Package ‘o2plsda’

August 12, 2022

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Multiomics Data Integration</td>
</tr>
<tr>
<td>Version</td>
<td>0.0.18</td>
</tr>
<tr>
<td>Description</td>
<td>Provides functions to do 'O2PLS-DA' analysis for multiple omics data integration. The algorithm came from ``O2-PLS, a two-block (X±Y) latent variable regression (LVR) method with an integral OSC filter'' which published by Johan Trygg and Svante Wold at 2003 doi:10.1002/cem.775. 'O2PLS' is a bidirectional multivariate regression method that aims to separate the covariance between two data sets (it was recently extended to multiple data sets) (Löfstedt and Trygg, 2011 doi:10.1002/cem.1388; Löfstedt et al., 2012 doi:10.1016/j.aca.2013.06.026) from the systematic sources of variance being specific for each data set separately.</td>
</tr>
<tr>
<td>License</td>
<td>GPL-3</td>
</tr>
<tr>
<td>Imports</td>
<td>Rcpp (>= 1.0.7), dplyr, magrittr, parallel, ggplot2, ggrepel, methods, stats</td>
</tr>
<tr>
<td>Depends</td>
<td></td>
</tr>
<tr>
<td>Encoding</td>
<td>UTF-8</td>
</tr>
<tr>
<td>Suggests</td>
<td>knitr, markdown, rmarkdown</td>
</tr>
<tr>
<td>VignetteBuilder</td>
<td>knitr</td>
</tr>
<tr>
<td>LinkingTo</td>
<td>Rcpp, RcppArmadillo</td>
</tr>
<tr>
<td>RoxygenNote</td>
<td>7.1.2</td>
</tr>
<tr>
<td>NeedsCompilation</td>
<td>yes</td>
</tr>
<tr>
<td>Repository</td>
<td>CRAN</td>
</tr>
<tr>
<td>Author</td>
<td>Kai Guo [aut, cre], Junguk Hur [aut], Eva Feldman [aut]</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Kai Guo guokai8@gmail.com</td>
</tr>
<tr>
<td>Date/Publication</td>
<td>2022-08-12 07:10:02 UTC</td>
</tr>
</tbody>
</table>
R topics documented:

loadings ... 2
loadings.o2plsda .. 3
loadings.plsda .. 3
o2cv ... 4
o2pls ... 5
O2pls-class .. 7
oplsda ... 7
plot.O2pls .. 8
plot.o2plsda ... 10
plot.plsda .. 11
plsda ... 12
print.O2pls ... 14
print.plsda ... 14
scores ... 15
scores.O2pls ... 15
scores.o2plsda .. 16
scores.plsda .. 16
summary.O2pls .. 17
summary.plsda .. 18
vip ... 18

Index 20

loadings Extract the loadings from an O2PLS fit

Description
This function extracts loading parameters from an O2PLS fit

Usage
loadings(x, ...)

S3 method for class 'o2pls'
loadings(x, loading = c("Xjoint", "Yjoint", "Xorth", "Yorth"), ...)

Arguments
 x Object of class o2pls
 ... For consistency
 loading the loadings for one of "Xjoint", "Yjoint", "Xorth", "Yorth"
loadings.o2plsda

Value

Loading matrix
Loading matrix

loadings.o2plsda: extract the loading value from the O2PLSDA analysis

Description

extract the loading value from the O2PLSDA analysis

Usage

S3 method for class 'o2plsda'
loadings(x, loading = "Xloading", ...)

Arguments

x Object of class o2plsda
loading the loadings for one of "Xjoint", "Yjoint", "Xorth", "Yorth"
... For consistency

loadings.plsda: extract the loading value from the PLSDA analysis

Description

extract the loading value from the PLSDA analysis

Usage

S3 method for class 'plsda'
loadings(x, ...)

Arguments

x Object of class plsda
... For consistency
Cross validation for O2PLS

Usage

```r
o2cv(
  X,
  Y,
  nc,
  nx,
  ny,
  group = NULL,
  nr_folds = 5,
  ncores = 1,
  scale = FALSE,
  center = FALSE
)
```

Arguments

- `X`: a Numeric matrix (input)
- `Y`: a Numeric matrix (input)
- `nc`: Integer. Number of joint PLS components.
- `nx`: Integer. Number of orthogonal components in X.
- `ny`: Integer. Number of orthogonal components in Y.
- `group`: a vector to indicate the group for Y.
- `nr_folds`: Integer to indicate the folds for cross validation.
- `ncores`: Integer. Number of CPUs to use for cross validation.
- `scale`: boolean values determining if data should be scaled or not.
- `center`: boolean values determining if data should be centered or not.

Value

A data frame with the Q and RMSE values.

