Package ‘nlshelper’

April 3, 2017

Title Convenient Functions for Non-Linear Regression

Version 0.2

Description A few utilities for summarizing, testing, and plotting non-linear regression models fit with nls(), nlsList() or nlme().

Depends nlme, broom, dplyr, mgcv, magicaxis

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 5.0.1

NeedsCompilation no

Author Remko Duursma [aut, cre]

Maintainer Remko Duursma <remkoduursma@gmail.com>

Repository CRAN

Date/Publication 2017-04-03 20:19:13 UTC

R topics documented:

abline_range . 2
add_regres_line . 3
anova_nlslist . 4
plot_gam . 4
plot_nls . 6
tidy.nlsList . 7

Index 9
abline_range

Add a line to a plot

Description

As abline, but with from and to arguments. If a fitted linear regression model is used as an argument, it uses the min and max values of the data used to fit the model.

Usage

abline_range(a = NULL, b = NULL, reg = NULL, from = NULL, to = NULL, ...)

Arguments

a Intercept (optional)
b Slope (optional)
reg A fitted linear regression model (output of lm).
from Draw from this X value
to Draw to this x value
... Further parameters passed to segments

See Also

See add_regres_line for adding a regression line with a confidence interval

Examples

Add a line manually
with(mtcars, plot(1/wt, mpg, xlim=c(0,0.8), ylim=c(0,40)))
abline_range(0.58, from=0.2, to=0.6)

Add a line across the range of the data from a regression object
with(mtcars, plot(1/wt, mpg, xlim=c(0,0.8), ylim=c(0,40)))
fit <- lm(mpg ~ I(1/wt), data=mtcars)
abline_range(fit)
Description

Plots a regression line from a simple linear model (of the form \(\text{lm}(y \sim x) \)) to a plot. Also plots the confidence band for the mean, which is calculated using \texttt{predict.lm}.

Usage

\begin{verbatim}
add_regres_line(fit, from = NULL, to = NULL, band = TRUE, ci.col = "#BEBEBEB3", ...)
\end{verbatim}

Arguments

- \textit{fit} Object returned by \texttt{lm}. Only models of the form \(y \sim x \) are supported, without expressions in \texttt{I()} (see Examples), or interactions, or multiple variables.
- \textit{from} Optional (read from fitted model); Draw from this X value.
- \textit{to} Optional (read from fitted model); Draw to this x value.
- \textit{band} Logical. Whether to add a confidence band.
- \textit{ci.col} Colour of the confidence band, if plotted. Defaults to a transparent grey colour.
- \textit{...} Further arguments passed to \texttt{abline_range}

Examples

\begin{verbatim}
Add a line across the range of the data from a regression object
with(mtcars, plot(1/wt, mpg, xlim=c(0.8), ylim=c(0,40)))

add_regres_line does not allow I() expressions; yet.
mtcars$inv_wt <- 1 / mtcars$wt
fit <- lm(mpg ~ inv_wt, data=mtcars)
add_regres_line(fit)

Add the regression line and confidence band behind the data
fit <- lm(height ~ age, data=loblolly)
with(loblolly, plot(age, height, pch=19, panel.first=add_regres_line(fit)))
\end{verbatim}
anova_nlslist Anova for nlsList

Description

Applies an F-test to a non-linear regression model that includes a grouping variable (fit with nlsList), comparing it to a model without a grouping variable. This is a convenient way to test whether there is an overall effect of the grouping variable on the non-linear relationship.

Usage

anova_nlslist(nlsfull, nlsreduc)

Arguments

- nlsfull: The full model, an object returned by nlsList
- nlsreduc: The reduced model, which is identical to the full model except the grouping variable has been removed, and it was fit with nls

Examples

```r
chick <- as.data.frame(ChickWeight)

# Fit a simple model with nls
fit0 <- nls(weight ~ a*Time*b, data=chick, start=list(a=10, b=1.1))

# Fit an nlsList model, with a grouping variable (Diet)
fit1 <- nlsList(weight ~ a*Time*b | Diet, data=chick, start=list(a=10, b=1.1))

# Using an F-test, test whether the fit is significantly better when adding
# a grouping variable
anova_nlslist(fit1, fit0)
```

plot_gam Plot a generalized additive model

Description

This is a simple wrapper to fit and plot a basic type of generalized additive model. The fitted model is of the form gam(Y ~ s(X, k)), which can be fitted by a specified grouping variable (using the g argument). Also supported is an optional random effect, in which case the model fitted is gamm(Y ~ s(X, k=k), random = list(R=-1), data=dfr).
Usage

plot_gam(x, y, g = NULL, data, fittype = c("gam", "lm"), kgam = 4,
R = NULL, log = "", axes = TRUE, fitoneline = FALSE,
points.col = NULL, lines.col = NULL, ci.col = "#D3D3D3",
xlab = NULL, ylab = NULL, band = TRUE, plotit = TRUE, add = FALSE,
npred = 101, lwd = 2, ...)

