Package ‘mrf2d’

February 21, 2020

Type Package
Title Markov Random Field Models for Image Analysis
Version 0.2.0
Maintainer Victor Freguglia <victorfreguglia@gmail.com>
Description Model fitting, sampling and visualization
 for the (Hidden) Markov Random Field model with pairwise interactions and
general interaction structure from
 which has many popular models used in 2-dimensional lattices
 as particular cases, like the Ising Model and Potts Model.
License GPL-3
Encoding UTF-8
LazyData true
Imports Rcpp (>= 1.0.1), dplyr(>= 0.8.1), reshape2, methods, ggplot2,
 Rdpack
Depends R (>= 3.5.0)
LinkingTo Rcpp, RcppArmadillo
RdMacros Rdpack
RoxygenNote 7.0.2
Suggests testthat (>= 2.1.0), covr, knitr, rmarkdown, glue
VignetteBuilder knitr
URL https://github.com/Freguglia/mrf2d
BugReports https://github.com/Freguglia/mrf2d/issues
NeedsCompilation yes
Author Victor Freguglia [aut, cre] (<https://orcid.org/0000-0002-6189-4453>)
Repository CRAN
Date/Publication 2020-02-21 09:50:03 UTC
R topics documented:

+,.mrfi.numeric-method .. 2
basis_functions ... 3
dplot ... 4
fit_ghm ... 5
fit_pl ... 7
fit_sa ... 8
mrf2d-family .. 11
mrf ... 12
mrfi-class .. 13
plot,mrfi.missing-method .. 14
pl_mrf2d .. 15
rmrf2d .. 16
smr_array .. 18
smr_stat .. 19
Z_potts ... 20
[[],mrfi.numeric.missing-method ... 20

Index

+,.mrfi.numeric-method *Set operations for mrfi objects*

Description

Provides simple operations to include (in the sense of union) new interacting positions to a mrfi object with the `+` operator and remove positions (set difference) with `-`. Individual positions can be included/excluded using length-2 vectors in the right hand side. Union and set difference of complete structures can also be computed by adding or subtracting two mrfi objects.

This operations deal with opposite directions filtering to avoid redundancy in the interaction structure.

Usage

```r
## S4 method for signature 'mrfi,numeric'
e1 + e2

## S4 method for signature 'mrfi,numeric'
e1 - e2

## S4 method for signature 'mrfi,mrfi'
e1 + e2

## S4 method for signature 'mrfi,mrfi'
e1 - e2
```
basis_functions

Arguments

 e1 A mrfi object.
 e2 Either a second mrfi object or a length 2 numeric with the new relative position to include (+) or remove (−).

Examples

 mrfi(1) + c(2,0)
 mrfi(1) - c(1,0)
 mrfi(1) + mrfi(0, positions = list(c(2,0)))
 mrfi(2) - mrfi(1)

Description

fourier_2d() and polynomial_2d() creates a list of basis functions to be used as the fixed effect in fit_ghm.

Usage

fourier_2d(max_freqs, lattice_dim)

 polynomial_2d(poly_deg, lattice_dim)

Arguments

 max_freqs A length 2 numeric vector with maximum frequencies considered (x-axis and y-axis direction, respectively).
 lattice_dim A length 2 numeric vector with lattice dimensions (N,M) to be used.
 poly_deg A length 2 numeric vector with degrees of the bivariate polynomial to be considered.

Details

 fourier_2d() is for 2-dimensional Fourier transform.

Value

 A list of functions.

Author(s)

 Victor Freguglia
dplot

Plotting functions for lattice data

Description

dplot() and cplot() are functions for plotting lattice data. They are an alternative to base R’s image() function using ggplot2 instead. dplot is used for discrete data and cplot for continuous data, they only differ in the fact that pixel values are treated as a factor in dplot, therefore, a discrete scale is used.

Usage

dplot(Z, legend = FALSE)
cplot(Y, legend = TRUE)

Arguments

Z A matrix object with integers only.
legend logical indicating whether a legend should be included or not.
Y A matrix object with continuous values.

Details

Since returns a ggplot object, other layers can be added to it using the usual ggplot2 syntax in order to modify any aspect of the plot.

The data frame used to create the object has columns named x, y and value, which are mapped to x, y and fill, respectively, used with geom_tile().

Value

a ggplot object.

