Package ‘multilevelPSA’

March 22, 2018

License GPL (>= 2)
Title Multilevel Propensity Score Analysis
Type Package
Author Jason Bryer <jason@bryer.org>
Maintainer Jason Bryer <jason@bryer.org>
Version 1.2.5
URL http://github.com/jbryer/multilevelPSA
BugReports https://github.com/jbryer/multilevelPSA/issues
Depends ggplot2, xtable, R (>= 3.0)
Imports PSAgraphics, plyr, psych, reshape, grid, party, MASS
Suggests testthat
Date 2018-03-22
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-03-22 20:21:26 UTC

R topics documented:

 multilevelPSA-package ... 2
 align.plots .. 3
 as.data.frame.covariate.balance 4
 covariate.balance .. 4
 covariateBalance .. 5
 cv.trans.psa ... 6
 diffitable.plot .. 7
 getPropensityScores .. 7
 getStrata .. 8
multilevelPSA-package

Multilevel Propensity Score Analysis

Description

This package provides functions to estimate and visualize multilevel propensity score analysis.

Details

This package extends the principles put forth by the PSAgraphics (Helmreich, Pruzek, & Xiong, 2010) for multilevel, or clustered, data.

Propensity score analyses are typically done in two phases. In phase I, a statistical model predicting treatment using the available individual covariates is estimated. This package currently provides functions to perform propensity score estimates using logistic regression (see `mlpsa.logistic`) and conditional inference trees (see `mlpsa.ctree`). The latter method provides explicit stratifications as defined by each leaf node. The former however, results in a numerical value ranging from zero to one (i.e. the fitted values). A common approach is to then create stratifications using quintiles. However, other approaches such as Loess regression are also provided.
Phase II of typical propensity score analyses concerns with the comparison of an outcome between the treatment and comparison groups. The `mlpsa` method will perform this analysis in a multilevel, or clustered, fashion. That is, the results of the `mlpsa` procedure produce summary results at level one (i.e. each strata within each cluster), level two (i.e. overall results for each cluster), and overall (i.e. overall results across all clusters).

This package also provides a number of visualizations that provide a critical part in presenting, understanding, and interpreting the results. See `plot.mlpsa` for details.

Author(s)

Jason Bryer <jason@bryer.org>

References

https://CRAN.R-project.org/package=PSAgraphics http://www.jstatsoft.org/v29/i06/

See Also

PSAgraphics

align.plots

Adapted from ggExtra package which is no longer available. This is related to an experimental mlpsa plot that will combine the circular plot along with the two individual distributions.

Description

Adapted from ggExtra package which is no longer available. This is related to an experimental mlpsa plot that will combine the circular plot along with the two individual distributions.

Usage

```r
## S3 method for class 'plots'
align(gl, ...)
```

Arguments

- `gl`: grid.layout
- `...`: graphic elements to combine.
Description

Returns the overall effects as a data frame.

Usage

S3 method for class 'covariate.balance'
as.data.frame(x, row.names = NULL,
onoptional = FALSE, ...)

Arguments

- **x**: results of \texttt{covariate.balance}.
- **row.names**: unused.
- **optional**: unused.
- **...**: unused

Value

a data frame with overall covariate effects before and after adjustment.

covariate.balance \hspace{1em} \textit{Estimate covariate effect sizes before and after propensity score adjustment.}

Description

Estimate covariate effect sizes before and after propensity score adjustment.

Usage

covariate.balance(covariates, treatment, level2, strata, abs = TRUE)

Arguments

- **covariates**: frame or matrix of covariates.
- **treatment**: vector of treatment indicators.
- **level2**: vector indicating level 2 membership.
- **strata**: strata indicators.
- **abs**: if TRUE absolute values of effect sizes will be plotted.
covariateBalance

Calculate covariate effect size differences before and after stratification.

Description

This function is modified from the `cv.bal.psa` function in the PSAGrphics package.

Usage

covariateBalance(covariates, treatment, propensity, strata = NULL, int = NULL, tree = FALSE, minsize = 2, universal.psd = TRUE, trM = 0, absolute.es = TRUE, trt.value = NULL, use.trt.var = FALSE, verbose = FALSE, xlim = NULL, plot.strata = TRUE, na.rm = TRUE, ...)

