Package ‘nestedcv’

March 13, 2024

Title Nested Cross-Validation with 'glmnet' and 'caret'
Version 0.7.8
Maintainer Myles Lewis <myles.lewis@qmul.ac.uk>

BugReports https://github.com/myles-lewis/nestedcv/issues
URL https://github.com/myles-lewis/nestedcv

Description
Implements nested k*l-fold cross-validation for lasso and elastic-net regularised linear models via the 'glmnet' package and other machine learning models via the 'caret' package. Cross-validation of 'glmnet' alpha mixing parameter and embedded fast filter functions for feature selection are provided. Described as double cross-validation by Stone (1977) <doi:10.1111/j.2517-6161.1977.tb01603.x>. Also implemented is a method using outer CV to measure unbiased model performance metrics when fitting Bayesian linear and logistic regression shrinkage models using the horseshoe prior over parameters to encourage a sparse model as described by Piironen & Vehtari (2017) <doi:10.1214/17-EJS1337SI>.

Language en-gb
License MIT + file LICENSE
Encoding UTF-8
Imports caret, data.table, doParallel, foreach, ggplot2, glmnet, matrixStats, matrixTests, methods, parallel, pROC, Rfast, RhpcBLASctl, rlang, ROCR

RoxygenNote 7.3.1
Suggests Boruta, CORElearn, fastshap (>= 0.1.0), gbm, ggbeeswarm, ggpurbr, hsstan, mda, mlbench, pbapply, pls, randomForest, ranger, RcppEigen, rmarkdown, knitr, SuperLearner

VignetteBuilder knitr

NeedsCompilation no

Author Myles Lewis [aut, cre] (https://orcid.org/0000-0001-9365-5345),
Athina Spiliopoulou [aut] (https://orcid.org/0000-0002-5929-6585),
Cankut Cubuk [ctb] (https://orcid.org/0000-0003-4646-0849),
Katriona Goldmann [ctb] (https://orcid.org/0000-0002-9073-6323)

Repository CRAN
Date/Publication 2024-03-13 21:20:02 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>barplot_var_stability</td>
<td>3</td>
</tr>
<tr>
<td>boot_filter</td>
<td>4</td>
</tr>
<tr>
<td>boot_ttest</td>
<td>5</td>
</tr>
<tr>
<td>boruta_filter</td>
<td>6</td>
</tr>
<tr>
<td>boxplot_expression</td>
<td>7</td>
</tr>
<tr>
<td>class_balance</td>
<td>7</td>
</tr>
<tr>
<td>coef.cva.glmnet</td>
<td>8</td>
</tr>
<tr>
<td>coef.nestcv.glmnet</td>
<td>8</td>
</tr>
<tr>
<td>collinear</td>
<td>9</td>
</tr>
<tr>
<td>combo_filter</td>
<td>9</td>
</tr>
<tr>
<td>correls2</td>
<td>10</td>
</tr>
<tr>
<td>cva.glmnet</td>
<td>11</td>
</tr>
<tr>
<td>cv_coef</td>
<td>12</td>
</tr>
<tr>
<td>cv_varImp</td>
<td>12</td>
</tr>
<tr>
<td>glmnet_coefs</td>
<td>13</td>
</tr>
<tr>
<td>glmnet_filter</td>
<td>13</td>
</tr>
<tr>
<td>innercv_preds</td>
<td>15</td>
</tr>
<tr>
<td>innercv_roc</td>
<td>15</td>
</tr>
<tr>
<td>innercv_summary</td>
<td>17</td>
</tr>
<tr>
<td>lines.prc</td>
<td>18</td>
</tr>
<tr>
<td>lm_filter</td>
<td>18</td>
</tr>
<tr>
<td>metrics</td>
<td>20</td>
</tr>
<tr>
<td>model.hsstan</td>
<td>21</td>
</tr>
<tr>
<td>nestcv.glmnet</td>
<td>23</td>
</tr>
<tr>
<td>nestcv.SuperLearner</td>
<td>27</td>
</tr>
<tr>
<td>nestcv.train</td>
<td>30</td>
</tr>
<tr>
<td>one_hot</td>
<td>35</td>
</tr>
<tr>
<td>outercv</td>
<td>36</td>
</tr>
<tr>
<td>plot.cva.glmnet</td>
<td>40</td>
</tr>
<tr>
<td>plot.prc</td>
<td>42</td>
</tr>
<tr>
<td>plot_alphas</td>
<td>43</td>
</tr>
<tr>
<td>plot_caret</td>
<td>43</td>
</tr>
<tr>
<td>plot_lambdas</td>
<td>44</td>
</tr>
<tr>
<td>plot_shap_bar</td>
<td>45</td>
</tr>
<tr>
<td>plot_shap_beeswarm</td>
<td>45</td>
</tr>
<tr>
<td>plot_varImp</td>
<td>46</td>
</tr>
<tr>
<td>plot_var_stability</td>
<td>47</td>
</tr>
<tr>
<td>pls_filter</td>
<td>48</td>
</tr>
<tr>
<td>prc</td>
<td>49</td>
</tr>
<tr>
<td>predict.cva.glmnet</td>
<td>51</td>
</tr>
<tr>
<td>predict.hsstan</td>
<td>51</td>
</tr>
<tr>
<td>predict.nestcv.glmnet</td>
<td>52</td>
</tr>
<tr>
<td>predSummary</td>
<td>53</td>
</tr>
<tr>
<td>pred_nestcv_glmnet</td>
<td>54</td>
</tr>
<tr>
<td>randomsample</td>
<td>55</td>
</tr>
<tr>
<td>ranger_filter</td>
<td>57</td>
</tr>
</tbody>
</table>
barplot_var_stability

Description

Produces a ggplot2 plot of stability (as SEM) of variable importance across models trained and tested across outer CV folds. Optionally overlays directionality for binary response or regression outcomes.

Usage

```r
barplot_var_stability(
  x,
  final = TRUE,
  top = NULL,
  direction = 0,
  dir_labels = NULL,
  scheme = c("royalblue", "red"),
  breaks = NULL,
  percent = TRUE,
  level = 1,
  sort = TRUE
)
```

Arguments

- `x` a `nestcv.glmnet` or `nestcv.train` fitted object
- `final` Logical whether to restrict variables to only those which ended up in the final fitted model or to include all variables selected across all outer folds.
boot_filter

top Limits number of variables plotted. Set to NULL to plot all variables.
direction Integer controlling plotting of directionality for binary or regression models. 0 means no directionality is shown, 1 means directionality is overlaid as a colour, 2 means directionality is reflected in the sign of variable importance. Not available for multiclass caret models.
dir_labels Character vector for controlling the legend when direction = 1
scheme Vector of 2 colours for directionality when direction = 1
breaks Vector of continuous breaks for legend colour/size
percent Logical for nestcv.glmnet objects only, whether to scale coefficients to percentage of the largest coefficient in each model. If set to FALSE, model coefficients are shown and direction is ignored.
level For multinomial nestcv.glmnet models only, either an integer specifying which level of outcome is being examined, or the level can be specified as a character value.
sort Logical whether to sort by mean variable importance. Passed to var_stability().

Value
A ggplot2 plot

See Also
var_stability()

boot_filter

Bootstrap for filter functions

Description
Randomly samples predictors and averages the ranking to give an ensemble measure of predictor variable importance.

Usage
boot_filter(y, x, filterFUN, B = 50, nfilter = NULL, type = "index", ...)

Arguments
y Response vector
x Matrix of predictors
filterFUN Filter function, e.g. ttest_filter().
B Number of times to bootstrap
nfilter Number of predictors to return
type Type of vector returned. Default "index" returns indices, "full" returns full output.
... Optional arguments passed to the function specified by filterFUN
boot_ttest

Value

Integer vector of indices of filtered parameters (type = "index") or if type = "full" a matrix of rankings from each bootstrap is returned.

See Also

boot_ttest()

boot_ttest
Bootstrap univariate filters

Description

Randomly samples predictors and averages the ranking from filtering functions including `ttest_filter()`, `wilcoxon_filter()`, `anova_filter()`, `correl_filter()` and `lm_filter()` to give an ensemble measure of best predictors by repeated random sampling subjected to a statistical test.

Usage

```r
boot_ttest(y, x, B = 50, ...)
boot_wilcoxon(y, x, B = 50, ...)
boot_anova(y, x, B = 50, ...)
boot_correl(y, x, B = 50, ...)
boot_lm(y, x, B = 50, ...)
```

Arguments

- `y`
 Response vector

- `x`
 Matrix of predictors

- `B`
 Number of times to bootstrap

- `...`
 Optional arguments passed to the filter function

Value

Integer vector of indices of filtered parameters (type = "index"), or if type = "full", a matrix of rankings from each bootstrap is returned.

See Also

`ttest_filter()`, `wilcoxon_filter()`, `anova_filter()`, `correl_filter()`, `lm_filter()` and `boot_filter()`
Description

Filter using Boruta algorithm.

Usage

boruta_filter(
 y,
 x,
 select = c("Confirmed", "Tentative"),
 type = c("index", "names", "full"),
 ...
)

Arguments

y Response vector
x Matrix of predictors
select Which type of features to retain. Options include "Confirmed" and/or "Tentative".
type Type of vector returned. Default "index" returns indices, "names" returns predictor names, "full" returns a named vector of variable importance.
... Other arguments passed to Boruta::Boruta()

Details

Boruta works differently from other filters in that it does not rank variables by variable importance, but tries to determine relevant features and divides features into Rejected, Tentative or Confirmed.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type = "names") of filtered parameters. If type is "full" full output from Boruta is returned.
Boxplot expression levels of model predictors

Description

Boxplots to show range of model predictors to identify exceptional predictors with excessively low or high values.

Usage

boxplot_expression(x, scheme = NULL, palette = "Dark 3", ...)

Arguments

- x: a "nestedcv" object
- scheme: colour scheme
- palette: palette name (one of hcl.pals()) which is passed to hcl.colors
- ...: other arguments passed to boxplot.

Value

No return value

Author(s)

Myles Lewis

See Also

nestcv.glmnet

class_balance

Check class balance in training folds

Description

Check class balance in training folds

Usage

class_balance(object)

Default S3 method:
class_balance(object)

S3 method for class 'nestcv.train'
class_balance(object)
Arguments

object Object of class nestedcv.glmnet, nestcv.train or outercv

Value

Invisibly a table of the response classes in the training folds

```r
## S3 method for class 'cva.glmnet'
coef(object, ...) # S3 method for class 'nestcv.glmnet'
coef(object, s = object$final_param$"lambda", ...) # S3 method for class 'nestcv.glmnet'
```

Arguments

object Fitted cva.glmnet object.

s Value of penalty parameter lambda. Default is the mean of lambda values selected across each outer fold.

Value

Sparse matrix containing coefficients from a cv.glmnet model

Description

Extracts model coefficients from a fitted cva.glmnet() object.

Usage

S3 method for class 'cva.glmnet'
coef(object, ...)

Arguments

object Fitted cva.glmnet object.

... Other arguments passed to coef.glmnet() e.g. s the value of lambda at which coefficients are required.

Value

Sparse matrix containing coefficients from a cv.glmnet model

Description

Extracts coefficients from the final fit of a "nestcv.glmnet" object.

