion of the model.
References

See Also

Other model selection criteria: ols_apc, ols_fpe, ols_hsp, ols_mallows_cp, ols_msep, ols_sbc, ols_sbic

Examples

using R computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_apc(model)

using STATA computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_apc(model, method = 'STATA')

using SAS computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_apc(model, method = 'SAS')

Description

Amemiya's prediction criterion

Usage

ols_apc(model)

Arguments

model An object of class lm.

Details

Amemiya's Prediction Criterion penalizes R-squared more heavily than does adjusted R-squared for each addition degree of freedom used on the right-hand-side of the equation. The higher the better for this criterion.

\[
\frac{(n + p)}{(n - p)}(1 - R^2)
\]
where \(n \) is the sample size, \(p \) is the number of predictors including the intercept and \(R^2 \) is the coefficient of determination.

Value

Amemiya's prediction error of the model.

References

See Also

Other model selection criteria: `ols_aic`, `ols_fpe`, `ols_hsp`, `ols_mallows_cp`, `ols_msep`, `ols_sbc`, `ols_sbic`

Examples

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_apc(model)
```

```
ols_coll_diag  Collinearity diagnostics

Description
Variance inflation factor, tolerance, eigenvalues and condition indices.

Usage

```
ols_coll_diag(model)
ols_vif_tol(model)
ols_eigen_cindex(model)
```

Arguments

```
model An object of class lm.
```
Details

Collinearity implies two variables are near perfect linear combinations of one another. Multicollinearity involves more than two variables. In the presence of multicollinearity, regression estimates are unstable and have high standard errors.

Tolerance

Percent of variance in the predictor that cannot be accounted for by other predictors.

Steps to calculate tolerance:

- Regress the kth predictor on rest of the predictors in the model.
- Compute $R^2$ - the coefficient of determination from the regression in the above step.
- $Tolerance = 1 - R^2$

Variance Inflation Factor

Variance inflation factors measure the inflation in the variances of the parameter estimates due to collinearities that exist among the predictors. It is a measure of how much the variance of the estimated regression coefficient $\beta_k$ is inflated by the existence of correlation among the predictor variables in the model. A VIF of 1 means that there is no correlation among the kth predictor and the remaining predictor variables, and hence the variance of $\beta_k$ is not inflated at all. The general rule of thumb is that VIFs exceeding 4 warrant further investigation, while VIFs exceeding 10 are signs of serious multicollinearity requiring correction.

Steps to calculate VIF:

- Regress the kth predictor on rest of the predictors in the model.
- Compute $R^2$ - the coefficient of determination from the regression in the above step.
- $Tolerance = 1/1 - R^2 = 1/Tolerance$

Condition Index

Most multivariate statistical approaches involve decomposing a correlation matrix into linear combinations of variables. The linear combinations are chosen so that the first combination has the largest possible variance (subject to some restrictions), the second combination has the next largest variance, subject to being uncorrelated with the first, the third has the largest possible variance, subject to being uncorrelated with the first and second, and so forth. The variance of each of these linear combinations is called an eigenvalue. Collinearity is spotted by finding 2 or more variables that have large proportions of variance (.50 or more) that correspond to large condition indices. A rule of thumb is to label as large those condition indices in the range of 30 or larger.

Value

`ols_coll_diag` returns an object of class "ols_coll_diag". An object of class "ols_coll_diag" is a list containing the following components:

- `vif_t` tolerance and variance inflation factors
- `eig_cindex` eigen values and condition index
ols_correlations

References


Examples

```r
model
model <- lm(mpg ~ disp + hp + wt + drat, data = mtcars)

vif and tolerance
ols_vif_tol(model)

eigenvalues and condition indices
ols_eigen_cindex(model)

collinearity diagnostics
ols_coll_diag(model)
```

---

**ols_correlations**        *Part and partial correlations*

**Description**

Zero-order, part and partial correlations.

**Usage**

```r
ols_correlations(model)
```

**Arguments**

- `model`        An object of class `lm`.

**Details**

`ols_correlations()` returns the relative importance of independent variables in determining response variable. How much each variable uniquely contributes to rsquare over and above that which can be accounted for by the other predictors? Zero order correlation is the Pearson correlation coefficient between the dependent variable and the independent variables. Part correlations indicates how much rsquare will decrease if that variable is removed from the model and partial correlations indicates amount of variance in response variable, which is not estimated by the other independent variables in the model, but is estimated by the specific variable.
Value

`ols_correlations` returns an object of class "ols_correlations". An object of class "ols_correlations" is a data frame containing the following components:

- Zero-order zero order correlations
- Partial partial correlations
- Part part correlations

References


Examples

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_correlations(model)
```

## ols_fpe

**Final prediction error**

Description

Estimated mean square error of prediction.

Usage

```r
ols_fpe(model)
```

Arguments

- `model` An object of class `lm`.

Details

Computes the estimated mean square error of prediction for each model selected assuming that the values of the regressors are fixed and that the model is correct.

\[
MSE((n + p)/n)
\]

where \( MSE = SSE/(n - p) \), \( n \) is the sample size and \( p \) is the number of predictors including the intercept

Value

Final prediction error of the model.
References


See Also

Other model selection criteria: ols_aic, ols_apc, ols_hsp, ols_mallows_cp, ols_msep, ols_sbc, ols_sbic

Examples

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_fpe(model)
```

```
ols_hadi
Hadi’s influence measure
```

Description

Measure of influence based on the fact that influential observations in either the response variable or in the predictors or both.

Usage

`ols_hadi(model)`

Arguments

- `model`: An object of class `lm`.

Value

Hadi’s measure of the model.

References


See Also

Other influence measures: ols_leverage, ols_pred_rsq, ols_press
Examples

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_hadi(model)
```

### Description
Average prediction mean squared error.

### Usage
```r
ols_hsp(model)
```

### Arguments
- `model`: An object of class `lm`.

### Details
Hocking’s Sp criterion is an adjustment of the residual sum of Squares. Minimize this criterion.

\[
MSE/(n - p - 1)
\]

where \( MSE = SSE/(n - p) \), \( n \) is the sample size and \( p \) is the number of predictors including the intercept

### Value
Hocking’s Sp of the model.

### References

### See Also
Other model selection criteria: `ols_aic`, `ols_apc`, `ols_fpe`, `ols_mallows_cp`, `ols_msep`, `ols_sbc`, `ols_sbic`

### Examples
```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_hsp(model)
```
ols_launch_app

Launch shiny app

Description
Launched shiny app for interactive model building.

Usage
ols_launch_app()

Examples
## Not run:
ols_launch_app()
## End(Not run)

ols_leverage

Leverage

Description
The leverage of an observation is based on how much the observation’s value on the predictor variable differs from the mean of the predictor variable. The greater an observation’s leverage, the more potential it has to be an influential observation.

Usage
ols_leverage(model)

Arguments

model An object of class lm.

Value

Leverage of the model.

References


See Also

Other influence measures: ols_hadi, ols_pred_rsq, ols_press
Examples

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_leverage(model)
```

---

### Description

Mallow’s Cp.

### Usage

```r
ols_mallows_cp(model, fullmodel)
```

### Arguments

- `model`: An object of class `lm`.
- `fullmodel`: An object of class `lm`.

### Details

Mallows’ Cp statistic estimates the size of the bias that is introduced into the predicted responses by having an underspecified model. Use Mallows’ Cp to choose between multiple regression models. Look for models where Mallows’ Cp is small and close to the number of predictors in the model plus the constant ($p$).

### Value

Mallow’s Cp of the model.

### References


### See Also

Other model selection criteria: `ols_aic`, `ols_apc`, `ols_fpe`, `ols_hsp`, `ols_msep`, `ols_sbc`, `ols_sbic`

### Examples

```r
full_model <- lm(mpg ~ ., data = mtcars)
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_mallows_cp(model, full_model)
```
ols_msep

### Description

Estimated error of prediction, assuming multivariate normality.

### Usage

```r
ols_msep(model)
```

### Arguments

- **model**
  - An object of class `lm`.

### Details

Computes the estimated mean square error of prediction assuming that both independent and dependent variables are multivariate normal.

\[
MSE(n + 1)(n - 2)/n(n - p - 1)
\]

where \( MSE = SSE/(n - p) \), \( n \) is the sample size and \( p \) is the number of predictors including the intercept.

### Value

Estimated error of prediction of the model.

