Package ‘nanny’
June 9, 2020

Type Package
Title High-Level Data Analysis and Manipulation in 'tidyverse' Style
Version 0.1.8
Maintainer Stefano Mangiola <mangiolastefano@gmail.com>
Description Includes wrapper functions for the main high-level data analysis and manipulations, such as cluster, dimensionality reduction, redundancy elimination, identify variable elements. It operates on tidy data frames with element, feature and value column.
License GPL-3
Depends R (>= 3.6.0)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Imports lifecycle,
 magrittr,
 tibble,
 dplyr,
 tidyselect,
 purrr,
 rlang,
 tidyverse,
 methods,
 lme4,
 stats,
 utils,
 knitr,
 widyr,
 Rtsne,
 gtools
RdMacros lifecycle
Suggests testthat,
 Seurat,
 limma,
 GGally,
 ggplot2
VignetteBuilder knitr
Biarch true
biocViews AssayDomain, Infrastructure
as_matrix

Get matrix from tibble

Description
Get matrix from tibble
as_matrix
as_matrix

Usage

as_matrix(.data, rownames = NULL, do_check = TRUE, sep_rownames = "___")

S4 method for signature 'spec_tbl_df'
as_matrix(.data, rownames = NULL, do_check = TRUE, sep_rownames = "___")

S4 method for signature 'tbl_df'
as_matrix(.data, rownames = NULL, do_check = TRUE, sep_rownames = "___")

Arguments
.data A tibble
rownames A character string of the rownames
do_check A boolean
sep_rownames A character with which multiple columns are united if rownames is a column array (e.g., rownames = c(col1, col2))

Value
A matrix
A 'tbl' with filled abundance
A 'tbl' with filled abundance
Examples

library(dplyr)
library(tidyr)
select(mtcars_tidy, car_model, feature, value) %>%
spread(feature, value) %>%
as_matrix(rownames = car_model)

cluster_elements Get clusters of elements (e.g., elements or features)

Description

cluster_elements() takes as input a 'tbl' formatted as | element | feature | value | ... | and identify clusters in the data.

Usage

cluster_elements(
 .data,
 .element,
 .feature,
 .value,
 method,
 of_elements = TRUE,
 transform = NULL,
 action = "add",
 ...
)

S4 method for signature 'spec_tbl_df'
cluster_elements(
 .data,
 .element,
 .feature,
 .value,
 method,
 of_elements = TRUE,
 transform = NULL,
 action = "add",
 ...
)

S4 method for signature 'tbl_df'
cluster_elements(
 .data,
 .element,
 .feature,
 .value,
 method,
cluster_elements

```r
of_elements = TRUE,
transform = NULL,
action = "add",
...)
```

Arguments

- `.data` A `tbl` formatted as | <element> | <feature> | <value> | <...> |
- `.element` The name of the element column (normally elements).
- `.feature` The name of the feature column (normally features)
- `.value` The name of the column including the numerical value the clustering is based on (normally feature value)
- `method` A character string. The cluster algorithm to use, at the moment k-means is the only algorithm included.
- `of_elements` A boolean. In case the input is a nanny object, it indicates Whether the element column will be element or feature column
- `transform` A function to use to transform the data internally (e.g., log1p)
- `action` A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get).
- `...` Further parameters passed to the function `kmeans`

Details

Maturing identifies clusters in the data, normally of elements. This function returns a tibble with additional columns for the cluster annotation. At the moment only k-means clustering is supported, the plan is to introduce more clustering methods.

Value

A tbl object with additional columns with cluster labels

Examples

```r
cluster_elements(mtcars_tidy, car_model, feature, value, method="kmeans", centers = 2)
```
combine_nest

Combine columns and nest data for each permutation

Description

combine_nest() takes as input a ‘tbl’ formatted as | <element> | <feature> | <value> | <...> | and returns a ‘tbl’ with data nested for each combination. The package used in the backend is gtools (Gregory R. Warnes, Ben Bolker, and Thomas Lumley, 2020).