Author(s)

Victor Freguglia
Examples

Plotting discrete data
dplot(Z_potts)

Making it continuous
ccplot(Z_potts + rnorm(length(Z_potts)))

Adding extra ggplot layers
library(ggplot2)
dplot(Z_potts) + ggtitle("This is a title")
dplot(Z_potts, legend = TRUE) + scale_fill_brewer(palette = "Set1")

fit_ghm

EM estimation for Gaussian Hidden Markov field

Description

fit_ghm fits a Gaussian Mixture model with hidden components driven by a Markov random field with known parameters. The inclusion of a linear combination of basis functions as a fixed effect is also possible.

The algorithm is an implementation of (Zhang et al. 2001).

Usage

fit_ghm(Y, mrfi, theta, fixed_fn = list(), equal_vars = TRUE, init_mus = NULL, init_sigmas = NULL, maxiter = 100, max_dist = 10^-3, icm_cycles = 6, verbose = TRUE, qr = NULL)

Arguments

Y A matrix of observed (continuous) pixel values.
mrfi A mrfi object representing the interaction structure.
theta A 3-dimensional array describing potentials. Slices represent interacting positions, rows represent pixel values and columns represent neighbor values. As an example: theta[1,3,2] has the potential pairs of values 0,2 in the second relative position of mrf1.

fixed_fn A list of functions fn(x,y) to be considered as a fixed effect. See basis_functions.

equal_vars logical indicating if the mixture model has the same variances in all mixture components.

init_mus Optional. A numeric with length (C+1) with the initial mean estimate for each component.

init_sigmas Optional. A numeric with length (C+1) with initial sample deviation estimate for each component.

maxiter The maximum number of iterations allowed. Defaults to 100.

max_dist Defines a stopping condition. The algorithm stops if the maximum absolute difference between parameters of two consecutive iterations is less than max_dist.

icm_cycles Number of steps used in the Iterated Conditional Modes algorithm executed in each interaction. Defaults to 6.

verbose logical indicating whether to print the progress or not.

qr The QR decomposition of the design matrix. Used internally.

Details

If either init_mus or init_sigmas is NULL an EM algorithm considering an independent uniform distribution for the hidden component is fitted first and its estimated means and sample deviations are used as initial values. This is necessary because the algorithm may not converge if the initial parameter configuration is too far from the maximum likelihood estimators.

max_dist defines a stopping condition. The algorithm will stop if the maximum absolute difference between (μ and σ) parameters in consecutive iterations is less than max_dist.

Value

A list containing:

- par: A data.frame with μ and σ estimates for each component.
- fixed: A matrix with the estimated fixed effect in each pixel.
- Z_pred: A matrix with the predicted component (highest probability) in each pixel.
- predicted: A matrix with the fixed effect + the μ value for the predicted component in each pixel.
- iterations: Number of EM iterations done.

Author(s)

Victor Freguglia
References

Examples

Sample a Gaussian mixture with components given by Z_potts
mean values are 0, 1 and 2 and a linear effect on the x-axis.

set.seed(2)
Y <- Z_potts + rnorm(length(Z_potts), sd = 0.4) +
 (row(Z_potts) - mean(row(Z_potts)))*0.01
Check what the data looks like
cplot(Y)

fixed <- polynomial_2d(c(1,0), dim(Y))
fit <- fit_ghm(Y, mrfi = mrfi(1), theta = theta_potts, fixed_fn = fixed)
fit$par
cplot(fit$fixed)

fit_pl

Maximum Pseudo-likelihood fitting of MRFs on 2d lattices.

Description

Usage

fit_pl(
Z,
mrfi,
family = "onepar",
init = 0,
optim_args = list(method = "BFGS"),
return_optim = FALSE
)

Arguments

Z A matrix object containing the observed MRF. NA values can be used to create a subregion of the lattice for non-rectangular data.

mrfi A mrfi object representing the interaction structure.
family

The family of parameter restrictions to potentials. Families are: 'onepar', 'oneeach', 'absdif', 'dif' or 'free'. See mrf2d-family.

init

The initial value to be used in the optimization. It can be:

- A valid array of parameter values according to family.
- 0. If set to 0 an array with '0' in all entries is created.

optim_args

Additional parameters passed to optim().

return_optim

Logical indicating whether information from the optim() call are returned.

Value

A list object with elements:

- theta: The estimated array of potential values.
- value: The optimal pseudo-likelihood value.
- opt.xxx(if return_optim is TRUE): Information returned by the optim() function used for the optimization.