### References


### See Also

Other model selection criteria: `ols_aic`, `ols_apc`, `ols_fpe`, `ols_hsp`, `ols_mallows_cp`, `ols_sbc`, `ols_sbic`

### Examples

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_msep(model)
```
ols_plot_added_variable

Added variable plots

Description

Added variable plot provides information about the marginal importance of a predictor variable, given the other predictor variables already in the model. It shows the marginal importance of the variable in reducing the residual variability.

Usage

```r
ols_plot_added_variable(model, print_plot = TRUE)
```

Arguments

- `model`: An object of class `lm`.
- `print_plot`: logical; if `TRUE`, prints the plot else returns a plot object.

Details

The added variable plot was introduced by Mosteller and Tukey (1977). It enables us to visualize the regression coefficient of a new variable being considered to be included in a model. The plot can be constructed for each predictor variable.

Let us assume we want to test the effect of adding/removing variable \( X \) from a model. Let the response variable of the model be \( Y \).

Steps to construct an added variable plot:

- Regress \( Y \) on all variables other than \( X \) and store the residuals (\( Y \) residuals).
- Regress \( X \) on all the other variables included in the model (\( X \) residuals).
- Construct a scatter plot of \( Y \) residuals and \( X \) residuals.

What do the \( Y \) and \( X \) residuals represent? The \( Y \) residuals represent the part of \( Y \) not explained by all the variables other than \( X \). The \( X \) residuals represent the part of \( X \) not explained by other variables. The slope of the line fitted to the points in the added variable plot is equal to the regression coefficient when \( Y \) is regressed on all variables including \( X \).

A strong linear relationship in the added variable plot indicates the increased importance of the contribution of \( X \) to the model already containing the other predictors.

Deprecated Function

`ols_avplots()` has been deprecated. Instead use `ols_plot_added_variable()`.
**References**


**See Also**

[ols_plot_resid_regressor()], [ols_plot_comp_plus_resid()]

**Examples**

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_added_variable(model)
```

---

**ols_plot_comp_plus_resid**

*Residual plus component plot*

**Description**

The residual plus component plot indicates whether any non-linearity is present in the relationship between response and predictor variables and can suggest possible transformations for linearizing the data.

**Usage**

```r
ols_plot_comp_plus_resid(model, print_plot = TRUE)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>An object of class lm.</td>
</tr>
<tr>
<td>print_plot</td>
<td>logical; if TRUE, prints the plot else returns a plot object.</td>
</tr>
</tbody>
</table>

**Deprecated Function**

`ols_rpc_plot()` has been deprecated. Instead use `ols_plot_comp_plus_resid()`.

**References**


See Also

[ols_plot_added_variable()], [ols_plot_resid_regressor()]

Examples

model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_comp_plus_resid(model)

Description

Bar Plot of cook’s distance to detect observations that strongly influence fitted values of the model.

Usage

ols_plot_cooksd_bar(model, print_plot = TRUE)

Arguments

model An object of class lm.
print_plot logical; if TRUE, prints the plot else returns a plot object.

Details

Cook’s distance was introduced by American statistician R Dennis Cook in 1977. It is used to identify influential data points. It depends on both the residual and leverage i.e it takes it account both the $x$ value and $y$ value of the observation.

Steps to compute Cook’s distance:

• Delete observations one at a time.
• Refit the regression model on remaining $n - 1$ observations
• examine how much all of the fitted values change when the ith observation is deleted.

A data point having a large cook’s d indicates that the data point strongly influences the fitted values.

Value

ols_plot_cooksd_bar returns a list containing the following components:

outliers a data.frame with observation number and cooks distance that exceed threshold
threshold threshold for classifying an observation as an outlier
**Deprecation Function**

`ols_cooksd_barplot()` has been deprecated. Instead use `ols_plot_cooksd_bar()`.

**See Also**

[ols_plot_cooksd_chart()]

**Examples**

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_cooksd_bar(model)
```

---

**Description**

Chart of cook’s distance to detect observations that strongly influence fitted values of the model.

**Usage**

```r
ols_plot_cooksd_chart(model, print_plot = TRUE)
```

**Arguments**

- `model`: An object of class `lm`.
- `print_plot`: logical; if TRUE, prints the plot else returns a plot object.

**Details**

Cook’s distance was introduced by American statistician R Dennis Cook in 1977. It is used to identify influential data points. It depends on both the residual and leverage i.e it takes it account both the $x$ value and $y$ value of the observation.

Steps to compute Cook’s distance:

- Delete observations one at a time.
- Refit the regression model on remaining $n - 1$ observations
- examine how much all of the fitted values change when the $i$th observation is deleted.

A data point having a large cook’s d indicates that the data point strongly influences the fitted values.

**Value**

`ols_plot_cooksd_chart` returns a list containing the following components:

- `outliers`: a data.frame with observation number and cooks distance that exceed threshold
- `threshold`: threshold for classifying an observation as an outlier
**Deprecated Function**

`ols_cooksd_chart()` has been deprecated. Instead use `ols_plot_cooksd_chart()`.

**See Also**

[`ols_plot_cooksd_bar()`]

**Examples**

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_cooksd_chart(model)
```

---

**Description**

Panel of plots to detect influential observations using DFBETAs.

**Usage**

```r
ols_plot_dfbetas(model, print_plot = TRUE)
```

**Arguments**

- `model`: An object of class `lm`.
- `print_plot`: logical; if `TRUE`, prints the plot else returns a plot object.

**Details**

DFBETA measures the difference in each parameter estimate with and without the influential point. There is a DFBETA for each data point i.e if there are n observations and k variables, there will be \(n \times k\) DFBETAs. In general, large values of DFBETAS indicate observations that are influential in estimating a given parameter. Belsley, Kuh, and Welsch recommend 2 as a general cutoff value to indicate influential observations and \(2/\sqrt(n)\) as a size-adjusted cutoff.

**Value**

list; `ols_plot_dfbetas` returns a list of data.frame (for intercept and each predictor) with the observation number and DFBETA of observations that exceed the threshold for classifying an observation as an outlier/influential observation.

**Deprecated Function**

`ols_dfbetas_panel()` has been deprecated. Instead use `ols_plot_dfbetas()`.
References


See Also

[ols_plot_dffits()]

Examples

model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_dffits(model)

Description

Plot for detecting influential observations using DFFITs.

Usage

ols_plot_dffits(model, print_plot = TRUE)

Arguments

model An object of class lm.
pin_plot logical; if TRUE, prints the plot else returns a plot object.

Details

DFFIT - difference in fits, is used to identify influential data points. It quantifies the number of standard deviations that the fitted value changes when the ith data point is omitted.

Steps to compute DFFITs:

- Delete observations one at a time.
- Refit the regression model on remaining \( n - 1 \) observations
- examine how much all of the fitted values change when the ith observation is deleted.

An observation is deemed influential if the absolute value of its DFFITS value is greater than:

\[
2\sqrt{(p + 1)/(n - p - 1)}
\]

where \( n \) is the number of observations and \( p \) is the number of predictors including intercept.
Value

`ols_plot_dffits` returns a list containing the following components:

- `outliers` a data.frame with observation number and DFFITs that exceed threshold
- `threshold` threshold for classifying an observation as an outlier

**Deprecated Function**

`ols_dffits_plot()` has been deprecated. Instead use `ols_plot_dffits()`.

**References**


**See Also**

[`ols_plot_dfbetas()`]

**Examples**

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_dffits(model)
```

---

**Description**

Panel of plots for regression diagnostics.

**Usage**

```r
ols_plot_diagonstics(model, print_plot = TRUE)
```

**Arguments**

- `model` An object of class `lm`
- `print_plot` logical; if TRUE, prints the plot else returns a plot object.

# @section Deprecated Function: `ols_diagnostic_panel()` has been deprecated. Instead use `ols_plot_diagonstics()`.
Examples

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_diagnostics(model)
```

Description

Hadi’s measure of influence based on the fact that influential observations can be present in either the response variable or in the predictors or both. The plot is used to detect influential observations based on Hadi’s measure.

Usage

```r
ols_plot_hadi(model, print_plot = TRUE)
```

Arguments

- `model`: An object of class `lm`.
- `print_plot`: logical; if `TRUE`, prints the plot else returns a plot object.

 Deprecated Function

`ols_hadi_plot()` has been deprecated. Instead use `ols_plot_hadi()`.

References


See Also

- [ols_plot_resid_pot()]

Examples

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_hadi(model)
```
**ols_plot_obs_fit**  
*Observed vs fitted values plot*

**Description**

Plot of observed vs fitted values to assess the fit of the model.

**Usage**

```r
ols_plot_obs_fit(model, print_plot = TRUE)
```

**Arguments**

- `model` An object of class `lm`.
- `print_plot` logical; if `TRUE`, prints the plot else returns a plot object.

**Details**

Ideally, all your points should be close to a regressed diagonal line. Draw such a diagonal line within your graph and check out where the points lie. If your model had a high R Square, all the points would be close to this diagonal line. The lower the R Square, the weaker the Goodness of fit of your model, the more foggy or dispersed your points are from this diagonal line.

**Deprecated Function**

`ols_ovsp_plot()` has been deprecated. Instead use `ols_plot_obs_fit()`.