Usage

```r
combine_nest(.data, .names_from, .values_from)
```

S4 method for signature 'spec_tbl_df'
```
combine_nest(.data, .names_from, .values_from)
```

S4 method for signature 'tbl_df'
```
combine_nest(.data, .names_from, .values_from)
```

Arguments

- `.data` A 'tbl' formatted as | <element> | <feature> | <value> | <...> |
- `.names_from` The columns to build the permutations on (e.g., c(col1, col2))
- `.values_from` The columns to be nested for each permutation (e.g., c(col3, col4, col5))

Details

- **Maturing**

Value

- A nested ‘tbl’
- A ‘tbl’ with filled abundance
- A ‘tbl’ with filled abundance

Examples

```r
combine_nest(mtcars_tidy, car_model, c(feature, value))
```
fill_missing

Fill feature value if missing from element-feature pairs

Description

`fill_missing()` takes as input a ‘tbl’ formatted as | <element> | <feature> | <value> | <...> | and returns a ‘tbl’ with an additional adjusted value column. This method uses scaled counts if present.

Usage

```r
fill_missing(.data, .element, .feature, .value, fill_with)
```

```r
## S4 method for signature 'spec_tbl_df'
fill_missing(.data, .element, .feature, .value, fill_with)
```

```r
## S4 method for signature 'tbl_df'
fill_missing(.data, .element, .feature, .value, fill_with)
```

Arguments

- `.data`
 A ‘tbl’ formatted as | <element> | <feature> | <value> | <...> |
- `.element`
 The name of the element column
- `.feature`
 The name of the feature/gene column
- `.value`
 The name of the feature/gene value column
- `fill_with`
 A numerical value with which fill the missing data points

Details

Maturing

This function fills the value of missing element-feature pair using the median of the element group defined by the formula

Value

- A ‘tbl’ non-sparse value
- A ‘tbl’ with filled abundance
- A ‘tbl’ with filled abundance

Examples

```r
fill_missing(mtcars_tidy, car_model, feature, value, fill_with = 0)
```
impute_missing

Impute feature value if missing from element-feature pairs

Description

impute_missing() takes as input a `tbl` formatted as | <element> | <feature> | <value> | <...> | and returns a `tbl` with an additional adjusted value column. This method uses scaled counts if present.

Usage

```r
impute_missing(.data, .element, .feature, .value, .formula)
```

S4 method for signature 'spec_tbl_df'

```r
impute_missing(.data, .element, .feature, .value, .formula)
```

S4 method for signature 'tbl_df'

```r
impute_missing(.data, .element, .feature, .value, .formula)
```

Arguments

- `.data` A `tbl` formatted as | <element> | <feature> | <value> | <...> |
- `.element` The name of the element column
- `.feature` The name of the feature/gene column
- `.value` The name of the feature/gene value column
- `.formula` A formula with no response variable, representing the desired linear model where the first covariate is the factor of interest and the second covariate is the unwanted variation (of the kind ~ factor_of_interest + batch)

Details

Maturing

This function imputes the value of missing element-feature pair using the median of the element group defined by the formula

Value

- A `tbl` non-sparse value
- A `tbl` with imputed abundance
- A `tbl` with imputed abundance

Examples

```r
impute_missing(mtcars_tidy, car_model, feature, value, ~1)
```
keep_variable

Keep top variable features across elements

Description

`keep_variable()` takes as input a 'tbl' formatted as | <element> | <feature> | <value> | <...> | and returns a 'tbl' with the filtered most variable features. The formula used is from `limma::plotMDS` (Robinson et al., 2010, <doi:10.1093/bioinformatics/btp616>)

Usage

```r
keep_variable(.data, .element, .feature, .value, top = Inf, transform = NULL)
```

```r
# S4 method for signature 'spec_tbl_df'
keep_variable(.data, .element, .feature, .value, top = Inf, transform = NULL)
```

```r
# S4 method for signature 'tbl_df'
keep_variable(.data, .element, .feature, .value, top = Inf, transform = NULL)
```

Arguments

- `.data` A 'tbl'
- `.element` A character name of the element column
- `.feature` A character name of the transcript/gene column
- `.value` A character name of the read count column
- `top` An integer. How many top genes to select
- `transform` A function to use to transform the data internally (e.g., log1p)

Details

Maturing

...

Value

- A 'tbl' with filtered features
- A 'tbl' with filled abundance
- A 'tbl' with filled abundance

Examples

```r
keep_variable(mtcars_tidy, car_model, feature, value, top=10)
```
Description

`lower_triangular()` takes an input a ‘tbl’ formatted as `| <element> | <feature> | <value> | ... |` and returns a filtered ‘tbl’.