Usage

S3 method for class 'nestcv.glmnet'
coef(object, s = object$final_param$"lambda", ...) # S3 method for class 'nestcv.glmnet'
```

Arguments

object Object of class "nestcv.glmnet"

s Value of penalty parameter lambda. Default is the mean of lambda values selected across each outer fold.

... Other arguments passed to coef.glmnet
Value

Vector or list of coefficients ordered with the intercept first, followed by highest absolute value to lowest.

collinear  
Filter to reduce collinearity in predictors

Description

This function identifies predictors with r^2 above a given cut-off and produces an index of predictors to be removed. The function takes a matrix or data.frame of predictors, and the columns need to be ordered in terms of importance - first column of any pair that are correlated is retained and subsequent columns which correlate above the cut-off are flagged for removal.

Usage

collinear(x, rsq_cutoff = 0.9, rsq_method = "pearson", verbose = FALSE)

Arguments

x  A matrix or data.frame of values. The order of columns is used to determine which columns to retain, so the columns in x should be sorted with the most important columns first.
rsq_cutoff  Value of cut-off for r-squared
rsq_method  character string indicating which correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman". See cor().
verbose  Boolean whether to print details

Value

Integer vector of the indices of columns in x to remove due to collinearity

combo_filter  
Combo filter

Description

Filter combining univariate (t-test or anova) filtering and reliefF filtering in equal measure.

Usage

combo_filter(y, x, nfilter, type = c("index", "names", "full"), ...)
Arguments

y
Response vector

x
Matrix or dataframe of predictors

nfilter
Number of predictors to return, using 1/2 from ttest_filter or anova_filter and 1/2 from relieff_filter. Since unique is applied, the final number returned may be less than nfilter.

type
Type of vector returned. Default "index" returns indices, "names" returns predictor names, "full" returns full output.

... Optional arguments passed via relieff_filter to CORElearn::attrEval

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type = "names") of filtered parameters. If type is "full" a list containing full outputs from either ttest_filter or anova_filter and relieff_filter is returned.

Value

Matrix with columns containing the correlation statistic, either Pearson r or Spearman rho, and p-values for each column of x correlated against vector y

description

Fast Pearson/Spearman correlation where y is vector, x is matrix, adapted from stats::cor.test.

Usage

corrls2(y, x, method = "pearson", use = "complete.obs")

Details

For speed, p-values for Spearman’s test are computed by asymptotic t approximation, equivalent to cor.test with exact = FALSE.

Value

Matrix with columns containing the correlation statistic, either Pearson r or Spearman rho, and p-values for each column of x correlated against vector y

cva.glmnet

Cross-validation of alpha for glmnet

description

Performs k-fold cross-validation for glmnet, including alpha mixing parameter.

Usage

cva.glmnet(x, y, nfolds = 10, alphaSet = seq(0.1, 1, 0.1), foldid = NULL, ...)

Arguments

x Matrix of predictors
y Response vector
nfolds Number of folds (default 10)
alphaSet Sequence of alpha values to cross-validate
foldid Optional vector of values between 1 and nfolds identifying what fold each observation is in.
... Other arguments passed to cv.glmnet

Value

Object of S3 class "cva.glmnet", which is a list of the cv.glmnet objects for each value of alpha and alphaSet.

fits List of fitted cv.glmnet objects
alphaSet Sequence of alpha values used
alpha_cvm The mean cross-validated error - a vector of length length(alphaSet).
best_alpha Value of alpha giving lowest alpha_cvm.
which_alpha Index of alphaSet with lowest alpha_cvm

Author(s)

Myles Lewis

See Also

cv.glmnet, glmnet
cv_coef

Coefficients from outer CV glmnet models

Description
Extracts coefficients from outer CV glmnet models from a nestcv.glmnet fitted object.

Usage
cv_coef(x, level = 1)

Arguments

x
a nestcv.glmnet fitted object

level
For multinomial models only, either an integer specifying which level of outcome is being examined, or the level can be specified as a character value

Value
matrix of coefficients from outer CV glmnet models plus the final glmnet model. Coefficients for variables which are not present in a particular outer CV fold model are set to 0.

See Also
cv_varImp()

cv_varImp

Extract variable importance from outer CV caret models

Description
Extracts variable importance or coefficients from outer CV glmnet models from a nestcv.train fitted object.

Usage
cv_varImp(x)

Arguments

x
a nestcv.train fitted object

Details
Note that caret::varImp() may require the model package to be fully loaded in order to function. During the fitting process caret often only loads the package by namespace.
Value

matrix of variable importance from outer CV fold caret models as well as the final model. Variable importance for variables which are not present in a particular outer CV fold model is set to 0.

See Also

cv_coef()

glmnet_coefs

Description

Convenience function for retrieving coefficients from a cv.glmnet model at a specified lambda. Sparsity is removed and non-intercept coefficients are ranked by absolute value.

Usage

glmnet_coefs(fit, s, ...)

Arguments

fit A cv.glmnet fitted model object.
s Value of lambda. See coef.glmnet and predict.cv.glmnet
... Other arguments passed to coef.glmnet

Value

Vector or list of coefficients ordered with the intercept first, followed by highest absolute value to lowest.

glmnet_filter

Description

Filter using sparsity of elastic net regression using glmnet to calculate variable importance.
Usage

glmnet_filter(
  y,
  x,
  family = NULL,
  force_vars = NULL,
  nfilter = NULL,
  method = c("mean", "nonzero"),
  type = c("index", "names", "full"),
  ...
)

Arguments

y  Response vector
x  Matrix of predictors
family Either a character string representing one of the built-in families, or else a glm() family object. See glmnet(). If not specified, the function tries to set this automatically to one of either "gaussian", "binomial" or "multinomial".
force_vars Vector of column names x which have no shrinkage and are always included in the model.
nfilter Number of predictors to return
method String indicating method of determining variable importance. "mean" (the default) uses the mean absolute coefficients across the range of lambdas; "nonzero" counts the number of times variables are retained in the model across all values of lambda.
type Type of vector returned. Default "index" returns indices, "names" returns predictor names, "full" returns full output.
... Other arguments passed to glmnet

Details

The glmnet elastic net mixing parameter alpha can be varied to include a larger number of predictors. Default alpha = 1 is pure LASSO, resulting in greatest sparsity, while alpha = 0 is pure ridge regression, retaining all predictors in the regression model. Note, the family argument is commonly needed, see glmnet.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type = "names") of filtered parameters. If type is "full" a named vector of variable importance is returned.

See Also

glmnet
**innercv_preds**  

*Inner CV predictions*

**Description**

Obtain predictions on held-out test inner CV folds

**Usage**

```r
innercv_preds(x)
```

## S3 method for class 'nestcv.glmnet'

```r
innercv_preds(x)
```

## S3 method for class 'nestcv.train'

```r
innercv_preds(x)
```

**Arguments**

- **x**
  
a `nestcv.glmnet` or `nestcv.train` fitted object

**Value**

Dataframe with columns `testy` and `predy`, and for binomial and multinomial models additional columns containing probabilities or log likelihood values.

---

**innercv_roc**  

*Build ROC curve from left-out folds from inner CV*

**Description**

Build ROC (receiver operating characteristic) curve from left-out folds from inner CV. Object can be plotted using `plot()` or passed to functions `auc()` etc.

**Usage**

```r
innercv_roc(x, direction = "<", ...)
```

**Arguments**

- **x**
  
a `nestcv.glmnet` or `nestcv.train` fitted object

- **direction**
  
  Set ROC directionality `pROC::roc`

- **...**
  
  Other arguments passed to `pROC::roc`
Value

"roc" object, see pROC::roc

Examples

```r
Example binary classification problem with P >> n
x <- matrix(rnorm(150 * 2e+04), 150, 2e+04) # predictors
y <- factor(rbinom(150, 1, 0.5)) # binary response

Partition data into 2/3 training set, 1/3 test set
trainSet <- caret::createDataPartition(y, p = 0.66, list = FALSE)

t-test filter using whole dataset
filt <- ttest_filter(y, x, nfilter = 100)
filx <- x[, filt]

Train glmnet on training set only using filtered predictor matrix
library(glmnet)
fit <- cv.glmnet(filx[trainSet,], y[trainSet], family = "binomial")
plot(fit)

Predict response on test partition
predy <- predict(fit, newx = filx[-trainSet,], s = "lambda.min", type = "class")
predy <- as.vector(predy)
predyp <- predict(fit, newx = filx[-trainSet,], s = "lambda.min", type = "response")
predyp <- as.vector(predyp)
output <- data.frame(testy = y[-trainSet], predy = predy, predyp = predyp)

Results on test partition
shows bias since univariate filtering was applied to whole dataset
predSummary(output)

Nested CV
fit2 <- nestcv.glmnet(y, x, family = "binomial", alphaSet = 1,
 filterFUN = ttest_filter,
 filter_options = list(nfilter = 100),
 n_outer_folds = 3)
summary(fit2)

ROC plots
library(pROC)
testroc <- roc(output$testy, output$predyp, direction = "<")
inroc <- innercv_roc(fit2)
plot(fit2$roc)
lines(inroc, col = 'blue')
lines(testroc, col = 'red')
legend('bottomright', legend = c("Nested CV", "Left-out inner CV folds",
 "Test partition, non-nested filtering"),
 col = c("black", "blue", "red"), lty = 1, lwd = 2, bty = "n")
```
innercv_summary

Summarise performance on inner CV test folds

Description

Calculates performance metrics on inner CV held-out test folds: confusion matrix, accuracy and balanced accuracy for classification; ROC AUC for binary classification; RMSE, R^2 and mean absolute error (MAE) for regression.

Usage

innercv_summary(x)

Arguments

x a nestcv.glmnet or nestcv.train object

Value

Returns performance metrics from outer training folds, see predSummary.

See Also

predSummary

Examples

data(iris)
x <- iris[, 1:4]y <- iris[, 5]fit <- nestcv.glmnet(y, x,
family = "multinomial",
alpha = 1,
n_outer_folds = 3)
summary(fit)
innercv_summary(fit)
lines.prc  
Add precision-recall curve to a plot

Description

Adds a precision-recall curve to a base graphics plot. It accepts an S3 object of class 'prc', see prc().

Usage

## S3 method for class 'prc'
lines(x, ...)

Arguments

x  
An object of class 'prc'

...  
Optional graphical arguments passed to lines()

Value

No return value

See Also

prc() plot.prc()

lm_filter  
Linear model filter

Description

Linear models are fitted on each predictor, with inclusion of variable names listed in force_vars in the model. Predictors are ranked by Akaike information criteria (AIC) value, or can be filtered by the p-value on the estimate of the coefficient for that predictor in its model.

Usage

lm_filter(
  y,
  x,
  force_vars = NULL,
  nfilter = NULL,
  p_cutoff = 0.05,
  rsq_cutoff = NULL,
  rsq_method = "pearson",
)
lm_filter

type = c("index", "names", "full"),
keep_factors = TRUE,
method = 0L,
mc.cores = 1
)

Arguments

y    Numeric or integer response vector
x    Matrix of predictors. If x is a data.frame it will be turned into a matrix. But note that factors will be reduced to numeric values, but a full design matrix is not generated, so if factors have 3 or more levels, it is recommended to convert x into a design (model) matrix first.
force_vars    Vector of column names x which are incorporated into the linear model.
nfilter    Number of predictors to return. If NULL all predictors with p-values < p_cutoff are returned.
p_cutoff    p-value cut-off. P-values are calculated by t-statistic on the estimated coefficient for the predictor being tested.
rsq_cutoff    r^2 cutoff for removing predictors due to collinearity. Default NULL means no collinearity filtering. Predictors are ranked based on AIC from a linear model. If 2 or more predictors are collinear, the first ranked predictor by AIC is retained, while the other collinear predictors are removed. See collinear().
rsq_method    character string indicating which correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman". See collinear().
type    Type of vector returned. Default "index" returns indices, "names" returns predictor names, "full" returns a matrix of p values.
keep_factors    Logical affecting factors with 3 or more levels. Dataframes are coerced to a matrix using data.matrix. Binary factors are converted to numeric values 0/1 and analysed as such. If keep_factors is TRUE (the default), factors with 3 or more levels are not filtered and are retained. If keep_factors is FALSE, they are removed.
method    Integer determining linear model method. See RcppEigen::fastLmPure()
mc.cores    Number of cores for parallelisation using parallel::mclapply().

Details

This filter is based on the model y ~ xvar + force_vars where y is the response vector, xvar are variables in columns taken sequentially from x and force_vars are optional covariates extracted from x. It uses RcppEigen::fastLmPure() with method = 0 as default since it is rank-revealing. method = 3 is significantly faster but can give errors in estimation of p-value with variables of zero variance. The algorithm attempts to detect these and set their stats to NA. NA in x are not tolerated.

Parallelisation is available via mclapply(). This is provided mainly for the use case of the filter being used as standalone. Nesting parallelisation inside of parallelised nestcv.glmnet() or nestcv.train() loops is not recommended.
## Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type = "names") of filtered parameters in order of linear model AIC. Any variables in force_vars which are incorporated into all models are listed first. If type = "full" a matrix of AIC value, sigma (residual standard error, see summary.lm), coefficient, t-statistic and p-value for each tested predictor is returned.

### Description

Returns model metrics from nestedcv models. Extended metrics including

### Usage

