Package ‘nnTensor’

August 17, 2021

Type Package
Title Non-Negative Tensor Decomposition
Version 1.1.4
Date 2021-08-17
Suggests testthat
Depends R (>= 3.4.0)
Imports methods, fields, rTensor, plot3D, tagcloud, ggplot2
Description Some functions for performing non-negative matrix factorization, non-negative CANDE-
COMP/PARAFAC (CP) decomposition, non-negative Tucker decomposition, and generat-
ing toy model data. See Andrzej Cichock et al (2009) <doi:10.1002/9780470747278> and the ref-
erence section of GitHub README.md <https://github.com/rikenbit/nnTensor>, for de-
tails of the methods.
License Artistic-2.0
URL https://github.com/rikenbit/nnTensor
NeedsCompilation no
Author Koki Tsuyuzaki [aut, cre],
Manabu Ishii [aut],
Itoshi Nikaido [aut]
Maintainer Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp>
Repository CRAN
Date/Publication 2021-08-17 05:30:02 UTC

R topics documented:

 nnTensor-package .. 2
 GabrielNMF .. 4
 jNMF ... 5
 NMF ... 7
 NTD ... 10
 NTF ... 12
 plot.NMF ... 14
nnTensor-package

Description

Details

The DESCRIPTION file:

```
Package: nnTensor
Type: Package
Title: Non-Negative Tensor Decomposition
Version: 1.1.4
Date: 2021-08-17
Authors@R: c(person("Koki", "Tsuyuzaki", role = c("aut", "cre"), email = "k.t.the-answer@hotmail.co.jp"), person("Manabu", "Ishii", role = "aut"), person("Itoshi", "Nikaido", role = "aut"))
Suggests: testthat
Depends: R (>= 3.4.0)
Imports: methods, fields, rTensor, plot3D, tagcloud, ggplot2
License: Artistic-2.0
URL: https://github.com/rikenbit/nnTensor
Author: Koki Tsuyuzaki [aut, cre], Manabu Ishii [aut], Itoshi Nikaido [aut]
Maintainer: Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp>
```

Index of help topics:

- GabrielNMF
- jNMF
- NMF
- nnTensor-package
- NTD

GabrielNMF Gabriel-type Bi-Cross-Validation for Non-negative Matrix Factorization
jNMF Joint Non-negative Matrix Factorization Algorithms (jNMF)
NMF Non-negative Matrix Factorization Algorithms (NMF)
nnTensor-package Non-Negative Tensor Decomposition
NTD Non-negative Tucker Decomposition Algorithms (NTD)
nnTensor-package

- **NTF**: Non-negative CP Decomposition Algorithms (NTF)
- **plot.NMF**: Plot function of the result of NMF function
- **plotTensor3D**: Plot function for visualization of tensor data structure
- **recTensor**: Tensor Reconstruction from core tensor (S) and factor matrices (A)
- **siNMF**: Simultaneous Non-negative Matrix Factorization Algorithms (siNMF)
- **toyModel**: Toy model data for using NMF, NTF, and NTD

Author(s)

NA
Maintainer: NA

References

Anh Hyu Phan et. al. (2011). Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification. *Neurocomputing*

Xiaoxu Han. (2007). CANCER MOLECULAR PATTERN DISCOVERY BY SUBSPACE CONSENSUS KERNEL CLASSIFICATION

Chunxuan Shao et al. (2017). Robust classification of single-cell transcriptome data by nonnegative matrix factorization. *Bioinformatics*

Philip M. Kim et al. (2003). Subsystem Identification Through Dimensionality Reduction of Large-Scale Gene Expression Data. *Genome Research*

See Also

`toyModel`, `NMF`, `NTF`, `NTD`, `recTensor`, `plotTensor3D`

Examples

```r
ls("package:nnTensor")
```

GabrielNMF

Gabriel-type Bi-Cross-Validation for Non-negative Matrix Factorization

Description

The input data is assumed to be non-negative matrix. GabrielNMF devides the input file into four matrices (A, B, C, and D) and perform cross validation by the prediction of A from the matrices B, C, and D.