Arguments

x Variable for X axis (unquoted)
y Variable for Y axis (unquoted)
g Variable for grouping (unquoted); optional
data Dataframe containing x and y
fittype Either 'gam' (default), or 'lm' in which case a simple linear model is fit - useful for comparison.
kgam the k parameter for smooth terms in gam.
R An optional random effect (quoted)
log Whether to add log axes for x or y (but no transformations are done).
axes Logical (default TRUE), whether to add axes to the plot.
fitoneline Whether to fit only one curve to the entire dataset, regardless of whether a grouping variable was defined. Default FALSE.
points.col Colours of the points, can be a vector (one value for each group, if present).
lines.col Colours of the lines, can be a vector (one value for each group, if present).
ci.col Colour of the confidence band, if plotted. Defaults to a transparent grey colour.
xlab X-axis label
ylab Y-axis label
band Logical. If true, plots the confidence band (as a transparent polygon).
plotit Logical (default TRUE); if FALSE, suppresses the plot.
add Logical (default FALSE), if TRUE, adds to an existing plot.
npred Number of x values to use for prediction
lwd Line thickness (see par)
... Further arguments passed to plot or points, for example to change colour of plotting symbols.

Details

In either case, the k parameter necessary for the GAM fit can be set using the kgam argument. See choose.k for details on this setting (it is important you don't just use the default value here!).
Examples

```r
data(Loblolly)
plot_gam(age, height, data=Loblolly)
plot_gam(age, height, Seed, data=Loblolly, band=FALSE, lines.col="black")
plot_gam(age, height, Seed, data=Loblolly, band=FALSE, lines.col="black", fitype="lm")

data(ChickWeight)
plot_gam(Time, weight, Diet, R="Chick", data=ChickWeight, lines.col=rainbow(4))
```

plot_nls

Plot a non-linear or non-parametric regression model

Description

Convenient function for adding curves to an existing plot, or to plot the data with the fitted curve. For non-linear regression plotting (plot_nls), works for simple non-linear regression models fit with `nls`, and grouped non-linear regression (with `nlsList`), in which case one fitted curve for each group is drawn on the same plot. For local regression models fitted with `loess`, use the `plot_loess` function which additionally adds a confidence interval around the fitted curve.

Usage

```r
plot_nls(object, col = NULL, band = TRUE, plotdata = TRUE,
  lines.col = palette(), points.col = palette(), ci.col = "#BEBEBEBE3",
  lwd = 1, lty = 1, add = FALSE, xlab = NULL, ylab = NULL,
  coverage = 0.95, ...)
```

Arguments

- **object**: The object returned by `nls`, `nlsList` or `loess`.
- **col**: Colour to be used for the data symbols and the fitted line, unless `lines.col` and `points.col` are provided.
- **band**: For `plot_loess`, whether to add a confidence band. Not yet implemented for `plot_nls`.
- **plotdata**: Logical. Whether to add the data points to the plot.
- **lines.col**: Colour(s) for the fitted lines. When plotting a `nlsList` object, can be a vector that represents colours for each group.
- **points.col**: Colour(s) for the data symbols. When plotting a `nlsList` object, can be a vector that represents colours for each group.
- **ci.col**: Colour of the confidence band, if plotted. Defaults to a transparent grey colour.
- **lwd**: Thickness of the line (see `par`).
- **lty**: Line type (see `par`).
tidy.nlsList

tidy.nlsList

Description

Adds a method to *tidy* (broom package), so that we can use it for models fitted with *nlsList*.

Usage

```
## S3 method for class 'nlsList'
tidy(x, conf.int = FALSE, conf.level = 0.95, quick = FALSE, ...)
```
Arguments

- **x**: An object returned by `nlsList`
- **conf.int**: Whether to calculate confidence intervals
- **conf.level**: The level of the confidence interval
- **quick**: If TRUE, only returns the coefficients.
- **...**: Further arguments passed to `tidy`

Examples

```r
chick <- as.data.frame(ChickWeight)

# Fit an nlsList model, with a grouping variable (Diet)
fit1 <- nlsList(weight ~ a*Time*b | Diet, data=chick, start=list(a=10, b=1.1))

# Collect coefficients
tidy(fit1)

# ... and confidence intervals
tidy(fit1, conf.int=TRUE)
```
Index

abline_range, 2, 3
add_regres_line, 2, 3
anova_nlslist, 4
choose.k, 5
lm, 2
nls, 4, 6
nlsList, 4, 6–8
par, 5, 6
plot, 7
plot_gam, 4
plot_loess (plot_nls), 6
plot_nls, 6
predict.lm, 3
segments, 2
tidy, 7, 8
tidy.nlsList, 7