```r
metrics(object, extra = FALSE, innerCV = FALSE, positive = 2)
```

### Arguments

- **object**: A 'nestcv.glmnet', 'nestcv.train', 'nestcv.SuperLearner' or 'outercv' object.
- **extra**: Logical whether additional performance metrics are gathered for binary classification models: area under precision recall curve (PR.AUC), Cohen's kappa, F1 score, Matthew's correlation coefficient (MCC).
- **innerCV**: Whether to calculate metrics for inner CV folds. Only available for 'nestcv.glmnet' and 'nestcv.train' objects.
- **positive**: For binary classification, either an integer 1 or 2 for the level of response factor considered to be 'positive' or 'relevant', or a character value for that factor. This affects the F1 score. See `caret::confusionMatrix()`.

### Details

Area under precision recall curve is estimated by trapezoidal estimation using MLmetrics::PRAUC().

### Value

A named numeric vector of performance metrics.
**model.hsstan**  
hsstan model for cross-validation

**Description**

This function applies a cross-validation (CV) procedure for training Bayesian models with hierarchical shrinkage priors using the hsstan package. The function allows the option of embedded filtering of predictors for feature selection within the CV loop. Within each training fold, an optional filtering of predictors is performed, followed by fitting of an hsstan model. Predictions on the testing folds are brought back together and error estimation/accuracy determined. The default is 10-fold CV. The function is implemented within the nestedcv package. The hsstan models do not require tuning of meta-parameters and therefore only a single CV procedure is needed to evaluate performance. This is implemented using the outer CV procedure in the nestedcv package. Supports binary outcome (logistic regression) or continuous outcome. Multinomial models are currently not supported.

**Usage**

model.hsstan(y, x, unpenalized = NULL, ...)

**Arguments**

- `y`: Response vector. For classification this should be a factor.
- `x`: Matrix of predictors
- `unpenalized`: Vector of column names `x` which are always retained into the model (i.e. not penalized). Default `NULL` means the parameters for all predictors will be drawn from a hierarchical prior distribution, i.e. will be penalized. Note: if filtering of predictors is specified, then the vector of unpenalized predictors should also be passed to the filter function using the `filter_options$force_vars` argument. Filters currently implementing this option are the `partial_ttest_filter` for binary outcomes and the `lm_filter` for continuous outcomes.
- `...`: Optional arguments passed to hsstan

**Details**

Caution should be used when setting the number of cores available for parallelisation. The default setting in hsstan is to use 4 cores to parallelise the Markov chains of the Bayesian inference procedure. This can be switched off either by adding argument `cores = 1` (passed on to rstan) or setting `options(mc.cores = 1)`.

Argument `cv.cores` in `outercv()` controls parallelisation over the outer CV folds. On unix/mac setting `cv.cores` to >1 will induce nested parallelisation which will generate an error, unless parallelisation of the chains is disabled using `cores = 1` or setting `options(mc.cores = 1)`.

Nested parallelisation is feasible if `cv.cores` is >1 and `multicore_fork = FALSE` is set as this uses cluster based parallelisation instead. Beware that large numbers of processes will be spawned. If we are performing 10-fold cross-validation with 4 chains and set `cv.cores = 10` then 40 processes will be invoked simultaneously.
Value
An object of class hsstan

Author(s)
Athina Spiliopoulou

See Also
outercv() hsstan::hsstan()

Examples

# Cross-validation is used to apply univariate filtering of predictors.
# only one CV split is needed (outercv) as the Bayesian model does not
# require learning of meta-parameters.

# control number of cores used for parallelisation over chains
oldopt <- options(mc.cores = 2)

# load iris dataset and simulate a continuous outcome
data(iris)
dt <- iris[, 1:4]
colnames(dt) <- c("marker1", "marker2", "marker3", "marker4")
dt <- as.data.frame(scale(dt))
dt$outcome.cont <- -3 + 0.5 * dt$marker1 + 2 * dt$marker2 + rnorm(nrow(dt), 0, 2)

library(hsstan)
# unpenalised covariates: always retain in the prediction model
uvars <- "marker1"
# penalised covariates: coefficients are drawn from hierarchical shrinkage
# prior
pvars <- c("marker2", "marker3", "marker4") # penalised covariates
# run cross-validation with univariate filter and hsstan
# dummy sampling for fast execution of example
# recommend 4 chains, warmup 1000, iter 2000 in practice
res.cv.hsstan <- outercv(y = dt$outcome.cont, x = dt[, c(uvars, pvars)],
                        model = "model.hsstan",
                        filterFUN = lm_filter,
                        filter_options = list(force_vars = uvars,
                                              nfilter = 2,
                                              p_cutoff = NULL,
                                              rsq_cutoff = 0.9),
                        n_outer_folds = 3,
                        chains = 2,
                        cv.cores = 1,
                        unpenalized = uvars, warmup = 100, iter = 200)

# view prediction performance based on testing folds
res.cv.hsstan$summary
# view coefficients for the final model
res.cv.hsstan$final_fit
# view covariates selected by the univariate filter
res.cv.hsstan$final_vars

# use hsstan package to examine the Bayesian model
sampler.stats(res.cv.hsstan$final_fit)
print(projsel(res.cv.hsstan$final_fit), digits = 4)  # adding marker2
options(oldopt)  # reset configuration

# Here adding `marker2` improves the model fit: substantial decrease of
# KL-divergence from the full model to the submodel. Adding `marker3` does
# not improve the model fit: no decrease of KL-divergence from the full model
# to the submodel.

---

**nestcv.glmnet**

**Nested cross-validation with glmnet**

**Description**

This function enables nested cross-validation (CV) with glmnet including tuning of elastic net alpha parameter. The function also allows the option of embedded filtering of predictors for feature selection nested within the outer loop of CV. Predictions on the outer test folds are brought back together and error estimation/ accuracy determined. The default is 10x10 nested CV.

**Usage**

```
nestcv.glmnet(
 y,
 x,
 family = c("gaussian", "binomial", "poisson", "multinomial", "cox", "mgaussian"),
 filterFUN = NULL,
 filter_options = NULL,
 balance = NULL,
 balance_options = NULL,
 modifyX = NULL,
 modifyX_useY = FALSE,
 modifyX_options = NULL,
 outer_method = c("cv", "LOOCV"),
 n_outer_folds = 10,
 n_inner_folds = 10,
 outer_folds = NULL,
 pass_outer_folds = FALSE,
 alphaSet = seq(0.1, 1, 0.1),
 min_1se = 0,
 keep = TRUE,
 outer_train_predict = FALSE,
 weights = NULL,
 penalty.factor = rep(1, ncol(x)),
```

cv.cores = 1,
finalCV = TRUE,
na.option = "omit",
verbose = FALSE,
...)

Arguments

y Response vector or matrix. Matrix is only used for family = 'mgaussian' or 'cox'.
x Matrix of predictors. Dataframes will be coerced to a matrix as is necessary for glmnet.
family Either a character string representing one of the built-in families, or else a glm() family object. Passed to cv.glmnet and glmnet
filterFUN Filter function, e.g. test_filter or relieff_filter. Any function can be provided and is passed y and x. Must return a character vector with names of filtered predictors.
filter_options List of additional arguments passed to the filter function specified by filterFUN.
balance Specifies method for dealing with imbalanced class data. Current options are "randomsample" or "smote". See randomsample() and smote()
balance_options List of additional arguments passed to the balancing function
modifyX Character string specifying the name of a function to modify x. This can be an imputation function for replacing missing values, or a more complex function which alters or even adds columns to x. The required return value of this function depends on the modifyX_useY setting.
modifyX_useY Logical value whether the x modifying function makes use of response training data from y. If FALSE then the modifyX function simply needs to return a modified x object, which will be coerced to a matrix as required by glmnet. If TRUE then the modifyX function must return a model type object on which predict() can be called, so that train and test partitions of x can be modified independently.
modifyX_options List of additional arguments passed to the x modifying function
outer_method String of either "cv" or "LOOCV" specifying whether to do k-fold CV or leave one out CV (LOOCV) for the outer folds
n_outer_folds Number of outer CV folds
n_inner_folds Number of inner CV folds
outer_folds Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds is ignored.
pass_outer_folds Logical indicating whether the same outer folds are used for fitting of the final model when final CV is applied. Note this can only be applied when n_outer_folds and n_inner_folds are the same and no balancing is applied.
alphaSet Vector of alphas to be tuned
**nestcv.glmnet**

- **min_1se**: Value from 0 to 1 specifying choice of optimal lambda from 0=lambda.min to 1=lambda.1se
- **keep**: Logical indicating whether inner CV predictions are retained for calculating left-out inner CV fold accuracy etc. See argument keep in `cv.glmnet`.
- **outer_train_predict**: Logical whether to save predictions on outer training folds to calculate performance on outer training folds.
- **weights**: Weights applied to each sample. Note weights and balance cannot be used at the same time. Weights are only applied in glmnet and not in filters.
- **penalty.factor**: Separate penalty factors can be applied to each coefficient. Can be 0 for some variables, which implies no shrinkage, and that variable is always included in the model. Default is 1 for all variables. See glmnet. Note this works separately from filtering. For some nestedcv filter functions you might need to set `force_vars` to avoid filtering out features.
- **cv.cores**: Number of cores for parallel processing of the outer loops. NOTE: this uses parallel::mclapply on unix/mac and parallel::parLapply on windows.
- **finalCV**: Logical whether to perform one last round of CV on the whole dataset to determine the final model parameters. If set to FALSE, the median of hyperparameters from outer CV folds are used for the final model. Performance metrics are independent of this last step. If set to NA, final model fitting is skipped altogether, which gives a useful speed boost if performance metrics are all that is needed.
- **na.option**: Character value specifying how NAs are dealt with. "omit" (the default) is equivalent to na.action = na.omit. "omitcol" removes cases if there are NA in 'y', but columns (predictors) containing NA are removed from 'x' to preserve cases. Any other value means that NA are ignored (a message is given).
- **verbose**: Logical whether to print messages and show progress
- **...**: Optional arguments passed to `cv.glmnet`

**Details**

glmnet does not tolerate missing values, so na.option = "omit" is the default.

**Value**

An object with S3 class "nestcv.glmnet"

- **call**: the matched call
- **output**: Predictions on the left-out outer folds
- **outer_result**: List object of results from each outer fold containing predictions on left-out outer folds, best lambda, best alpha, fitted glmnet coefficients, list object of inner fitted cv.glmnet and number of filtered predictors at each fold.
- **outer_method**: the outer_method argument
- **n_inner_folds**: number of inner folds
- **outer_folds**: List of indices of outer test folds
- **dimx**: dimensions of x
xsub  subset of \( x \) containing all predictors used in both outer CV folds and the final model

\( y \)  original response vector

\( y_{\text{final}} \)  final response vector (post-balancing)

final_param  Final mean best lambda and alpha from each fold

final_fit  Final fitted glmnet model

final_coef  Final model coefficients and mean expression. Variables with coefficients shrunk to 0 are removed.

final_vars  Column names of filtered predictors entering final model. This is useful for subsetting new data for predictions.

roc  ROC AUC for binary classification where available.

summary  Overall performance summary. Accuracy and balanced accuracy for classification. ROC AUC for binary classification. RMSE for regression.

**Author(s)**

Myles Lewis

**Examples**

```r
Example binary classification problem with \(P \gg n \)
x <- matrix(rnorm(150 * 2e+04), 150, 2e+04) # predictors
y <- factor(rbinom(150, 1, 0.5)) # binary response

Partition data into 2/3 training set, 1/3 test set
trainSet <- caret::createDataPartition(y, p = 0.66, list = FALSE)

t-test filter using whole dataset
filt <- ttest_filter(y, x, nfilter = 100)
filx <- x[, filt]

Train glmnet on training set only using filtered predictor matrix
library(glmnet)
fit <- cv.glmnet(filx[trainSet,], y[trainSet], family = "binomial")
plot(fit)

Predict response on test partition
predy <- predict(fit, newx = filx[-trainSet,], s = "lambda.min", type = "class")
predy <- as.vector(predy)
predyp <- predict(fit, newx = filx[-trainSet,], s = "lambda.min", type = "response")
predyp <- as.vector(predyp)
output <- data.frame(testy = y[-trainSet], predy = predy, predyp = predyp)

Results on test partition
shows bias since univariate filtering was applied to whole dataset
predSummary(output)

Nested CV
n_outer_folds reduced to speed up example

```r
fit2 <- nestcv.glmnet(y, x, family = "binomial", alphaSet = 1,
  n_outer_folds = 3,
  filterFUN = ttest_filter,
  filter_options = list(nfilter = 100),
  cv.cores = 2)

summary(fit2)
plot_lambdas(fit2, showLegend = "bottomright")
```

ROC plots

```r
library(pROC)
testroc <- roc(output$testy, output$predyp, direction = "<")
inroc <- innercv_roc(fit2)
plot(fit2$roc)
lines(inroc, col = "blue")
lines(testroc, col = "red")
legend("bottomright", legend = c("Nested CV", "Left-out inner CV folds",
                                 "Test partition, non-nested filtering"),
       col = c("black", "blue", "red"), lty = 1, lwd = 2, bty = "n")
```

nestcv.SuperLearner

Outer cross-validation of SuperLearner model

Description

Provides a single loop of outer cross-validation to evaluate performance of ensemble models from SuperLearner package.

Usage

```r
nestcv.SuperLearner(  
y,  
x,  
filterFUN = NULL,  
filter_options = NULL,  
weights = NULL,  
balance = NULL,  
balance_options = NULL,  
modifyX = NULL,  
modifyX_useY = FALSE,  
modifyX_options = NULL,  
outer_method = c("cv", "LOOCV"),  
n_outer_folds = 10,  
outer_folds = NULL,  
final = TRUE,  
na.option = "pass",  
verbose = TRUE,  
)```

Arguments

y  Response vector
x  Dataframe or matrix of predictors. Matrix will be coerced to dataframe as this is the default for SuperLearner.
filterFUN  Filter function, e.g. test_filter or relieff_filter. Any function can be provided and is passed y and x. Must return a character vector with names of filtered predictors. Not available if outercv is called with a formula.
filter_options  List of additional arguments passed to the filter function specified by filterFUN.
weights  Weights applied to each sample for models which can use weights. Note weights and balance cannot be used at the same time. Weights are not applied in filters.
balance  Specifies method for dealing with imbalanced class data. Current options are "randomsample" or "smote". Not available if outercv is called with a formula. See randomsample() and smote()
balance_options  List of additional arguments passed to the balancing function
modifyX  Character string specifying the name of a function to modify x. This can be an imputation function for replacing missing values, or a more complex function which alters or even adds columns to x. The required return value of this function depends on the modifyX_useY setting.
modifyX_useY  Logical value whether the x modifying function makes use of response training data from y. If FALSE then the modifyX function simply needs to return a modified x object, which will be coerced to a dataframe as required by SuperLearner. If TRUE then the modifyX function must return a model type object on which predict() can be called, so that train and test partitions of x can be modified independently.
modifyX_options  List of additional arguments passed to the x modifying function
outer_method  String of either "cv" or "LOOCV" specifying whether to do k-fold CV or leave one out CV (LOOCV) for the outer folds
n_outer_folds  Number of outer CV folds
outer_folds  Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds is ignored.
cv.cores  Number of cores for parallel processing of the outer loops. NOTE: this uses parallel::mclapply on unix/mac and parallel::parLapply on windows.
final  Logical whether to fit final model.
na.option  Character value specifying how NAs are dealt with. "omit" is equivalent to na.action = na.omit. "omitcol" removes cases if there are NA in 'y', but columns (predictors) containing NA are removed from 'x' to preserve cases. Any other value means that NA are ignored (a message is given).
verbose  Logical whether to print messages and show progress
...  Additional arguments passed to SuperLearner::SuperLearner()
Details

This performs an outer CV on SuperLearner package ensemble models to measure performance, allowing balancing of imbalanced datasets as well as filtering of predictors. SuperLearner prefers dataframes as inputs for the predictors. If \( x \) is a matrix it will be coerced to a dataframe and variable names adjusted by `make.names()`.

Parallelisation of the outer CV folds is available on linux/mac, but not available on windows. On windows, `snowSuperLearner()` is called instead, so that parallelisation is performed across each call to SuperLearner.

Value

An object with S3 class "nestcv.SuperLearner"

- **call**: the matched call
- **output**: Predictions on the left-out outer folds
- **outer_result**: List object of results from each outer fold containing predictions on left-out outer folds, model result and number of filtered predictors at each fold.
- **dimx**: vector of number of observations and number of predictors
- **y**: original response vector
- **yfinal**: final response vector (post-balancing)
- **outer_folds**: List of indices of outer test folds
- **final_fit**: Final fitted model on whole data
- **final_vars**: Column names of filtered predictors entering final model
- **summary_vars**: Summary statistics of filtered predictors
- **roc**: ROC AUC for binary classification where available.
- **summary**: Overall performance summary. Accuracy and balanced accuracy for classification. ROC AUC for binary classification. RMSE for regression.

Note

Care should be taken with some SuperLearner models e.g. `SL.gbm` as some models have multicore enabled by default, which can lead to huge numbers of processes being spawned.

See Also

`SuperLearner::SuperLearner()`
Description
This function applies nested cross-validation (CV) to training of models using the caret package. The function also allows the option of embedded filtering of predictors for feature selection nested within the outer loop of CV. Predictions on the outer test folds are brought back together and error estimation/accuracy determined. The default is 10x10 nested CV.

Usage