Author(s)

Kai Guo
Examples

```r
set.seed(123)
X = matrix(rnorm(500),50,10)
Y = matrix(rnorm(500),50,10)
X = scale(X, scale = TRUE)
Y = scale(Y, scale = TRUE)
# group factor could be omitted if you don't have any group
group <- rep(c("Ctrl","Treat"), each = 25)
cv <- o2cv(X, Y, 1:2, 1:2, 1:2, group=group, nr_folds = 2, ncores=1)
```

Description

Fit O2PLS model with best nc, nx, ny

Usage

```r
o2pls(X, Y, nc, nx, ny, scale = FALSE, center = FALSE)
```

Arguments

- `X`: a Numeric matrix (input)
- `Y`: a Numeric matrix (input)
- `nc`: Integer. Number of joint PLS components.
- `nx`: Integer. Number of orthogonal components in X
- `ny`: Integer. Number of orthogonal components in Y
- `scale`: boolean values determining if data should be scaled or not
- `center`: boolean values determining if data should be centered or not

Value

An object containing:

- `Xscore`: Joint X scores
- `Xloading`: Joint X loadings
- `Yscore`: Joint Y scores
- `Yloading`: Joint Y loadings
- `TYosc`: Orthogonal X scores
- `PXosc`: Orthogonal X loadings
- `WYosc`: Orthogonal X weights
- `UXosc`: Orthogonal Y scores
- `PYosc`: Orthogonal Y loadings
- `PXosc`: Orthogonal Y loadings
CXosc
Orthogonal Y weights

BU
Regression coefficient in $T_t \sim U$

BT
Regression coefficient in $U \sim T_t$

R2Xhat
Prediction of X with Y

R2Yhat
Prediction of Y with X

R2X
Variation of the modeled part in X (defined by Joint + Orthogonal variation) as proportion of total variation in X

R2Y
Variation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in Y

R2Xcorr
Variation of the joint part in X

R2Ycorr
Variation of the joint part in Y

R2Xo
Variation of the orthogonal part in X as proportion of variation in X

R2Yo
Variation of the orthogonal part in Y as proportion of variation in Y

R2Xp
Variation in X joint part predicted by Y Joint part

R2Yp
Variation in Y joint part predicted by X Joint part

varXj
Variation in each Latent Variable (LV) in X Joint part

varYj
Variation in each Latent Variable (LV) in Y Joint part

varXorth
Variation in each Latent Variable (LV) in X Orthogonal part

varYorth
Variation in each Latent Variable (LV) in Y Orthogonal part

Exy
Residuals in X

Fxy
Residuals in Y

Author(s)

Kai Guo

Examples

```r
set.seed(123)
X = matrix(rnorm(500),50,10)
Y = matrix(rnorm(500),50,10)
X = scale(X, scale = TRUE)
Y = scale(Y, scale = TRUE)
fit <- o2pls(X, Y, 1, 2, 2)
summary(fit)
```
O2pls-class

Class "O2pls" This class represents the Annotation information

Slots

- X: a Numeric matrix (input)
- Y: a Numeric matrix (input)
- params: parameters used in o2pls analysis
- results: list of o2pls results

Author(s)

Kai Guo

oplsda

Orthogonal partial least squares discriminant analysis

Description

Computes orthogonal scores partial least squares regressions with the NIPALS algorithm. It returns a comprehensive set of pls outputs (e.g. scores and vip).

Usage

```r
oplsda(X, Y, nc, scale = FALSE, center = TRUE, maxiter = 100, tol = 1e-05)
```

Arguments

- **X**: a O2pls object or a matrix of predictor variables.
- **Y**: a single vector indicate the group
- **nc**: the number of pls components (the one joint components + number of orthogonal components).
- **scale**: logical indicating whether X must be scaled (suggest TRUE).
- **center**: boolean values determining if data should be centered or not
- **maxiter**: maximum number of iterations.
- **tol**: limit for convergence of the algorithm in the nipals algorithm.
plot.O2pls

Value

a list containing the following elements:

- nc the number of components used (one joint components + number of orthogonal components)
- scores a matrix of scores corresponding to the observations in X. The components retrieved correspond to the ones optimized or specified.
- Xloadings a matrix of loadings corresponding to the explanatory variables. The components retrieved correspond to the ones optimized or specified.
- Yloadings a matrix of partial least squares loadings corresponding to Y
- vip the VIP matrix.
- xvar a matrix indicating the standard deviation of each component (sd), the variance explained by each single component (explained_var) and the cumulative explained variance (cumulative_explained_var). These values are computed based on the data used to create the projection matrices.
- projection_matrix the matrix of projection matrix
- weight a matrix of partial least squares ("pls") weights.

