Package ‘modeltime’

June 22, 2020

Title The Tidymodels Extension for Time Series Modeling

Version 0.0.1

Description The time series forecasting framework for use with the ‘tidymodels’ ecosystem. Models include ARIMA, Exponential Smoothing, and additional time series models from the ‘forecast’ and ‘prophet’ packages. Refer to "Forecasting Principles & Practice, Second edition" (<https://otexts.com/fpp2/>).

Refer to "Prophet: forecasting at scale" (<https://research.fb.com/blog/2017/02/prophet-forecasting-at-scale/>).

URL https://github.com/business-science/modeltime

BugReports https://github.com/business-science/modeltime/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.3.0)

Imports timetk (>= 2.0.0), parsnip (>= 0.1.0), dials, yardstick, workflows, hardhat, rlang (>= 0.1.2), glue, plotly, reactive, gt, ggplot2, tibble, dplyr, purrr, stringr, forcats, scales, janitor, progressr, magrittr, forecast, xgboost, prophet

Suggests recipes, rsample, tune, tidyverse, lubridate, testthat, roxygen2, kernlab, earth, randomForest, tidyquant, knitr, rmarkdown

RoxygenNote 7.1.0

VignetteBuilder knitr

NeedsCompilation no

Author Matt Dancho [aut, cre], Business Science [cph]

Maintainer Matt Dancho <mdancho@business-science.io>

Repository CRAN

Date/Publication 2020-06-22 10:00:03 UTC

1
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>arima_boost</td>
<td>3</td>
</tr>
<tr>
<td>Arima_fit_impl</td>
<td>8</td>
</tr>
<tr>
<td>arima_params</td>
<td>9</td>
</tr>
<tr>
<td>Arima_predict_impl</td>
<td>10</td>
</tr>
<tr>
<td>arima_reg</td>
<td>11</td>
</tr>
<tr>
<td>arima_workflow_tuned</td>
<td>15</td>
</tr>
<tr>
<td>arima_xgboost_fit_impl</td>
<td>16</td>
</tr>
<tr>
<td>arima_xgboost_predict_impl</td>
<td>18</td>
</tr>
<tr>
<td>auto_arima_fit_impl</td>
<td>18</td>
</tr>
<tr>
<td>auto_arima_xgboost_fit_impl</td>
<td>19</td>
</tr>
<tr>
<td>create_xreg_recipe</td>
<td>22</td>
</tr>
<tr>
<td>default_forecast_accuracy_metric_set</td>
<td>24</td>
</tr>
<tr>
<td>ets_fit_impl</td>
<td>25</td>
</tr>
<tr>
<td>ets_predict_impl</td>
<td>25</td>
</tr>
<tr>
<td>exp_smoothing</td>
<td>26</td>
</tr>
<tr>
<td>exp_smoothing_params</td>
<td>29</td>
</tr>
<tr>
<td>fit_modeltime</td>
<td>30</td>
</tr>
<tr>
<td>get_arima_description</td>
<td>32</td>
</tr>
<tr>
<td>get_model_description</td>
<td>32</td>
</tr>
<tr>
<td>modeltime_accuracy</td>
<td>33</td>
</tr>
<tr>
<td>modeltime_calibrate</td>
<td>35</td>
</tr>
<tr>
<td>modeltime_forecast</td>
<td>37</td>
</tr>
<tr>
<td>modeltime_refit</td>
<td>39</td>
</tr>
<tr>
<td>modeltime_table</td>
<td>41</td>
</tr>
<tr>
<td>new_modeltime_bridge</td>
<td>43</td>
</tr>
<tr>
<td>parse_index</td>
<td>44</td>
</tr>
<tr>
<td>plot_modeltime_forecast</td>
<td>45</td>
</tr>
<tr>
<td>prophet_boost</td>
<td>47</td>
</tr>
<tr>
<td>prophet_fit_impl</td>
<td>52</td>
</tr>
<tr>
<td>prophet_params</td>
<td>53</td>
</tr>
<tr>
<td>prophet_predict_impl</td>
<td>54</td>
</tr>
<tr>
<td>prophet_reg</td>
<td>54</td>
</tr>
<tr>
<td>prophet_xgboost_fit_impl</td>
<td>58</td>
</tr>
<tr>
<td>prophet_xgboost_predict_impl</td>
<td>60</td>
</tr>
<tr>
<td>recipe_helpers</td>
<td>61</td>
</tr>
<tr>
<td>seasonal_decomp</td>
<td>62</td>
</tr>
<tr>
<td>stlm_arima_fit_impl</td>
<td>65</td>
</tr>
<tr>
<td>stlm_arima_predict_impl</td>
<td>66</td>
</tr>
<tr>
<td>stlm_ets_fit_impl</td>
<td>67</td>
</tr>
<tr>
<td>stlm_ets_predict_impl</td>
<td>67</td>
</tr>
<tr>
<td>table_modeltime_accuracy</td>
<td>68</td>
</tr>
<tr>
<td>time_series_params</td>
<td>70</td>
</tr>
<tr>
<td>type_sum.mdl_time_tbl</td>
<td>71</td>
</tr>
</tbody>
</table>