Usage

```r
GabrielNMF(X, J = 3, nx = 5, ny = 5, ...)
```

Arguments

- `X` : The input matrix which has N-rows and M-columns.
- `J` : The number of low-dimension (J < N, M).
- `nx` : The number of hold-out in row-wise direction (2 < nx < N).
- `ny` : The number of hold-out in row-wise direction (2 < ny < M).
- `...` : Other parameters for NMF function.
Value

TestRecError: The reconstruction error calculated by Gabriel-style Bi-Cross Validation.

Author(s)

Koki Tsuyuzaki

References

Examples

```r
if(interactive()){
  # Test data
  matdata <- toyModel(model = "NMF")

  # Bi-Cross-Validation
  BCV <- rep(0, length=5)
  names(BCV) <- 2:6
  for(j in seq(BCV)){
    print(j+1)
    BCV[j] <- mean(GabrielNMF(matdata, J=j+1, nx=2, ny=2)$TestRecError)
  }
  proper.rank <- as.numeric(names(BCV)[which(BCV == min(BCV))])

  # NMF
  out <- NMF(matdata, J=proper.rank)
}
```

Description

The input data objects are assumed to be non-negative matrices. jNMF decompose the matrices to two low-dimensional factor matrices simultaneously.

Usage

```
jNMF(X, M=NULL, pseudocount=1e-10, 
     initW=NULL, initV=NULL, initH=NULL, fixW=FALSE, fixV=FALSE, 
     fixH=FALSE, 
     L1_W=1e-10, L1_V=1e-10, L1_H=1e-10, 
     L2_W=1e-10, L2_V=1e-10, L2_H=1e-10, 
     J = 3, w=NULL, algorithm = c("Frobenius", "KL", "IS", "PLTF"), 
     p=1, thr = 1e-10, num.iter = 100, viz = FALSE, figdir = NULL, verbose = FALSE)
```
Arguments

X A list containing input matrices (X_k, <N*Mk>, k=1..K).
M A list containing the mask matrices (X_k, <N*Mk>, k=1..K). If the input matrix has missing values, specify the element as 0 (otherwise 1).
pseudocount The pseudo count to avoid zero division, when the element is zero (Default: 1e-10).
initW The initial values of factor matrix W, which has N-rows and J-columns (Default: NULL).
initV A list containing the initial values of multiple factor matrices (V_k, <N*J>, k=1..K, Default: NULL).
initH A list containing the initial values of multiple factor matrices (H_k, <Mk*J>, k=1..K, Default: NULL).
fixW Whether the factor matrix W is updated in each iteration step (Default: FALSE).
fixV Whether the factor matrices V_k are updated in each iteration step (Default: FALSE).
fixH Whether the factor matrices H_k are updated in each iteration step (Default: FALSE).
L1_W Parameter for L1 regularization (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0.
L1_V Parameter for L1 regularization (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0.
L1_H Parameter for L1 regularization (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0.
L2_W Parameter for L2 regularization (Default: 1e-10).
L2_V Parameter for L2 regularization (Default: 1e-10).
L2_H Parameter for L2 regularization (Default: 1e-10).
J Number of low-dimension (J < N, Mk).
w Weight vector (Default: NULL)
algorithim Divergence between X and X_bar. "Frobenius", "KL", and "IS" are available (Default: "KL").
p The parameter of Probabilistic Latent Tensor Factorization (p=0: Frobenius, p=1: KL, p=2: IS)
thr When error change rate is lower than thr, the iteration is terminated (Default: 1E-10).
num.iter The number of iteration step (Default: 100).
viz If viz == TRUE, internal reconstructed matrix can be visualized.
figdir the directory for saving the figure, when viz == TRUE.
verbose If verbose == TRUE, Error change rate is generated in console window.
Value

\(W \) : A matrix which has \(N \)-rows and \(J \)-columns (\(J < N \), \(M_k \)).
\(V \) : A list which has multiple elements containing \(N \)-rows and \(J \)-columns (\(J < N \), \(M_k \)).
\(H \) : A list which has multiple elements containing \(M_k \)-rows and \(J \)-columns matrix (\(J < N \), \(M_k \)).