Author(s)

Victor Freguglia

Examples

fit_pl(Z_potts, mrfi(1), family = "onepar")
fit_pl(Z_potts, mrfi(1), family = "oneeach")
fit_pl(Z_potts, mrfi(2), family = "onepar")

fit_sa

Stochastic Approximation algorithm for MRFs on 2d lattices

Description

Estimates the parameters of a MRF by successively sampling from a parameter configuration and updating it by comparing the sufficient statistics of the sampled field and the observed field.

This method aims to find the parameter value where the gradient of the likelihood function is equal to zero.

Usage

fit_sa(
Z,
mrfi,
family = "onepar",
gamma_seq,
init = 0,
cycles = 5,
refresh_each = length(gamma_seq) + 1,
refresh_cycles = 60
)

Arguments

Z A matrix object containing the observed MRF. NA values can be used to create a subregion of the lattice for non-rectangular data.
mrfi A mrfi object representing the interaction structure.
family The family of parameter restrictions to potentials. Families are: 'onepar', 'oneeach', 'absdif', 'dif' or 'free'. See mrf2d-family.
gamma_seq A numeric vector with the sequence of constants used in each step \(\gamma_t \).
init The initial value to be used in the optimization. It can be:
• A valid array of parameter values according to family.
• 0. If set to 0 an array with ‘0” in all entries is created.
cycles The number of updates to be done (for each each pixel).
refresh_each An integer with the number of iterations taken before a complete refresh (restart from a random state). This prevents the sample from being stuck in a mode for too long. Defaults to \(\text{length(gamma_seq)} + 1 \) (no refresh happens).
refresh_cycles An iteger indicating how many Gibbs Sampler cycles are performed when a refresh happens. Larger is usually better, but slower.

Details

The stochastic approximation method consists of, given an observed field \(Z \), and a starting parameters configuration \(\theta_0 \), successively sample a field \(Z_t \) from the current parameter configuration and estimate the direction of the gradient of the likelihood function by comparing the sufficient statistics in the current sample and the observed field.

The solution is updated by moving in the estimated direction with a predefined step size \(\gamma_t \), a new field \(Z_{t+1} \) is sampled using the new parameter configuration and \(Z_t \) as an initial value, and the process is repeated.

\[
\theta_{t+1} = \theta_t - \gamma_t (T(Z_t) - T(Z)),
\]

where \(T(Z) \) is the sufficient statistics for the reference field, \(T(Z_t) \) is the sufficient statistics for a field sampled from \(\theta_t \).

gamma_seq is normalized internally by diving values by \(\text{length}(Z) \), so the choice of the sequence is invariant to the lattice dimensions. Typically, a sequence like \(\text{seq(from = 1, to = 0, length.out = 1000)} \) should be used for defining a sequence with 1000 steps. Some tuning of this sequence is required.
Value

A list object with the following elements:

- `theta`: The estimated array of potentials.
- `metrics`: A data.frame containing the euclidean distance between the sufficient statics computed for \(Z \) and the current sample.

Note

Stochastic Approximation is called "Controllable Simulated Annealing" in some references.

Examples where Stochastic Approximation is used with MRFs are (Gimel’farb 1996), (Atchadé et al. 2013).

Author(s)

Victor Freguglia

References

Examples

```r
set.seed(2)
fit1 <- fit_sa(Z_potts, mrfi(1), family = "onepar", gamma_seq = seq(1, 0, length.out = 50))
# Estimated parameters
fit1$theta
# A visualization of estimated gradient norm over iterations.
plot(fit1$metrics)

fit_sa(Z_potts, mrfi(1), family = "oneeach", gamma_seq = seq(1, 0, length.out = 50))
```
mrf2d-family

Parameter restriction families

Description

Different parameter restrictions can be included in estimation processes to make sure `mrf2d` can successfully include a wide range of models available in its inference functions. For a more complete description of which restrictions are used to characterize some of the most common models read the corresponding section of the package’s vignette.

For model identifiability, at least one linear restriction is necessary. `mrf2d` always assume $\theta_{0,0,r} = 0$ for all relative positions r.

Additionally, each family of restrictions may introduce other restrictions:

- **'onepar'**
 - This family assumes the model is defined by a single parameter by adding the restriction
 \[
 \theta_{a,b,r} = \gamma \ast 1(a \neq b).
 \]
 - Here $1()$ denotes the indicator function. In words, the parameter must be the same value for any pair with different values and 0 for any equal-valued pair.