**Examples**

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_obs_fit(model)
```

---

**ols_plot_reg_line**  
*Simple linear regression line*

**Description**

Plot to demonstrate that the regression line always passes through mean of the response and predictor variables.

**Usage**

```r
ols_plot_reg_line(response, predictor, print_plot = TRUE)
```
**ols_plot_resid_box**

**Arguments**
- **response**  
  Response variable.
- **predictor**  
  Predictor variable.
- **print_plot**  
  Logical; if TRUE, prints the plot else returns a plot object.

**Deprecated Function**

`ols_reg_line()` has been deprecated. Instead use `ols_plot_reg_line()`.

**Examples**

```r
ols_plot_reg_line(mtcars$mpg, mtcars$disp)
```

---

**ols_plot_resid_box**  
*Residual box plot*

**Description**

Box plot of residuals to examine if residuals are normally distributed.

**Usage**

```r
ols_plot_resid_box(model, print_plot = TRUE)
```

**Arguments**
- **model**  
  An object of class `lm`.
- **print_plot**  
  Logical; if TRUE, prints the plot else returns a plot object.

**Deprecated Function**

`ols_rsd_boxplot()` has been deprecated. Instead use `ols_plot_resid_box()`.

**See Also**

Other residual diagnostics:  
- `ols_plot_resid_fit`, `ols_plot_resid_hist`, `ols_plot_resid_qq`,  
- `ols_test_correlation`, `ols_test_normality`

**Examples**

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_box(model)
```
ols_plot_resid_fit  Residual vs fitted plot

Description

Scatter plot of residuals on the y axis and fitted values on the x axis to detect non-linearity, unequal error variances, and outliers.

Usage

ols_plot_resid_fit(model, print_plot = TRUE)

Arguments

model  An object of class lm.

print_plot  logical; if TRUE, prints the plot else returns a plot object.

Details

Characteristics of a well behaved residual vs fitted plot:

- The residuals spread randomly around the 0 line indicating that the relationship is linear.
- The residuals form an approximate horizontal band around the 0 line indicating homogeneity of error variance.
- No one residual is visibly away from the random pattern of the residuals indicating that there are no outliers.

Deprecated Function

ols_rvsp_plot() has been deprecated. Instead use ols_plot_resid_fit().

See Also

Other residual diagnostics: ols_plot_resid_box, ols_plot_resid_hist, ols_plot_resid_qq, ols_test_correlation, ols_test_normality

Examples

model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_fit(model)
ols_plot_resid_fit_spread

*Residual fit spread plot*

**Description**

Plot to detect non-linearity, influential observations and outliers.

**Usage**

```r
ols_plot_resid_fit_spread(model, print_plot = TRUE)
ols_plot_fm(model, print_plot = TRUE)
ols_plot_resid_spread(model, print_plot = TRUE)
```

**Arguments**

- `model`: An object of class `lm`.
- `print_plot`: logical; if `TRUE`, prints the plot else returns a plot object.

**Details**

Consists of side-by-side quantile plots of the centered fit and the residuals. It shows how much variation in the data is explained by the fit and how much remains in the residuals. For inappropriate models, the spread of the residuals in such a plot is often greater than the spread of the centered fit.

**Deprecated Function**

`ols_rfs_plot()`, `ols_fm_plot()` and `ols_rsd_plot()` has been deprecated. Instead use `ols_plot_resid_fit_spread()`, `ols_plot_fm()` and `ols_plot_resid_spread()`.

**References**


**Examples**

```r
model
model <- lm(mpg ~ disp + hp + wt, data = mtcars)

residual fit spread plot
ols_plot_resid_fit_spread(model)

fit mean plot
ols_plot_fm(model)

residual spread plot
```
**ols_plot_resid_hist**

*Residual histogram*

**Description**

Histogram of residuals for detecting violation of normality assumption.

**Usage**

```r
ols_plot_resid_hist(model, print_plot = TRUE)
```

**Arguments**

- `model`: An object of class `lm`.
- `print_plot`: logical; if `TRUE`, prints the plot else returns a plot object.

**Deprecated Function**

`ols_rsd_hist()` has been deprecated. Instead use `ols_plot_resid_hist()`.

**See Also**

Other residual diagnostics: `ols_plot_resid_box`, `ols_plot_resid_fit`, `ols_plot_resid_qq`, `ols_test_correlation`, `ols_test_normality`

**Examples**

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_hist(model)
```

---

**ols_plot_resid_lev**

*Studentized residuals vs leverage plot*

**Description**

Graph for detecting outliers and/or observations with high leverage.

**Usage**

```r
ols_plot_resid_lev(model, print_plot = TRUE)
```
Potential residual plot

Description
Plot to aid in classifying unusual observations as high-leverage points, outliers, or a combination of both.

Usage
ols_plot_resid_pot(model, print_plot = TRUE)

Arguments
model An object of class lm.
print_plot logical; if TRUE, prints the plot else returns a plot object.

Deprecated Function
ols_potrsd_plot() has been deprecated. Instead use ols_plot_resid_pot().

References

See Also
[ols_plot_hadi()]
**Examples**

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_pot(model)
```

---

**ols_plot_resid_qq**

**Residual QQ plot**

**Description**

Graph for detecting violation of normality assumption.

**Usage**

```r
ols_plot_resid_qq(model, print_plot = TRUE)
```

**Arguments**

- `model` An object of class `lm`.
- `print_plot` logical; if `TRUE`, prints the plot else returns a plot object.

**Deprecated Function**

`ols_rsd_qqplot()` has been deprecated. Instead use `ols_plot_resid_qq()`.

**See Also**

Other residual diagnostics: `ols_plot_resid_box`, `ols_plot_resid_fit`, `ols_plot_resid_hist`, `ols_test_correlation`, `ols_test_normality`

**Examples**

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_qq(model)
```
**Description**

Graph to determine whether we should add a new predictor to the model already containing other predictors. The residuals from the model is regressed on the new predictor and if the plot shows non random pattern, you should consider adding the new predictor to the model.

**Usage**

```r
ols_plot_resid_regressor(model, variable, print_plot = TRUE)
```

**Arguments**

- `model` An object of class `lm`.
- `variable` New predictor to be added to the model.
- `print_plot` logical; if `TRUE`, prints the plot else returns a plot object.

**Deprecated Function**

`ols_rvsr_plot()` has been deprecated. Instead use `ols_plot_resid_regressor()`.

**See Also**

```
[ols_plot_added_variable()], [ols_plot_comp_plus_resid()]
```

**Examples**

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_regressor(model, 'drat')
```

---

**ols_plot_resid_stand**  
*Standardized residual chart*

**Description**

Chart for identifying outliers.

**Usage**

```r
ols_plot_resid_stand(model, print_plot = TRUE)
```
**Arguments**

- **model**
  An object of class `lm`.
- **print_plot**
  logical; if TRUE, prints the plot else returns a plot object.

**Details**

Standardized residual (internally studentized) is the residual divided by estimated standard deviation.

**Value**

`ols_plot_resid_stand` returns a list containing the following components:

- **outliers**
  a data.frame with observation number and standardized residuals that exceed threshold
  for classifying an observation as an outlier
- **threshold**
  threshold for classifying an observation as an outlier

**Deprecated Function**

`ols_srsd_chart()` has been deprecated. Instead use `ols_plot_resid_stand()`.

**See Also**

[`ols_plot_resid_stud()`]

**Examples**

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_stand(model)
```

---

**Description**

Graph for identifying outliers.

**Usage**

`ols_plot_resid_stud(model, print_plot = TRUE)`

**Arguments**

- **model**
  An object of class `lm`.
- **print_plot**
  logical; if TRUE, prints the plot else returns a plot object.
Details

Studentized deleted residuals (or externally studentized residuals) is the deleted residual divided by its estimated standard deviation. Studentized residuals are going to be more effective for detecting outlying Y observations than standardized residuals. If an observation has an externally studentized residual that is larger than 3 (in absolute value) we can call it an outlier.

Value

ols_plot_resid_stud returns a list containing the following components:

- outliers: a data.frame with observation number and studentized residuals that exceed threshold for classifying an observation as an outlier
- threshold: threshold for classifying an observation as an outlier

Deprecated Function

ols_srsd_plot() has been deprecated. Instead use ols_plot_resid_stud().

See Also

[ols_plot_resid_stand()]

Examples

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_stud(model)
```

---

**ols_plot_resid_stud_fit**

*Deleted studentized residual vs fitted values plot*

Description

Plot for detecting violation of assumptions about residuals such as non-linearity, constant variances and outliers. It can also be used to examine model fit.

Usage

```r
ols_plot_resid_stud_fit(model, print_plot = TRUE)
```

Arguments

- **model**: An object of class `lm`.
- **print_plot**: logical; if TRUE, prints the plot else returns a plot object.
Details

Studentized deleted residuals (or externally studentized residuals) is the deleted residual divided by its estimated standard deviation. Studentized residuals are going to be more effective for detecting outlying Y observations than standardized residuals. If an observation has an externally studentized residual that is larger than 2 (in absolute value) we can call it an outlier.