```r
nestcv.train(
y, x,
method = "rf",
filterFUN = NULL,
filter_options = NULL,
weights = NULL,
balance = NULL,
balance_options = NULL,
modifyX = NULL,
modifyX_useY = FALSE,
modifyX_options = NULL,
outer_method = c("cv", "LOOCV"),
n_outer_folds = 10,
n_inner_folds = 10,
outer_folds = NULL,
inner_folds = NULL,
pass_outer_folds = FALSE,
cv.cores = 1,
 multicore_fork = (Sys.info()["sysname"] != "Windows"),
metric = ifelse(is.factor(y), "logLoss", "RMSE"),
trControl = NULL,
tuneGrid = NULL,
savePredictions = "final",
outer_train_predict = FALSE,
finalCV = TRUE,
na.option = "pass",
verbose = TRUE,
...)
```

Arguments

- **y**: Response vector. For classification this should be a factor.
- **x**: Matrix or dataframe of predictors.
method

String specifying which model to use. See `caret::train()` for details.

filterFUN

Filter function, e.g. `ttest_filter()` or `relieff_filter()`. Any function can be provided and is passed y and x. Must return a character vector with names of filtered predictors.

filter_options

List of additional arguments passed to the filter function specified by filterFUN.

weights

Weights applied to each sample for models which can use weights. Note weights and balance cannot be used at the same time. Weights are not applied in filters.

balance

Specifies method for dealing with imbalanced class data. Current options are "randomsample" or "smote". See `randomsample()` and `smote()`

balance_options

List of additional arguments passed to the balancing function

modifyX

Character string specifying the name of a function to modify x. This can be an imputation function for replacing missing values, or a more complex function which alters or even adds columns to x. The required return value of this function depends on the modifyX_useY setting.

modifyX_useY

Logical value whether the x modifying function makes use of response training data from y. If FALSE then the modifyX function simply needs to return a modified x object. If TRUE then the modifyX function must return a model type object on which predict() can be called, so that train and test partitions of x can be modified independently.

modifyX_options

List of additional arguments passed to the x modifying function

outer_method

String of either "cv" or "LOOCV" specifying whether to do k-fold CV or leave one out CV (LOOCV) for the outer folds

n_outer_folds

Number of outer CV folds

n_inner_folds

Sets number of inner CV folds. Note if trControl or inner_folds is specified then these supersede n_inner_folds.

outer_folds

Optional list containing indices of test folds for outer CV. If supplied, n Outer_folds is ignored.

inner_folds

Optional list of test fold indices for inner CV. This must be structured as a list of the outer folds each containing a list of inner folds. Can only be supplied if balancing is not applied. If supplied, n_inner_folds is ignored.

pass_outer_folds

Logical indicating whether the same outer folds are used for fitting of the final model when final CV is applied. Note this can only be applied when n_outer_folds and the number of inner CV folds specified in n_inner_folds or trControl are the same and that no balancing is applied.

cv.cores

Number of cores for parallel processing of the outer loops.

multicore_fork

Logical whether to use forked multicore parallel processing. Forked multicore processing uses `parallel::mclapply`. It is only available on unix/mac as windows does not allow forking. It is set to FALSE by default in windows and TRUE in unix/mac. Non-forked parallel processing is executed using `parallel::parLapply` or `pbapply::pblapply` if verbose is TRUE.
metric A string that specifies what summary metric will be used to select the optimal model. By default, "logLoss" is used for classification and "RMSE" is used for regression. Note this differs from the default setting in caret which uses "Accuracy" for classification. See details.

trControl A list of values generated by the caret function caret::trainControl(). This defines how inner CV training through caret is performed. Default for the inner loop is 10-fold CV. Setting this argument overrules n_inner_folds. See http://topepo.github.io/caret/using-your-own-model-in-train.html.

tuneGrid Data frame of tuning values, see caret::train().

savePredictions Indicates whether hold-out predictions for each inner CV fold should be saved for ROC curves, accuracy etc see caret::trainControl. Default is "final" to capture predictions for inner CV ROC.

outer_train_predict Logical whether to save predictions on outer training folds to calculate performance on outer training folds.

finalCV Logical whether to perform one last round of CV on the whole dataset to determine the final model parameters. If set to FALSE, the median of the best hyperparameters from outer CV folds for continuous/ordinal hyperparameters, or highest voted for categorical hyperparameters, are used to fit the final model. Performance metrics are independent of this last step. If set to NA, final model fitting is skipped altogether, which gives a useful speed boost if performance metrics are all that is needed.

na.option Character value specifying how NAs are dealt with. "omit" is equivalent to na.action = na.omit. "omitcol" removes cases if there are NA in 'y', but columns (predictors) containing NA are removed from 'x' to preserve cases. Any other value means that NA are ignored (a message is given).

verbose Logical whether to print messages and show progress

... Arguments passed to caret::train()

Details

When finalCV = TRUE, the final fit on the whole data using is performed first. This helps flag errors generated by caret such as missing packages. Parallelisation of the final fit when finalCV = TRUE is performed in caret using registerDoParallel. caret itself uses foreach.

Parallelisation is performed on the outer CV folds using parallel::mclapply by default on unix/mac and parallel::parLapply on windows. mclapply uses forking which is faster. But some models use multi-threading which may cause issues in some circumstances with forked multicores processing. Setting multicore.fork to FALSE is slower but can alleviate some caret errors.

If the outer folds are run using parallelisation, then parallelisation in caret must be off, otherwise an error will be generated. Alternatively if you wish to use parallelisation in caret, then parallelisation in nestcv.train can be fully disabled by leaving cv.cores = 1.

xgboost models fitted via caret using method = "xgbTree" or "xgbLinear" invoke openMP multithreading on linux/windows by default which causes nestcv.train to fail when cv.cores >1 (nested parallelisation). Mac OS is unaffected. In order to prevent this, nestcv.train() sets openMP threads to 1 if cv.cores >1.
For classification, metric defaults to using 'logLoss' with the \texttt{trControl} arguments \texttt{classProbs = TRUE, summaryFunction = mnLogLoss}, rather than 'Accuracy' which is the default classification metric in \texttt{caret}. See \texttt{caret::trainControl()}. LogLoss is arguably more consistent than Accuracy for tuning parameters in datasets with small sample size.

Models can be fitted with a single set of fixed parameters, in which case \texttt{trControl} defaults to \texttt{trainControl(method = "none")} which disables inner CV as it is unnecessary. See \url{https://topepo.github.io/caret/model-training-and-tuning.html#fitting-models-without-parameter-tuning}

### Value

An object with S3 class "nestcv.train"

- \texttt{call} the matched call
- \texttt{output} Predictions on the left-out outer folds
- \texttt{outer_result} List object of results from each outer fold containing predictions on left-out outer folds, caret result and number of filtered predictors at each fold.
- \texttt{outer_folds} List of indices of outer test folds
- \texttt{dimx} dimensions of \texttt{x}
- \texttt{xsub} subset of \texttt{x} containing all predictors used in both outer CV folds and the final model
- \texttt{y} original response vector
- \texttt{yfinal} final response vector (post-balancing)
- \texttt{final_fit} Final fitted caret model using best tune parameters
- \texttt{final_vars} Column names of filtered predictors entering final model
- \texttt{summary_vars} Summary statistics of filtered predictors
- \texttt{roc} ROC AUC for binary classification where available.
- \texttt{trControl} \texttt{caret::trainControl} object used for inner CV
- \texttt{bestTunes} best tuned parameters from each outer fold
- \texttt{finalTune} final parameters used for final model
- \texttt{summary} Overall performance summary. Accuracy and balanced accuracy for classification. ROC AUC for binary classification. RMSE for regression.

### Author(s)

Myles Lewis

### Examples