Arguments

covariates dataframe of interest
treatment binary vector of 0s and 1s (necessarily? what if character, or 1, 2?)
propensity PS scores from some method or other.
strata either a vector of strata number for each row of covariate, or one number n in which case it is attempted to group rows by ps scores into n strata of size approximately 1/n. This does not seem to work well in the case of few specific propensity values, as from a tree.
int either a number m used to divide [0,1] into m equal length subintervals, or a vector of cut points between 0 an 1 defining the subintervals (perhaps as suggested by loess.psa). In either case these subintervals define strata, so strata can be of any size.
tree logical, if unique ps scores are few, as from a recursively partitioned tree, then TRUE will force each ps value to define a stratum.
minsize smallest allowable stratum-treatment size. If violated, strata is removed.
universal.psd If 'TRUE', forces standard deviations used to be unadjusted for stratification.
trM trimming proportion for mean calculations.
absolute.es logical, if 'TRUE' routine uses absolute values of all effect sizes.
trt.value allows user to specify which value is active treatment, if desired.
use.trt.var logical, if true then Rubin-Stuart method using only treatment variance with be used in effect size calculations.
verbose logical, controls output that is visibly returned.
xlim limits for the x-axis.
plot.strata logical indicating whether to print strata.
na.rm should missing values be removed.
... currently unused.
Details

Note: effect sizes are calculated as treatment 1 - treatment 0, or treatment B - treatment A.

Author(s)

Robert M. Pruzek RMPruzek@yahoo.com
James E. Helmreich James.Helmreich@Marist.edu
KuangNan Xiong harryxkn@yahoo.com
Jason Bryer jason@bryer.org

cv.trans.psa
Transformation of Factors to Individual Levels

Description

The function `cv.trans.psa` takes a covariate data frame and replaces each categorical covariate of \(n \geq 3 \) levels with \(n \) new binary covariate columns, one for each level. Transforms covariate dataframe for use with the function `cv.bal.psa`.

Usage

`cv.trans.psa(covariates, fcol = NULL)`

Arguments

- `covariates` A dataframe of covariates, presumably some factors.
- `fcol` An optional vector containing the factor columns in the covariate data frame. In `NULL` (default) routine to identify factors internally.

Details

NOTE: This function originated in the `PSAgraphics` package. It has been adapted here for the `multilevelPSA` package.

Author(s)

James E. Helmreich James.Helmreich@Marist.edu
Robert M. Pruzek RMPruzek@yahoo.com
KuangNan Xiong harryxkn@yahoo.com
Jason Bryer jason@bryer.org
difftable.plot

This function produces a ggplot2 figure containing the mean differences for each level two, or cluster.

Description

This function produces a ggplot2 figure containing the mean differences for each level two, or cluster.

Usage

difftable.plot(x, fill.colors = NULL, legendlab = NULL, ...)

Arguments

x the results of mlpsa.
fill.colors the colors to use for each level two.
legendlab the label to use for the legend, or NULL to exclude.
... currently unused.

Value

a ggplot2 figure

getPropensityScores

Returns a data frame with two columns corresponding to the level 2 variable and the fitted value from the logistic regression.

Description

Returns a data frame with two columns corresponding to the level 2 variable and the fitted value from the logistic regression.

Usage

getPropensityScores(lr.results, nStrata = 5)

Arguments

lr.results the results of mlpsa.logistic
nStrata number of strata within each level.

Value

a data frame
See Also

mlpsa.logistic

getStrata

Returns a data frame with two columns corresponding to the level 2 variable and the leaves from the conditional inference trees.

Description

Returns a data frame with two columns corresponding to the level 2 variable and the leaves from the conditional inference trees.

Usage

getStrata(party.results, data, level2)

Arguments

party.results the results of mlpsa.ctree
data the data frame to merge results to
level2 the name of the level 2 variable.