\(\text{RecError} \) : The reconstruction error between data matrix and reconstructed matrix from \(W \) and \(H \).
\(\text{TrainRecError} \) : The reconstruction error calculated by training set (observed values specified by \(M \)).
\(\text{TestRecError} \) : The reconstruction error calculated by test set (missing values specified by \(M \)).
\(\text{RelChange} \) : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

Examples

```r
matdata <- toyModel(model = "siNMF_Hard")
out <- jNMF(matdata, J=2, num.iter=2)
```

Description

The input data is assumed to be non-negative matrix. NMF decompose the matrix to two low-dimensional factor matrices. This function is also used as initialization step of tensor decomposition (see also NTF and NTD).
Usage

NMF(X, M=NULL, pseudocount=1e-10, initU=NULL, initV=NULL, fixU=FALSE, fixV=FALSE,
L1_U=1e-10, L1_V=1e-10, L2_U=1e-10, L2_V=1e-10, J = 3,
rank.method=c("all", "ccc", "dispersion", "rss", "evar", "residuals",
"sparseness.basis", "sparseness.coef", "sparseness2.basis",
"sparseness2.coef", "norm.info.gain.basis", "norm.info.gain.coef",
"singular", "volume", "condition"), runtime=30,
"Alpha", "Beta", "PGD", "HALS", "GCD", "Projected", "NHR", "DTPP",
"Orthogonal", "OrthReg"), Alpha = 1, Beta = 2,
eta = 1e-04, thr1 = 1e-10, thr2 = 1e-10, tol = 1e-04,
num.iter = 100, viz = FALSE, figdir = NULL, verbose = FALSE)

Arguments

X
The input matrix which has N-rows and M-columns.

M
The mask matrix which has N-rows and M-columns. If the input matrix has
missing values, specify the element as 0 (otherwise 1).

pseudocount
The pseudo count to avoid zero division, when the element is zero (Default: 1e-10).

initU
The initial values of factor matrix U, which has N-rows and J-columns (Default: NULL).

initV
The initial values of factor matrix V, which has M-rows and J-columns (Default: NULL).

fixU
Whether the factor matrix U is updated in each iteration step (Default: FALSE).

fixV
Whether the factor matrix V is updated in each iteration step (Default: FALSE).

L1_U
Parameter for L1 regularization (Default: 1e-10). This also works as small positive
constant to prevent division by zero, so should be set as 0.

L1_V
Parameter for L1 regularization (Default: 1e-10). This also works as small positive
constant to prevent division by zero, so should be set as 0.

L2_U
Parameter for L2 regularization (Default: 1e-10).

L2_V
Parameter for L2 regularization (Default: 1e-10).

J
The number of low-dimension (J < N, M). If a numerical vector is specified (e.g.
2:6), the appropriate rank is estimated.

rank.method
The rank estimation method (Default: "all"). Only if the J option is specified as
a numerical vector longer than two, this option will be active.

runtime
The number of trials to estimate rank (Default: 10).

algorithm
and "OrthReg" are available (Default: "Frobenius").

Alpha
The parameter of Alpha-divergence.

Beta
The parameter of Beta-divergence.

eta
The stepsize for PGD algorithm (Default: 0.0001).
When error change rate is lower than \texttt{thr1}, the iteration is terminated (Default: 1E-10).

If the minus-value is generated, replaced as \texttt{thr2} (Default: 1E-10). This value is used within the internal function \texttt{positive()).

The tolerance parameter used in GCD algorithm.

The number of interation step (Default: 100).

If \texttt{viz} == TRUE, internal reconstructed matrix can be visualized.

The directory for saving the figure, when \texttt{viz} == TRUE.

If \texttt{verbose} == TRUE, Error change rate is generated in console window.

\textbf{Value}

\begin{itemize}
 \item \texttt{U} : A matrix which has N-rows and J-columns (J < N, M).
 \item \texttt{V} : A matrix which has M-rows and J-columns (J < N, M).
 \item \texttt{J} : The number of dimension (J < N, M).
 \item \texttt{RecError} : The reconstruction error between data tensor and reconstructed tensor from \texttt{U} and \texttt{V}.
 \item \texttt{TrainRecError} : The reconstruction error calculated by training set (observed values specified by \texttt{M}).
 \item \texttt{TestRecError} : The reconstruction error calculated by test set (missing values specified by \texttt{M}).
 \item \texttt{RelChange} : The relative change of the error.
 \item \texttt{Trial} : All the results of the trials to estimate the rank.
 \item \texttt{Runtime} : The number of the trials to estimate the rank.
 \item \texttt{RankMethod} : The rank estimation method.
\end{itemize}