```r
sigmoid function
sigmoid <- function(x) {1 / (1 + exp(-x))}

load iris dataset and simulate a binary outcome
data(iris)
x <- iris[, 1:4]
```
colnames(x) <- c("marker1", "marker2", "marker3", "marker4")
x <- as.data.frame(apply(x, 2, scale))
y2 <- sigmoid(0.5 * x$marker1 + 2 * x$marker2) > runif(nrow(x))
y2 <- factor(y2, labels = c("class1", "class2"))

## Example using random forest with caret
cvrf <- nestcv.train(y2, x, method = "rf",
                      n_outer_folds = 3,
                      cv.cores = 2)
summary(cvrf)

## Example of glmnet tuned using caret
## set up small tuning grid for quick execution
## length.out of 20-100 is usually recommended for lambda
## and more alpha values ranging from 0-1
tg <- expand.grid(lambda = exp(seq(log(2e-3), log(1e0), length.out = 5)),
                  alpha = 1)
ncv <- nestcv.train(y = y2, x = x,
                    method = "glmnet",
                    n_outer_folds = 3,
                    tuneGrid = tg, cv.cores = 2)
summary(ncv)

## plot tuning for outer fold #1
plot(ncv$outer_result[[1]]$fit, xTrans = log)

## plot final ROC curve
plot(ncv$roc)

## plot ROC for left-out inner folds
inroc <- innercv_roc(ncv)
plot(inroc)

## example to show use of custom fold indices for 5 x 5-fold nested CV
library(caret)
y <- iris$Species
out_folds <- createFolds(y, k = 5)
in_folds <- lapply(out_folds, function(i) {
    ytrain <- y[-i]
    createFolds(ytrain, k = 5)
})
res <- nestcv.train(y, x, method="rf", cv.cores = 2,
                    pass_outer_folds = TRUE,
                    inner_folds = in_folds,
                    outer_folds = out_folds)
summary(res)
res$outer_folds
res$final_fit$control$indexOut # same as outer_folds
one_hot  One-hot encode

Description

Fast one-hot encoding of all factor and character columns in a dataframe to convert it into a numeric matrix by creating dummy (binary) columns.

Usage

one_hot(x, all_levels = FALSE, rename_binary = TRUE, sep = ".")

Arguments

x A dataframe, matrix or tibble. Matrices are returned untouched.
all_levels Logical, whether to create dummy variables for all levels of each factor. Default is FALSE to avoid issues with regression models.
rename_binary Logical, whether to rename binary factors by appending the 2nd level of the factor to aid interpretation of encoded factor levels and to allow consistency with naming.
sep Character for separating factor variable names and levels for encoded columns.

Details

Binary factor columns and logical columns are converted to integers (0 or 1). Multi-level unordered factors are converted to multiple columns of 0/1 (dummy variables): if all_levels is set to FALSE (the default), then the first level is assumed to be a reference level and additional columns are created for each additional level; if all_levels is set to TRUE one column is used for each level. Unused levels are dropped. Character columns are first converted to factors and then encoded. Ordered factors are replaced by their internal codes. Numeric or integer columns are left untouched.

Having dummy variables for all levels of a factor can cause problems with multicollinearity in regression (the dummy variable trap), so all_levels is set to FALSE by default which is necessary for regression models such as glmnet (equivalent to full rank parameterisation). However, setting all_levels to TRUE can aid with interpretability (e.g. with SHAP values), and in some cases filtering might result in some dummy variables being excluded. Note this function is designed to quickly generate dummy variables for more general machine learning purposes. To create a proper design matrix object for regression models, use model.matrix().

Value

A numeric matrix with the same number of rows as the input data. Dummy variable columns replace the input factor or character columns. Numeric columns are left intact.

See Also

caret::dummyVars(), model.matrix()
Examples

    data(iris)
    x <- iris
    x2 <- one_hot(x)
    head(x2)  # 3 columns for Species

    x2 <- one_hot(x, all_levels = FALSE)
    head(x2)  # 2 columns for Species

outercv  
Outer cross-validation of selected models

Description

This is a convenience function designed to use a single loop of cross-validation to quickly evaluate performance of specific models (random forest, naive Bayes, lm, glm) with fixed hyperparameters and no tuning. If tuning of parameters on data is required, full nested CV with inner CV is needed to tune model hyperparameters (see nestcv.train).

Usage

outercv(y, ...)

## Default S3 method:
outercv(
  y,
  x,
  model,
  filterFUN = NULL,
  filter_options = NULL,
  weights = NULL,
  balance = NULL,
  balance_options = NULL,
  modifyX = NULL,
  modifyX_useY = FALSE,
  modifyX_options = NULL,
  outer_method = c("cv", "LOOCV"),
  n_outer_folds = 10,
  outer_folds = NULL,
  cv.cores = 1,
  multicore_fork = (Sys.info()\["sysname"] != "Windows"),
  predict_type = "prob",
  outer_train_predict = FALSE,
  returnList = FALSE,
  final = TRUE,
  na.option = "pass",
)
outercv

verbose = FALSE,
suppressMsg = verbose,
...
)}

## S3 method for class 'formula'
outercv(
  formula,
data,
  model,
  outer_method = c("cv", "LOOCV"),
n_outer_folds = 10,
external_folds = NULL,
cv.cores = 1,
multicore_fork = (Sys.info()["sysname"] != "Windows"),
predict_type = "prob",
  outer_train_predict = FALSE,
  verbose = FALSE,
suppressMsg = verbose,
...
,  na.action = na.fail
)

### Arguments

- **y**  
  Response vector

- **...**  
  Optional arguments passed to the function specified by model.

- **x**  
  Matrix or dataframe of predictors

- **model**  
  Character value or function of the model to be fitted.

- **filterFUN**  
  Filter function, e.g. ttest_filter or relieff_filter. Any function can be provided and is passed y and x. Must return a character vector with names of filtered predictors. Not available if outercv is called with a formula.

- **filter_options**  
  List of additional arguments passed to the filter function specified by filterFUN.

- **weights**  
  Weights applied to each sample for models which can use weights. Note weights and balance cannot be used at the same time. Weights are not applied in filters.

- **balance**  
  Specifies method for dealing with imbalanced class data. Current options are "randomsample" or "smote". Not available if outercv is called with a formula. See randomsample() and smote().

- **balance_options**  
  List of additional arguments passed to the balancing function.

- **modifyX**  
  Character string specifying the name of a function to modify x. This can be an imputation function for replacing missing values, or a more complex function which alters or even adds columns to x. The required return value of this function depends on the modifyX_useY setting.

- **modifyX_useY**  
  Logical value whether the x modifying function makes use of response training data from y. If FALSE then the modifyX function simply needs to return a modified x object. If TRUE then the modifyX function must return a model type object.
on which predict() can be called, so that train and test partitions of x can be modified independently.

modifyX_options
List of additional arguments passed to the x modifying function

outer_method
String of either "cv" or "LOOCV" specifying whether to do k-fold CV or leave one out CV (LOOCV) for the outer folds

n_outer_folds
Number of outer CV folds

outer_folds
Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds is ignored.

cv.cores
Number of cores for parallel processing of the outer loops.

multicore_fork
Logical whether to use forked multicore parallel processing. Forked multicore processing uses parallel::mclapply. It is only available on unix/mac as windows does not allow forking. It is set to FALSE by default in windows and TRUE in unix/mac. Non-forked parallel processing is executed using parallel::parLapply or pbapply::pblapply if verbose is TRUE.

predict_type
Only used with binary classification. Calculation of ROC AUC requires predicted class probabilities from fitted models. Most model functions use syntax of the form predict(..., type = "prob"). However, some models require a different type to be specified, which can be passed to predict() via predict_type.

outer_train_predict
Logical whether to save predictions on outer training folds to calculate performance on outer training folds.

returnList
Logical whether to return list of results after main outer CV loop without concatenating results. Useful for debugging.

final
Logical whether to fit final model.

na.option
Character value specifying how NAs are dealt with. "omit" is equivalent to na.action = na.omit. "omitcol" removes cases if there are NA in 'y', but columns (predictors) containing NA are removed from 'x' to preserve cases. Any other value means that NA are ignored (a message is given).

verbose
Logical whether to print messages and show progress

suppressMsg
Logical whether to suppress messages and printed output from model functions. This is necessary when using forked multicore parallelisation.

formula
A formula describing the model to be fitted

data
A matrix or data frame containing variables in the model.

na.action
Formula S3 method only: a function to specify the action to be taken if NAs are found. The default action is for the procedure to fail. An alternative is na.omit, which leads to rejection of cases with missing values on any required variable. (NOTE: If given, this argument must be named.)

Details
Some predictive model functions do not have an x & y interface. If the function specified by model requires a formula, x & y will be merged into a dataframe with model() called with a formula equivalent to y ~ .
The S3 formula method for outercv is not really recommended with large data sets - it is envisaged to be primarily used to compare performance of more basic models e.g. \texttt{lm()} specified by formulae for example incorporating interactions. NOTE: filtering is not available if outercv is called with a formula - use the x-y interface instead.

An alternative method of tuning a single model with fixed parameters is to use \texttt{nestcv.train} with \texttt{tuneGrid} set as a single row of a data.frame. The parameters which are needed for a specific model can be identified using \texttt{caret::modellLookup()}.  

Case weights can be passed to model function which accept these, however outercv assumes that these are passed to the model via an argument named weights.

Note that in the case of model = "lm", although additional arguments e.g. subset, weights, offset are passed into the model function via ". . ." the scoping is known to go awry. Avoid using these arguments with model = "lm".

NA handling differs between the default S3 method and the formula S3 method. The \texttt{na.option} argument takes a character string, while the more typical \texttt{na.action} argument takes a function.

**Value**

An object with S3 class "outercv"

- \texttt{call} the matched call
- \texttt{output} Predictions on the left-out outer folds
- \texttt{outer_result} List object of results from each outer fold containing predictions on left-out outer folds, model result and number of filtered predictors at each fold.
- \texttt{dimx} vector of number of observations and number of predictors
- \texttt{outer_folds} List of indices of outer test folds
- \texttt{final_fit} Final fitted model on whole data
- \texttt{final_vars} Column names of filtered predictors entering final model
- \texttt{roc} ROC AUC for binary classification where available.
- \texttt{summary} Overall performance summary. Accuracy and balanced accuracy for classification. ROC AUC for binary classification. RMSE for regression.

**Examples**

```r
Classification example
sigmoid function
sigmoid <- function(x) {1 / (1 + exp(-x))}

load iris dataset and simulate a binary outcome
data(iris)
dt <- iris[, 1:4]
colnames(dt) <- c("marker1", "marker2", "marker3", "marker4")
dt <- as.data.frame(apply(dt, 2, scale))
x <- dt
y2 <- sigmoid(0.5 * dt$marker1 + 2 * dt$marker2) > runif(nrow(dt))
y2 <- factor(y2)
```
## Random forest
library(randomForest)
cvfit <- outercv(y2, x, "randomForest")
summary(cvfit)
plot(cvfit$roc)

## Mixture discriminant analysis (MDA)
if (requireNamespace("mda", quietly = TRUE)) {
  library(mda)
  cvfit <- outercv(y2, x, "mda", predict_type = "posterior")
  summary(cvfit)
}

## Example with continuous outcome
y <- -3 + 0.5 * dt$marker1 + 2 * dt$marker2 + rnorm(nrow(dt), 0, 2)
dt$outcome <- y

## simple linear model - formula interface
cvfit <- outercv(outcome ~ ., data = dt, model = "lm")
summary(cvfit)

## random forest for regression
cvfit <- outercv(y, x, "randomForest")
summary(cvfit)

## example with lm_filter() to reduce input predictors
cvfit <- outercv(y, x, "randomForest", filterFUN = lm_filter,
  filter_options = list(nfilter = 2, p_cutoff = NULL))
summary(cvfit)

---

plot.cva.glmnet

Plot lambda across range of alphas

### Description
Different types of plot showing cross-validated tuning of alpha and lambda from elastic net regression via `glmnet`. If `xaxis` is set to "lambda", log lambda is on the x axis while the tuning metric (log loss, deviance, accuracy, AUC etc) is on the y axis. Multiple alpha values are shown by different colours. If `xaxis` is set to "alpha", alpha is on the x axis with the tuning metric on y, with error bars showing metric SD. if `xaxis` is set to "nvar" the number of non-zero coefficients is shown on x and how this relates to model deviance/ accuracy on y.

### Usage
```r
S3 method for class 'cva.glmnet'
plot(
 x,

```
```
Arguments

- **x**: Object of class 'cva.glmnet'
- **xaxis**: String specifying what is plotted on the x axis, either log lambda, alpha or the number of non-zero coefficients.
- **errorBar**: Logical whether to control error bars for the standard deviation of model deviance when `xaxis` = 'lambda'. Because of overlapping lines, only the deviance of the top and bottom points at a given lambda are shown.
- **errorWidth**: Width of error bars.
- **min.pch**: Plotting 'character' for the minimum point of each curve. Not shown if set to NULL. See `points`.
- **scheme**: Colour scheme. Overrides the `palette` argument.
- **palette**: Palette name (one of `hcl.pals()`) which is passed to `hcl.colors`.
- **showLegend**: Either a keyword to position the legend or NULL to hide the legend.
- **...**: Other arguments passed to `plot`. Use type = 'p' to plot a scatter plot instead of a line plot.

Value

No return value

Author(s)

Myles Lewis

See Also

- `nestcv.glmnet`
plot.prc

Plot precision-recall curve

Description

Plots a precision-recall curve using base graphics. It accepts an S3 object of class 'prc', see prc().

Usage

S3 method for class 'prc'
plot(x, ...)

Arguments

x An object of class 'prc'
...
Optional graphical arguments passed to plot()

Value

No return value

See Also

prc()

Examples

library(mlbench)
data(Sonar)
y <- Sonar$Class
x <- Sonar[, -61]

fit1 <- nestcv.glmnet(y, x, family = "binomial", alphaSet = 1, cv.cores = 2)
fit1$prc <- prc(fit1) # calculate precision-recall curve

fit2 <- nestcv.train(y, x, method = "gbm", cv.cores = 2)
fit2$prc <- prc(fit2)

plot(fit1$prc)
lines(fit2$prc, col = "red")
plot_alphas

Plot cross-validated glmnet alpha

Description
Plot of cross-validated glmnet alpha parameter against deviance for each outer CV fold.

Usage
plot_alphas(x, col = NULL, ...)

Arguments
- **x**: Fitted "nestcv.glmnet" object
- **col**: Optional vector of line colours for each fold
- **...**: other arguments passed to plot

Value
No return value

Author(s)
Myles Lewis

See Also
nestcv.glmnet

plot_caret

Plot caret tuning

Description
Plots the main tuning parameter in models built using caret::train

Usage
plot_caret(x, error.col = "darkgrey", ...)

Arguments
- **x**: Object of class ‘train’ generated by caret function train
- **error.col**: Colour of error bars
- **...**: Other arguments passed to plot()
plot_lambdas

Plot cross-validated glmnet lambdas across outer folds

Description
Plot of cross-validated glmnet lambda parameter against deviance for each outer CV fold.

Usage
plot_lambdas(
 x,
 scheme = NULL,
 palette = "Dark 3",
 showLegend = if (x$outer_method == "cv") "topright" else NULL,
 ...
)

Arguments
x Fitted "nestcv.glmnet" object
scheme colour scheme
palette palette name (one of hcl.pals()) which is passed to hcl.colors
showLegend Either a keyword to position the legend or NULL to hide the legend.
... other arguments passed to plot. Use type = 'p' to plot a scatter plot instead of a line plot.

Value
No return value

Author(s)
Myles Lewis

See Also
nestcv.glmnet
Description

SHAP importance bar plot

Usage

plot_shap_bar(
 shap,
 x,
 sort = TRUE,
 labels = c("Negative", "Positive"),
 top = NULL
)

Arguments

shap a matrix of SHAP values
x a matrix or dataframe of feature values containing only features values from the training data. The rows must match rows in shap. If a dataframe is supplied it is converted to a numeric matrix using data.matrix().
sort Logical whether to sort predictors by mean absolute SHAP value
labels Character vector of labels for directionality
top Sets a limit on the number of variables plotted or NULL to plot all variables. If top is set then variables are sorted and sort is overrode.

Value

A ggplot2 plot

Description

SHAP importance beeswarm plot
plot_varImp

Usage

plot_shap_beeswarm(
 shap,
 x,
 cex = 0.25,
 corral = "random",
 corral.width = 0.7,
 scheme = c("deepskyblue2", "purple3", "red"),
 sort = TRUE,
 top = NULL,
 ...
)

Arguments

 shap a matrix of SHAP values
 x a matrix or dataframe of feature values containing only features values from the
 training data. The rows must match rows in shap. If a dataframe is supplied it
 is converted to a numeric matrix using data.matrix().
 cex Scaling for adjusting point spacing. See ggbeeswarm::geom_beeswarm().
 corral String specifying method used to corral points. See ggbeeswarm::geom_beeswarm().
 corral.width Numeric specifying width of corral, passed to geom_beeswarm
 scheme Colour scheme as a vector of 3 colours
 sort Logical whether to sort predictors by mean absolute SHAP value.
 top Sets a limit on the number of variables plotted or NULL to plot all variables. If
 top is set then variables are sorted and sort is overrode.
 ... Other arguments passed to ggbeeswarm::geom_beeswarm()

Value

 A ggplot2 plot

plot_varImp Variable importance plot

Description

 Plot of variable importance of coefficients of a final fitted 'nestedcv.glmnet' model using ggplot2.
 Mean expression can be overlaid as the size of points as this can be informative in models of
 biological attributes.