Value

a data frame

See Also

mlpsa.ctree

is.mlpsa

Returns true if the object is of type mlpsa

Description

Returns true if the object is of type mlpsa

Usage

is.mlpsa(x)

Arguments

x the object to test
Examples

```r
loess.plot(x, response, treatment, responseTitle = "", treatmentTitle = "Treatment", percentPoints.treat = 0.1, percentPoints.control = 0.01, points.treat.alpha = 0.1, points.control.alpha = 0.1, plot.strata, plot.strata.alpha = 0.2, ...)
```

Arguments

- `x` vector of propensity scores.
- `response` the response variable.
- `treatment` the treatment variable as a logical type.
- `responseTitle` the label to use for the y-axis (i.e. the name of the response variable)
- `treatmentTitle` the label to use for the treatment legend.
- `percentPoints.treat` the percentage of treatment points to randomly plot.
- `percentPoints.control` the percentage of control points to randomly plot.
- `points.treat.alpha` the transparency level for treatment points.
- `points.control.alpha` the transparency level for control points.
- `plot.strata` an integer value greater than 2 indicating the number of vertical lines to plot corresponding to quantiles.
- `plot.strata.alpha` the alpha level for the vertical lines.
- `...` other parameters passed to `geom_smooth` and `stat_smooth`.

Value

- a ggplot2 figure

See Also

- `plot.mlpsa`
Examples

```r
## Not run:
require(multilevelPSA)
require(party)
data(pisana)
data(pisa.psa.cols)
cnt = 'USA' # Can change this to USA, MEX, or CAN
pisana2 = pisana[,pisana$CNT == cnt,]
pisana2$treat <- as.integer(pisana2$PUBPRIV) %% 2
lr.results <- glm(treat ~ ., data=pisana2[,c('treat',pisa.psa.cols), family='binomial')
st = data.frame(ps=fitted(lr.results),
math=apply(pisana2[,paste('PV', 1:5, 'MATH', sep=''),], 1, mean),
pubpriv=pisana2$treat)
st$treat = as.logical(st$pubpriv)
loess.plot(st$ps, response=st$math, treatment=st$treat, percentPoints.control = 0.4,
percentPoints.treat=0.4)
## End(Not run)
```


Description

Usage

```r
lsos(..., n = 10)
```

Arguments

... not used.
n the number of objects to return.

Value

a list of objects loaded sorted by size.
missing.plot

Returns a heat map graphic representing missingness of variables grouped by the given grouping vector.

Description

NOTE: This is an experimental function and the results may vary depending on the nature of the dataset.

Usage

```r
missing.plot(x, grouping, grid = FALSE, widths = c(ggplot2::unit(3, "null"),
ggplot2::unit(1, "inches")), heights = c(ggplot2::unit(1, "inches"),
ggplot2::unit(3, "null")), color = "red", ...)
```

Arguments

- `x` a data frame containing the variables to visualize missingness
- `grouping` a vector of length nrow(vars) corresponding to how missing will be grouped by
- `grid` whether to draw a grid between tiles
- `widths` the ratio of the widths of the heatmap and histogram.
- `heights` the ratio of the heights of the heatmap and histogram.
- `color` the color used for indicating missingness.
- `...` currently unused.

Value

a ggplot2 expression

See Also

plot.mlpsa

mlpsa

This function will perform phase II of the multilevel propensity score analysis.

Description

TODO: Need more details

Usage

```r
mlpsa(response, treatment = NULL, strata = NULL, level2 = NULL,
       minN = 5, reverse = FALSE, ci.level = 0.05)
```
Arguments

response vector containing the response values
treatment vector containing the treatment conditions
strata vector containing the strata for each response
level2 vector containing the level 2 specifications
minN the minimum number of subjects per strata for that strata to be included in the analysis.
reverse reverse the order of treatment and control for the difference calculation.
ci.level the confidence level to use for confidence intervals. Defaults to a 95% confidence level.

Details

The ci.adjust provides a Bonferroni-Sidak adjusted confidence intervals based on the number of levels/clusters.

Value

a mlpsa class

See Also

mlpsa.ctree mlpsa.logistic

Examples

Not run:
require(multilevelPSA)
require(party)
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c('CNT','PUBPRIV',pisa.psa.cols)], formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
student.party$mathscore = apply(student.party[,paste0('PV', 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpsa(response=student.party$mathscore,
treatment=student.party$PUBPRIV,
strata=student.party$strata,
level2=student.party$CNT, minN=5)
results.psa.math
summary(results.psa.math)

End(Not run)
mlpsa.circ.plot

Plots the results of a multilevel propensity score model.

Description

The plot created uses the ggplot2 framework. As such, additional modifications can be made. This plot is an extension of the circ.psa function in the PSAgraphics package for multilevel models.

