Package ‘netdep’

July 10, 2018

Type Package
Title Testing for Network Dependence
Version 0.1.0
Maintainer Youjin Lee <ylee160@jhu.edu>
Imports stats, igraph, igraphdata, MASS, mvrtn
Suggests knitr, testthat
Description When network dependence is present, that is when social relations can engender dependence in the outcome of interest, treating such observations as independent results in invalid, anti-conservative statistical inference. We propose a test of independence among observations sampled from a single network <arXiv:1710.03296>.
License GPL (>= 3) | file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
VignetteBuilder knitr
NeedsCompilation no
Author Youjin Lee [aut, cre], Elizabeth Ogburn [aut]
Repository CRAN
Date/Publication 2018-07-10 16:00:07 UTC

R topics documented:

latent.netdep .. 2
make.permute.moran 3
make.permute.Phi .. 4
MoranI ... 5
peer.process ... 5
phi.moment .. 6
phi.stat .. 7
snowball.sampling ... 8
latent.netdep

Generate latent variable dependent network.

Description

Generate latent variable dependent network.

Usage

latent.netdep(n.node, rho = 0.3, dep.factor = 1, dep.range = c(-5, 5))

Arguments

n.node The number of nodes in network.
rho correlation coefficient between continuous observations and latent factor .
dep.factor multiplicative factor applied to.
 - If dep.factor < 0 Then \(A_{ij} \) Bern \(\text{logistic}(\text{dep.factor} \times |X_i - X_j|) \)
 - If dep.factor \(\geq 0 \) Then \(A_{ij} \) Bern \(\text{logistic}(\text{dep.factor}/ |X_i - X_j|) \)
dep.range a vector specifying lower bound and upper bound for \(\text{dep.factor} \times |X_i - X_j| \). Defaults to \(c(-5, 5) \).

Value

an undirected and binary igraph object G having both \(Y \) and \(U \) as nodal attributes.

\(V(G)\$outcome \) one-dimensional continuous observations.
\(V(G)\$latent \) one-dimensional continuous latent variable dependent on \(V(G)\$Y \) through rho.

Examples

library(netdep)
library(MASS)
library(mvtnorm)
library(igraph)
G = latent.netdep(n.node = 100, rho = 0.5, dep.factor = 1)
make.permute.moran

Permutation Test of Moran’s I

Description

Permutation Test of Moran’s I

Usage

```r
make.permute.moran(A, Y, np = 100)
```

Arguments

- `A` ([n x n] adjacency matrix or general relational weight matrix of which A_{ij} indicates relationship from i to j.)
- `Y` a vector of n continuous or binary, one-dimensional observations.
- `np` the number of permutation samples.

Value

- `moran` a standardized Moran’s I statistic.
- `pval.z` p-value of a standardized Moran’s I statistic assuming asymptotic normality.
- `pval.permute` p-value of a standardized Moran’s I statistic using np independent permutation samples.

Author(s)

Youjin Lee

Examples

```r
library(netdep)
library(igraph)
library(igraphdata)
data(karate)
A = as.matrix(get.adjacency(karate, attr= "weight", sparse = TRUE)) # weighted adjacency matrix
Y = V(karate)$Faction
result = make.permute.moran(A, Y, np = 100)
```
Description

This function prints out the network dependence test results for categorical observations.

Usage

make.permute.Phi(A, Y, np)

Arguments

A \[n \times n\] adjacency matrix or general relational weight matrix of which \(A_{i,j}\) indicates relationship from \(i\) to \(j\).

Y a vector of \(n\) continuous or binary, one-dimensional observations.

np the number of permutation samples.

Value

phi a standardized \(\Phi\) statistic.

pval.z p-value of a standardized \(\Phi\) statistic assuming asymptotic normality.

pval.permute p-value of a standardized \(\Phi\) statistic using \(np\) independent permutation samples.