\textbf{Author(s)}

Koki Tsuyuzaki

\textbf{References}

\textbf{Examples}

\begin{verbatim}
if(interactive()){
 # Test data
 matdata <- toyModel(model = "NMF")

 # Simple usage
 out <- NMF(matdata, J=5)

 # Rank estimation mode (single method)
 out2 <- NMF(matdata, J=2:10, rank.method="ccc", runtime=3)
 plot(out2)

 # Rank estimation mode (all method)
 out3 <- NMF(matdata, J=2:10, rank.method="all", runtime=10)
 plot(out3)
}
\end{verbatim}
Non-negative Tucker Decomposition Algorithms (NTD)

Description

The input data is assumed to be non-negative tensor. NTD decompose the tensor to the dense core tensor (S) and low-dimensional factor matrices (A).

Usage

```r
NTD(X, M=NULL, pseudocount=1e-10, initS=NULL, initA=NULL, fixS=FALSE, 
    fixA=FALSE, L1_A=1e-10, L2_A=1e-10, rank = c(3, 3, 3), modes = 1:3, 
    "HALS", "Alpha", "Beta", "NMF"), init = c("NMF", "ALS", "Random"), 
    nmf.algorithm = c("Frobenius", "KL", "IS", "Pearson", "Hellinger", 
    "Neyman", "Alpha", "Beta", "PGD", "HALS", "GCD", "Projected", "NHR", 
    "DTPP", "Orthogonal", "OrthReg"), 
    Alpha = 1, 
    Beta = 2, thr = 1e-10, num.iter = 100, num.iter2 = 10, viz = FALSE, 
    figdir = NULL, verbose = FALSE)
```

Arguments

- **X**: The input tensor which has I1, I2, and I3 dimensions.
- **M**: The mask tensor which has I1, I2, and I3 dimensions. If the mask tensor has missing values, specify the element as 0 (otherwise 1).
- **pseudocount**: The pseudo count to avoid zero division, when the element is zero (Default: 1e-10).
- **initS**: The initial values of core tensor which has J1, J2, and J3 dimensions (Default: NULL).
- **initA**: A list containing the initial values of multiple factor matrices (A_k, <Ik*Jk>, k=1..K, Default: NULL).
- **fixS**: Whether the core tensor S is updated in each iteration step (Default: FALSE).
- **fixA**: Whether the factor matrices Ak are updated in each iteration step (Default: FALSE).
- **L1_A**: Parameter for L1 regularization (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0.
- **L2_A**: Parameter for L2 regularization (Default: 1e-10).
- **rank**: The number of low-dimension in each mode (J1, J2, J3, J1<I1, J2<I2, J3 < I3) (Default: c(3,3,3)).
- **modes**: The vector of the modes on which to perform the decomposition (Default: 1:3 <call modes>.)
nmf.algorith

NMF algorithms, when the algorithm is "NMF", "Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman", "Alpha", "Beta", "PGD", "HALS", "GCD", "Projected", "NHR", "DTPP", "Orthogonal", are "OrthReg" are available (Default: "Frobenius").

init

The initialization algorithms. "NMF", "ALS", and "Random" are available (Default: "NMF").

Alpha

The parameter of Alpha-divergence.

Beta

The parameter of Beta-divergence.

thr

When error change rate is lower than thr1, the iteration is terminated (Default: 1E-10).

num.iter

The number of iteration step (Default: 100).

num.iter2

The number of NMF iteration step, when the algorithm is "NMF" (Default: 10).

viz

If viz == TRUE, internal reconstructed tensor can be visualized.

figdir

the directory for saving the figure, when viz == TRUE (Default: NULL).

verbose

If verbose == TRUE, Error change rate is generated in console window.

Value

S : Tensor object, which is defined as S4 class of rTensor package. A : A list containing three factor matrices. RecError : The reconstruction error between data tensor and reconstructed tensor from S and A. TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

See Also

plotTensor3D
NTF Non-negative CP Decomposition Algorithms (NTF)

Examples

tensordata <- toyModel(model = "Tucker")
out <- NTD(tensordata, rank=c(2,2,2), algorithm="Frobenius",
 init="Random", num.iter=2)

Description

The input data is assumed to be non-negative tensor. NTF decomposes the tensor to the diagonal core tensor (S) and low-dimensional factor matrices (A).