Usage

mlpsa.circ.plot(x, xlab = names(multilevelPSA$level2.summary)[4],
 ylab = names(multilevelPSA$level2.summary)[5], legendlab = "Level 2",
 title = NULL, overall.col = "blue", overall.ci.col = "green",
 level1.plot = FALSE, level1.point.size = NULL, level1.rug.plot = NULL,
 level1.projection.lines = FALSE, level2.plot = TRUE,
 level2.point.size = NULL, level2.rug.plot = "tr",
 level2.projection.lines = TRUE, level2.label = FALSE,
 unweighted.means = FALSE, weighted.means = FALSE, fill.colors = NULL,
 ...)

Arguments

x the results of mlpsa.
xlab label for the x-axis.
ylab label for the y-axis.
legendlab the label for the legend, or NULL to exclude.
title title for the figure.
overall.col the color used for the overall results.
overall.ci.col the color used for the confidence intervals.
level1.plot logical value indicating whether level 1 points should be plotted.
level1.point.size the size of level 1 points
level1.rug.plot the placement for plotting a level 2 rug. Possible values are bl (for left and bottom), tr (for top and right), or NULL (to exclude).
level1.projection.lines logical value indicating whether level 1 project lines (parallel to the unit line) are drawn.
level2.plot logical value indicating whether level 2 points should be plotted.
level2.point.size the size of level 2 points
level2.rug.plot the placement for plotting a level 2 rug. Possible values are bl (for left and bottom), tr (for top and right), or NULL (to exclude).
level2.projection.lines
logical value indicating whether level 2 project lines (parallel to the unit line) are drawn.

level2.label
logical value indicating whether level 2 points should be labeled.

unweighted.means
logical value indicating whether horizontal and vertical lines are drawn representing the unweighted (i.e. unadjusted from phase I of PSA) means for each level 2, or cluster.

weighted.means
logical value indicating whether horizontal and vertical lines are drawn representing the weighted means for each level 2, or cluster.

fill.colors
if specified, the colors to use for level 2 points.

... currently unused.

See Also
plot.mlpsa

Examples

Not run:
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c('CNT','PUBPRIV',pisa.psa.cols)],
formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
student.party$mathscore = apply(student.party[,paste0('PV', 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpsa(response=student.party$mathscore,
 treatment=student.party$PUBPRIV,
 strata=student.party$strata,
 level2=student.party$CNT, minN=5)
mlpsa.circ.plot(results.psa.math, legendlab=FALSE)

End(Not run)

mlpsa.ctree

Estimates propensity scores using the recursive partitioning in a conditional inference framework.

Description

This function will estimate propensity scores using the conditional inference framework as outlined in the party package. Specifically, a separate tree will be estimated for each level 2 (or cluster). A key advantage of this framework over other methods for estimating propensity scores is that this method will work on data sets containing missing values.
Usage

mlpsa.difference.plot(vars, formula, level2, ...)

Arguments

vars a data frame containing the covariates to use for estimating the propensity scores.
formula the model for estimating the propensity scores. For example, treat ~ .
level2 the name of the column in vars specifying the level 2 (or cluster).
... currently unused.

Value

a list of BinaryTree-class classes for each level 2

References

See Also

getstrata
treeplot

mlpsa.difference.plot

Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

Description

Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

Usage

mlpsa.difference.plot(x, xlab = NULL, ylab = NULL, title = NULL,
overall.col = "blue", overall.ci.col = "green",
level2.point.size = NULL, level1.points = TRUE, errorbars = TRUE,
errorbars.adjusted.ci = TRUE, level2.rug.plot = TRUE, jitter = TRUE,
reorder = TRUE, labellevel2 = TRUE, sd = NULL, xlim, ...)

Usage

mlpsa.difference.plot(x, xlab = NULL, ylab = NULL, title = NULL,
overall.col = "blue", overall.ci.col = "green",
level2.point.size = NULL, level1.points = TRUE, errorbars = TRUE,
errorbars.adjusted.ci = TRUE, level2.rug.plot = TRUE, jitter = TRUE,
reorder = TRUE, labellevel2 = TRUE, sd = NULL, xlim, ...)

Description

Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

Usage

mlpsa.difference.plot(x, xlab = NULL, ylab = NULL, title = NULL,
overall.col = "blue", overall.ci.col = "green",
level2.point.size = NULL, level1.points = TRUE, errorbars = TRUE,
errorbars.adjusted.ci = TRUE, level2.rug.plot = TRUE, jitter = TRUE,
reorder = TRUE, labellevel2 = TRUE, sd = NULL, xlim, ...)