- **'oneeach'**
 - Similar to 'onepar', parameters are 0 for equal-valued pairs and a constant for pairs with different values, but the constant may differ between different relative positions r:
 \[
 \theta_{a,b,r} = \gamma_r \ast 1(a \neq b).
 \]

- **'absdif'**
 - All parameters $\theta_{a,b,r}$ with the same absolute difference between a and b must be equal within each relative position r.
 \[
 \theta_{a,b,r} = \sum_d \gamma_{d,r} \ast 1(|a - b| == d)
 \]

- **'dif'**
 - The same as 'absdif', but parameters may differ between positive and negative differences.
 \[
 \theta_{a,b,r} = \sum_d \gamma_{d,r} \ast 1(a - b == d)
 \]

- **'free'**
 - No additional restriction, all parameters other than $\theta_{0,0,r}$ vary freely.
Author(s)
Victor Freguglia

mrfi

Creation of mrfi objects.

Description
mrfi() creates an object of class mrfi based on a distance rule and optionally a list of relative positions. The argument max_norm and norm_type can be used to automatically include all positions within a "range" defined by the norm type chosen and distance using that norm.

A list of relative positions may also be included to specify sparse interaction structures, for example.

Usage
mrfi(max_norm = 1, norm_type = "1", positions = NULL)

Arguments
max_norm a numeric value. All points with norm ≤ max_dist are included.
norm_type a character indicating the norm type used. Possible values are "m", "1", "2", etc. See norm for details.
positions a list of numeric vectors of length 2. Each vector corresponds to a relative position included.

Value
A mrfi object.

Note
If a position in positions is already included due to the max_norm and norm_type specification, the second occurrence is ignored. The same is valid for repeated or opposite positions in positions.

Author(s)
Victor Freguglia

Examples
mrfi(1)
mrfi(2)
mrfi(2, norm_type = "m")
mrfi(1, positions = list(c(4,4), c(-4,4)))

#Repeated positions are handled automatically
mrfi(1, positions = list(c(1,0), c(2,0)))
mrfi-class

mrfi: MRF interaction structure

Description

The mrfi S4 class is a representation of the interaction structure for a spatially-stationary Markov Random Field.

The function mrfi() provides an interface for creation mrfi objects. A plot method is also available for visualization, as well as conversion methods like as.list and operators like +.

Usage

S4 method for signature 'mrfi'
as.list(x)

Arguments

x mrfi object.

Details

The interaction structure is defined by the list of relative positions in it. For a specific pixel, conditional to the values of pixels in these relative positions from it, its value is independent of any other pixel in the image.

The relative positions are indentified by two integers rx and ry representing the "shift" in the x-axis and y-axis respectively. As an example: The relative position (1,0) representes the pixel in the immediate right position, while (-1,0) the left one.

Note that the inclusion of a relative position to the dependence also implies its opposite direction is not conditionally independent (commutativeness of dependence), but only one is actually included to the mrfi object.

To illustrate that, a nearest neighbor dependence structure can be specified by:

mrfi(1)

Note that it only includes the positions (1,0) and (0,1), but when visualizing it, for example, mrf2d understands the opposite directions are also conditionally dependent, as in

plot(mrfi(1)).

Value

as.list(): converts the mrfi object to a list of interacting positions (list of length-2 vectors).

Slots

Rmat A 2-column matrix where each row represents a relative position of interaction.
Examples

```r
plot(mrfi(max_norm = 2, norm_type = "1"))
plot(mrfi(max_norm = 2, norm_type = "m"))
plot(mrfi(max_norm = 2, norm_type = "l", positions = list(c(4,4)))))

as.list(mrfi(1))
mrfi(1)[[1]]
mrfi(2)[[1:3]]
```

Description

Plots a visual representation of the interaction structure described in a `mrfi` object. The black tile represents a reference pixel and gray tiles are shown in relative positions with dependent pixels.

A `ggplot` object is used, therefore, the user can load the `ggplot2` package and add more `ggplot` layers to freely customize the plot.

Usage

```r
## S4 method for signature 'mrfi,missing'
plot(x, no_axis = FALSE)
```

Arguments

- **x**: A `mrfi` object.
- **no_axis**: logical value indicating whether the axis and grid lines are used. If `TRUE` it simply adds `theme_void()` to the `ggplot` object.

Details

The data.frame used for the `ggplot` call has columns names `rx` and `ry` representing the relative positions.

Value

A `ggplot` object using `geom_tile()` to represent interacting relative positions.