Usage

NTF(X, M=NULL, pseudocount=1e-10, initA=NULL,
 fixA=FALSE, L1_A=1e-10, L2_A=1e-10, rank = 3,
 "HALS", "Alpha-HALS", "Beta-HALS", "Alpha", "Beta"),
 init = c("NMF", "ALS", "Random"), Alpha = 1,
 Beta = 2, thr = 1e-10, num.iter = 100, viz = FALSE,
 figdir = NULL, verbose = FALSE)

Arguments

X The input tensor which has I1, I2, and I3 dimensions.
M The mask tensor which has I1, I2, and I3 dimensions. If the mask tensor has missing values, specify the element as 0 (otherwise 1).
pseudocount The pseudo count to avoid zero division, when the element is zero (Default: 1e-10).
initA A list containing the initial values of multiple factor matrices (A_k, <Ik*Jk>, k=1..K, Default: NULL).
fixA Whether the factor matrices A_k are updated in each iteration step (Default: FALSE).
L1_A Parameter for L1 regularization (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0.
L2_A Parameter for L2 regularization (Default: 1e-10).
rank The number of low-dimension in each mode (J1=J2=J3, J1<I1, J2<I2, J3 < I3) (Default: 3).
 "HALS", "Alpha-HALS", "Beta-HALS", "Alpha", and "Beta" are available (Default: "Frobenius").
init The initialization algorithms. "NMF", "ALS", and "Random" are available (Default: "NMF").
NTF

Alpha
The parameter of Alpha-divergence.

Beta
The parameter of Beta-divergence.

thr
When error change rate is lower than thr1, the iteration is terminated (Default: 1E-10).

num.iter
The number of iteration step (Default: 100).

viz
If viz == TRUE, internal reconstructed tensor can be visualized.

figdir
The directory for saving the figure, when viz == TRUE (Default: NULL).

verbose
If verbose == TRUE, Error change rate is generated in console windows.

Value

S : Tensor object, which is defined as S4 class of rTensor package.
A : A list containing three factor matrices.
RecError : The reconstruction error between data tensor and reconstructed tensor from S and A.
TrainRecError : The reconstruction error calculated by training set (observed values specified by M).
TestRecError : The reconstruction error calculated by test set (missing values specified by M).
RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

See Also

plotTensor3D

Examples

tensordata <- toyModel(model = "CP")
out <- NTF(tensordata, rank=3, algorithm="Beta-HALS", num.iter=2)
plot.NMF

Plot function of the result of NMF function

Description

Only if J is specified as a vector longer than 1, this function will be active.

Usage

plot(x, ...)

Arguments

x

The result of NMF function (NMF class).

...

Optional parameter for plot.

Value

A ggplot will be generated.

Author(s)

Koki Tsuyuzaki

References

Xiaoxu Han. (2007). CANCER MOLECULAR PATTERN DISCOVERY BY SUBSPACE CONSENSUS KERNEL CLASSIFICATION
Chunxuan Shao. et. al., (2017). Robust classification of single-cell transcriptome data by nonnegative matrix factorization. Bioinformatics
plotTensor3D

Examples

plot.NMF

plotTensor3D
Plot function for visualization of tensor data structure

Description

Combined with recTensor function and the result of NTF or NTD, the reconstructed tensor structure can be visualized.

Usage

plotTensor3D(X = NULL)

Arguments

* X
 Tensor object, which is defined as S4 class of rTensor package.

Author(s)

Koki Tsuyuzaki

Examples

tensordata <- toyModel(model = "CP")
out <- NTF(tensordata, rank=3, algorithm="Beta-HALS", num.iter=2)
tmp <- tempdir()
png(filename=paste0(tmp, "/NTF.png"))
plotTensor3D(recTensor(outS, outA))
dev.off()

recTensor
Tensor Reconstruction from core tensor (S) and factor matrices (A)

Description

Combined with plotTensor3D function and the result of NTF or NTD, the reconstructed tensor structure can be visualized.