Description

Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

Usage

mlpsa.difference.plot(x, xlab = NULL, ylab = NULL, title = NULL,
overall.col = "blue", overall.ci.col = "green",
level2.point.size = NULL, level1.points = TRUE, errorbars = TRUE,
errorbars.adjusted.ci = TRUE, level2.rug.plot = TRUE, jitter = TRUE,
reorder = TRUE, labellevel2 = TRUE, sd = NULL, xlim, ...)

Description

Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

Usage

mlpsa.difference.plot(x, xlab = NULL, ylab = NULL, title = NULL,
overall.col = "blue", overall.ci.col = "green",
level2.point.size = NULL, level1.points = TRUE, errorbars = TRUE,
errorbars.adjusted.ci = TRUE, level2.rug.plot = TRUE, jitter = TRUE,
reorder = TRUE, labellevel2 = TRUE, sd = NULL, xlim, ...)

Description

Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

Usage

mlpsa.difference.plot(x, xlab = NULL, ylab = NULL, title = NULL,
overall.col = "blue", overall.ci.col = "green",
level2.point.size = NULL, level1.points = TRUE, errorbars = TRUE,
errorbars.adjusted.ci = TRUE, level2.rug.plot = TRUE, jitter = TRUE,
reorder = TRUE, labellevel2 = TRUE, sd = NULL, xlim, ...)

Description

Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

Usage

mlpsa.difference.plot(x, xlab = NULL, ylab = NULL, title = NULL,
overall.col = "blue", overall.ci.col = "green",
level2.point.size = NULL, level1.points = TRUE, errorbars = TRUE,
errorbars.adjusted.ci = TRUE, level2.rug.plot = TRUE, jitter = TRUE,
reorder = TRUE, labellevel2 = TRUE, sd = NULL, xlim, ...)

Description

Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

Usage

mlpsa.difference.plot(x, xlab = NULL, ylab = NULL, title = NULL,
overall.col = "blue", overall.ci.col = "green",
level2.point.size = NULL, level1.points = TRUE, errorbars = TRUE,
errorbars.adjusted.ci = TRUE, level2.rug.plot = TRUE, jitter = TRUE,
reorder = TRUE, labellevel2 = TRUE, sd = NULL, xlim, ...)

Description

Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

Usage

mlpsa.differenc...
Arguments

- **x**: the results of `mlpsa`.
- **xlab**: label for the x-axis, or NULL to exclude.
- **ylab**: label for the y-axis, or NULL to exclude.
- **title**: title of the figure, or NULL to exclude.
- **overall.col**: the color of the overall results line.
- **overall.ci.col**: the color of the overall confidence interval.
- **level2.point.size**: the point size of level 2 points.
- **level1.points**: logical value indicating whether level 1 strata should be plotted.
- **errorbars**: logical value indicating whether error bars should be plotted for each level 1.
- **errorbars.adjusted.ci**: whether the Bonferroni adjusted error bars should be plotted (these will be dashed lines).
- **level2.rug.plot**: whether a rug plot should be plotted for level 2.
- **jitter**: logical value indicating whether level 1 points should be jittered.
- **reorder**: logical value indicating whether the level two clusters should be reordered from largest difference to smallest.
- **labelLevel2**: logical value indicating whether the difference for each level 2 should be labeled.
- **sd**: If specified, effect sizes will be plotted instead of difference in the native unit.
- **xlim**: the limits of the x-axis.
- ...: currently unused.

See Also

- `plot.mlpsa`

Examples

```r
## Not run:
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c('CNT','PUBPRIV',pisa.psa.cols)], formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
student.party$mathscore = apply(student.party[,paste0("PV", 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpsa(response=student.party$mathscore, treatment=student.party$PUBPRIV, strata=student.party$strata,
level2=student.party$CNT, minN=5)
mlpsa.difference.plot(results.psa.math, sd=mean(student.party$mathscore, na.rm=TRUE))
## End(Not run)
```
mlpsa.distribution.plot

Plots distribution for either the treatment or comparison group.

Description

Plots distribution for either the treatment or comparison group.

Usage

mlpsa.distribution.plot(x, treat, fill.colours = NULL, flip = TRUE,
label = treat, level2.label = NULL, legend.lab = NULL,
axis.text.size = 8, fill.colors = NULL, ...)