Value

`ols_plot_resid_stud_fit` returns a list containing the following components:

- `outliers` a data.frame with observation number, fitted values and deleted studentized residuals that exceed the threshold for classifying observations as outliers/influential observations
- `threshold` threshold for classifying an observation as an outlier/influential observation

Deprecated Function

`ols_dsrvsp_plot()` has been deprecated. Instead use `ols_plot_resid_stud_fit()`.

See Also

- `[ols_plot_resid_lev()`, `[ols_plot_resid_stand()`, `[ols_plot_resid_stud()]`

Examples

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_resid_stud_fit(model)
```

---

### ols_plot_response

#### Response variable profile

Description

Panel of plots to explore and visualize the response variable.

Usage

```r
ols_plot_response(model, print_plot = TRUE)
```

Arguments

- `model` An object of class `lm`.
- `print_plot` logical; if TRUE, prints the plot else returns a plot object.

Deprecated Function

`ols_resp_viz()` has been deprecated. Instead use `ols_plot_response()`.
**Examples**

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_response(model)
```

**ols_pred_rsq**

**Predicted rsquare**

**Description**

Use predicted rsquared to determine how well the model predicts responses for new observations. Larger values of predicted R2 indicate models of greater predictive ability.

**Usage**

```r
ols_pred_rsq(model)
```

**Arguments**

- `model` An object of class `lm`.

**Value**

Predicted rsquare of the model.

**See Also**

Other influence measures: `ols_hadi`, `ols_leverage`, `ols_press`

**Examples**

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_pred_rsq(model)
```

**ols_prep_avplot_data**

**Added variable plot data**

**Description**

Data for generating the added variable plots.

**Usage**

```r
ols_prep_avplot_data(model)
```
Arguments

model An object of class lm.

Examples

model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_prep_avplot_data(model)

ols_prep_cdplot_data Cooks’ D plot data

Description

Prepare data for cook’s d bar plot.

Usage

ols_prep_cdplot_data(model)

Arguments

model An object of class lm.

Examples

model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_prep_cdplot_data(model)

ols_prep_cdplot_outliers Cooks’ d outlier data

Description

Outlier data for cook’s d bar plot.

Usage

ols_prep_cdplot_outliers(k)

Arguments

k Cooks’ d bar plot data.
Examples
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
k <- ols_prep_cdplot_data(model)
ols_prep_cdplot_outliers(k)

ols_prep_dfbeta_data  
DFBETas plot data

Description
Prepares the data for dfbetas plot.
Usage
ols_prep_dfbeta_data(d, threshold)
Arguments
d  A tibble or data.frame with dfbetas.
threshold  The threshold for outliers.
Examples
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
dfb <- dfbetas(model)
n <- nrow(dfb)
threshold <- 2 / sqrt(n)
dbetas <- dfb[, 1]
df_data <- data.frame(obs = seq_len(n), dbetas = dbetas)
ols_prep_dfbeta_data(df_data, threshold)

ols_prep_dfbeta_outliers  
DFBETas plot outliers

Description
Data for identifying outliers in dfbetas plot.
Usage
ols_prep_dfbeta_outliers(d)
Arguments
d  A tibble or data.frame.

Examples

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
dfb <- dfbetas(model)
n <- nrow(dfb)
threshold <- 2 / sqrt(n)
dbetas <- dfb[, 1]
df_data <- data.frame(obs = seq_len(n), dbetas = dbetas)
d <- ols_prep_dfbeta_data(df_data, threshold)
ols_prep_dfbeta_outliers(d)
```

### ols_prep_dsrvf_data

**Deleted studentized residual plot data**

Description

Generates data for deleted studentized residual vs fitted plot.

Usage

```r
ols_prep_dsrvf_data(model)
```

Arguments

- `model` An object of class `lm`.

Examples

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_prep_dsrvf_data(model)
```

### ols_prep_outlier_obs

**Cooks’ D outlier observations**

Description

Identify outliers in cook’s d plot.

Usage

```r
ols_prep_outlier_obs(k)
```
Regress predictor on other predictors

**Description**

Regress a predictor in the model on all the other predictors.

**Usage**

```r
ols_prep_regress_x(data, i)
```

**Arguments**

- `data`  
  A `data.frame`.
- `i`  
  A numeric vector (indicates the predictor in the model).

**Examples**

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
data <- ols_prep_avplot_data(model)
ols_prep_regress_x(data, 1)
```

---

Regress y on other predictors

**Description**

Regress y on all the predictors except the ith predictor.

**Usage**

```r
ols_prep_regress_y(data, i)
```
Arguments

- `data`: A data.frame.
- `i`: A numeric vector (indicates the predictor in the model).

Examples

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
data <- ols_prep_avplot_data(model)
ols_prep_regress_y(data, 1)
```

Description

Data for generating residual fit spread plot.

Usage

```r
ols_prep_rfsplot_fmdata(model)
ols_prep_rfsplot_rsdata(model)
```

Arguments

- `model`: An object of class `lm`.

Examples

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_prep_rfsplot_fmdata(model)
ols_prep_rfsplot_rsdata(model)
```
ols_prep_rstudlev_data

Studentized residual vs leverage plot data

Description
Generates data for studentized residual vs leverage plot.

Usage
ols_prep_rstudlev_data(model)

Arguments
model An object of class lm.

Examples
model <- lm(read ~ write + math + science, data = hsb)
ols_prep_rstudlev_data(model)

ols_prep_rvsrplot_data
Residual vs regressor plot data

Description
Data for generating residual vs regressor plot.

Usage
ols_prep_rvsrplot_data(model)

Arguments
model An object of class lm.

Examples
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_prep_rvsrplot_data(model)
ols_prep_srchart_data  Standardized residual chart data

Description

Generates data for standardized residual chart.

Usage

```r
ols_prep_srchart_data(model)
```

Arguments

- `model`: An object of class `lm`.

Examples

```r
model <- lm(read ~ write + math + science, data = hsb)
ols_prep_srchart_data(model)
```

ols_prep_srplot_data  Studentized residual plot data

Description

Generates data for studentized residual plot.

Usage

```r
ols_prep_srplot_data(model)
```

Arguments

- `model`: An object of class `lm`.

Examples

```r
model <- lm(read ~ write + math + science, data = hsb)
ols_prep_srplot_data(model)
```
**Description**

PRESS (prediction sum of squares) tells you how well the model will predict new data.

**Usage**

```r
ols_press(model)
```

**Arguments**

- `model` An object of class `lm`.

**Details**

The prediction sum of squares (PRESS) is the sum of squares of the prediction error. Each fitted to obtain the predicted value for the ith observation. Use PRESS to assess your model's predictive ability. Usually, the smaller the PRESS value, the better the model's predictive ability.

**Value**

Predicted sum of squares of the model.

**References**


**See Also**

Other influence measures: `ols_hadi, ols_leverage, ols_pred_rsq`

**Examples**

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_press(model)
```
Description

Assess how much of the error in prediction is due to lack of model fit.

Usage

```r
ols_pure_error_anova(model, ...)
```

Arguments

- `model`: An object of class `lm`.
- `...`: Other parameters.

Details

The residual sum of squares resulting from a regression can be decomposed into 2 components:

- Due to lack of fit
- Due to random variation

If most of the error is due to lack of fit and not just random error, the model should be discarded and a new model must be built.

Value

`ols_pure_error_anova` returns an object of class "ols_pure_error_anova". An object of class "ols_pure_error_anova" is a list containing the following components:

- `lackoffit`: lack of fit sum of squares
- `pure_error`: pure error sum of squares
- `rss`: regression sum of squares
- `ess`: error sum of squares
- `total`: total sum of squares
- `rms`: regression mean square
- `ems`: error mean square
- `lms`: lack of fit mean square
- `pms`: pure error mean square
- `rf`: f statistic
- `lf`: lack of fit f statistic
- `pr`: p-value of f statistic
- `pl`: p-value pf lack of fit f statistic
**ols_regress**

Ordinary least squares regression

Description

Ordinary least squares regression.

Usage

```r
ols_regress(object, ...)
```

## S3 method for class 'lm'
`ols_regress(object, ...)`

Arguments

- `object` An object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted or class `lm`.
- `...` Other inputs.

Note

The lack of fit F test works only with simple linear regression. Moreover, it is important that the data contains repeat observations i.e. replicates for at least one of the values of the predictor x. This test generally only applies to datasets with plenty of replicates.

References


Examples