Usage

 plot_varImp(x, abs = TRUE, size = TRUE)
Arguments

- **x**: a `nestcv.glmnet` class object
- **abs**: Logical whether to show absolute value of glmnet coefficients
- **size**: Logical whether to show mean expression by size of points

Value

Returns a ggplot2 plot

plot_var_stability
Plot variable stability

Description

Produces a ggplot2 plot of stability (as SEM) of variable importance across models trained and tested across outer CV folds. Overlays frequency with which variables are selected across the outer folds and optionally overlays directionality for binary response outcome.

Usage

```R
plot_var_stability(
  x,
  final = TRUE,
  top = NULL,
  direction = 0,
  dir_labels = NULL,
  scheme = c("royalblue", "red"),
  breaks = NULL,
  percent = TRUE,
  level = 1,
  sort = TRUE
)
```

Arguments

- **x**: a `nestcv.glmnet` or `nestcv.train` fitted object
- **final**: Logical whether to restrict variables to only those which ended up in the final fitted model or to include all variables selected across all outer folds.
- **top**: Limits number of variables plotted. Set to NULL to plot all variables.
- **direction**: Integer controlling plotting of directionality for binary or regression models. 0 means no directionality is shown, 1 means directionality is overlaid as a colour, 2 means directionality is reflected in the sign of variable importance. Not available for multiclass caret models.
- **dir_labels**: Character vector for controlling the legend when `direction` = 1
- **scheme**: Vector of 2 colours for directionality when `direction` = 1
pls_filter

```r
pls_filter(
  y,
  x,
  force_vars = NULL,
  nfilter,
  ncomp = 5,
  scale_x = TRUE,
  type = c("index", "names", "full"),
  ...)
```

Arguments

- **y**: Response vector
- **x**: Matrix of predictors
- **force_vars**: Vector of column names within `x` which are always retained in the model (i.e. not filtered). Default NULL means all predictors will be filtered.
- **nfilter**: Either a single value for the total number of predictors to return. Or a vector of length `ncomp` to manually return predictors from each PLS component.

Description

Filter using coefficients from partial least squares (PLS) regression to select optimal predictors.

Value

A ggplot2 plot

See Also

- `var_stability()`
ncomp the number of components to include in the PLS model.
scale_x Logical whether to scale predictors before fitting the PLS model. This is recommended.
type Type of vector returned. Default "index" returns indices, "names" returns predictor names, "full" returns a named vector of variable importance.
... Other arguments passed to pls::plsr()

Details

The best predictors may overlap between components, so if nfilter is specified as a vector, the total number of unique predictors returned may be variable.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type = "names") of filtered parameters. If type is "full" full output of coefficients from plsr is returned as a list for each model component ordered by highest absolute coefficient.

Description

Builds a precision-recall curve for a 'nestedcv' model using prediction() and performance() functions from the ROCR package and returns an object of class 'prc' for plotting.

Usage

prc(...)

Default S3 method:
prc(response, predictor, positive = 2, ...)

S3 method for class 'data.frame'
prc(output, ...)

S3 method for class 'nestcv.glmnet'
prc(object, ...)

S3 method for class 'nestcv.train'
prc(object, ...)

S3 method for class 'nestcv.SuperLearner'
prc(object, ...)

S3 method for class 'outercv'
prc(object, ...)

S3 method for class 'repeatcv'
prc(object, ...)

Arguments

- ... other arguments
- response binary factor vector of response of default order controls, cases.
- predictor numeric vector of probabilities
- positive Either an integer 1 or 2 for the level of response factor considered to be 'positive' or 'relevant', or a character value for that factor.
- output data.frame with columns testy containing observed response from test folds, and predyp predicted probabilities for classification
- object a 'nestcv.glmnet', 'nestcv.train', 'nestcv.SuperLearn', 'outercv' or 'repeatcv' S3 class results object.

Value

An object of S3 class 'prc' containing the following fields:

- recall vector of recall values
- precision vector of precision values
- auc area under precision-recall curve value using trapezoid method
- baseline baseline precision value

Examples

```r
library(mlbench)
data(Sonar)
y <- Sonar$Class
x <- Sonar[, -61]

fit1 <- nestcv.glmnet(y, x, family = "binomial", alphaSet = 1, cv.cores = 2)

fit1$prc <- prc(fit1) # calculate precision-recall curve
fit1$prc$auc # precision-recall AUC value

fit2 <- nestcv.train(y, x, method = "gbm", cv.cores = 2)
fit2$prc <- prc(fit2)
fit2$prc$auc

plot(fit1$prc, ylim = c(0, 1))
lines(fit2$prc, col = "red")

res <- nestcv.glmnet(y, x, family = "binomial", alphaSet = 1) |> repeatcv(n = 4, rep.cores = 2)
```
res$prc <- prc(res) # precision-recall curve on repeated predictions
plot(res$prc)

predict.cva.glmnet
Predict method for cva.glmnet models

Description

Makes predictions from a cross-validated glmnet model with optimal value of lambda and alpha.

Usage

```r
## S3 method for class 'cva.glmnet'
predict(object, newx, s = "lambda.1se", ...)
```

Arguments

- `object`: Fitted `cva.glmnet` object.
- `newx`: Matrix of new values for `x` at which predictions are to be made.
- `s`: Value of penalty parameter lambda. Default value is `s="lambda.1se"` for consistency with glmnet. Alternatively `s="lambda.min"` can be used.
- `...`: Other arguments passed to `predict.cv.glmnet()`.

Value

Object returned depends on arguments in `...` such as `type`.

predict.hsstan
Predict from hsstan model fitted within cross-validation

Description

Draws from the posterior predictive distribution of the outcome.

Usage

```r
## S3 method for class 'hsstan'
predict(object, newdata = NULL, type = NULL, ...)
```
Arguments

- **object**: An object of class `hsstan`.
- **newdata**: Optional data frame containing the variables to use to predict. If `NULL` (default), the model matrix is used. If specified, its continuous variables should be standardized, since the model coefficients are learnt on standardized data.
- **type**: Option for binary outcomes only. Default `NULL` will return a class with the highest probability for each sample. If set to `probs`, it will return the probabilities for outcome = 0 and for outcome = 1 for each sample.
- **...**: Optional arguments passed to `hsstan::posterior_predict`

Value

For a binary outcome and `type = NULL`, a character vector with the name of the class that has the highest probability for each sample. For a binary outcome and `type = prob`, a 2-dimensional matrix with the probability of class 0 and of class 1 for each sample. For a continuous outcome a numeric vector with the predicted value for each sample.

Author(s)

Athina Spiliopoulou

predict.nestcv.glmnet
Predict method for nestcv.glmnet fits

Description

Obtains predictions from the final fitted model from a `nestcv.glmnet` object.

Usage

```r
## S3 method for class 'nestcv.glmnet'
predict(object, newdata, s = object$final_param["lambda"], modify = FALSE, ...)```

Arguments

- **object**: Fitted `nestcv.glmnet` object
- **newdata**: New data to predict outcome on
- **s**: Value of lambda for glmnet prediction
- **modify**: Logical whether to modify newdata based on `modifyX` function. See `modifyX` and `modifyX_useY` arguments in `nestcv.glmnet()`.
- **...**: Other arguments passed to `predict.glmnet`.

Details

Checks for missing predictors and if these are sparse (i.e. have zero coefficients) columns of 0 are automatically added to enable prediction to proceed.
**predSummary**

**Value**

Object returned depends on the ... argument passed to predict method for glmnet objects.

**See Also**

glmnet::glmnet

---

**predSummary**  
*Summarise prediction performance metrics*

**Description**

Quick function to calculate performance metrics: confusion matrix, accuracy and balanced accuracy for classification; ROC AUC for binary classification; RMSE and R^2 for regression. Multi-class AUC is returned for multinomial classification.

**Usage**

predSummary(output, family = "")

**Arguments**

- **output**  
data.frame with columns testy containing observed response from test folds; predy predicted response; predyp (optional) predicted probabilities for classification to calculate ROC AUC

- **family**  
Optional character value to support specific glmnet models e.g. 'mgaussian', 'cox'.

**Details**

For multinomial classification, multi-class AUC as defined by Hand and Till is calculated using pROC::multiclass.roc().

**Value**

An object of class 'predSummary'. For classification a list is returned containing the confusion matrix table and a vector containing accuracy and balanced accuracy for classification, ROC AUC for classification. For regression a vector containing RMSE and R^2 is returned.
**pred_nestcv_glmnet**

**Description**

Prediction wrapper functions to enable the use of the fastshap package for generating SHAP values from nestedcv trained models.

**Usage**

- `pred_nestcv_glmnet(x, newdata)`
- `pred_nestcv_glmnet_class1(x, newdata)`
- `pred_nestcv_glmnet_class2(x, newdata)`
- `pred_nestcv_glmnet_class3(x, newdata)`
- `pred_train(x, newdata)`
- `pred_train_class1(x, newdata)`
- `pred_train_class2(x, newdata)`
- `pred_train_class3(x, newdata)`
- `pred_SuperLearner(x, newdata)`

**Arguments**

- `x` a nestcv.glmnet or nestcv.train object
- `newdata` a matrix of new data

**Details**

These prediction wrapper functions are designed to be used with the fastshap package. The functions `pred_nestcv_glmnet` and `pred_train` work for `nestcv.glmnet` and `nestcv.train` models respectively for either binary classification or regression.

For multiclass classification use `pred_nestcv_glmnet_class1`, 2 and 3 for the first 3 classes. Similarly `pred_train_class1` etc for `nestcv.train` objects. These functions can be inspected and easily modified to analyse further classes.

**Value**

prediction wrapper function designed for use with `fastshap::explain()`
Examples

```r
library(fastshap)

Boston housing dataset
library(mlbench)
data(BostonHousing2)
dat <- BostonHousing2
y <- dat$cmedv
x <- subset(dat, select = -c(cmedv, medv, town, chas))

Fit a glmnet model using nested CV
Only 3 outer CV folds and 1 alpha value for speed
fit <- nestcv.glmnet(y, x, family = "gaussian", n_outer_folds = 3, alphaSet = 1)

Generate SHAP values using fastshap::explain
Only using 5 repeats here for speed, but recommend higher values of nsim
sh <- explain(fit, X=x, pred_wrapper = pred_nestcv_glmnet, nsim = 1)

Plot overall variable importance
plot_shap_bar(sh, x)

Plot beeswarm plot
plot_shap_beeswarm(sh, x, size = 1)
```

---

randomsample

**Oversampling and undersampling**

**Description**

Random oversampling of the minority group(s) or undersampling of the majority group to compensate for class imbalance in datasets.

**Usage**

```r
randomsample(y, x, minor = NULL, major = 1, yminor = NULL)
```

**Arguments**

- **y**: Vector of response outcome as a factor
- **x**: Matrix of predictors
- **minor**: Amount of oversampling of the minority class. If set to NULL then all classes will be oversampled up to the number of samples in the majority class. To turn off oversampling set minor = 1.
- **major**: Amount of undersampling of the majority class
- **yminor**: Optional character value specifying the level in y which is to be oversampled. If NULL, this is set automatically to the class with the smallest sample size.
Details

minor < 1 and major > 1 are ignored.

Value

List containing extended matrix x of synthesised data and extended response vector y

Examples

```r
Imbalanced dataset
set.seed(1, "L'Ecuyer-CMRG")
x <- matrix(rnorm(150 * 2e+04), 150, 2e+04) # predictors
y <- factor(rbinom(150, 1, 0.2)) # imbalanced binary response
table(y)

first 30 parameters are weak predictors
x[, 1:30] <- rnorm(150 * 30, 0, 1) + as.numeric(y)*0.5

Balance x & y outside of CV loop by random oversampling minority group
out <- randomsample(y, x)
y2 <- out$y
x2 <- out$x
table(y2)

Nested CV glmnet with unnested balancing by random oversampling on whole dataset
fit1 <- nestcv.glmnet(y2, x2, family = "binomial", alphaSet = 1, cv.cores=2, filterFUN = ttest_filter)
fit1$summary

Balance x & y outside of CV loop by random oversampling minority group
out <- randomsample(y, x, minor=1, major=0.4)
y2 <- out$y
x2 <- out$x
table(y2)

Nested CV glmnet with unnested balancing by random undersampling on whole dataset
fit1b <- nestcv.glmnet(y2, x2, family = "binomial", alphaSet = 1, cv.cores=2, filterFUN = ttest_filter)
fit1b$summary

Balance x & y outside of CV loop by SMOTE
out <- smote(y, x)
y2 <- out$y
x2 <- out$x
table(y2)