Arguments

x
the results of mlpsa.
treat
the group to plot. This must be one of the two levels of the treatment variable.
fill.colours
if specified, the colors to use for level 2 points.
flip
if TRUE, the level 2 clusters will be on the y-axis and the outcome variable on the x-axis. Otherwise reversed.
label
the label to use for the axis.
level2.label
the axis label for the level 2 indicators.
legend.lab
the label for the legend, or NULL to exclude a legend.
axis.text.size
the size of the axis text
fill.colors
if specified, the colors to use for level 2 points.
...
currently unused.

See Also

plot.mlpsa

mlpsa.logistic

Estimates propensity scores using logistic regression.

Description

This method will estimate a separate logistic regression model for each level 2 (or cluster).

Usage

mlpsa.logistic(vars, formula, level2, stepAIC = FALSE, ...)

Arguments

vars data frame containing the variables to estimate the logistic regression
formula the logistic regression formula to use
level2 the name of the column containing the level 2 specification
stepAIC if true, the stepAIC from the MASS package will be used within each level.
... currently unused.

Value

a list of glm classes for each level 2 or stepwise-selected model if stepAIC is true.

See Also

getPropensityScores

pisa.colnames Mapping of variables in pisana with full descriptions.

Description

This data frame provides three variables, Variable corresponding to the column names in pisana, ShortDesc providing a short description of the variable as a valid R object name, and Desc providing a longer description of the variable.

Format

a data frame with 50 rows of 3 variables.

pisa.countries Data frame mapping PISA countries to their three letter abbreviation.

Description

This data frame has two columns, CNT3 for the three letter abbreviation of each country and Country that provides the full country name in English.

Format

data frame with 65 rows of 2 variables.
pisa.psa.cols

Character vector representing the list of covariates used for estimating propensity scores.

Description

Character vector representing the list of covariates used for estimating propensity scores.

Format

a character vector with covariate names for estimating propensity scores.

pisana

North American (i.e. Canada, Mexico, and United States) student results of the 2009 Programme of International Student Assessment.

Description

Student results from the 2009 Programme of International Student Assessment (PISA) as provided by the Organization for Economic Co-operation and Development (OECD). See http://www.pisa.oecd.org/ for more information including the code book.

Format

a data frame with 66,548 observations of 65 variables.

Details

Note that missing values have been imputed using the http://cran.r-project.org/web/packages/mice/index.html package. Details on the specific procedure are in the pisa.impute function in the pisa package.

Source

Organization for Economic Co-operation and Development

References

plot.covariate.balance

Multiple covariate balance assessment plot.

Description

A graphic based upon `cv.bal.psa` function in the PSAGraphics package. This graphic plots the effect sizes for multiple covariates before and after propensity score adjustment.

Usage

```r
## S3 method for class 'covariate.balance'
plot(x, plot.strata = FALSE,
     order = c("unadjusted", "adjusted"), strata.size = 3,
     strata.legend.guide = "none", point.size = 3, point.alpha = 1,
     line.color = "black", line.alpha = 0.2, legend.position = c(0.8, 0.2),
     ...)  
```

Arguments

- `x`: results of `covariate.balance`.
- `plot.strata`: whether individual strata should be plotted.
- `order`: how to order the y-axis. Possible values are adjusted, unadjusted, or NULL (don’t reorder).
- `strata.size`: text size for strata if plotted.
- `strata.legend.guide`: guide for legend placement for strata.
- `point.size`: size of the overall effect size points.
- `point.alpha`: transparency level of the overall effect size points.
- `line.color`: the color of the line connecting the overall effect size points.
- `line.alpha`: transparency level of the line connecting the overall effect size points.
- `legend.position`: where to position the legend.
- `...`: currently unused.

Value

a ggplot2 with an attribute, `effects`, that is the data frame used to create the plot.
plot.mlpsa

plot.mlpsa

Plots the results of a multilevel propensity score model.

Description

The plot created uses the ggplot2 framework. As such, additional modifications can be made. This plot is an extension of the `circ.psa` function in the PSAgraphics package for multilevel models.

