Package ‘oceanwaves’

June 2, 2021

Title Ocean Wave Statistics
Version 0.2.0
Date 2021-05-30

URL https://github.com/millerlp/oceanwaves,
https://millerlp.github.io/oceanwaves/

BugReports https://github.com/millerlp/oceanwaves/issues

Depends R (>= 3.3.0), ggplot2
Imports bspec, signal
Suggests scales, oce, knitr, rmarkdown, testthat (>= 2.1.0)

License GPL-3
Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Luke Miller [aut, cre] (<https://orcid.org/0000-0002-2009-6981>), Urs Neumeier [aut], Travis Mason [ctb], Magali Lecouturier [ctb], George Voulgaris [ctb]

Maintainer Luke Miller <contact@lukemiller.org>

Repository CRAN

Date/Publication 2021-06-02 04:40:14 UTC
R topics documented:

almostZero . 2
detrendHeight . 3
plotWaveSpectrum . 4
prCorr . 4
wavedata . 5
waveNumL . 6
waveStatsSP . 6
waveStatsZC . 8

Index 10

almostZero

Test whether vector elements are effectively zero

Description

Test whether elements in vector x are effectively zero, within the square root of machine tolerance for a floating point number.

Usage

almostZero(x, y = 0, tolerance = sqrt(.Machine$double.eps))

Arguments

x Numeric vector of values to compared against 0
y Value to be compared against. Default is 0.
tolerance The maximum difference between x and y necessary to call a value non-zero

Details

Returns TRUE for all vector elements that are within rounding error of zero.

Value

TRUE or FALSE for each element of the vector x.
detrendHeight Remove trend from a time series

Description

Fits a straight line to a vector of values using `lm()`, and uses the regression coefficients to subtract off the linear trend from the values.

Usage

```r
detrendHeight(pt)
```

Arguments

- `pt` A vector of numeric values to be detrended

Details

Typically this is used to remove a tidal trend from a ocean surface height time series before attempting to calculate statistics for waves, which are variations above and below the mean surface height. Returns a series of residuals around the linear trend, in the original units of measurement (typically meters).

Value

A list containing the following:

- `pt` A vector of detrended values
- `seg_len` The segment length used
- `h` The mean height of the water column
- `trend` A two element vector of the intercept and slope from the linear regression.

Examples

```r
data(wavedata)
detrended <- detrendHeight(wavedata$swDepth.m)
pt <- detrended[['pt']]  # Extract detrended values
plot(pt, type = 'l')
abline(h = 0)
```
plotWaveSpectrum

Plot a basic spectrum

Description
Plot a basic spectrum

Usage
```
plotWaveSpectrum(freqspec, Fs)
```

Arguments
- **freqspec** A data frame containing a column of frequencies 'freq' and a column of spectral power values 'spec'
- **Fs** Frequency of sampled surface heights, units of Hz

prCorr

Correct for depth attenuation of a water surface elevation pressure signal.

Description
Bottom-mounted pressure transducers suffer from pressure signal attenuation when attempting to estimate surface wave heights. This function corrects water surface elevation time series based on the depth of the water column and height of the sensor above the bottom.

Usage
```
prCorr(pt, Fs, zpt, M = 512, CorrLim = c(0.05, 0.33), plot = FALSE)
```

Arguments
- **pt** A vector of sea surface elevations (units of meters).
- **Fs** Sampling frequency (units of Hz). Normally 4 Hz for an OWHL logger.
- **zpt** Height of the pressure sensor above the seabed (units of meters).
- **M** Length of time series segments that will be used in the detrending and attenuation correction operations. 512 samples is the default, should be an even number.
- **CorrLim** [min max] frequency for attenuation correction (Hz, optional, default [0.05 0.33], which translate to periods of 20 sec to 3 sec).
- **plot** Logical value TRUE or FALSE. Displays a plot of the original and corrected time series.
wavedata

Value
A vector of the depth-corrected surface elevations (units of meters usually). Any original trend in
the input data (such as tide change) is present in the output data. The returned surface elevation
fluctuations will typically be more extreme than the raw input surface elevations.

References
Based on original MATLAB function by developed by Travis Mason, M. Lecouturier & Urs Neumeier
http://neumeier.perso.ch/matlab/waves.html
Each segment of pt will be linearly detrended, corrected for attenuation, and the linear trend will be
added back to the returned data.

Examples
```r
data(wavedata)
corrected = prCorr(wavedata$swPressure.mbar, Fs = 4, zpt = 0.1)
# Plot the results
corrected = prCorr(wavedata$swPressure.mbar, Fs = 4, zpt = 0.1, plot=TRUE)
```

Description
A dataset containing pressure records and derived sea surface height from a bottom-mounted pres-
sure transducer data logger deployed at Marguerite Reef near Los Angeles, CA, USA. The device
was deployed at a depth of approximately 10 meters, and sea level air pressure was 1014 mbar at
the time of deployment. The pressure data logger was mounted approximately 10 cm above the
benthos. Sampling rate was 4 Hz, so the total record represents 30 minutes of time.