Author(s)

Victor Freguglia
Examples

plot(mrfi(1))

library(ggplot2)
plot(mrfi(1)) + geom_tile(fill = "red")
plot(mrfi(1)) + geom_tile(fill = "blue") + theme_void()
plot(mrfi(1)) + geom_text(aes(label = paste0("(",rx,",",ry,")")))

pl_mrf2d

Pseudo-likelihood function for MRFs on 2d lattices

Description

Computes the pseudo-likelihood function of a Markov Random Field on a 2-dimensional lattice.

Usage

pl_mrf2d(Z, mrfi, theta, log_scale = TRUE)

Arguments

Z A matrix with integers in {0,...,C}.
mrfi A mrfi object representing the interaction structure.
theta A 3-dimensional array describing potentials. Slices represent interacting positions, rows represent pixel values and columns represent neighbor values. As an example: theta[1,3,2] has the potential pairs of values 0,2 in the second relative position of mrfi.
log_scale A logical value indicating whether the returned value should be in logarithmic scale.

Details

The pseudo-likelihood function is defined as the product of conditional distributions:

\[\prod_i P(Z_i|Z_{N_i}, \theta). \]

For more details see the guide vignette: vignette("guide",package = "mrf2d")

Value

A numeric with the pseudo-likelihood value.

Author(s)

Victor Freguglia
Examples

pl_mrfd2d(Z_potts, mrfd(1), theta_potts)

Description

Performs pixelwise updates based on conditional distributions to sample from a Markov random field.

Usage

rmrfd2d(
 init_Z,
 mrfd,
 theta,
 cycles = 60,
 sub_region = NULL,
 fixed_region = NULL
)

Arguments

init_Z One of two options:
 • A matrix object with the initial field configuration. Its values must be integers in {0,...,C}.
 • A length 2 numeric vector with the lattice dimensions.

mrfd A mrfd object representing the interaction structure.

theta A 3-dimensional array describing potentials. Slices represent interacting positions, rows represent pixel values and columns represent neighbor values. As an example: theta[1,3,2] has the potential pairs of values 0,2 in the second relative position of mrfd.

cycles The number of updates to be done (for each each pixel).

sub_region NULL if the whole lattice is considered or a logical matrix with TRUE for pixels in the considered region.

fixed_region NULL if the whole lattice is to be sampled or a logical matrix with TRUE for pixels to be considered fixed. Fixed pixels are not updated in the Gibbs Sampler.
Details

This function implements a Gibbs Sampling scheme to sample from a Markov random field by iteratively sampling pixel values from the conditional distribution

\[P(Z_i | Z_{N_i}, \theta) \].

A cycle means exactly one update to each pixel. The order pixels are sampled is randomized within each cycle.

If `init_Z` is passed as a length 2 vector with lattice dimensions, the initial field is sampled from independent discrete uniform distributions in \([0, ..., C]\). The value of \(C\) is obtained from the number of rows/columns of \(\theta\).

A MRF can be sampled in a non-rectangular region of the lattice with the use of the `sub_region` argument or by setting pixels to `NA` in the initial configuration `init_Z`. Pixels with `NA` values in `init_Z` are completely disconsidered from the conditional probabilities and have the same effect as setting `sub_region = is.na(init_Z)`. If `init_Z` has `NA` values, `sub_region` is ignored and a warning is produced.

A specific region can be kept constant during the Gibbs Sampler by using the `fixed_region` argument. Keeping a subset of pixels constant is useful when you want to sample in a specific region of the image conditional to the rest, for example, in texture synthesis problems.

Value

A matrix with the sampled field.

Note

As in any Gibbs Sampling scheme, a large number of cycles may be required to achieve the target distribution, specially for strong interaction systems.

Author(s)

Victor Freguglia

Examples

```r
# Sample using specified lattice dimension
Z <- rmrf2d(c(150,150), mrfi(1), theta_potts)

# Sample using initial configuration
Z2 <- rmrf2d(Z, mrfi(1), theta_potts)

# View results
dplot(Z)
dplot(Z2)

# Using sub-regions
subreg <- matrix(TRUE, 150, 150)
subreg <- abs(row(subreg) - 75) + abs(col(subreg) - 75) <= 80
```
view the sub-region
dplot(subreg)

Z3 <- rmrf2d(c(150,150), mrfi(1), theta_potts, sub_region = subreg)
dplot(Z3)

Using fixed regions
fixreg <- matrix(as.logical(diag(150)), 150, 150)
Set initial configuration: diagonal values are 0.
init_Z4 <- Z
init_Z4[fixreg] <- 0

Z4 <- rmrf2d(init_Z4, mrfi(1), theta_potts, fixed_region = fixreg)
dplot(Z4)

Combine fixed regions and sub-regions
Z5 <- rmrf2d(init_Z4, mrfi(1), theta_potts, fixed_region = fixreg, sub_region = subreg)
dplot(Z5)

smr_array
Summarized representation of theta arrays

Description

Creates a vector with only the free parameters from an array.