Index 72
Description

`arima_boost()` is a way to generate a *specification* of a time series model that uses boosting to improve modeling errors (residuals) on Exogenous Regressors. It works with both "automated" ARIMA (`auto.arima`) and standard ARIMA (`arima`). The main algorithms are:

- Auto ARIMA + XGBoost Errors (engine = `auto_arima_xgboost`, default)
- ARIMA + XGBoost Errors (engine = `arima_xgboost`)

Usage

```r
arima_boost(
    mode = "regression",
    seasonal_period = NULL,
    non_seasonal_ar = NULL,
    non_seasonal_differences = NULL,
    non_seasonal_ma = NULL,
    seasonal_ar = NULL,
    seasonal_differences = NULL,
    seasonal_ma = NULL,
    mtry = NULL,
    trees = NULL,
    min_n = NULL,
    tree_depth = NULL,
    learn_rate = NULL,
    loss_reduction = NULL,
    sample_size = NULL,
    stop_iter = NULL
)
```

Arguments

- **mode**: A single character string for the type of model. The only possible value for this model is "regression".

- **seasonal_period**: A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.

- **non_seasonal_ar**: The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in `pdq-notation`.

- **non_seasonal_differences**: The order of integration for non-seasonal differencing. Often denoted "d" in `pdq-notation`.

- **non_seasonal_ma**: The order of the non-seasonal moving-average (MA) terms. Often denoted "q" in `pdq-notation`.

- **seasonal_ar**, **seasonal_differences**, **seasonal_ma**: Similar to `non_seasonal_ar`, `non_seasonal_differences`, and `non_seasonal_ma`, but for seasonal terms.

- **mtry**: The number of variables to try at each split. Default is `NULL`.

- **trees**: The number of trees to grow. Default is `NULL`.

- **min_n**: The minimum number of observations in a terminal node. Default is `NULL`.

- **tree_depth**: The maximum depth of the tree. Default is `NULL`.

- **learn_rate**: The learning rate for gradient boosting. Default is `NULL`.

- **loss_reduction**: The loss reduction for gradient boosting. Default is `NULL`.

- **sample_size**: The fraction of samples to be used for each iteration of the model. Default is `NULL`.