Usage

```
## S3 method for class 'mlpsa'
plot(x, ratio = c(1, 2), plotExtra = NULL, ...)
```

Arguments

- **x** the results of `mlpsa`.
- **ratio** the ratio of the size of the distribution plots (left and bottom) to the circular plot.
- **plotExtra** a plot to place in the lower left corner.
- **...** parameters passed to `mlpsa.circ.plot` and `mlpsa.distribution.plot`

Examples

```
## Not run:
require(mltlevelPSA)
require(party)
data(pisana)
data(pisa.colnames)
data(pisa.cols)
mlctree = mlpsa.ctree(pisana[,c('CNT','PUBPRIV',pisa.psa.cols)], formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
student.party$mathscore = apply(student.party[,paste0('PV', 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpsa(response=student.party$mathscore,
                         treatment=student.party$PUBPRIV,
                         strata=student.party$strata,
                         level2=student.party$CNT, minN=5)
plot(results.psa.math)
```

End(Not run)
plot.psrange

Plots densities and ranges for the propensity scores.

Description

Plots densities and ranges for the propensity scores.

Usage

```r
## S3 method for class 'psrange'
plot(x, xlab = NULL, ylab = NULL,
     labels = c("Comparison", "Treatment"), text.ratio.size = 4,
     text.ncontrol.size = 3, point.size = 1, point.alpha = 0.6,
     line.width = 6, density.alpha = 0.2, rect.color = "green",
     rect.alpha = 0.2, ...)
```

Arguments

- `x` the result of `psrange`.
- `xlab` label for x-axis.
- `ylab` label for y-axis.
- `labels` labels for the comparison and treatment legend.
- `text.ratio.size` size of the text for the ratio.
- `text.ncontrol.size` size of the text for the number of control units.
- `point.size` size of the points for the minimum and maximum ranges for each model.
- `point.alpha` the alpha (transparency) level for the points.
- `line.width` the width of the line between the median of the minimum and maximum ranges.
- `density.alpha` the alpha (transparency) level of the density curves.
- `rect.color` the color of the rectangle surrounding the range of minimum and maximum ranges.
- `rect.alpha` the alpha (transparency) level of the rectangle.
- `...` currently unused.

Value

- a ggplot2 object
print.covariate.balance

Prints the overall effects before and after propensity score adjustment.

Description

Prints the overall effects before and after propensity score adjustment.

Usage

```r
## S3 method for class 'covariate.balance'
print(x, ...)
```

Arguments

- `x`: results of `covariate.balance`.
- `...`: unused.

print.mlpsa

Prints basic information about a mlpsa class.

Description

Prints basic information about a `mlpsa` class.

Usage

```r
## S3 method for class 'mlpsa'
print(x, ...)
```

Arguments

- `x`: the `mlpsa` class.
- `...`: unused.
print.psrange Prints information about a psrange result.

Description
Prints information about a psrange result.

Usage
```r
## S3 method for class 'psrange'
print(x, ...)
```

Arguments
- `x`: psrange to print info about.
- `...`: currently unused

print.xmlpsa Prints the results of mlpsa and xtable.mlpsa.

Description
Print method for `xtable.mlpsa`.

Usage
```r
## S3 method for class 'xmlpsa'
print(x, tabular.environment = "longtable",
      floating = FALSE, ...)
```

Arguments
- `x`: result of `xtable.mlpsa`
- `tabular.environment`: see `print.xtable`.
- `floating`: see `print.xtable`.
- `...`: other parameters passed to `print.xtable`
psrange

Estimates models with increasing number of comparison subjects starting from 1:1 to using all available comparison group subjects.

Description

Estimates models with increasing number of comparison subjects starting from 1:1 to using all available comparison group subjects.

Usage

psrange(df, treatvar, formula, nsteps = 10, nboot = 10, samples, type = c("logistic", "ctree"), ...)

Arguments

df data frame with variables to pass to glm

treatvar vector representing treatment placement. Should be coded as 0s (for control) and 1s (for treatment).

formula formula for logistic regression model

nsteps number of steps to estimate from 1:1 to using all control records.

nboot number of models to execute for each step.

samples the sample sizes to draw from control group for each step.

type either logistic for Logistic regression (using glm function) or ctree for Conditional Inference Trees (using the ctree function).

... other parameters passed to glm.

Value

a class of psrange that contains a summary data frame, a details data frame, and a list of each individual result from glm.

summary.mlpsa

Provides a summary of a mlpsa class.

Description

Provides a summary of a mlpsa class.

Usage

S3 method for class 'mlpsa'
summary(object, overall.label = "Overall", ...)

Arguments

object the mlpsa object.
overall.label the label to place in the strata column for the overall results.
... unused.

summary.psrange Prints the summary results of psrange.