Usage
```r
wavedata
```

Format
A data frame with 7200 rows and 4 variables:

- **DateTime** Date and time, with fractional seconds. UTC time zone.
- **absPressure.mbar** Absolute pressure recorded by the data logger, in units of millibar (1 mbar =
 100 Pascal). This value includes pressure due to the atmosphere above the sea surface, which
 was 1014 mbar during the deployment.
- **swPressure.mbar** Pressure produced by the column of seawater above the data logger. The pres-
sure due to the atmosphere above the sea surface has been subtracted off of the absolute pres-
sure value absPressure.mbar to produce this value. Units of mbar.
- **swDepth.m** Estimated depth in meters of the seawater column above the pressure data logger,
 converted from the swPressure.mbar value.
waveNumL

Description

A function to calculate wave number.

Usage

```r
waveNumL(f, h)
```

Arguments

- `f` A numeric vector of wave frequencies
- `h` A numeric vector of water depths (usually in units of meters)

Value

The wave number.

References

Modified from MATLAB function by Urs Neumeier: http://neumeier.perso.ch/matlab/waves.html
suggested by George Voulgaris, University of South Carolina

waveStatsSP

Description

Calculate ocean wave parameters using spectral analysis methods

Usage

```r
waveStatsSP(
    data,
    Fs,
    method = c("welchPSD", "spec.pgram"),
    plot = FALSE,
    kernel = NULL,
    segments = NULL,
    ...
)
```
waveStatsSP

Arguments

data: A vector of surface heights that constitute a time series of observations. Typical units = meters.
Fs: Sampling frequency of the surface heights data. Units = Hz, i.e. samples per second.
metho: A character string indicating which spectral analysis method should be used. Choose one of welchPSD (default) or spec.pgram.
plot: A logical value denoting whether to plot the spectrum. Defaults to FALSE.
kern: An object of class tskernel that defines a smoother for use with spec.pgram method. If value is NULL, a default Daniell kernel with widths (9,9,9) is used.
segments: Numeric value indicating the number of windowing segments to use with welchPSD method.
...: Additional arguments to be passed to spectral analysis functions, such as the windowfun option for welchPSD.

Details
Carries out spectral analysis of ocean wave height time series to estimate common wave height statistics, including peak period, average period, and significant wave height.

Value
List of wave parameters based on spectral methods.

- h: Average water depth. Same units as input surface heights (typically meters).
- H0: Significant wave height based on spectral moment 0. Same units as input surface heights (typically meters). This is approximately equal to the average of the highest 1/3 of the waves.
- Tp: Peak period, calculated as the frequency with maximum power in the power spectrum. Units of seconds.
- m0: Estimated variance of time series (moment 0).
- T_0_1: Average period calculated as m0/m1, units seconds. Follows National Data Buoy Center’s method for average period (APD).
- T_0_2: Average period calculated as (m0/m2)^0.5, units seconds. Follows Scripps Institution of Oceanography’s method for calculating average period (APD) for their buoys.
- EPS2: Spectral width parameter.
- EPS4: Spectral width parameter.

References
Original MATLAB function by Urs Neumeier: http://neumeier.perso.ch/matlab/waves.html, based on code developed by Travis Mason, Magali Lecouturier and Urs Neumeier.

See Also
waveStatsZC for wave statistics determined using a zero-crossing algorithm.
Examples

```r
data(wavedata)
waveStatsSP(wavedata$swDepth.m, Fs = 4, method = 'spec.pgram', plot = TRUE)
```

waveStatsZC

Calculate wave statistics using zero-crossing method

Description

Calculate ocean wave summary statistics, including significant wave height and period.

Usage

```r
waveStatsZC(data, Fs, threshold = NULL, plot = FALSE)
```

Arguments

- **data**
 - A numeric vector of water surface height data. The data do not need to be detrended prior to use. Typical units = meters
- **Fs**
 - Sampling frequency of the data, in Hz.
- **threshold**
 - The minimum height necessary for a zero-crossing event to be considered a wave.
- **plot**
 - Set to TRUE if summary histograms of wave heights and wave periods are desired.

Details

Based on an upward zero-crossing algorithm originally provided by Urs Neumeier, v1.06. However, by default the algorithm is run as a downward zero-crossing process by inverting the data.

Value

A list object containing summary statistic values.

- **Hsig** Mean of the highest 1/3 of waves in the data set. Units = same as input surface heights.
- **Hmean** Overall mean wave height, for all waves (bigger than threshold).
- **H10** Mean height of the upper 10% of all waves.
- **Hmax** Maximum wave height in the input data.
- **Tmean** Mean period of all waves (bigger than threshold). Units = seconds.
- **Tsig** Mean period of **Hsig** (highest 1/3 of waves).

References

Original MATLAB function by Urs Neumeier: http://neumeier.perso.ch/matlab/waves.html
waveStatsZC

See Also
waveStatsSP for wave statistics determined using spectral analysis methods.

Examples

data(wavedata)
waveStatsZC(data = wavedata$swDepth.m, Fs = 4, plot = TRUE)
Index

* datasets
 wavedata, 5
 almostZero, 2
 detrendHeight, 3
 plotWaveSpectrum, 4
 prCorr, 4
 wavedata, 5
 waveNumL, 6
 waveStatsSP, 6, 9
 waveStatsZC, 7, 8