- **stop_iter**: The number of iterations to stop. Default is `NULL`.
non_seasonal_ma
The order of the non-seasonal moving average (MA) terms. Often denoted "q" in PDQ-notation.

seasonal_ar
The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in PDQ-notation.

seasonal_differences
The order of integration for seasonal differencing. Often denoted "D" in PDQ-notation.

seasonal_ma
The order of the seasonal moving average (SMA) terms. Often denoted "Q" in PDQ-notation.

mtry
A number for the number (or proportion) of predictors that will be randomly sampled at each split when creating the tree models (xgboost only).

trees
An integer for the number of trees contained in the ensemble.

min_n
An integer for the minimum number of data points in a node that are required for the node to be split further.

tree_depth
An integer for the maximum depth of the tree (i.e. number of splits) (xgboost only).

learn_rate
A number for the rate at which the boosting algorithm adapts from iteration-to-iteration (xgboost only).

loss_reduction
A number for the reduction in the loss function required to split further (xgboost only).

sample_size
A number for the number (or proportion) of data that is exposed to the fitting routine. For xgboost, the sampling is done at each iteration while C5.0 samples once during training.

stop_iter
The number of iterations without improvement before stopping (xgboost only).

Details
The data given to the function are not saved and are only used to determine the mode of the model. For arima_boost(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:
- "auto_arima_xgboost" (default) - Connects to forecast::auto.arima() and xgboost::xgb.train
- "arima_xgboost" - Connects to forecast::Arima() and xgboost::xgb.train

Main Arguments
The main arguments (tuning parameters) for the ARIMA model are:
- seasonal_period: The periodic nature of the seasonality. Uses "auto" by default.
- non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.
- non_seasonal_differences: The order of integration for non-seasonal differencing.
- non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.
- seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.
- seasonal_differences: The order of integration for seasonal differencing.
• seasonal_ma: The order of the seasonal moving average (SMA) terms.

The main arguments (tuning parameters) for the model XGBoost model are:

• mtry: The number of predictors that will be randomly sampled at each split when creating the tree models.
• trees: The number of trees contained in the ensemble.
• min_n: The minimum number of data points in a node that are required for the node to be split further.
• tree_depth: The maximum depth of the tree (i.e. number of splits).
• learn_rate: The rate at which the boosting algorithm adapts from iteration-to-iteration.
• loss_reduction: The reduction in the loss function required to split further.
• sample_size: The amount of data exposed to the fitting routine.
• stop_iter: The number of iterations without improvement before stopping.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from scratch.

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each engine:

Model 1: ARIMA:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>modeltime</th>
<th>forecast::auto.arima</th>
<th>forecast::Arima</th>
</tr>
</thead>
<tbody>
<tr>
<td>seasonal_period</td>
<td>ts(frequency)</td>
<td>ts(frequency)</td>
<td>order = c(p,d,q)</td>
</tr>
<tr>
<td>non_seasonal_ar, non_seasonal_differences, non_seasonal_ma</td>
<td>max.p, max.d, max.q</td>
<td>seasonal = c(P,D,Q)</td>
<td></td>
</tr>
<tr>
<td>seasonal_ar, seasonal_differences, seasonal_ma</td>
<td>max.P, max.D, max.Q</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model 2: XGBoost:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>xgboost::xgb.train</th>
<th>xgboost::xgb.train</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree_depth</td>
<td>max_depth</td>
<td>max_depth</td>
</tr>
<tr>
<td>trees</td>
<td>nrounds</td>
<td>nrounds</td>
</tr>
<tr>
<td>learn_rate</td>
<td>eta</td>
<td>colsample_bytree</td>
</tr>
<tr>
<td>mtry</td>
<td>min_child_weight</td>
<td>gamma</td>
</tr>
<tr>
<td>min_n</td>
<td>subsample</td>
<td>subsample</td>
</tr>
<tr>
<td>loss_reduction</td>
<td>gamma</td>
<td>gamma</td>
</tr>
<tr>
<td>sample_size</td>
<td>subsample</td>
<td>subsample</td>
</tr>
</tbody>
</table>

Other options can be set using set_engine().