Nested CV glmnet with unnested balancing by SMOTE on whole dataset
```
fit2 <- nestcv.glmnet(y2, x2, family = "binomial", alphaSet = 1,
  cv.cores=2,
  filterFUN = ttest_filter)
fit2$summary

## Nested CV glmnet with nested balancing by random oversampling
fit3 <- nestcv.glmnet(y, x, family = "binomial", alphaSet = 1,
  cv.cores=2,
  balance = "randomsample",
  filterFUN = ttest_filter)
fit3$summary
class_balance(fit3)

## Plot ROC curves
plot(fit1$roc, col='green')
lines(fit1b$roc, col='red')
lines(fit2$roc, col='blue')
lines(fit3$roc)
legend('bottomright', legend = c("Unnested random oversampling",
  "Unnest SMOTE",
  "Unnest random undersampling",
  "Nested balancing"),
  col = c("green", "blue", "red", "black"), lty=1, lwd=2)

---

ranger_filter

**Random forest ranger filter**

**Description**

Fits a random forest model via the ranger package and ranks variables by variable importance.

**Usage**

```r
ranger_filter(
 y,
 x,
 nfilter = NULL,
 type = c("index", "names", "full"),
 num.trees = 1000,
 mtry = ncol(x) * 0.2,
 ...
)
```

**Arguments**

- `y`: Response vector
- `x`: Matrix or dataframe of predictors
relieff_filter

nfilter Number of predictors to return. If NULL all predictors are returned.
type Type of vector returned. Default "index" returns indices, "names" returns predictor names, "full" returns a named vector of variable importance.
num.trees Number of trees to grow. See ranger::ranger.
mtry Number of predictors randomly sampled as candidates at each split. See ranger::ranger.
... Optional arguments passed to ranger::ranger.

Details
This filter uses the ranger() function from the ranger package. Variable importance is calculated using mean decrease in gini impurity.

Value
Integer vector of indices of filtered parameters (type = "index") or character vector of names (type = "names") of filtered parameters. If type is "full" a named vector of variable importance is returned.

relieff_filter Relieff filter

Description
Uses ReliefF algorithm from the CORElearn package to rank predictors in order of importance.

Usage
relieff_filter(
  y,
  x,
  nfilter = NULL,
  estimator = "ReliefFequalK",
  type = c("index", "names", "full"),
  ...
)

Arguments
y Response vector
x Matrix or dataframe of predictors
nfilter Number of predictors to return. If NULL all predictors are returned.
estimator Type of algorithm used, see CORElearn::attrEval
type Type of vector returned. Default "index" returns indices, "names" returns predictor names, "full" returns a named vector of variable importance.
... Other arguments passed to CORElearn::attrEval
Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type = "names") of filtered parameters. If type is "full" a named vector of variable importance is returned.

See Also

CORElearn::attrEval()

repeatcv

Repeated nested CV

Description

Performs repeated calls to a nestedcv model to determine performance across repeated runs of nested CV.

Usage

repeatcv(
  expr,
  n = 5,
  repeat_folds = NULL,
  keep = TRUE,
  extra = FALSE,
  progress = TRUE,
  rep.cores = 1L
)

Arguments

expr  An expression containing a call to nestcv.glmnet(), nestcv.train(), nestcv.SuperLearner() or outercv().
n  Number of repeats
repeat_folds  Optional list containing fold indices to be applied to the outer CV folds.
keep  Logical whether to save repeated outer CV predictions for ROC curves etc.
extra  Logical whether additional performance metrics are gathered for binary classification models. See metrics().
progress  Logical whether to show progress.
rep.cores  Integer specifying number of cores/threads to invoke.
Details

We recommend using this with the R pipe |> (see examples).

When comparing models, it is recommended to fix the sets of outer CV folds used across each repeat for comparing performance between models. The function `repeatfolds()` can be used to create a fixed set of outer CV folds for each repeat.

Parallelisation over repeats is performed using `parallel::mclapply` (not available on windows). Beware that `cv.cores` can still be set within calls to nestedcv models (= nested parallelisation). This means that `rep.cores * cv.cores` number of processes/forks will be spawned, so be careful not to overload your CPU. In general parallelisation of repeats using `rep.cores` is faster than parallelisation using `cv.cores`.

Value

List of S3 class 'repeatcv' containing:

- **call**: the model call
- **result**: matrix of performance metrics
- **output**: (if `keep = TRUE`) a matrix or dataframe containing the outer CV predictions from each repeat
- **roc**: (binary classification models only) a ROC curve object based on predictions across all repeats as returned in `output`, generated by `pROC::roc()`

Examples

```r
data("iris")
dat <- iris
y <- dat$Species
x <- dat[,1:4]
res <- nestcv.glmnet(y, x, family = "multinomial", alphaSet = 1,
 n_outer_folds = 4) |> repeatcv(3, rep.cores = 2)
res
summary(res)

set up fixed fold indices
set.seed(123, "L'Ecuyer-CMRG")
folds <- repeatfolds(y, repeats = 3, n_outer_folds = 4)
res <- nestcv.glmnet(y, x, family = "multinomial", alphaSet = 1,
 n_outer_folds = 4) |> repeatcv(3, repeat_folds = folds, rep.cores = 2)
res
```

repeatfolds

Create folds for repeated nested CV

Description

Create folds for repeated nested CV

Usage

repeatfolds(y, repeats = 5, n_outer_folds = 10)

Arguments

y Outcome vector
repeats Number of repeats
n_outer_folds Number of outer CV folds

Value

List containing indices of outer CV folds

Examples

data("iris")
dat <- iris
y <- dat$Species
x <- dat[, 1:4]

## set up fixed fold indices
set.seed(123, "L'Ecuyer-CMRG")
folds <- repeatfolds(y, repeats = 3, n_outer_folds = 4)

res <- nestcv.glmnet(y, x, family = "multinomial", alphaSet = 1,
n_outer_folds = 4, cv.cores = 2) |> repeatcv(3, repeat_folds = folds)
res
rf_filter  Random forest filter

Description

Fits a random forest model and ranks variables by variable importance.

Usage

rf_filter(
  y,
  x,
  nfilter = NULL,
  type = c("index", "names", "full"),
  ntree = 1000,
  mtry = ncol(x) * 0.2,
  ...
)

Arguments

y  Response vector
x  Matrix or dataframe of predictors
nfilter  Number of predictors to return. If NULL all predictors are returned.
type  Type of vector returned. Default "index" returns indices, "names" returns predictor names, "full" returns a named vector of variable importance.
tree  Number of trees to grow. See randomForest::randomForest.
mtry  Number of predictors randomly sampled as candidates at each split. See randomForest::randomForest.
...  Optional arguments passed to randomForest::randomForest.

Details

This filter uses the randomForest() function from the randomForest package. Variable importance is calculated using the randomForest::importance function, specifying type 1 = mean decrease in accuracy. See randomForest::importance.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type = "names") of filtered parameters. If type is "full" a named vector of variable importance is returned.
smote

**SMOTE**

**Description**

Synthetic Minority Oversampling Technique (SMOTE) algorithm for imbalanced classification data.

**Usage**

```r
smote(y, x, k = 5, over = NULL, yminor = NULL)
```

**Arguments**

- `y` Vector of response outcome as a factor
- `x` Matrix of predictors
- `k` Range of KNN to consider for generation of new data
- `over` Amount of oversampling of the minority class. If set to `NULL` then all classes will be oversampled up to the number of samples in the majority class.
- `yminor` Optional character value specifying the level in `y` which is to be oversampled. If `NULL`, this is set automatically to the class with the smallest sample size.

**Value**

List containing extended matrix `x` of synthesised data and extended response vector `y`

**References**


---

stat_filter

**Univariate filter for binary classification with mixed predictor datatypes**

**Description**

Univariate statistic filter for dataframes of predictors with mixed numeric and categorical datatypes. Different statistical tests are used depending on the data type of response vector and predictors:

- **Binary class response**: `bin_stat_filter()` t-test for continuous data, chi-squared test for categorical data
- **Multiclass response**: `class_stat_filter()` one-way ANOVA for continuous data, chi-squared test for categorical data
- **Continuous response**: `cor_stat_filter()` correlation (or linear regression) for continuous data and binary data, one-way ANOVA for categorical data
Usage

\texttt{stat_filter(y, x, \ldots)}

\texttt{bin_stat_filter(}
\texttt{  y,}
\texttt{  x,}
\texttt{  force_vars = NULL,}
\texttt{  nfilter = NULL,}
\texttt{  p_cutoff = 0.05,}
\texttt{  rsq_cutoff = NULL,}
\texttt{  type = c("index", "names", "full", "list"),}
\texttt{  \ldots}
\texttt{)}

\texttt{class_stat_filter(}
\texttt{  y,}
\texttt{  x,}
\texttt{  force_vars = NULL,}
\texttt{  nfilter = NULL,}
\texttt{  p_cutoff = 0.05,}
\texttt{  rsq_cutoff = NULL,}
\texttt{  type = c("index", "names", "full", "list"),}
\texttt{  \ldots}
\texttt{)}

\texttt{cor_stat_filter(}
\texttt{  y,}
\texttt{  x,}
\texttt{  cor_method = c("pearson", "spearman", "lm"),}
\texttt{  force_vars = NULL,}
\texttt{  nfilter = NULL,}
\texttt{  p_cutoff = 0.05,}
\texttt{  rsq_cutoff = NULL,}
\texttt{  rsq_method = "pearson",}
\texttt{  type = c("index", "names", "full", "list"),}
\texttt{  \ldots}
\texttt{)}

Arguments

\texttt{y} \hspace{1cm} \text{Response vector}
\texttt{x} \hspace{1cm} \text{Matrix or dataframe of predictors}
\texttt{...} \hspace{1cm} \text{optional arguments, e.g.} \texttt{rsq_method}: \text{see} \texttt{collinear().}
\texttt{force_vars} \hspace{1cm} \text{Vector of column names within} \texttt{x} \text{which are always retained in the model (i.e. not filtered). Default} \texttt{NULL} \text{means all predictors will be passed to} \texttt{filterFUN.}
\texttt{nfilter} \hspace{1cm} \text{Number of predictors to return. If} \texttt{NULL} \text{all predictors with p-values <} \texttt{p_cutoff} \text{are returned.}
stat_filter

- **p_cutoff**: p value cut-off
- **rsq_cutoff**: $r^2$ cutoff for removing predictors due to collinearity. Default NULL means no collinearity filtering. Predictors are ranked based on t-test. If 2 or more predictors are collinear, the first ranked predictor by t-test is retained, while the other collinear predictors are removed. See `collinear()`.
- **type**: Type of vector returned. Default "index" returns indices, "names" returns predictor names, "full" returns a dataframe of statistics, "list" returns a list of 2 matrices of statistics, one for continuous predictors, one for categorical predictors.
- **cor_method**: For `cor_stat_filter()` only, either "pearson", "spearman" or "lm" controlling whether continuous predictors are filtered by correlation (faster) or regression (slower but allows inclusion of covariates via `force_vars`).
- **rsq_method**: character string indicating which correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman". See `collinear()`.

**Details**

`stat_filter()` is a wrapper which calls `bin_stat_filter()`, `class_stat_filter()` or `cor_stat_filter()` depending on whether y is binary, multiclass or continuous respectively. Ordered factors are converted to numeric (integer) levels and analysed as if continuous.

**Value**

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type = "names") of filtered parameters in order of test p-value. If type is "full" full output is returned containing a dataframe of statistical results. If type is "list" the output is returned as a list of 2 matrices containing statistical results separated by continuous and categorical predictors.

**Examples**

```r
library(mlbench)
data(BostonHousing2)
dat <- BostonHousing2
y <- dat$cmedv ## continuous outcome
x <- subset(dat, select = -c(cmedv, medv, town))

stat_filter(y, x, type = "full")
stat_filter(y, x, nfilter = 5, type = "names")
stat_filter(y, x)

data(iris)
y <- iris$Species ## 3 class outcome
x <- subset(iris, select = -Species)
stat_filter(y, x, type = "full")
```
**summary_vars** *Summarise variables*

**Description**
Summarise variables

**Usage**
```
summary_vars(x)
```

**Arguments**
- `x` Matrix or dataframe with variables in columns

**Value**
A matrix with variables in rows and mean, median and SD for each variable or number of levels if the variable is a factor. If NA are detected, an extra column `n.NA` is added with the numbers of NA for each variable.

---

**supervisedPCA** *Supervised PCA plot*

**Description**
Performs supervised principle component analysis (PCA) after filtering dataset to help determine whether filtering has been useful for separating samples according to the outcome variable.

**Usage**
```
supervisedPCA(y, x, filterFUN = NULL, filter_options = NULL, plot = TRUE, ...)
```

**Arguments**
- `y` Response vector
- `x` Matrix of predictors
- `filterFUN` Filter function, e.g. `ttest_filter` or `relieff_filter`. Any function can be provided and is passed `y` and `x`. Must return a character vector with names of filtered predictors.
- `filter_options` List of additional arguments passed to the filter function specified by `filterFUN`.
- `plot` Logical whether to plot a ggplot2 object or return the PC scores
- `...` Optional arguments passed to `princomp()`

**Value**
If `plot=TRUE` returns a ggplot2 plot, otherwise returns the principle component scores.
### train_preds

**Outer training fold predictions**

**Description**

Obtain predictions on outer training folds which can be used for performance metrics and ROC curves.

**Usage**

```r
train_preds(x)
```

**Arguments**

- `x` 
  
  a nestcv.glmnet, nestcv.train or outercv fitted object

**Details**

Note: the argument `outer_train_predict` must be set to `TRUE` in the original call to either `nestcv.glmnet`, `nestcv.train` or `outercv`.

**Value**

Dataframe with columns `ytrain` and `predy` containing observed and predicted values from training folds. For binomial and multinomial models additional columns are added with class probabilities or log likelihood values.

### train_roc

**Build ROC curve from outer CV training folds**

**Description**

Build ROC (receiver operating characteristic) curve from outer training folds. Object can be plotted using `plot()` or passed to functions `auc()` etc.

**Usage**

```r
train_roc(x, direction = "<", ...)```

Arguments

- `x`

 a nestcv.glmnet, nestcv.train or outercv object

- `direction`

 Set ROC directionality `pROC::roc`

- `...`

 Other arguments passed to `pROC::roc`
train_summary

Details
Note: the argument outer_train_predict must be set to TRUE in the original call to either nestcv.glmnet, nestcv.train or outercv.

