Package ‘nlstac’

October 29, 2020

Type Package
Title An R Package for Fitting Separable Nonlinear Models
Version 0.1.0
Author Mariano Rodriguez-Arias <arias@unex.es>, Juan Antonio Fernandez <jfernandck@alumnos.unex.es>, Javier Cabello <coco@unex.es>, Rafael Benitez <rabesua@uv.es>
Maintainer Rafael Benitez <rabesua@uv.es>
Description Set of functions implementing the algorithm described in Fernandez Torvisco et al. (2018) for fitting separable nonlinear regression curves.
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
License GPL-3
Imports Deriv, doParallel, foreach, stringr
NeedsCompilation no
Repository CRAN
Date/Publication 2020-10-29 15:30:02 UTC

R topics documented:

get_best_params .. 2
get_functions .. 3
get_lhs .. 4
get_parameters ... 4
get_rhs ... 5
is.nlstac .. 5
nls_tac ... 6
predict.nlstac ... 8
print.summary.nlstac 9
summary.nlstac ... 10
get_best_params

Description

Returns the best-fit parameters for a given nonlinear parameter bounds and nonlinear functions.

Usage

```r
get_best_params(
  dat,
  form,
  functions,
  nlparam,
  lp,
  lp_bounds = NULL,
  lhs_var,
  N = 10,
  quiet = TRUE,
  parallel = FALSE
)
```

Arguments

- `dat`: Data frame with the data points to be fitted.
- `form`: A formula given in the form "LHS ~ a1 * F_1(x,p1) + a2 * F_2(x,p2) + ... + a_n * F_n(x,pn)"
- `functions`: A string array with the nonlinear functions as obtained with `get_functions` function.
- `nlparam`: A list with the names of the nonlinear parameters and their lower and upper bounds in the form `c(lower,upper)`.
- `lp`: A string array with the names of the linear parameters contained in the formula as obtained with `get_parameters` function.
- `lp_bounds`: An optional list with the bounding restrictions over the linear parameters.
- `lhs_var`: The name of the left-hand-side of the formula.
- `N`: Size of the partition of the nonlinear parameters. Defaults to 10.
- `quiet`: Logical. If TRUE (default) supresses any warnings regarding the collinearity of the columns of the matrix in the determination of the best linear parameters.
- `parallel`: Logical. If TRUE then multicore parallelization of for loops is done with the parallel package. Defaults to FALSE.

Details

This is an internal function called from `nls_tac` function. It is not intended for direct use.
get_functions

Value
A list containing the strings for the nonlinear functions of the formula.

Description
Returns the nonlinear functions of a formula as character strings.

Usage
get_functions(form, lp)

Arguments
form Either a string in the form 'y ~ ...' or an object of formula class
lp A string array with the names of the linear parameters contained in the formula as obtained with get_parameters function

Details
This is an internal function used by nls_tac. A separable nonlinear formula is of the form
\[y = a_1 f_1(x; p) + a_2 f_2(x; p) + \ldots + a_n f_n(x; p), \]
where \(f_1, \ldots, f_n\) are general nonlinear functions, \(a_1, \ldots, a_n\), are the linear coefficients and \(p\) is the vector of nonlinear parameters. The formula given in the input should be of this form and get_functions will return an array with the string expressions of functions \(f_i\).

Value
An array containing the strings for the nonlinear functions of the formula.

Note
Also formulas of the form
\[y = a_1 / f_1(x; p) + a_2 / f_2(x; p) + \ldots \]
could be given.

Author(s)
Mariano Rodríguez-Arias (<arias@unex.es>). Department of Mathematics
Juan Antonio Fernández Torvisco (<jfernandck@alumnos.unex.es>). Department of Mathematics
University of Extremadura (Spain)
Rafael Benítez (<rafael.suarez@uv.es>). Department of Business Mathematics
University of Valencia (Spain)
get_lhs

Get left hand side of a formula

Description

Returns the dependent variable in a formula given by a string or a formula

Usage

```r
get_lhs(form)
```

Arguments

- **form**: Either a string in the form `'y ~ ...'` or an object of `formula` class

Value

A string with the name of the left hand side variable in the formula

get_parameters

Get parameters from a formula

Description

Returns the linear and nonlinear parameters of a formula

Usage

```r
get_parameters(form, var_names)
```

Arguments

- **form**: Either a string in the form `'y ~ ...'` or an object of `formula` class
- **var_names**: A string array with the column names of the data.frame containing the data to be fitted.