auto_arima_xgboost (default engine)
Model 1: Auto ARIMA (forecast::auto.arima):

```r
## function (y, d = NA, D = NA, max.p = 5, max.q = 5, max.P = 2, max.Q = 2,
## max.order = 5, max.d = 2, max.D = 1, start.p = 2, start.q = 2, start.P = 1,
## start.Q = 1, stationary = FALSE, seasonal = TRUE, ic = c("aicc", "aic",
## "bic"), stepwise = TRUE, nmodels = 94, trace = FALSE, approximation = (length(x) >
## 150 | frequency(x) > 12), method = NULL, truncate = NULL, xreg = NULL,
## test = c("kpss", "adf", "pp"), test.args = list(), seasonal.test = c("seas",
## "ocsb", "hegy", "ch"), seasonal.test.args = list(), allowdrift = TRUE,
## allowmean = TRUE, lambda = NULL, biasadj = FALSE, parallel = FALSE,
## num.cores = 2, x = y, ...)```

Parameter Notes:

- All values of nonseasonal pdq and seasonal PDQ are maximums. The auto.arima will select a value using these as an upper limit.
- xreg - This should not be used since XGBoost will be doing the regression

Model 2: XGBoost (xgboost::xgb.train):

```r
function (params = list(), data, nrounds, watchlist = list(), obj = NULL,
feval = NULL, verbose = 1, print_every_n = 1L, early_stopping_rounds = NULL,
maximize = NULL, save_period = NULL, save_name = "xgboost.model", xgb_model = NULL,
callbacks = list(), ...)```

Parameter Notes:

- XGBoost uses a params = list() to capture. Parsnip / Modeltime automatically sends any args provided as ... inside of set_engine() to the params = list(...).

Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts date and date-time features and handles them internally.

- fit(y ~ date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1) or seasonal (e.g. seasonal_period = 12 or seasonal_period = "12 months"). There are 3 ways to specify:

1. `seasonal_period = "auto"`: A period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. `seasonal_period = 12`: A numeric frequency. For example, 12 is common for monthly data
3. `seasonal_period = "1 year"`: A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

Univariate (No xregs, Exogenous Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:
• Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.
• XY Interface: fit_xy(x = data[, "date"], y = data$y) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)
The xreg parameter is populated using the fit() or fit_xy() function:
• Only factor, ordered factor, and numeric data will be used as xregs.
• Date and Date-time variables are not used as xregs
• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:
1. y (target)
2. date (time stamp).
3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the arima_boost() using fit():
• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.
• fit_xy(data[,c("date","month.lbl")],y = data$y) will pass x, where x is a data frame containing month.lbl and the date feature. Only month.lbl will be used as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

See Also
fit.arima_boost(), set_engine()

Examples
library(tidyverse)
library(lubridate)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

MODEL SPEC ----

Set engine and boosting parameters
model_spec <- arima_boost(
 # ARIMA args

Arima_fit_impl

Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

Arima_fit_impl(
 x,
 y,
 period = "auto",
 p = 0,
 d = 0,
 q = 0,
 P = 0,
 D = 0,
 Q = 0,
 ...
)

seasonal_period = 12,
non_seasonal_ar = 0,
non_seasonal_differences = 1,
non_seasonal_ma = 1,
seasonal_ar = 0,
seasonal_differences = 1,
seasonal_ma = 1,

XGBoost Args
tree_depth = 6,
learn_rate = 0.1
)

set_engine(engine = "arima_xgboost")

FIT ----

Not run:
Boosting - Happens by adding numeric date and month features
model_fit_boosted <- model_spec

fit(value ~ date + as.numeric(date) + month(date, label = TRUE),
 data = training(splits))

model_fit_boosted

End(Not run)
Arguments

- **x**: A dataframe of xreg (exogenous regressors)
- **y**: A numeric vector of values to fit
- **period**: A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided.
- **p**: The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in pdq-notation.
- **d**: The order of integration for non-seasonal differencing. Often denoted "d" in pdq-notation.
- **q**: The order of the non-seasonal moving average (MA) terms. Often denoted "q" in pdq-notation.
- **P**: The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in PDQ-notation.
- **D**: The order of integration for seasonal differencing. Often denoted "D" in PDQ-notation.
- **Q**: The order of the seasonal moving average (SMA) terms. Often denoted "Q" in PDQ-notation.
- **...**: Additional arguments passed to `forecast::Arima`