Author(s)

Kai Guo

Examples

```r
X <- matrix(rnorm(50),10,5)
Y <- matrix(rnorm(50),10,5)
fit <- o2pls(X,Y,2,1,1)
yy <- rep(c(0,1),5)
fit0 <- oplsda(fit,yy,2)
```

plot.02pls

Score or loading plot for the O2PLS results

Description

Score or loading plot for the O2PLS results

Usage

```r
## S3 method for class 'O2pls'
plot(
  x,
  type = "score",
  var = "Xjoint",
  group = NULL,
  ind = c(1, 2),
```
plot.O2pls

 color = NULL,
 top = 20,
 ellipse = TRUE,
 order = FALSE,
 pt.size = 3,
 label = TRUE,
 label.size = 4,
 repel = TRUE,
 rotation = FALSE,
 ...

Arguments

 x an O2pls object
 type score or loading
 var specify Xjoint
 group color used for score plot
 ind which components to be used for score plot or loading plot
 color color used for score or loading plot
 top the number of largest loading value to plot
 ellipse TRUE/FALSE
 order order by the value or not
 pt.size point size
 label plot label or not (TRUE/FALSE)
 label.size label size
 repel use ggrepel to show the label or not
 rotation flip the figure or not (TRUE/FALSE)
 ... For consistency

Value

 a ggplot2 object

Author(s)

 Kai Guo

Examples

 X <- matrix(rnorm(50),10,5)
 Y <- matrix(rnorm(50),10,5)
 fit <- o2pls(X,Y,2,1,1)
 plot(fit, type="score")
plot.o2plsda

Score, VIP or loading plot for the O2PLS results

Description
Score, VIP or loading plot for the O2PLS results

Usage

```r
## S3 method for class 'o2plsda'
plot(
x,  # an o2plsda object
  type = "score",  # score, vip or loading
  var = "Xjoint",  # specify Xjoint
  group = NULL,  # color used for score plot
  ind = c(1, 2),  # which components to be used for score plot or loading plot
  color = NULL,  # color used for score or loading plot
  top = 20,  # the number of largest loading value to plot
  ellipse = TRUE,  # TRUE/FALSE
  order = FALSE,  # order by the value or not
  pt.size = 3,  # point size
  label = TRUE,  # plot label or not (TRUE/FALSE)
  label.size = 4,  # label size
  repel = FALSE,  # use ggrepel to show the label or not
  rotation = FALSE,  # flip the figure or not (TRUE/FALSE)
  ...  # For consistency
)
```

Arguments

- `x`: an o2plsda object
- `type`: score, vip or loading
- `var`: specify Xjoint
- `group`: color used for score plot
- `ind`: which components to be used for score plot or loading plot
- `color`: color used for score or loading plot
- `top`: the number of largest loading value to plot
- `ellipse`: TRUE/FALSE
- `order`: order by the value or not
- `pt.size`: point size
- `label`: plot label or not (TRUE/FALSE)
- `label.size`: label size
- `repel`: use ggrepel to show the label or not
- `rotation`: flip the figure or not (TRUE/FALSE)
 ... For consistency
Value

a ggplot2 object

Author(s)

Kai Guo

Examples

```r
X <- matrix(rnorm(50),10,5)
Y <- matrix(rnorm(50),10,5)
fit <- o2pls(X,Y,2,1,1)
yy <- rep(c(0,1),5)
fit0 <- oplsda(fit,yy,2)
plot(fit0, type="score", group = factor(yy))
```

plot.plsda

Score, VIP or loading plot for the plsda results

Description

Score, VIP or loading plot for the plsda results

Usage

```r
## S3 method for class 'plsda'
plot(
  x,
  type = "score",
  group = NULL,
  ind = c(1, 2),
  color = NULL,
  top = 20,
  ellipse = TRUE,
  order = FALSE,
  pt.size = 3,
  label = TRUE,
  label.size = 4,
  repel = FALSE,
  rotation = FALSE,
  ...
)
```
Arguments

x an plsda object

ind which components to be used for score plot or loading plot

top the number of largest loading value to plot

type score, vip or loading

Color

group color used for score plot

color color used for score or loading plot

color color used for score plot

top the number of largest loading value to plot

Value

a ggplot2 object

Author(s)

Kai Guo

Examples

X <- matrix(rnorm(500), 10, 50)
Y <- rep(c("a", "b"), each = 5)
fit0 <- plsda(X, Y, 2)
plot(fit0, type = "score", group = factor(Y))

Description

Perform a PLS discriminant analysis

Usage

plsda(X, Y, nc, scale = TRUE, center = TRUE, cv = TRUE, nr_folds = 5)
Arguments

- **X**: a matrix of predictor variables.
- **Y**: a single vector indicating the group.
- **nc**: the number of pls components (the one joint components + number of orthogonal components).
- **scale**: logical indicating whether X must be scaled (suggest TRUE).
- **center**: logical indicating whether X must be centered (suggest TRUE).
- **cv**: logical indicating whether cross-validation will be performed or not (suggest TRUE).
- **nr_folds**: Integer to indicate the folds for cross validation.