Description

Prints the summary results of psrange.

Usage

S3 method for class 'psrange'
summary(object, ...)

Arguments

object psrange to print summary of.
... currently unused.

tree.plot Heat map representing variables used in a conditional inference tree across level 2 variables.

Description

This figure provides a summary of the covariates used within each level two cluster along with their relative importance. Covariates are listed on the y-axis and level two clusters along the x-axis. Cells that are shaded indicate that that covariate was present in the conditional. The shade of the color represents the highest level within the tree that covariate appeared. That is, the darkest color, or depth 1, corresponds to the covariate used at the root of the tree, or the first split.

Usage

tree.plot(x, colNames, level2Col, colLabels = NULL, color.high = "azure", color.low = "steelblue", color.na = "white", ...)
Arguments

- **x**: the results of `mlpsa.ctree`
- **colNames**: the columns to include in the graphic
- **level2Col**: the name of the level 2 column.
- **colLabels**: column labels to use. This is a data frame with two columns, the first column should match the values in `trees` and the second column the description that will be used for labeling the variables.
- **color.high**: color for variables with less relative importance as determined by occurring later in the tree (further from the root split).
- **color.low**: color for variables with greater relative importance as determined by occurring sooner in the tree (closer to the root split).
- **color.na**: color for variables that do not occur in the tree.
- ... currently unused.

Value

- a ggplot2 expression

See Also

- `plot.mlpsa`

Examples

```r
## Not run:
require(party)
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c('CNT','PUBPRIV',pisa.psa.cols)], formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
tree.plot(mlctree, level2Col=pisana$CNT)
## End(Not run)
```

xtable.mlpsa
Prints the results of mlpsa as a LaTeX table.

Description

This function implements the `xtable` method for `mlpsa`.

Usage

```r
## S3 method for class 'mlpsa'
xtable(x, caption, label, align, digits = 2, display = NULL,
       auto = FALSE, include.note = TRUE, ...)
```
Arguments

x results of `mlpsa`
caption passed through to `xtable`.
label passed through to `xtable`.
align Not used.
digits number of digits to print.
display passed through to `xtable`.
auto passed through to `xtable`.
include.note include a table note indicating how many rows were removed due to insufficient
data within a strata.
... other parameters passed to `summary.mlpsa`
Index

*Topic analysis
 multilevelPSA-package, 2
*Topic datasets
 pisa.colnames, 18
 pisa.countries, 18
 pisa.psa.cols, 19
 pisana, 19
*Topic graphics
 multilevelPSA-package, 2
*Topic multilevel
 multilevelPSA-package, 2
*Topic propensity
 multilevelPSA-package, 2
*Topic psa
 multilevelPSA-package, 2
*Topic score
 multilevelPSA-package, 2

align.plots, 3
as.data.frame.covariate.balance, 4
covariate.balance, 4, 4, 20, 23
covariateBalance, 5
cv.bal.psa, 5, 20
cv.trans.psa, 6
difftable.plot, 7
gem_smooth, 9
getPropensityScores, 7
getStrata, 8, 15
is.mlpsa, 8
loess.plot, 9
lsos, 10

missing.plot, 11
mlpsa, 3, 7, 11, 13, 16, 17, 21, 24, 27, 28
mlpsa.circ.plot, 13, 21
mlpsa.ctree, 2, 8, 12, 14, 27

mlpsa.difference.plot, 15
mlpsa.distribution.plot, 17, 21
mlpsa.logistic, 2, 7, 12, 17
multilevelPSA (multilevelPSA-package), 2
multilevelPSA-package, 2

pisa.colnames, 18
pisa.countries, 18
pisa.psa.cols, 19
pisana, 18, 19
plot.covariate.balance, 20
plot.mlpsa, 3, 21
plot.psrang, 22
print.covariate.balance, 23
print.mlpsa, 23
print.psrang, 24
print.xmlmlpsa, 24
print.xtable, 24

difftable.plot, 7
geom_smooth, 9
getPropensityScores, 7
getStrata, 8, 15
is.mlpsa, 8
loess.plot, 9
lsos, 10

missing.plot, 11
mlpsa, 3, 7, 11, 13, 16, 17, 21, 24, 27, 28
mlpsa.circ.plot, 13, 21
mlpsa.ctree, 2, 8, 12, 14, 27

29