```r
model <- lm(mpg ~ disp, data = mtcars)
ols_pure_error_anova(model)
```
Value

`ols_regress` returns an object of class "ols_regress". An object of class "ols_regress" is a list containing the following components:

- `r`: square root of rsquare, correlation between observed and predicted values of dependent variable
- `rsq`: coefficient of determination or r-square
- `adjr`: adjusted rsquare
- `sigma`: root mean squared error
- `cv`: coefficient of variation
- `mse`: mean squared error
- `mae`: mean absolute error
- `aic`: akaike information criteria
- `sbc`: bayesian information criteria
- `sbic`: sawa bayesian information criteria
- `prsq`: predicted rsquare
- `error_df`: residual degrees of freedom
- `model_df`: regression degrees of freedom
- `total_df`: total degrees of freedom
- `ess`: error sum of squares
- `rss`: regression sum of squares
- `tss`: total sum of squares
- `rms`: regression mean square
- `ems`: error mean square
- `f`: f statistic
- `p`: p-value for f
- `n`: number of predictors including intercept
- `betas`: betas; estimated coefficients
- `sbetas`: standardized betas
- `std_errors`: standard errors
- `tvalues`: t values
- `pvalues`: p-value of tvalues
- `df`: degrees of freedom of betas
- `conf_lm`: confidence intervals for coefficients
- `title`: title for the model
- `dependent`: character vector; name of the dependent variable
- `predictors`: character vector; name of the predictor variables
- `mvars`: character vector; name of the predictor variables including intercept
- `model`: input model for `ols_regress`
Interaction Terms

If the model includes interaction terms, the standardized betas are computed after scaling and centering the predictors.

References

https://www.ssc.wisc.edu/~hemken/Stataworkshops/stdBeta/Getting

Examples

```r
ols_regress(mpg ~ disp + hp + wt, data = mtcars)

if model includes interaction terms set iterm to TRUE
ols_regress(mpg ~ disp * wt, data = mtcars, iterm = TRUE)
```

---

**ols_sbc**

*Bayesian information criterion*

**Description**

Bayesian information criterion for model selection.

**Usage**

```r
ols_sbc(model, method = c("R", "STATA", "SAS"))
```

**Arguments**

- `model`: An object of class `lm`.
- `method`: A character vector; specify the method to compute BIC. Valid options include R, STATA and SAS.

**Details**

SBC provides a means for model selection. Given a collection of models for the data, SBC estimates the quality of each model, relative to each of the other models. R and STATA use loglikelihood to compute SBC. SAS uses residual sum of squares. Below is the formula in each case:

**R & STATA**

\[
AIC = -2(\text{loglikelihood}) + \ln(n) \times 2p
\]

**SAS**

\[
AIC = n \times \ln(SSE/n) + p \times \ln(n)
\]

where \(n\) is the sample size and \(p\) is the number of model parameters including intercept.
Value

The bayesian information criterion of the model.

References


See Also

Other model selection criteria: ols_aic, ols_apc, ols_fpe, ols_hsp, ols_mallows_cp, ols_msep, ols_sbic

Examples

# using R computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_sbic(model)

# using STATA computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_sbic(model, method = 'STATA')

# using SAS computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_sbic(model, method = 'SAS')

Description

Sawa's bayesian information criterion for model selection.

Usage

ols_sbic(model, full_model)

Arguments

model An object of class lm.
full_model An object of class lm.
Details

Sawa (1978) developed a model selection criterion that was derived from a Bayesian modification of the AIC criterion. Sawa's Bayesian Information Criterion (BIC) is a function of the number of observations n, the SSE, the pure error variance fitting the full model, and the number of independent variables including the intercept.

$$SBIC = n \times \ln(SSE/n) + 2(p + 2)q - 2(q^2)$$

where $q = n(\sigma^2)/SSE$, $n$ is the sample size, $p$ is the number of model parameters including intercept. $SSE$ is the residual sum of squares.

Value

Sawa’s Bayesian Information Criterion

References


See Also

Other model selection criteria: \texttt{ols\_aic, ols\_apc, ols\_fpe, ols\_hsp, ols\_mallows\_cp, ols\_msep, ols\_sbc}

Examples

```r
full_model <- lm(mpg ~ ., data = mtcars)
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_sbic(model, full_model)
```

Description

Fits all regressions involving one regressor, two regressors, three regressors, and so on. It tests all possible subsets of the set of potential independent variables.

Usage

```r
ols_step_all_possible(model, ...)
```
Arguments

model An object of class lm.
...
Other arguments.
x An object of class ols_best_subset.
print_plot logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_all_possible returns an object of class "ols_step_all_possible". An object of class "ols_step_all_possible" is a data frame containing the following components:

n model number
predictors predictors in the model
rsquare rsquare of the model
adjr adjusted rsquare of the model
predrsq predicted rsquare of the model
cp mallow’s Cp
aic akaike information criteria
sbic sawa bayesian information criteria
sbc schwarz bayes information criteria
gmse un estimated MSE of prediction, assuming multivariate normality
jp final prediction error
pc amemiya prediction criteria
sp hocking’s Sp

Deprecated Function

ols_all_subset() has been deprecated. Instead use ols_step_all_possible().

References


See Also

Other variable selection procedures: ols_step_backward_aic, ols_step_backward_p, ols_step_best_subset, ols_step_both_aic, ols_step_forward_aic, ols_step_forward_p
Examples

```r
model <- lm(mpg ~ disp + hp, data = mtcars)
k <- ols_step_all_possible(model)
k

plot
plot(k)
```

---

**ols_step_all_possible_betas**

*All possible regression variable coefficients*

**Description**

Returns the coefficients for each variable from each model.

**Usage**

```r
ols_step_all_possible_betas(object, ...)
```

**Arguments**

- `object`  
  An object of class `lm`.

- `...`  
  Other arguments.

**Value**

`ols_step_all_possible_betas` returns a `data.frame` containing:

- `model_index`  
  Model number

- `predictor`  
  Predictor

- `beta_coef`  
  Coefficient for the predictor

**Examples**

```r
Not run:
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_step_all_possible_betas(model)

End(Not run)
```
ols_step_backward_aic  Stepwise AIC backward regression

Description

Build regression model from a set of candidate predictor variables by removing predictors based on akaike information criterion, in a stepwise manner until there is no variable left to remove any more.

Usage

ols_step_backward_aic(model, ...)

## Default S3 method:
ols_step_backward_aic(model, progress = FALSE, details = FALSE, ...)

## S3 method for class 'ols_step_backward_aic'
plot(x, print_plot = TRUE, ...)

Arguments

model  
An object of class lm; the model should include all candidate predictor variables.

...  
Other arguments.

progress  
Logical; if TRUE, will display variable selection progress.

details  
Logical; if TRUE, will print the regression result at each step.

x  
An object of class ols_step_backward_aic.

print_plot  
logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_backward_aic returns an object of class "ols_step_backward_aic". An object of class "ols_step_backward_aic" is a list containing the following components:

model  
model with the least AIC; an object of class lm

steps  
total number of steps

predictors  
variables removed from the model

aics  
akaike information criteria

ess  
error sum of squares

rss  
regression sum of squares

rsq  
r-square

arsq  
adjusted rsquare
ols_step_backward_p

Deprecated Function

ols_stepaic_backward() has been deprecated. Instead use ols_step_backward_aic().

References


See Also

Other variable selection procedures: ols_step_all_possible, ols_step_backward_p, ols_step_best_subset, ols_step_both_aic, ols_step_forward_aic, ols_step_forward_p

Examples

# stepwise backward regression
model <- lm(y ~ ., data = surgical)
ols_step_backward_aic(model)

# stepwise backward regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_backward_aic(model)
plot(k)

# final model
k$model

Description

Build regression model from a set of candidate predictor variables by removing predictors based on p values, in a stepwise manner until there is no variable left to remove any more.

Usage

ols_step_backward_p(model, ...)

## Default S3 method:
ols_step_backward_p(model, prem = 0.3,
  progress = FALSE, details = FALSE, ...)

## S3 method for class 'ols_step_backward_p'
plot(x, model = NA, print_plot = TRUE,
  ...)

ols_step_backward_p  Stepwise backward regression
**Arguments**

- **model**: An object of class `lm`; the model should include all candidate predictor variables.
- **prem**: p value; variables with p more than `prem` will be removed from the model.
- **progress**: Logical; if TRUE, will display variable selection progress.
- **details**: Logical; if TRUE, will print the regression result at each step.
- **x**: An object of class `ols_step_backward_p`.
- **print_plot**: logical; if TRUE, prints the plot else returns a plot object.

**Value**

`ols_step_backward_p` returns an object of class "`ols_step_backward_p`". An object of class "`ols_step_backward_p`" is a list containing the following components:

- **model**: final model; an object of class `lm`
- **steps**: total number of steps
- **removed**: variables removed from the model
- **rsquare**: coefficient of determination
- **aic**: akaike information criteria
- **sbc**: bayesian information criteria
- **sbic**: sawa's bayesian information criteria
- **adjr**: adjusted r-square
- **rmse**: root mean square error
- **mallows_cp**: mallow's Cp
- **indvar**: predictors

**Deprecated Function**

`ols_step_backward()` has been deprecated. Instead use `ols_step_backward_p()`.

**References**


**See Also**

Other variable selection procedures: `ols_step_all_possible`, `ols_step_backward_aic`, `ols_step_best_subset`, `ols_step_both_aic`, `ols_step_forward_aic`, `ols_step_forward_p`
Examples

# stepwise backward regression
model <- lm(y ~ ., data = surgical)
ols_step_backward_p(model)

# stepwise backward regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_backward_p(model)
plot(k)

# final model
k$model

---

**ols_step_best_subset**  
**Best subsets regression**

Description

Select the subset of predictors that do the best at meeting some well-defined objective criterion, such as having the largest R2 value or the smallest MSE, Mallow’s Cp or AIC.

Usage