Author(s)

Youjin Lee

Examples

library(netdep)
library(igraph)
library(igraphdata)
data(UKfaculty)
A = as.matrix(get.adjacency(UKfaculty, attr = "weight", sparse = TRUE)) # weighted adjacency matrix
Y = V(UKfaculty)$Group
result = make.permute.Phi(A, Y, np = 50)
Moran's I statistic

Description
This function calculates Moran’s I statistic given adjacency matrix and outcome. The statistic can be used for testing network dependence.

Usage
`MoranI(A, Y)`

Arguments
- `A` \([n \times n]\) adjacency matrix or general relational weight matrix of which \(A_{ij}\) indicates relationship from \(i\) to \(j\).
- `Y` a vector of \(n\) continuous or binary, one-dimensional observations.

Value
`moran` a standardized Moran’s I statistic.

Author(s)
Youjin Lee

Generate direct transmission process

Description
Generate time-evolving outcomes where outcomes at time \(t\) of \(i\) depends on outcomes of \(i\)’s adjacent peers at time \(t - 1\).

Usage
`peer.process(A, max.time = 3, mprob = 0.5, epsilon = 0.3)`
Arguments

A \[[n \times n] \text{ adjacency matrix.} \]
max.time \ the maximum discrete time that direct transmission occurs.
mprob \ the maximum susceptibility probability, i.e. maximum probability that \(i \)'s outcome at time \(t \) depends on \(i \)'s peers at time \(t - 1 \).
epsilon \ standard deviation of error process. This adds uncertainties in outcomes.

For \(t=1,2, \ldots \text{max.time} \):

\[
p \sim \text{Unif}(0, \mprob)
\]

\[
Y_t^t = Y_t^t = (1 - p)Y_t^{t-1} + p \sum j A_{ij} Y_{j}^{t-1} / \sum A_{ij} + N(0, \epsilon)
\]

Value

a list of time-evolving outcomes from time\(0 \) to time(max.time).

Examples

library(netdep)
library(igraph)
library(stats)
G = latent.netdep(n.node = 100, rho = 0.2)
A = as.matrix(get.adjacency(G))
outcomes = peer.process(A, max.time = 3, mprob = 0.3, epsilon = 0.5)

phi.moment

Calculate \(\Phi \) statistic

Description

This is an auxiliary function to calculate non-standardized \(\Phi \) statistic and its first and second moment.

Usage

phi.moment(A, Y)

Arguments

A \[[n \times n] \text{ adjacency matrix or general relational weight matrix of which } A_{i,j} \text{ indicates relationship from } i \text{ to } j. \]
Y \ a vector of \(n \) nominal or binary, one-dimensional observations.
Value

rawphi Non-standardized Φ statistic.
m1.rawphi the first (permutation) moment of rawphi.
m2.rawphi the second (permutation) moment of rawphi.

Author(s)

Youjin Lee

phi.stat

Standardized Φ statistic

Description

A test statistic of Φ is to test network dependence in categorical observations.

Usage

phi.stat(A, Y)

Arguments

A \[n \times n\] adjacency matrix or general relational weight matrix of which \(A_{ij}\) indicates relationship from \(i\) to \(j\).
Y a vector of \(n\) nominal or binary, one-dimensional observations.

Value

phi a standardized Φ statistic.

Author(s)

Youjin Lee
snowball.sampling

Description

Sampling from one graph to its induced subgraph depending on network structure.

Usage

snowball.sampling(G, samn)

Arguments

- **G**: an igraph object.
- **samn**: is a size of snowball sample that will be samples from G.

Value

- **subG**: an induced subgraph of G sampled using snowball sampling.
- **ind**: a set of index of samples.

Examples

```r
library(netdep)
library(igraph)
G = latent.netdep(n.node = 200, rho = 0.2, dep.factor = -3, dep.range = c(-10, 0))
subG = snowball.sampling(G, 100)
```
Index

latent.netdep, 2
make.permute.moran, 3
make.permute.Phi, 4
MoranI, 5
peer.process, 5
phi.moment, 6
phi.stat, 7
snowball.sampling, 8