Value
"roc" object, see pROC::roc

Description
Calculates performance metrics on outer training folds: confusion matrix, accuracy and balanced accuracy for classification; ROC AUC for binary classification; RMSE, R^2 and mean absolute error (MAE) for regression.

Usage
train_summary(x)

Arguments
x a nestcv.glmnet, nestcv.train or outercv object

Details
Note: the argument outer_train_predict must be set to TRUE in the original call to either nestcv.glmnet, nestcv.train or outercv.

Value
Returns performance metrics from outer training folds, see predSummary

See Also
predSummary

Examples

data(iris)
x <- iris[, 1:4]
y <- iris[, 5]

fit <- nestcv.glmnet(y, x,
family = "multinomial",
alpha = 1,
ttest_filter

A selection of simple univariate filters using t-test, Wilcoxon test, one-way ANOVA or correlation (Pearson or Spearman) for ranking variables. These filters are designed for speed. ttest_filter uses the Rfast package, wilcoxon_filter (Mann-Whitney) test uses matrixTests::row_wilcoxon_twosample, anova_filter uses matrixTests::col_oneway_welch (Welch’s F-test) from the matrixTests package. Can be applied to all or a subset of predictors. For mixed datasets (combined continuous & categorical) see stat_filter()
rsq_cutoff = NULL,
 type = c("index", "names", "full"),
 keep_factors = TRUE,
 ...
)

wilcoxon_filter(
 y,
 x,
 force_vars = NULL,
 nfilter = NULL,
 p_cutoff = 0.05,
 rsq_cutoff = NULL,
 type = c("index", "names", "full"),
 exact = FALSE,
 keep_factors = TRUE,
 ...
)

correl_filter(
 y,
 x,
 method = "pearson",
 force_vars = NULL,
 nfilter = NULL,
 p_cutoff = 0.05,
 rsq_cutoff = NULL,
 type = c("index", "names", "full"),
 keep_factors = TRUE,
 ...
)

Arguments

y
Response vector

x
Matrix or dataframe of predictors

force_vars
Vector of column names within x which are always retained in the model (i.e. not filtered). Default NULL means all predictors will be passed to filterFUN.

nfilter
Number of predictors to return. If NULL all predictors with p-values < p_cutoff are returned.

p_cutoff
p value cut-off

rsq_cutoff
r^2 cutoff for removing predictors due to collinearity. Default NULL means no collinearity filtering. Predictors are ranked based on t-test. If 2 or more predictors are collinear, the first ranked predictor by t-test is retained, while the other collinear predictors are removed. See collinear().

type
Type of vector returned. Default "index" returns indices, "names" returns predictor names, "full" returns a matrix of p values.
ttest_filter

keep_factors Logical affecting factors with 3 or more levels. Dataframes are coerced to a matrix using `data.matrix`. Binary factors are converted to numeric values 0/1 and analysed as such. If `keep_factors` is `TRUE` (the default), factors with 3 or more levels are not filtered and are retained. If `keep_factors` is `FALSE`, they are removed.

... optional arguments, including `rsq_method` passed to `collinear()` or arguments passed to `matrixTests::row_wilcoxon_twosample` in `wilcoxon_filter()`.

exact Logical whether exact or approximate p-value is calculated. Default is `FALSE` for speed.

method Type of correlation, either "pearson" or "spearman".

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type = "names") of filtered parameters in order of t-test p-value. If type is "full" full output from `Rfast::ttests` is returned.

See Also

`lm_filter()` `stat_filter()`

Examples

```r
## sigmoid function
sigmoid <- function(x) {1 / (1 + exp(-x))}

## load iris dataset and simulate a binary outcome
data(iris)
dt <- iris[, 1:4]
colnames(dt) <- c("marker1", "marker2", "marker3", "marker4")
dt <- as.data.frame(apply(dt, 2, scale))
y2 <- sigmoid(0.5 * dt$marker1 + 2 * dt$marker2) > runif(nrow(dt))
y2 <- factor(y2, labels = c("C1", "C2"))

ttest_filter(y2, dt)  # returns index of filtered predictors
ttest_filter(y2, dt, type = "name")  # shows names of predictors
ttest_filter(y2, dt, type = "full")  # full results table

data(iris)
dt <- iris[, 1:4]
y3 <- iris[, 5]
anova_filter(y3, dt)  # returns index of filtered predictors
anova_filter(y3, dt, type = "full")  # shows names of predictors
anova_filter(y3, dt, type = "name")  # full results table
```
txtProgressBar2

Text Progress Bar 2

Description

Text progress bar in the R console. Modified from utils::txtProgressBar() to include title and timing.

Usage

```
txtProgressBar2(
  min = 0,
  max = 1,
  initial = 0,
  char = "-",
  width = NA,
  title = ""
)
```

Arguments

- **min**: Numeric value for minimum of the progress bar.
- **max**: Numeric value for maximum of the progress bar.
- **initial**: Initial value for the progress bar.
- **char**: The character (or character string) to form the progress bar.
- **width**: The width of the progress bar, as a multiple of the width of char. If NA, the default, the number of characters is that which fits intogetOption("width").
- **title**: Title for the progress bar.

Details

Use utils::setTxtProgressBar() to set the progress bar and close() to close it.

Value

An object of class "txtProgressBar".
var_direction

Variable directionality

Description

Determines directionality of final predictors for binary or regression models, using the sign of the t-statistic or correlation coefficient respectively for each variable compared to the outcomes.

Usage

```r
var_direction(object)
```

Arguments

- `object` a `nestcv.glmnet` or `nestcv.train` fitted model

Details

Categorical features with >2 levels are assumed to have a meaningful order for the purposes of directionality. Factors are coerced to ordinal using `data.matrix()`. If factors are multiclass then directionality results should be ignored.

Value

Named vector showing the directionality of final predictors. If the response vector is multinomial `NULL` is returned.

var_stability

Variable stability

Description

Uses variable importance across models trained and tested across outer CV folds to assess stability of variable importance. For glmnet, variable importance is measured as the absolute model coefficients, optionally scaled as a percentage. The frequency with which each variable is selected in outer folds as well as the final model is also returned which is helpful for sparse models or with filters to determine how often variables end up in the model in each fold. For glmnet, the direction of effect is taken directly from the sign of model coefficients. For caret models, direction of effect is not readily available, so as a substitute, the directionality of each predictor is determined by the function `var_direction()` using the sign of a t-test for binary classification or the sign of regression coefficient for continuous outcomes (not available for multiclass caret models). To better understand direction of effect of each predictor within the final model, we recommend using SHAP values - see the vignette "Explaining nestedcv models with Shapley values". See `pred_train()` for an example.
Usage

```r
var_stability(x, ...)
```

```r
## S3 method for class 'nestcv.glmnet'
var_stability(x, percent = TRUE, level = 1, sort = TRUE, ...)
```

```r
## S3 method for class 'nestcv.train'
var_stability(x, sort = TRUE, ...)
```

Arguments

- `x`: a `nestcv.glmnet` or `nestcv.train` fitted object
- `...`: Optional arguments for compatibility
- `percent`: Logical for `nestcv.glmnet` objects only, whether to scale coefficients to percentage of the largest coefficient in each model
- `level`: For multinomial `nestcv.glmnet` models only, either an integer specifying which level of outcome is being examined, or the level can be specified as a character value
- `sort`: Logical whether to sort variables by mean importance

Details

Note that for caret models `caret::varImp()` may require the model package to be fully loaded in order to function. During the fitting process `caret` often only loads the package by namespace.

Value

Dataframe containing mean, sd, sem of variable importance and frequency by which each variable is selected in outer folds.

See Also

- `cv_coef()`, `cv_varImp()`, `pred_train()`

weight Calculate weights for class imbalance

Description

Calculate weights for class imbalance

Usage

```r
weight(y)
```
weight

Arguments

y Factor or character response vector. If a character vector is supplied it is coerced into a factor. Unused levels are dropped.

Value

Vector of weights
Index

anova_filter, 10
anova_filter(ttest_filter), 69
anova_filter(), 5
auc(), 15, 67

barplot_var_stability, 3
bin_stat_filter(stat_filter), 63
boot_anova(boot_ttest), 5
boot_correl(boot_ttest), 5
boot_filter, 4
boot_filter(), 5
boot_lm(boot_ttest), 5
boot_ttest, 5
boot_ttest(), 5
boot_wilcoxon(boot_ttest), 5
Boruta::Boruta, 6
boruta_filter, 6
boxplot, 7
boxplot_expression, 7
caret::confusionMatrix(), 20
caret::dummyVars(), 35
caret::modelLookup(), 39
caret::train, 43
caret::train(), 31, 32
caret::trainControl, 32
caret::trainControl(), 32, 33
caret::varImp(), 12, 74
class_balance, 7
class_stat_filter(stat_filter), 63
coeff.cva.glmnet, 8
coeff.glmnet, 8, 13
coeff.nestcv.glmnet, 8
collinear, 9
collinear(), 19, 64, 65, 70, 71
combo_filter, 9
cor, 10
cor(), 9
cor.test, 10
cor_stat_filter(stat_filter), 63

coretlearn::attrEval, 10, 58
coretlearn::attrEval(), 59
correl_filter(ttest_filter), 69
correl_filter(), 5
correls2, 10
cv.glmnet, 11, 13, 24, 25
cv_coef, 12
cv_coef(), 13, 74
cv_varImp, 12
cv_varImp(), 12, 74
cva.glmnet, 11
cva.glmnet(), 8
data.matrix, 19, 71
data.matrix(), 45, 46
fastshap::explain(), 54
glmnet, 11, 14, 24, 25, 40
glmnet(), 14
glmnet::glmnet, 53
glmnet_coefs, 13
glmnet_filter, 13
hcl.colors, 7, 41, 44
hsstan::hsstan(), 22
innercv_preds, 15
innercv_roc, 15
innercv_summary, 17
lines, 18
lines.prc, 18
lm_filter, 18
lm_filter(), 5, 71
make.names(), 29
matrixTests::col_oneway_welch, 69
matrixTests::row_wilcoxon_twosample, 69, 71
mclapply(), 19
metircs, 20
metrics(), 59
model.hsstan, 21
model.matrix(), 35
nestcv.glmnet(), 20
metrics(), 59
nestcv.SuperLearner, 27
nestcv.SuperLearner(), 59
nestcv.train, 30, 36, 39, 54
nestcv.train(), 19, 59
one_hot, 35
outercv, 36
outercv(), 22, 59
parallel::mclapply(), 19
plot, 41
plot(), 42, 43
plot.cva.glmnet, 40
plot.prc, 42
plot.prc(), 18
plot.expand.grid, 43
plot.varImp, 46
plot_var_stability, 47
plot_var_stability(), 48
plot.expand.grid, 44
plot.expand.grid(), 45
plot_var_stability, 45
plot_var_stability(), 46
plot.summary.lm, 20
plot_summary_vars, 66
pred_train, 30, 36, 39, 54
pred_train(), 19, 59
pred_train_class1(pred_nestcv_glmnet), 54
pred_train_class2(pred_nestcv_glmnet), 54
pred_train_class3(pred_nestcv_glmnet), 54
pred_summary, 17, 53, 68
summary.lm, 20
summary_vars, 66
stats::cor.test, 10
stats::cor.test(), 10
predict.cv.glmnet, 13
predict.cva.glmnet, 51
predict.hsstan, 51
predict.nestcv.glmnet, 52
predSummary, 17, 53, 68
princomp(), 66
pROC::multiclass.roc(), 53
pROC::roc, 15, 16, 67, 68
randomForest::importance, 62
randomForest::randomForest, 62
randomsample, 55
randomsample(), 24, 28, 31, 37
ranger::ranger, 58
ranger_filter, 57
RcppEigen::fastLmPure(), 19
relieff_filter, 10, 24, 28, 37, 58, 66
relieff_filter(), 31
repeatcv, 59
repeatfolds, 61
repeatfolds(), 60
rf_filter, 62
Rfast::ttests, 71
smote, 63
smote(), 24, 28, 31, 37
stat_filter, 63
stat_filter(), 69, 71
stats::cor.test, 10
summary.lm, 20
summary_vars, 66
SuperLearner::SuperLearner(), 28, 29
supervisedPCA, 66
train, 43
train_preds, 67
train_roc, 67
train_summary, 68
ttest_filter, 10, 24, 28, 37, 66, 69
ttest_filter(), 4, 5, 31
txtProgressBar2, 72
var_direction, 73
var_direction(), 73
var_stability, 73
var_stability(), 4, 48
weight, 74
wilcoxon_filter (ttest_filter). 69
wilcoxon_filter(). 5, 71