```r
ols_step_best_subset(model, ...)
```

## S3 method for class 'ols_step_best_subset'
plot(x, model = NA, print_plot = TRUE, ...)

Arguments

- `model`: An object of class `lm`.
- `...`: Other inputs.
- `x`: An object of class `ols_step_best_subset`.
- `print_plot`: logical; if TRUE, prints the plot else returns a plot object.

Value

`ols_step_best_subset` returns an object of class "ols_step_best_subset". An object of class "ols_step_best_subset" is a data frame containing the following components:

- `n`: model number
- `predictors`: predictors in the model
- `rsquare`: rsquare of the model
- `adjr`: adjusted rsquare of the model
ols_step_both_aic

predrsq  predicted rsquare of the model
cp  mallow's Cp
aic  akaike information criteria
sbic  sawa bayesian information criteria
sbc  schwarz bayes information criteria
gmse  estimated MSE of prediction, assuming multivariate normality
jp  final prediction error
pc  amemiya prediction criteria
sp  hocking's Sp

Deprecated Function

ols_best_subset() has been deprecated. Instead use ols_step_best_subset().

References


See Also

Other variable selection procedures: ols_step_all_possible, ols_step_backward_aic, ols_step_backward_p, ols_step_both_aic, ols_step_forward_aic, ols_step_forward_p

Examples

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_step_best_subset(model)

plot
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
k <- ols_step_best_subset(model)
plot(k)
```

---

ols_step_both_aic  Stepwise AIC regression

Description

Build regression model from a set of candidate predictor variables by entering and removing predictors based on akaike information criteria, in a stepwise manner until there is no variable left to enter or remove any more.
Usage

```r
ols_step_both_aic(model, progress = FALSE, details = FALSE)
```

```r
S3 method for class 'ols_step_both_aic'
plot(x, print_plot = TRUE, ...)
```

Arguments

- **model**: An object of class `lm`.
- **progress**: Logical; if TRUE, will display variable selection progress.
- **details**: Logical; if TRUE, details of variable selection will be printed on screen.
- **x**: An object of class `ols_step_both_aic`.
- **print_plot**: logical; if TRUE, prints the plot else returns a plot object.
- **...**: Other arguments.

Value

`ols_step_both_aic` returns an object of class "ols_step_both_aic". An object of class "ols_step_both_aic" is a list containing the following components:

- **model**: model with the least AIC; an object of class `lm`
- **predictors**: variables added/removed from the model
- **method**: addition/deletion
- **aics**: akaike information criteria
- **ess**: error sum of squares
- **rss**: regression sum of squares
- **rsq**: rsquare
- **arsq**: adjusted rsquare
- **steps**: total number of steps

Deprecated Function

`ols_stepaic_both()` has been deprecated. Instead use `ols_step_both_aic()`.

References


See Also

Other variable selection procedures: `ols_step_all_possible`, `ols_step_backward_aic`, `ols_step_backward_p`, `ols_step_best_subset`, `ols_step_forward_aic`, `ols_step_forward_p`
## Examples

```r
Not run:
stepwise regression
model <- lm(y ~ ., data = stepdata)
ols_step_both_aic(model)

stepwise regression plot
model <- lm(y ~ ., data = stepdata)
k <- ols_step_both_aic(model)
plot(k)

final model
k$model

End(Not run)
```

## ols_step_both_p

### Stepwise regression

Build regression model from a set of candidate predictor variables by entering and removing predictors based on p values, in a stepwise manner until there is no variable left to enter or remove any more.

### Usage

```r
ols_step_both_p(model, ...)
```

### Default S3 method:

```r
ols_step_both_p(model, pent = 0.1, prem = 0.3,
progress = FALSE, details = FALSE, ...)
```

### S3 method for class 'ols_step_both_p'

```r
plot(x, model = NA, print_plot = TRUE, ...)
```

### Arguments

- `model`: An object of class `lm`; the model should include all candidate predictor variables.
- `...`: Other arguments.
- `pent`: p value; variables with p value less than `pent` will enter into the model.
- `prem`: p value; variables with p more than `prem` will be removed from the model.
- `progress`: Logical; if TRUE, will display variable selection progress.
- `details`: Logical; if TRUE, will print the regression result at each step.
- `x`: An object of class `ols_step_both_p`.
- `print_plot`: logical; if TRUE, prints the plot else returns a plot object.
**Value**

`ols_step_both_p` returns an object of class "`ols_step_both_p`". An object of class "`ols_step_both_p`" is a list containing the following components:

- **model**: final model; an object of class `lm`
- **orders**: candidate predictor variables according to the order by which they were added or removed from the model
- **method**: addition/deletion
- **steps**: total number of steps
- **predictors**: variables retained in the model (after addition)
- **rsquare**: coefficient of determination
- **aic**: akaike information criteria
- **sbc**: bayesian information criteria
- **sbic**: sawa’s bayesian information criteria
- **adjr**: adjusted r-square
- **rmse**: root mean square error
- **mallows_cp**: mallow’s Cp
- **indvar**: predictors

**Deprecated Function**

`ols_stepwise()` has been deprecated. Instead use `ols_step_both_p()`.

**References**


**Examples**

```r
stepwise regression
model <- lm(y ~ ., data = surgical)
ols_step_both_p(model)

stepwise regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_both_p(model)
plot(k)

final model
k$model
```
**Description**

Build regression model from a set of candidate predictor variables by entering predictors based on akaike information criterion, in a stepwise manner until there is no variable left to enter any more.

**Usage**

```r
ols_step_forward_aic(model, ...)
```

## Default S3 method:

```r
ols_step_forward_aic(model, progress = FALSE, details = FALSE, ...)
```

## S3 method for class 'quotesingle.Var'

```r
plot(x, print_plot = TRUE, ...)
```

**Arguments**

- **model**: An object of class `lm`.
- **...**: Other arguments.
- **progress**: Logical; if TRUE, will display variable selection progress.
- **details**: Logical; if TRUE, will print the regression result at each step.
- **x**: An object of class `ols_step_forward_aic`.
- **print_plot**: Logical; if TRUE, prints the plot else returns a plot object.

**Value**

`ols_step_forward_aic` returns an object of class "ols_step_forward_aic". An object of class "ols_step_forward_aic" is a list containing the following components:

- **model**: model with the least AIC; an object of class `lm`
- **steps**: total number of steps
- **predictors**: variables added to the model
- **aics**: akaike information criteria
- **ess**: error sum of squares
- **rss**: regression sum of squares
- **rsq**: rsquare
- **arsq**: adjusted rsquare

**Deprecated Function**

`ols_stepaic_forward()` has been deprecated. Instead use `ols_step_forward_aic()`.
References


See Also

Other variable selection procedures: ols_step_all_possible, ols_step_backward_aic, ols_step_backward_p, ols_step_best_subset, ols_step_both_aic, ols_step_forward_p

Examples

# stepwise forward regression
model <- lm(y ~ ., data = surgical)
ols_step_forward_aic(model)

# stepwise forward regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_forward_aic(model)
plot(k)

# final model
k$model

---

ols_step_forward_p  
Stepwise forward regression

Description

Build regression model from a set of candidate predictor variables by entering predictors based on p values, in a stepwise manner until there is no variable left to enter any more.

Usage

  ols_step_forward_p(model, ...)

## Default S3 method:
  ols_step_forward_p(model, penter = 0.3,
                     progress = FALSE, details = FALSE, ...)

## S3 method for class 'ols_step_forward_p'
  plot(x, model = NA, print_plot = TRUE,
       ...)

...
Arguments

model
   An object of class lm; the model should include all candidate predictor variables.
...
   Other arguments.
penter
   p value; variables with p value less than penter will enter into the model
progress
   Logical; if TRUE, will display variable selection progress.
details
   Logical; if TRUE, will print the regression result at each step.
x
   An object of class ols_step_forward_p.
print_plot
   logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_forward_p returns an object of class "ols_step_forward_p". An object of class "ols_step_forward_p" is a list containing the following components:

model
   final model; an object of class lm
steps
   number of steps
predictors
   variables added to the model
rsquare
   coefficient of determination
aic
   akaike information criteria
sbc
   bayesian information criteria
sbic
   sawa's bayesian information criteria
adjr
   adjusted r-square
rmse
   root mean square error
mallows_cp
   mallow's Cp
indvar
   predictors

Deprecated Function

ols_step_forward() has been deprecated. Instead use ols_step_forward_p().

References


See Also

Other variable selection procedures: ols_step_all_possible, ols_step_backward_aic, ols_step_backward_p, ols_step_best_subset, ols_step_both_aic, ols_step_forward_aic
Examples

# stepwise forward regression
model <- lm(y ~ ., data = surgical)
ols_step_forward_p(model)

# stepwise forward regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_forward_p(model)
plot(k)

# final model
k$model

ols_test_bartlett  

Bartlett test

Description

Test if k samples are from populations with equal variances.