Usage

```
smr_array(theta, family)
```

Arguments

- `theta`: A 3-dimensional array describing potentials. Slices represent interacting positions, rows represent pixel values and columns represent neighbor values. As an example: `theta[1,3,2]` has the potential pairs of values 0.2 in the second relative position of `mrfi`.
- `family`: The family of parameter restrictions to potentials. Families are: 'onepar', 'oneeach', 'absdif', 'dif' or 'free'. See `mrf2d-family`.

Details

The order the parameters appear in the vector matches the order in `smr_stat()`.

Value

A numeric vector with the free parameters of `theta`.
smr_stat

Author(s)

Victor Freguglia

Examples

```r
smr_array(theta_potts, "onepar")
smr_array(theta_potts, "oneeach")
```

Description

Computes the summary count statistics of a field given an interaction structure and a restriction family.

Usage

```r
smr_stat(Z, mrfi, family)
```

Arguments

- `Z`: A matrix object containing the observed MRF. NA values can be used to create a subregion of the lattice for non-rectangular data.
- `mrfi`: A `mrfi` object representing the interaction structure.
- `family`: The family of parameter restrictions to potentials. Families are: 'onepar', 'oneeach', 'absdif', 'dif' or 'free'. See `mrf2d-family`.

Details

The order the summarized counts appear in the summary vector matches the order in `smr_array()`.

Value

A numeric vector with the summarized counts.

Author(s)

Victor Freguglia

Examples

```r
smr_stat(Z_potts, mrfi(1), "onepar")
smr_stat(Z_potts, mrfi(1), "oneeach")
```
Z_potts

Example objects from mrf2d

Description

Z_potts and theta_potts are example objects for mrf2d.
Z_potts is a matrix object containing an observed lattice of a 3 color (C = 2) Potts model.
theta_potts is the parameter array used to sample it, it consists of a configuration with one parameter (-1.0) and two relative positions (to be used with a nearest-neighbor structure).

Author(s)

Victor Freguglia

Examples

theta_potts
dplot(Z_potts)

[[,mrfi,numeric,missing-method

Subsetting mrfi objects

Description

Subsetting mrfi objects

Usage

```r
## S4 method for signature 'mrfi,numeric,missing'
x[[i]]
```

```r
## S4 method for signature 'mrfi,numeric,missing'
x[i]
```

Arguments

- **x** mrfi object.
- **i** vector of indexes to extract interacting positions.

Value

[[: converts to list and subsets it.

[: subsets the mrfi object and returns another mrfi object.

+: computes the union of the interaction structure in a mrfi object with a numeric representing an additional position to include or another mrfi object.
Index

+, mrfi, mrfi-method
 (+, mrfi, numeric-method), 2
+, mrfi, numeric-method, 2
-, mrfi, mrfi-method
 (+, mrfi, numeric-method), 2
-, mrfi, numeric-method
 (+, mrfi, numeric-method), 2
[, mrfi, numeric, missing-method
 ([[, mrfi, numeric, missing-method),
 20
[[, mrfi, numeric, missing-method, 20

as.list, mrfi-method (mrfi-class), 13

basis_functions, 3, 6

cplot (dplot), 4
dplot, 4

fit_ghm, 3, 5
fit_pl, 7
fit_sa, 8
fourier_2d (basis_functions), 3

mrf2d-family, 11
mrfi, 5, 7, 9, 12, 12, 14–16, 19
mrfi(), 13
mrfi-class, 13
mrfi-plot (plot, mrfi, missing-method), 14

norm, 12

pl_mrf2d, 7, 15
plot, mrfi, missing-method, 14
polynomial_2d (basis_functions), 3

r_mrf2d, 16

smr_array, 18
smr_array(), 19

smr_stat, 19
smr_stat(), 18
theta_potts (Z_potts), 20
Z_potts, 20

21