Usage

```r
lower_triangular(.data, .col1, .col2, .value)
```

```r
## S4 method for signature 'spec_tbl_df'
lower_triangular(.data, .col1, .col2, .value)
```

```r
## S4 method for signature 'tbl_df'
lower_triangular(.data, .col1, .col2, .value)
```

Arguments

- `.data` A ‘tbl’
- `.col1` A column name
- `.col2` A column name
- `.value` A column names of the value column

Details

Maturing

...

Value

A ‘tbl’ with filtered rows

A ‘tbl’ with filled abundance

A ‘tbl’ with filled abundance

Examples

```r
library(dplyr)
library(purrrr)
library(tidyr)

mtcars_tidy_permuted =
  mtcars_tidy %>%
  filter(feature == "mpg") %>%
  head(5) %>%
  permute_nest(car_model, c(feature,value))

mtcars_tidy_permuted %>%
```
Summarise mpg
mutate(data = map(data, ~ .x %>% summarise(mean(value)))) %>%
unnest(data) %>%

Lower triangular
lower_triangular(car_model_1, car_model_2, 'mean(value)')

Description

`nest_subset()` takes as input a ‘tbl’ and returns a nested ‘tbl’ according to only selected-column-related columns

Usage

```r
nest_subset(.data, ..., .names_sep = NULL)
```

```r
### S4 method for signature 'spec_tbl_df'
nest_subset(.data, ..., .names_sep = NULL)
```

```r
### S4 method for signature 'tbl_df'
nest_subset(.data, ..., .names_sep = NULL)
```

Arguments

- `.data` A ‘tbl’
- `...` The name of the columns of interest
- `.names_sep` Deprecated by tidyr

Details

Maturing

This function extracts only selected-column-related information for downstream analysis (e.g., visualisation). It is disruptive in the sense that it cannot be passed anymore to nanny function.

Value

A ‘tbl’ object

Examples

```r
nest_subset(mtcars_tidy, data = -car_model)
```
Description

nest_subset

Usage

S4 method for signature 'tbl'
nest_subset(.data, ..., .names_sep = NULL)

Arguments

.data A 'tbl'
... The name of the columns of interest
.names_sep Deprecated by tidyr

Value

A 'tbl' object

permute_nest

Permute columns and nest data for each permutation

Description

permute_nest() takes as input a 'tbl' formatted as | <element> | <feature> | <value> | <...> | and returns a 'tbl' with data nested for each permutation. The package used in the backend is gtools (Gregory R. Warnes, Ben Bolker, and Thomas Lumley, 2020)

Usage

permute_nest(.data, .names_from, .values_from)

S4 method for signature 'spec_tbl_df'
permute_nest(.data, .names_from, .values_from)

S4 method for signature 'tbl_df'
permute_nest(.data, .names_from, .values_from)

Arguments

.data A 'tbl' formatted as | <element> | <feature> | <value> | <...> | .names_from The columns to build the permutations on (e.g., c(col1, col2))
.values_from The columns to be nested for each permutation (e.g., c(col3, col4, col5))
reduce_dimensions

Details

Maturing

Value

A nested 'tbl'
A 'tbl' with filled abundance
A 'tbl' with filled abundance

Examples

permute_nest(mtcars_tidy, car_model, c(feature,value))

reduce_dimensions Dimension reduction of the feature value data

Description

reduce_dimensions() takes as input a 'tbl' formatted as | element | feature | value | ... and calculates the reduced dimensional space of the feature value. The functions available are PCA, MDS (Robinson et al., 2010, <doi:10.1093/bioinformatics/btp616>), tSNE (Laurens van der Maaten, 2009).