Usage

ols_test_bartlett(data, ...)

## Default S3 method:
ols_test_bartlett(data, ..., group_var = NULL)

Arguments

data  A data.frame or tibble.
...
Columns in data.
group_var  Grouping variable.

Details

Bartlett’s test is used to test if variances across samples is equal. It is sensitive to departures from normality. The Levene test is an alternative test that is less sensitive to departures from normality.

Value

ols_test_bartlett returns an object of class "ols_test_bartlett". An object of class "ols_test_bartlett" is a list containing the following components:

fstat  f statistic
pval  p-value of fstat
df  degrees of freedom
Deprecated Function

ols_bartlett_test() has been deprecated. Instead use ols_test_bartlett().

References


See Also

Other heteroskedasticity tests: ols_test_breusch_pagan, ols_test_f, ols_test_score

Examples

# using grouping variable
library(descriptr)
ols_test_bartlett(mtcarz, 'mpg', group_var = 'cyl')

# using variables
ols_test_bartlett(hsb, 'read', 'write')

###

ols_test_breusch_pagan

**Breusch pagan test**

Description

Test for constant variance. It assumes that the error terms are normally distributed.

Usage

```r
ols_test_breusch_pagan(model, fitted.values = TRUE, rhs = FALSE,
multiple = FALSE, p.adj = c("none", "bonferroni", "sidak", "holm"),
vars = NA)
```

Arguments

- **model**: An object of class lm.
- **fitted.values**: Logical; if TRUE, use fitted values of regression model.
- **rhs**: Logical; if TRUE, specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory) variables of the fitted regression model.
- **multiple**: Logical; if TRUE, specifies that multiple testing be performed.
- **p.adj**: Adjustment for p value, the following options are available: bonferroni, holm, sidak and none.
- **vars**: Variables to be used for heteroskedasticity test.
Details
Breusch Pagan Test was introduced by Trevor Breusch and Adrian Pagan in 1979. It is used to test for heteroskedasticity in a linear regression model. It tests whether variance of errors from a regression is dependent on the values of a independent variable.

- Null Hypothesis: Equal/constant variances
- Alternative Hypothesis: Unequal/non-constant variances

Computation
- Fit a regression model
- Regress the squared residuals from the above model on the independent variables
- Compute $nR^2$. It follows a chi square distribution with p -1 degrees of freedom, where p is the number of independent variables, n is the sample size and $R^2$ is the coefficient of determination from the regression in step 2.

Value
ols_test_breusch_pagan returns an object of class "ols_test_breusch_pagan". An object of class "ols_test_breusch_pagan" is a list containing the following components:

- bp: breusch pagan statistic
- p: p-value of bp
- fv: fitted values of the regression model
- rhs: names of explanatory variables of fitted regression model
- multiple: logical value indicating if multiple tests should be performed
- padj: adjusted p values
- vars: variables to be used for heteroskedasticity test
- resp: response variable
- preds: predictors

Deprecated Function
ols_bp_test() has been deprecated. Instead use ols_test_breusch_pagan().

References

See Also
Other heteroskedasticity tests: ols_test_bartlett, ols_test_f, ols_test_score
Examples

# model
model <- lm(mpg ~ disp + hp + wt + drat, data = mtcars)

# use fitted values of the model
ols_test_breusch_pagan(model)

# use independent variables of the model
ols_test_breusch_pagan(model, rhs = TRUE)

# use independent variables of the model and perform multiple tests
ols_test_breusch_pagan(model, rhs = TRUE, multiple = TRUE)

# bonferroni p value adjustment
ols_test_breusch_pagan(model, rhs = TRUE, multiple = TRUE, p.adj = 'bonferroni')

# sidak p value adjustment
ols_test_breusch_pagan(model, rhs = TRUE, multiple = TRUE, p.adj = 'sidak')

# holm's p value adjustment
ols_test_breusch_pagan(model, rhs = TRUE, multiple = TRUE, p.adj = 'holm')

---

**ols_test_correlation**  
*Correlation test for normality*

Description

Correlation between observed residuals and expected residuals under normality.

Usage

`ols_test_correlation(model)`

Arguments

- `model`  
  An object of class `lm`.

Value

Correlation between fitted regression model residuals and expected values of residuals.

Deprecated Function

`ols_corr_test()` has been deprecated. Instead use `ols_test_correlation()`.

See Also

Other residual diagnostics: `ols_plot_resid_box`, `ols_plot_resid_fit`, `ols_plot_resid_hist`, `ols_plot_resid_qq`, `ols_test_normality`
**Examples**

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_test_correlation(model)
```

---

**Description**

Test for heteroskedasticity under the assumption that the errors are independent and identically distributed (i.i.d.).

**Usage**

```r
ols_test_f(model, fitted_values = TRUE, rhs = FALSE, vars = NULL,
...
```

**Arguments**

- `model`: An object of class `lm`.
- `fitted_values`: Logical; if TRUE, use fitted values of regression model.
- `rhs`: Logical; if TRUE, specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory) variables of the fitted regression model.
- `vars`: Variables to be used for heteroskedasticity test.
- `...`: Other arguments.

**Value**

`ols_test_f` returns an object of class "ols_test_f". An object of class "ols_test_f" is a list containing the following components:

- `f`: f statistic
- `p`: p-value of f
- `fv`: fitted values of the regression model
- `rhs`: names of explanatory variables of fitted regression model
- `numdf`: numerator degrees of freedom
- `dendf`: denominator degrees of freedom
- `vars`: variables to be used for heteroskedasticity test
- `resp`: response variable
- `preds`: predictors

**Deprecated Function**

`ols_f_test()` has been deprecated. Instead use `ols_test_f()`.
**References**


**See Also**

Other heteroskedasticity tests: `ols_test_bartlett, ols_test_breusch_pagan, ols_test_score`

**Examples**

```r
model
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)

using fitted values
ols_test_f(model)

using all predictors of the model
ols_test_f(model, rhs = TRUE)

using fitted values
ols_test_f(model, vars = c('disp', 'hp'))
```

---

**ols_test_normality**  
*Test for normality*

**Description**

Test for detecting violation of normality assumption.

**Usage**

```r
ols_test_normality(y, ...)
```

```r
S3 method for class 'lm'
ols_test_normality(y, ...)
```

**Arguments**

- `y`  
  A numeric vector or an object of class `lm`.

- `...`  
  Other arguments.
Value

`ols_test_normality` returns an object of class "ols_test_normality". An object of class "ols_test_normality" is a list containing the following components:

- `kolmogorv` kolmogorv smirnov statistic
- `shapiro` shapiro wilk statistic
- `cramer` cramer von mises statistic
- `anderson` anderson darling statistic

Deprecated Function

`ols_norm_test()` has been deprecated. Instead use `ols_test_normality()`.

See Also

Other residual diagnostics: `ols_plot_resid_box`, `ols_plot_resid_fit`, `ols_plot_resid_hist`, `ols_plot_resid_qq`, `ols_test_correlation`

Examples

```r
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_test_normality(model)
```

---

### Bonferroni Outlier Test

**Description**

Detect outliers using Bonferroni p values.

**Usage**

```r
ols_test_outlier(model, cut_off = 0.05, n_max = 10, ...)
```

**Arguments**

- `model` An object of class `lm`.
- `cut_off` Bonferroni p-values cut off for reporting observations.
- `n_max` Maximum number of observations to report, default is 10.
- `...` Other arguments.

**Examples**

```r
model
model <- lm(y ~ ., data = surgical)
ols_test_outlier(model)
```
**ols_test_score**  

**Score test**

**Description**

Test for heteroskedasticity under the assumption that the errors are independent and identically distributed (i.i.d.).

**Usage**

```r
ols_test_score(model, fitted_values = TRUE, rhs = FALSE, vars = NULL)
```

**Arguments**

- `model`: An object of class `lm`.
- `fitted_values`: Logical; if TRUE, use fitted values of regression model.
- `rhs`: Logical; if TRUE, specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory) variables of the fitted regression model.
- `vars`: Variables to be used for for heteroskedasticity test.

**Value**

`ols_test_score` returns an object of class "ols_test_score". An object of class "ols_test_score" is a list containing the following components:

- `score`: f statistic
- `p`: p value of score
- `df`: degrees of freedom
- `fv`: fitted values of the regression model
- `rhs`: names of explanatory variables of fitted regression model
- `resp`: response variable
- `preds`: predictors

**Deprecated Function**

`ols_score_test()` has been deprecated. Instead use `ols_test_score()`.

**References**


See Also

Other heteroskedasticity tests: ols_test_bartlett, ols_test_breusch_pagan, ols_test_f

Examples

# model
model <- lm(mpg ~ disp + hp + wt, data = mtcars)

# using fitted values of the model
ols_test_score(model)

# using predictors from the model
ols_test_score(model, rhs = TRUE)

# specify predictors from the model
ols_test_score(model, vars = c('disp', 'wt'))

rivers

Test Data Set

Description

Test Data Set

Usage

rivers

Format

An object of class data.frame with 20 rows and 6 columns.

rvsr_plot_shiny

Residual vs regressors plot for shiny app

Description

Graph to determine whether we should add a new predictor to the model already containing other predictors. The residuals from the model is regressed on the new predictor and if the plot shows non random pattern, you should consider adding the new predictor to the model.

Usage

rvsr_plot_shiny(model, data, variable, print_plot = TRUE)
Arguments

- **model**: An object of class `lm`.
- **data**: A `data.frame` or `tibble`.
- **variable**: Character; new predictor to be added to the model.
- **print_plot**: logical; if `TRUE`, prints the plot else returns a plot object.

Examples

