Package ‘nmfbin’

September 21, 2023

Title Non-Negative Matrix Factorization for Binary Data
Version 0.2.1
License MIT + file LICENSE
Encoding UTF-8
Language en-GB
RoxygenNote 7.2.3
URL https://michalovadek.github.io/nmfbin/
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Michal Ovadek [aut, cre, cph] (https://orcid.org/0000-0002-2552-2580)
Maintainer Michal Ovadek <michal.ovadek@gmail.com>
Repository CRAN
Date/Publication 2023-09-21 13:40:02 UTC

R topics documented:

nmfbin ... 2

Index 4
nmfbin

Logistic Non-negative Matrix Factorization

Description

This function performs Logistic Non-negative Matrix Factorization (NMF) on a binary matrix.

Usage

```r
nmfbin(
  X,
  k,
  optimizer = "mur",
  init = "nndsvd",
  max_iter = 1000,
  tol = 1e-06,
  learning_rate = 0.001,
  verbose = FALSE,
  loss_fun = "logloss",
  loss_normalize = TRUE,
  epsilon = 1e-10
)
```

Arguments

- `X`: A binary matrix (m x n) to be factorized.
- `k`: The number of factors (components, topics).
- `optimizer`: Type of updating algorithm. `mur` for NMF multiplicative update rules, `gradient` for gradient descent, `sgd` for stochastic gradient descent.
- `init`: Method for initializing the factorization. By default Nonnegative Double Singular Value Decomposition with average densification.
- `max_iter`: Maximum number of iterations for optimization.
- `tol`: Convergence tolerance. The optimization stops when the change in loss is less than this value.
- `learning_rate`: Learning rate (step size) for the gradient descent optimization.
- `verbose`: Print convergence if `TRUE`.
- `loss_fun`: Choice of loss function: `logloss` (negative log-likelihood, also known as binary cross-entropy) or `mse` (mean squared error).
- `loss_normalize`: Normalize loss by matrix dimensions if `TRUE`.
- `epsilon`: Constant to avoid log(0).
Value

A list containing:

- **W**: The basis matrix (m x k). The document-topic matrix in topic modelling.
- **H**: The coefficient matrix (k x n). Contribution of features to factors (topics).
- **c**: The global threshold. A constant.
- **convergence**: Divergence (loss) from X at every iter until tol or max_iter is reached.

Examples

```r
# Generate a binary matrix
m <- 100
n <- 50
X <- matrix(sample(c(0, 1), m * n, replace = TRUE), m, n)

# Set the number of factors
k <- 4

# Factorize the matrix with default settings
result <- nmfbin(X, k)
```
Index

nmfbin, 2