Usage

reduce_dimensions(
 .data,
 .element,
 .feature,
 .value,
 method,
 .dims = 2,
 top = Inf,
 of_elements = TRUE,
 transform = NULL,
 scale = TRUE,
 action = "add",
 ...
)

S4 method for signature 'spec_tbl_df'
reduce_dimensions(
 .data,
 .element,
 .feature,
 .value,
 method,
reduce_dimensions

`.dims = 2,
.top = Inf,
of_elements = TRUE,
.transform = NULL,
scale = TRUE,
.action = "add",
...`)

```r
## S4 method for signature 'tbl_df'
reduce_dimensions(
  .data,
  .element,
  .feature,
  .value,
  method,
  .dims = 2,
  .top = Inf,
of_elements = TRUE,
  transform = NULL,
scale = TRUE,
  action = "add",
...)
```

Arguments

- `.data` A ‘tbl’ formatted as `| <element> | <feature> | <value> | <...> |`
- `.element` The name of the element column (normally elements).
- `.feature` The name of the feature column (normally features)
- `.value` The name of the column including the numerical value the clustering is based on (normally feature value)
- `method` A character string. The dimension reduction algorithm to use (PCA, MDS, tSNE).
- `.dims` A list of integer vectors corresponding to principal components of interest (e.g., `list(1:2, 3:4, 5:6)`)
- `.top` An integer. How many top genes to select for dimensionality reduction
- `.of_elements` A boolean. In case the input is a nanny object, it indicates Whether the element column will be element or feature column
- `transform` A function to use to transform the data internally (e.g., `log1p`)
- `scale` A boolean for method="PCA", this will be passed to the ‘prcomp’ function. It is not included in the ... argument because although the default for ‘prcomp’ if FALSE, it is advisable to set it as TRUE.
- `action` A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get).
- `...` Further parameters passed to the function `prcomp` if you choose method="PCA" or Rtsne if you choose method="tSNE"
remove_redundancy

Details

Maturing
This function reduces the dimensions of the feature values. It can use multi-dimensional scaling (MDS) of principal component analysis (PCA).

Value
A tbl object with additional columns for the reduced dimensions
A tbl object with additional columns for the reduced dimensions
A tbl object with additional columns for the reduced dimensions

Examples

```
reduce_dimensions(mtcars_tidy, car_model, feature, value, method="PCA")
reduce_dimensions(mtcars_tidy, car_model, feature, value, method="MDS")
reduce_dimensions(mtcars_tidy, car_model, feature, value, method="tSNE")
```

remove_redundancy Drop redundant elements (e.g., elements) for which feature (e.g., feature/gene) abundances are correlated

Description

remove_redundancy() takes as input a ‘tbl’ formatted as | <element> | <feature> | <value> | <...> | for correlation method, and returns a ‘tbl’ with dropped elements (e.g., elements). The backend function used is widyr::pairwise_cor (David Robinson, 2020)

Usage

```
remove_redundancy(.data, .element, .feature, .value, of_elements = TRUE, correlation_threshold = 0.9, top = Inf, transform = NULL)
```

S4 method for signature 'spec_tbl_df'
remove_redundancy(.data, .element,
remove_redundancy

```r
data, 
element, 
feature, 
value, 
of_elements = TRUE, 
correlation_threshold = 0.9, 
top = Inf, 
transform = NULL
)
```

S4 method for signature 'tbl_df'
remove_redundancy(
 .data,
 .element,
 .feature,
 .value,
of_elements = TRUE,
correlation_threshold = 0.9,
top = Inf,
transform = NULL
)

Arguments

- **.data** A 'tbl' formatted as | <element> | <feature> | <value> | <...> |
- **.element** The name of the element column (normally elements).
- **.feature** The name of the feature column (normally features)
- **.value** The name of the column including the numerical value the clustering is based on (normally feature value)
- **of_elements** A boolean. In case the input is a nanny object, it indicates Whether the element column will be element or feature column
- **correlation_threshold** A real number between 0 and 1. For correlation based calculation.
- **top** An integer. How many top genes to select for correlation based method
- **transform** A function to use to transform the data internally (e.g., log1p)

Details

Maturing

This function removes redundant elements from the original data set (e.g., elements or features). For example, if we want to define cell-type specific signatures with low element redundancy. This function returns a tibble with dropped redundant elements (e.g., elements). Two redundancy estimation approaches are supported: (i) removal of highly correlated clusters of elements (keeping a representative) with method="correlation"; (ii) removal of most proximal element pairs in a reduced dimensional space.