Value

A list containing the following elements:

- **nc**: the number of components used (one joint components + number of orthogonal components).
- **scores**: a matrix of scores corresponding to the observations in X. The components retrieved correspond to the ones optimized or specified.
- **Xloadings**: a matrix of loadings corresponding to the explanatory variables. The components retrieved correspond to the ones optimized or specified.
- **vip**: the VIP matrix.
- **xvar**: variance explained of X by each single component.
- **R2Y**: variance explained of Y by each single component.
- **codePRESS**: The residual sum of squares for the samples which were not used to fit the model.
- **codeQ2**: quality of cross-validation.

Author(s)

Kai Guo

Examples

```r
X <- matrix(rnorm(500),10,50)
Y <- rep(c("a","b"),each=5)
fit <- plsda(X,Y,2)
```
print.02pls

Print the summary of O2PLS results.

Description
Print the summary of O2PLS results.

Usage

S3 method for class '02pls'
print(x, ...)

Arguments

x An O2pls object
...

For consistency

Author(s)
Kai Guo

Examples

X <- matrix(rnorm(50),10,5)
Y <- matrix(rnorm(50),10,5)
object <- o2pls(X,Y,1,1,1)
print(object)

print.plsda

Print the summary of plsda results.

Description
Print the summary of plsda results.

Usage

S3 method for class 'plsda'
print(x, ...)

Arguments

x An plsda object
...

For consistency
scores

Author(s)

Kai Guo

Examples

```r
X <- matrix(rnorm(500),10,50)
Y <- rep(c("a","b"),each=5)
fit <- plsda(X,Y,2)
print(fit)
```

scores

Extract the scores from an O2PLS fit

Description

This function extracts score matrices from an O2PLS fit

Usage

```r
scores(x, ...)
```

Arguments

- `x` Object of class `O2pls`
- `...` For consistency

Value

Scores matrix

scores.O2pls

Extract the scores from an O2PLS fit

Description

This function extracts scores parameters from an O2PLS fit

Usage

```r
## S3 method for class 'O2pls'
scores(x, score = c("Xjoint", "Yjoint", "Xorth", "Yorth"), ...)
```

Arguments

- `x` Object of class `O2pls`
- `score` the scores matrix for one of "Xjoint", "Yjoint", "Xorth", "Yorth"
- `...` Other arguments
scores.plsda

Value

score matrix

scores.o2plsda Extract the scores from an O2PLS DA analysis

Description

Extract the scores from an O2PLS DA analysis

Usage

S3 method for class 'o2plsda'
scores(x, ...)

Arguments

x Object of class o2plsda
...
Other arguments

Value

score matrix

Author(s)

Kai Guo

scores.plsda Extract the scores PLSDA analysis

Description

Extract the scores PLSDA analysis

Usage

S3 method for class 'plsda'
scores(x, ...)

Arguments

x Object of class plsda
...
Other arguments
Summary of an O2PLS object

Value

score matrix

Author(s)

Kai Guo

```r
# S3 method for class 'O2pls'
summary(object, ...)
```

Arguments

- `object` a O2pls object
- `...` For consistency

Value

Detail of O2PLS results

Author(s)

Kai Guo

Examples

```r
X <- matrix(rnorm(50),10,5)
Y <- matrix(rnorm(50),10,5)
object <- o2pls(X,Y,1,1,1)
summary(object)
```
summary.plsda
Summary of an plsda object

Description

Summary of an plsda object

Usage

```r
## S3 method for class 'plsda'
summary(object, ...)
```

Arguments

- **object**
 a plsda object

- **...**
 For consistency

Value

Detail of plsda results

Author(s)

Kai Guo

Examples

```r
X <- matrix(rnorm(500),10,50)
Y <- rep(c("a","b"),each=5)
fit <- plsda(X,Y,2)
summary(fit)
```

vip
Extract the VIP values from the O2PLS-DA object

Description

Extract the VIP values from the O2PLS-DA object

Usage

```r
vip(x)
```

Arguments

- **x**
 the o2plssda object or plsda object
<table>
<thead>
<tr>
<th>vip</th>
<th>19</th>
</tr>
</thead>
</table>

Value
- a data frame
Index

* classes
 O2pls-class, 7

loadings, 2
loadings.o2plslsda, 3
loadings.plsda, 3

o2cv, 4
o2pls, 5
O2pls-class, 7
oplsda, 7

plot.O2pls, 8
plot.o2plslsda, 10
plot.plsda, 11
plslsda, 12
print.O2pls, 14
print.plsda, 14

scores, 15
scores.O2pls, 15
scores.o2plslsda, 16
scores.plslsda, 16
summary.O2pls, 17
summary.plsda, 18

vip, 18