Usage

recTensor(S = NULL, A = NULL, idx = 1:3, reverse = FALSE)
siNMF

Simultaneous Non-negative Matrix Factorization Algorithms (siNMF)

Description

The input data objects are assumed to be non-negative matrices. siNMF decompose the matrices to two low-dimensional factor matrices simultaneously.

Usage

```r
siNMF(X, M=NULL, pseudocount=1e-10, initW=NULL, initH=NULL, fixW=FALSE, fixH=FALSE, 
L1_W=1e-10, L1_H=1e-10, L2_W=1e-10, L2_H=1e-10, J = 3, 
w=NULL, algorithm = c("Frobenius", "KL", "IS", "PLTF"), p=1, 
thr = 1e-10, num.iter = 100, 
viz = FALSE, figdir = NULL, verbose = FALSE)
```
Arguments

X
A list containing the input matrices (X_k, <N*Mk>, k=1..K).

M
A list containing the mask matrices (X_k, <N*Mk>, k=1..K). If the input matrix has missing values, specify the element as 0 (otherwise 1).

pseudocount
The pseudo count to avoid zero division, when the element is zero (Default: 1e-10).

initW
The initial values of factor matrix W, which has N-rows and J-columns (Default: NULL).

initH
A list containing the initial values of multiple factor matrices (H_k, <Mk*J>, k=1..K, Default: NULL).

fixW
Whether the factor matrix W is updated in each iteration step (Default: FALSE).

fixH
Whether the factor matrices Hk are updated in each iteration step (Default: FALSE).

L1_W
Parameter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0.

L1_H
Parameter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0.

L2_W
Parameter for L2 regularitation (Default: 1e-10).

L2_H
Parameter for L2 regularitation (Default: 1e-10).

J
Number of low-dimension (J < N, Mk).

w
Weight vector (Default: NULL)

algorithm
Divergence between X and X_bar. "Frobenius", "KL", and "IS" are available (Default: "KL").

p
The parameter of Probabilistic Latent Tensor Factorization (p=0: Frobenius, p=1: KL, p=2: IS)

thr
When error change rate is lower than thr, the iteration is terminated (Default: 1E-10).

num.iter
The number of iteration step (Default: 100).

viz
If viz == TRUE, internal reconstructed matrix can be visualized.

figdir
the directory for saving the figure, when viz == TRUE.

verbose
If verbose == TRUE, Error change rate is generated in console windos.

Value

W : A matrix which has N-rows and J-columns (J < N, Mk). H : A list which has multiple elements containing Mk-rows and J-columns matrix (J < N, Mk). RecError : The reconstruction error between data matrix and reconstructed matrix from W and H. TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki
References

Examples

```r
matdata <- toyModel(model = "siNMF_Easy")
out <- siNMF(matdata, J=2, num.iter=2)
```

toyModel

Toy model data for using NMF, NTF, and NTD

Description

The data is used for confirming the algorithm are properly working.

Usage

```r
toyModel(model = "CP", seeds=123)
```

Arguments

- **model** Single character string is specified. "NMF", "CP", and "Tucker" are available (Default: "CP").
- **seeds** Random number for setting set.seeds in the function (Default: 123).

Value

If model is specified as "NMF", a matrix is generated. Otherwise, a tensor is generated.

Author(s)

Koki Tsuyuzaki

See Also

NMF, NTF, NTD
Examples

matdata <- toyModel(model = "NMF", seeds=123)
tensordata1 <- toyModel(model = "CP", seeds=123)
tensordata2 <- toyModel(model = "Tucker", seeds=123)
Index

* methods
 GabrielNMF, 4
 jNMF, 5
 NMF, 7
 NTD, 10
 NTF, 12
 plot.NMF, 14
 plotTensor3D, 15
 recTensor, 15
 siNMF, 16
 toyModel, 18

* package
 nnTensor-package, 2

GabrielNMF, 4

jNMF, 5

NMF, 4, 7, 18
nnTensor (nnTensor-package), 2
nnTensor-package, 2
NTD, 4, 10, 16, 18
NTF, 4, 12, 16, 18

plot (plot.NMF), 14
plot.NMF, 14
plotTensor3D, 4, 11, 13, 15
recTensor, 4, 15

siNMF, 16

toyModel, 4, 18