Value

A tbl object with with dropped redundant elements (e.g., elements).
A tbl object with with dropped redundant elements (e.g., elements).
A tbl object with with dropped redundant elements (e.g., elements).
Examples

```r
classify_car(car_model, feature, value)
```
of_elements = TRUE,
 dimension_1_column_rotated = NULL,
 dimension_2_column_rotated = NULL,
 action = "add",
)

Arguments

.data
 A `tbl` formatted as | <element> | <feature> | <value> | <...> |

dimension_1_column
 A character string. The column of the dimension 1

dimension_2_column
 A character string. The column of the dimension 2

rotation_degrees
 A real number between 0 and 360

.element
 The name of the element column (normally elements).

of_elements
 A boolean. In case the input is a nanny object, it indicates Whether the element column will be element or feature column

dimension_1_column_rotated
 A character string. The column of the rotated dimension 1 (optional)

dimension_2_column_rotated
 A character string. The column of the rotated dimension 2 (optional)

.action
 A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get).

Details

 Maturing
 This function to rotate two dimensions such as the reduced dimensions.

Value

A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as `<NAME OF DIMENSION> rotated <ANGLE>` by default, or as specified in the input arguments.

A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as `<NAME OF DIMENSION> rotated <ANGLE>` by default, or as specified in the input arguments.

A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as `<NAME OF DIMENSION> rotated <ANGLE>` by default, or as specified in the input arguments.

Examples

```
mtcars_tidy_MDS = reduce_dimensions(mtcars_tidy, car_model, feature, value, method="MDS")
rotate_dimensions(mtcars_tidy_MDS, `Dim1`, `Dim2`, .element = car_model, rotation_degrees = 45)
```
subset

Extract selected-column-wise information

Description

subset() takes as input a 'tbl' and returns a 'tbl' with only selected-column-related columns.

Usage

```r
subset(.data, .column)
```

```r
## S4 method for signature 'spec_tbl_df'
subset(.data, .column)
```

```r
## S4 method for signature 'tbl_df'
subset(.data, .column)
```

```r
## S4 method for signature 'tbl'
subset(.data, .column)
```

Arguments

- `.data` A 'tbl'
- `.column` The name of the column of interest

Details

Maturing

This function extracts only selected-column-related information for downstream analysis (e.g., visualisation). It is disruptive in the sense that it cannot be passed anymore to nanny function.

Value

- A 'tbl' object

Examples

```r
subset(mtcars_tidy, car_model)
```
Index

as_matrix, 2
as_matrix, spec_tbl_df-method
(as_matrix), 2
as_matrix, tbl_df-method
(as_matrix), 2
cluster_elements, 3
cluster_elements, spec_tbl_df-method
(cluster_elements), 3
cluster_elements, tbl_df-method
(cluster_elements), 3
combine_nest, 5
combine_nest, spec_tbl_df-method
(combine_nest), 5
combine_nest, tbl_df-method
(combine_nest), 5
fill_missing, 6
fill_missing, spec_tbl_df-method
(fill_missing), 6
fill_missing, tbl_df-method
(fill_missing), 6
impute_missing, 7
impute_missing, spec_tbl_df-method
(impute_missing), 7
impute_missing, tbl_df-method
(impute_missing), 7
keep_variable, 8
keep_variable, spec_tbl_df-method
(keep_variable), 8
keep_variable, tbl_df-method
(keep_variable), 8
lower_triangular, 9
lower_triangular, spec_tbl_df-method
(lower_triangular), 9
lower_triangular, tbl_df-method
(lower_triangular), 9
nest_subset, 10
nest_subset, spec_tbl_df-method
(nest_subset), 10
nest_subset, tbl-method, 11
permute_nest, 11
permute_nest, spec_tbl_df-method
(permute_nest), 11
permute_nest, tbl_df-method
(permute_nest), 11
reduce_dimensions, 12
reduce_dimensions, spec_tbl_df-method
(reduce_dimensions), 12
reduce_dimensions, tbl_df-method
(reduce_dimensions), 12
remove_redundancy, 14
remove_redundancy, spec_tbl_df-method
(remove_redundancy), 14
remove_redundancy, tbl_df-method
(remove_redundancy), 14
rotate_dimensions, 16
rotate_dimensions, spec_tbl_df-method
(rotate_dimensions), 16
rotate_dimensions, tbl_df-method
(rotate_dimensions), 16
subset, 18
subset, spec_tbl_df-method
(subset), 18
subset, tbl-method(subset), 18
subset, tbl_df-method(subset), 18