Value

A list containing the names of the linear and the nonlinear parameters of the formula.
get_rhs

Get right hand side of a formula

Description

Returns the dependent variable in a formula given by a string or a formula

Usage

get_rhs(form)

Arguments

form

Either a string in the form 'y ~ ...' or an object of formula class

Value

A string with the name of the left hand side variable in the formula

is.nlstac

Is nlsTAC class check

Description

Checks whether an R object is of tac class or not.

Usage

is.nlstac(x)

Arguments

x

Any R object.

Value

Returns TRUE if its argument is a tac object (that is, has "tac" amongst its classes) and FALSE otherwise.

Returns TRUE if its argument is a tac object (that is, has "tac" amongst its classes) and FALSE otherwise.
Description

Fits a nonlinear function to data.

Usage

\[
\text{nls_tac}(
 \text{formula,}
 \text{data,}
 \text{functions = NULL,}
 \text{nlparam,}
 \text{lp_bounds = NULL,}
 \text{N = 10,}
 \text{tol = 1e-04,}
 \text{parallel = FALSE,}
 \text{maxiter = 50,}
 \text{quiet = TRUE,}
 \text{compute_errors = TRUE}
\)
\]

Arguments

- **formula**: A formula given in the form "LHS = a1 * F_1(x,p1) + a2 * F_2(x,p2) + ... + a_n F_n(x,pn)"
- **data**: Data frame with the data points to be fitted.
- **functions**: A string array with the nonlinear functions. If `get_functions` fails to properly provide the functions they should be explicitly introduced.
- **nlparam**: A list with the names of the nonlinear parameters and their lower and upper bounds in the form `c(lower,upper)`.
- **lp_bounds**: An optional list with the bounding restrictions over the linear parameters.
- **N**: Size of the partition of the nonlinear parameters. Defaults to 10.
- **tol**: Stopping condition. The algorithm stops whenever the maximum difference between two consecutive iterations is less than `tol`. Default value is `1e-4`
- **parallel**: Logical. If TRUE then multicore parallelization of for loops is done with the parallel package. Defaults to FALSE.
- **maxiter**: Integer. The maximum number of iterations. Defaults to 50.
- **quiet**: Logical. Parameter to be passed to `get_best_parameters` function. If TRUE (default) suppresses any warnings regarding the collinearity of the columns of the matrix in the determination of the best linear parameters.
- **compute_errors**: Logical. If TRUE (default value) the function computes the standard error of the estimates.
Value

An object of class nlstac. A list of

- **coefficients**: Best coefficients obtained.
- **stdError**: Standard errors for the obtained coefficients
- **convInfo**: Convergence information: a list with the number of iterations performed (niter) and the tolerance attained at convergence (tol)
- **SSR**: Sum of the squares of the residuals
- **resid**: Residuals
- **data**: Data frame used. Columns of variables not used in the formula fitted will be removed
- **formula**: Formula used
- **df**: Degrees of freedom
- **sigma**: Standard deviation estimate.
- **Rmat**: R matrix in the QR decomposition of the gradient matrix used for the computation of the standard errors of the coefficients

Author(s)

- **Mariano Rodríguez-Arias** (<arias@unex.es>). *Department of Mathematics*
- **Juan Antonio Fernández Torvisco** (<jfernandck@alumnos.unex.es>). *Department of Mathematics*

 University of Extremadura (Spain)
- **Rafael Benítez** (<rafael.suarez@uv.es>). *Department of Business Mathematics*

 University of Valencia (Spain)

References

Examples

```r
### Examples from 'nls' doc ###

DNase1 <- subset(DNase, Run == 1)
## using logistic formula
fm2DNase1 <- nls_tac(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
  data = DNase1,
  nlparam = list(xmid = c(1e-7,10), scal = c(1e-7,3)))
## some generics are applicable
coefficients(fm2DNase1)
summary(fm2DNase1)
## obtaining extra information
```
Synthetic examples