```r
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
rvsr_plot_shiny(model, mtcars, 'drat')
```

---

**steptime**  
*Test Data Set*

**Description**

Test Data Set

**Usage**

```r
steptime
```

**Format**

An object of class `data.frame` with 20000 rows and 7 columns.

---

**surgical**  
*Surgical Unit Data Set*

**Description**

A dataset containing data about survival of patients undergoing liver operation.

**Usage**

```r
surgical
```
Format

A data frame with 54 rows and 9 variables:

- `bcs` blood clotting score
- `pindex` prognostic index
- `enzyme_test` enzyme function test score
- `liver_test` liver function test score
- `age` age, in years
- `gender` indicator variable for gender (0 = male, 1 = female)
- `alc_mod` indicator variable for history of alcohol use (0 = None, 1 = Moderate)
- `alc_Heavy` indicator variable for history of alcohol use (0 = None, 1 = Heavy)
- `y` Survival Time

Source

Index

*T Topic datasets
  auto, 3
cement, 4
fitness, 4
hsb, 4
rivers, 71
stepdata, 72
surgical, 72

auto, 3
cement, 4
fitness, 4
hsb, 4

ols_aic, 5, 7, 11, 12, 14, 15, 48, 49
ols_all_subset (ols_step_all_possible), 49
ols_all_subset_betas (ols_step_all_possible_betas), 51
ols_apc, 6, 6, 11, 12, 14, 15, 48, 49
ols_avplots (ols_plot_added_variable), 16
ols_bartlett_test (ols_test_bartlett), 63
ols_best_subset (ols_step_best_subset), 55
ols_bp_test (ols_test_breusch_pagan), 64
ols_coll_diag, 7
ols_cooksd_barplot (ols_plot_cooksd_bar), 18
ols_cooksd_chart (ols_plot_cooksd_chart), 19
ols_corr_test (ols_test_correlation), 66
ols_correlations, 9
ols_dfbetas_panel (ols_plot_dfbetas), 20
ols_dffits_plot (ols_plot_dffits), 21
ols_diagnostic_panel (ols_plot_diagnostics), 22
ols_dsrvsp_plot (ols_plot_resid_stud_fit), 33
ols_eigen_cindex (ols_coll_diag), 7
ols_f_test (ols_test_f), 67
ols_fm_plot (ols_plot_resid_fit_spread), 27
ols_fpe, 6, 7, 10, 12, 14, 15, 48, 49
ols_hadi, 11, 13, 35, 43
ols_hadi_plot (ols_plot_hadi), 23
ols_hsp, 6, 7, 11, 12, 14, 15, 48, 49
ols_launch_app, 13
ols_leverage, 11, 13, 35, 43
ols_mallows_cp, 6, 7, 11, 12, 14, 15, 48, 49
ols_msep, 6, 7, 11, 12, 14, 15, 48, 49
ols_norm_test (ols_test_normality), 68
ols_ovsp_plot (ols_plot_obs_fit), 24
ols_plot_added_variable, 16
ols_plot_comp_plus_resid, 17
ols_plot_cooksd_bar, 18
ols_plot_cooksd_chart, 19
ols_plot_dfbetas, 20
ols_plot_dffits, 21
ols_plot_diagnostics, 22
ols_plot_fm
  (ols_plot_resid_fit_spread), 27
ols_plot_hadi, 23
ols_plot_obs_fit, 24
ols_plot_reg_line, 24
ols_plot_resid_box, 25, 26, 28, 30, 66, 69
ols_plot_resid_fit, 25, 26, 28, 30, 66, 69
ols_plot_resid_fit_spread, 27
ols_plot_resid_hist, 25, 26, 28, 30, 66, 69
ols_plot_resid_leverage, 28
ols_plot_resid_pot, 29
ols_plot_resid_qq, 25, 26, 28, 30, 66, 69
ols_plot_resid_regressor, 31
ols_plot_resid_spread
(ols_plot_resid_fit_spread), 27
ols_plot_resid_stand, 31
ols_plot_resid_stud, 32
ols_plot_resid_stud_fit, 33
ols_plot_response, 34
ols_potsrd_plot (ols_plot_resid_pot), 29
ols_pred_rsq, 11, 13, 35, 43
ols_prep_avplot_data, 35
ols_prep_cdplot_data, 36
ols_prep_cdplot_outliers, 36
ols_prep_dfbeta_data, 37
ols_prep_dfbeta_outliers, 37
ols_prep_dsrvf_data, 38
ols_prep_outlier_obs, 38
ols_prep_regress_x, 39
ols_prep_regress_y, 39
ols_prep_rfsplot_data, 40
ols_prep_rfsplot_fmddata, 40
ols_prep_rfsplot_rsddata
(ols_prep_rfsplot_fmddata), 40
ols_prep_rstudlev_data, 41
ols_prep_rvsrplot_data, 41
ols_prep_srchart_data, 42
ols_prep_srsplot_data, 42
ols_press, 11, 13, 35, 43
ols_pure_error_anova, 44
ols_reg_line (ols_plot_reg_line), 24
ols_regress, 45
ols_respond_viz (ols_plot_response), 34
ols_rfs_plot
(ols_plot_resid_fit_spread), 27
ols.rpc_plot
(ols_plot_comp_plus_resid), 17
ols_rsd_boxplot (ols_plot_resid_box), 25
ols_rsd_hist (ols_plot_resid_hist), 28
ols_rsd_plot
(ols_plot_resid_fit_spread), 27
ols_rsd_qqplot (ols_plot_resid_qq), 30
ols_rsdlev_plot (ols_plot_resid_lev), 28
ols_rvssp_plot (ols_plot_resid_fit), 26
ols_rvrs_plot
(ols_plot_resid_regressor), 31
ols_sbc, 6, 7, 11, 12, 14, 15, 47, 49
ols_sbic, 6, 7, 11, 12, 14, 15, 48, 48
ols_score_test (ols_test_score), 70
ols_srsd_chart (ols_plot_resid_stand), 31
ols_srsd_plot (ols_plot_resid_stand), 32
ols_step_all_possible, 49, 53, 54, 56, 57, 61, 62
ols_step_all_possible_betas, 51
ols_step_backward
(ols_step_backward_p), 53
ols_step_backward_aic, 50, 52, 54, 56, 57, 61, 62
ols_step_backward_p, 50, 53, 53, 56, 57, 61, 62
ols_step_best_subset, 50, 53, 54, 55, 57, 61, 62
ols_step_both_aic, 50, 53, 54, 56, 56, 61, 62
ols_step_both_p, 58
ols_step_forward (ols_step_forward_p), 61
ols_step_forward_aic, 50, 53, 54, 56, 57, 60, 62
ols_step_forward_p, 50, 53, 54, 56, 57, 61
ols_step_forward_aic, 61
ols_stepaic_backward
(ols_step_backward_aic), 52
ols_stepaic_both (ols_step_both_aic), 56
ols_stepaic_forward
(ols_step_forward_aic), 60
ols_stepwise (ols_step_both_p), 58
ols_test_bartlett, 63, 65, 68, 71
ols_test_breusch_pagan, 64, 64, 68, 71
ols_test_correlation, 25, 26, 28, 30, 66, 69
ols_test_f, 64, 65, 67, 71
ols_test_normality, 25, 26, 28, 30, 66, 68
ols_test_outlier, 69
ols_test_score, 64, 65, 68, 70
ols_vif_tol (ols_coll_diag), 7
olsr, 5
olsrr-package (olsrr), 5
plot.ols_step_all_possible
(ols_step_all_possible), 49
plot.ols_step_backward_aic
(ols_step_backward_aic), 52
plot.ols_step_backward_p
(ols_step_backward_p), 53
plot.ols_step_best_subset
(ols_step_best_subset), 55
plot.ols_step_both_aic
(ols_step_both_aic), 56
plot.ols_step_both_p (ols_step_both_p), 58
plot.ols_step_forward_aic
(ols_step_forward_aic), 60
plot.ols_step_forward_p
        (ols_step_forward_p), 61

rivers, 71
rvsr_plot_shiny, 71

stepdata, 72
surgical, 72