Double exponential

```r
x <- seq(from = 0, to = 20, length.out = 1000)
y <- 3*exp(-0.12*x) + 0.6*exp(-3.05*x) + 5 + 0.1*rnorm(length(x))
df <- data.frame(time = x, Temp = y)
# The nonlinear parameter list (with lower and upper values)
nlparam <- list(b1 = c(0,2), b2 = c(0,8))
fittac <- nls_tac('Temp ~ a1*exp(-b1*time) + a2*exp(-b2*time) + a3',
                   data = df,
                   nlparam = nlparam,
                   N = 5)
summary(fittac)
plot(Temp ~ time, data = df)
lines(x, predict(fittac), col = "red", lwd = 2)
```

Sinusoidal

```r
N <- 100
x <- seq(from = 0, to = 3, length.out = N)
y <- 3*sin(5*x)^2 + 2 + 0.2*rnorm(N)
df <- data.frame(x = x, y = y)
form <- y ~ a1*sin(b1*x)^2 + a2
nlbnds <- list(b1 = c(0.5,10)) # rough bouds for tac
tac_model <- nls_tac(formula = form,
                     data = df,
                     nlparam = nlbnds,
                     N = 10,
                     tol = 1e-5)
yhat <- predict(tac_model)
plot(x,y)
lines(x,yhat, col = "blue")
```

predict.nlstac

Predict a nls tac fit.

Description

Returns the prediction values of a nls tac fit model for a given set of predictors.

Usage

```r
## S3 method for class 'nlstac'
predict(object, newdata = NULL, ...)
```
Arguments

object An object of class "tac" obtained by the nls_tac function.
newdata An optional data frame in which to look for variables with which to predict.
 It should contain at least the columns for the independent variables with the
 same names as the ones used in the formula passed to the nls_tac function. If
 omitted, the fitted values are used.
... Ignored, for compatibility issues.

Value

A vector with the predicted values for the predictor given in the newdata input.

Author(s)

Mariano Rodríguez-Arias (<arias@unex.es>). Department of Mathematics
Juan Antonio Fernández Torvisco (<jfernandck@alumnos.unex.es>). Department of Mathematics
University of Extremadura (Spain)
Rafael Benítez (<rafael.suarez@uv.es>). Department of Business Mathematics
University of Valencia (Spain)

Examples

```r
x <- seq(from = 0, to = 3, length.out = 50)
y <- 3*exp(-5*x) + 2*x + 1 + 0.05*rnorm(50)
df <- data.frame(x = x, y = y)
form <- y ~ a1*exp(-b1*x) + a2*x + a3
nlbnds <- list(b1 = c(0.5,10)) # bouds for tac
fitmodel <- nls_tac(formula = form, data = df, nlparam = nlbnds)
yhat <- predict(fitmodel) # predict values in the fitted abcisae
plot(x,y)
lines(x,yhat, col = "red", lwd = 2)
# Predicting for other points
newdata <- c(0.25,1.5,2.25)
yhat2 <- predict(fitmodel, newdata = data.frame(x = newdata))
points(newdata, yhat2, pch = 19, col = "blue", cex = 1.2)
```

print.summary.nlstac

Prints the summary a summary.nlstac object.

Description

Internal function for printing the summary of a nlstac.
summary.nlstac

Usage

S3 method for class 'summary.nlstac'

print(
 x,
 digits = max(3L, getOption("digits") - 3L),
 signif.stars = getOption("show.signif.stars"),
 ...
)

Arguments

- **x**: An object of class "nlstac" obtained by the fit_tac function.
- **digits**: Number of significant digits to be shown (defaults to 3).
- **signif.stars**: logical. If TRUE, ‘significance stars’ are printed for each coefficient.
- **...**: Ignored, for compatibility issues.

summary.nlstac Summary a nls tac fit.

Description

Gives the fitted coefficients and the convergence information of the fit.

Usage

S3 method for class 'nlstac'

summary(object, ...)

Arguments

- **object**: An object of class "nlstac" obtained by the fit_tac function.
- **...**: Ignored, for compatibility issues.

Value

Returns, via the print.nlstac function the following items: - Formula: The formula fitted to the data - Parameters: The value of the estimated parameters (Estimated) together with their standard errors (Std. Error), and their statistical significance (t value, Pr(>l|l)), signif. stars) - SSR and df. - Convergence information: N. of iterations and the tolerance achieved.
Index

get_best_params, 2
get_functions, 3
get_lhs, 4
get_parameters, 4
get_rhs, 5

is.nlstac, 5

nls_tac, 6

predict.nlstac, 8
print.summary.nlstac, 9

summary.nlstac, 10