Description

Tuning Parameters for ARIMA Models

Usage

```r
non_seasonal_ar(range = c(0L, 5L), trans = NULL)
non_seasonal_differences(range = c(0L, 2L), trans = NULL)
non_seasonal_ma(range = c(0L, 5L), trans = NULL)
seasonal_ar(range = c(0L, 2L), trans = NULL)
seasonal_differences(range = c(0L, 1L), trans = NULL)
seasonal_ma(range = c(0L, 2L), trans = NULL)
```
Arguments

range A two-element vector holding the *defaults* for the smallest and largest possible values, respectively.

trans A trans object from the scales package, such as `scales::log10_trans()` or `scales::reciprocal_trans()`. If not provided, the default is used which matches the units used in `range`. If no transformation, `NULL`.

details

The main parameters for ARIMA models are:

- `non_seasonal_ar`: The order of the non-seasonal auto-regressive (AR) terms.
- `non_seasonal_differences`: The order of integration for non-seasonal differencing.
- `non_seasonal_ma`: The order of the non-seasonal moving average (MA) terms.
- `seasonal_ar`: The order of the seasonal auto-regressive (SAR) terms.
- `seasonal_differences`: The order of integration for seasonal differencing.
- `seasonal_ma`: The order of the seasonal moving average (SMA) terms.

Examples

```r
non_seasonal_ar()
non_seasonal_differences()
non_seasonal_ma()
```

Description

Bridge prediction function for ARIMA models

Usage

```r
Arima_predict_impl(object, new_data, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An object of class <code>model_fit</code></td>
</tr>
<tr>
<td>new_data</td>
<td>A rectangular data object, such as a data frame.</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments passed to <code>forecast::Arima()</code></td>
</tr>
</tbody>
</table>
Description

`arima_reg()` is a way to generate a specification of an ARIMA model before fitting and allows the model to be created using different packages. Currently the only package is `forecast`.

Usage

```r
arima_reg(
  mode = "regression",
  seasonal_period = NULL,
  non_seasonal_ar = NULL,
  non_seasonal_differences = NULL,
  non_seasonal_ma = NULL,
  seasonal_ar = NULL,
  seasonal_differences = NULL,
  seasonal_ma = NULL
)
```

Arguments

- `mode` A single character string for the type of model. The only possible value for this model is "regression".
- `seasonal_period` A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.
- `non_seasonal_ar` The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in pdq-notation.
- `non_seasonal_differences` The order of integration for non-seasonal differencing. Often denoted "d" in pdq-notation.
- `non_seasonal_ma` The order of the non-seasonal moving average (MA) terms. Often denoted "q" in pdq-notation.
- `seasonal_ar` The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in PDQ-notation.
- `seasonal_differences` The order of integration for seasonal differencing. Often denoted "D" in PDQ-notation.
- `seasonal_ma` The order of the seasonal moving average (SMA) terms. Often denoted "Q" in PDQ-notation.
Details

The data given to the function are not saved and are only used to determine the mode of the model. For arima_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

- "auto_arima" (default) - Connects to forecast::auto.arima()
- "Arima" - Connects to forecast::Arima()

Main Arguments

The main arguments (tuning parameters) for the model are:

- seasonal_period: The periodic nature of the seasonality. Uses "auto" by default.
- non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.
- non_seasonal_differences: The order of integration for non-seasonal differencing.
- non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.
- seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.
- seasonal_differences: The order of integration for seasonal differencing.
- seasonal_ma: The order of the seasonal moving average (SMA) terms.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from scratch.

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each engine:

<table>
<thead>
<tr>
<th>modeltime</th>
<th>forecast::auto.arima</th>
<th>forecast::Arima</th>
</tr>
</thead>
<tbody>
<tr>
<td>seasonal_period</td>
<td>ts(frequency)</td>
<td>ts(frequency)</td>
</tr>
<tr>
<td>non_seasonal_ar, non_seasonal_differences, non_seasonal_ma</td>
<td>max.p, max.d, max.q</td>
<td>order = c(p,d,q)</td>
</tr>
<tr>
<td>seasonal_ar, seasonal_differences, seasonal_ma</td>
<td>max.P, max.D, max.Q</td>
<td>seasonal = c(P,D,Q)</td>
</tr>
</tbody>
</table>

Other options can be set using set_engine().

auto_arima (default engine)

The engine uses forecast::auto.arima().

Function Parameters:

```r
## function (y, d = NA, D = NA, max.p = 5, max.q = 5, max.P = 2, max.Q = 2,
## max.order = 5, max.d = 2, max.D = 1, start.p = 2, start.q = 2, start.P = 1,
## start.Q = 1, stationary = FALSE, seasonal = TRUE, ic = c("aicc", "aic",
## "bic"), stepwise = TRUE, nmodels = 94, trace = FALSE, approximation = (length(x) >
## 150 | frequency(x) > 12), method = NULL, truncate = NULL, xreg = NULL,
```
The **MAXIMUM** nonseasonal ARIMA terms (max.p, max.d, max.q) and seasonal ARIMA terms (max.P, max.D, max.Q) are provided to `forecast::auto.arima()` via `arima_reg()` parameters. Other options and argument can be set using `set_engine()`.

Parameter Notes:
- All values of nonseasonal pdq and seasonal PDQ are maximums. The `forecast::auto.arima()` model will select a value using these as an upper limit.
- `xreg` - This is supplied via the parsnip / modeltime `fit()` interface (so don’t provide this manually). See Fit Details (below).

arima

The engine uses `forecast::Arima()`.

Function Parameters:

```r
## function (y, order = c(0, 0, 0), seasonal = c(0, 0, 0), xreg = NULL, include.mean = TRUE,
## include.drift = FALSE, include.constant, lambda = model$lambda, biasadj = FALSE,
## method = c("CSS-ML", "ML", "CSS"), model = NULL, x = y, ...)```

The nonseasonal ARIMA terms (order) and seasonal ARIMA terms (seasonal) are provided to `forecast::Arima()` via `arima_reg()` parameters. Other options and argument can be set using `set_engine()`.

**Parameter Notes:**
- `xreg` - This is supplied via the parsnip / modeltime `fit()` interface (so don’t provide this manually). See Fit Details (below).
- `method` - The default is set to "ML" (Maximum Likelihood). This method is more robust at the expense of speed and possible selections may fail unit root inversion testing. Alternatively, you can add `method = "CSS-ML"` to evaluate Conditional Sum of Squares for starting values, then Maximum Likelihood.

**Fit Details**

**Date and Date-Time Variable**

It’s a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

- `fit(y ~ date)`

**Seasonal Period Specification**

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period = "yearly"). There are 3 ways to specify:
1. `seasonal_period = "auto"`: A seasonal period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. `seasonal_period = 12`: A numeric frequency. For example, 12 is common for monthly data
3. `seasonal_period = "1 year"`: A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

**Univariate (No xregs, Exogenous Regressors):**
For univariate analysis, you must include a date or date-time feature. Simply use:
- Formula Interface (recommended): `fit(y ~ date)` will ignore xreg’s.
- XY Interface: `fit_xy(x = data[, "date"], y = data$y)` will ignore xreg’s.

**Multivariate (xregs, Exogenous Regressors)**
The `xreg` parameter is populated using the `fit()` or `fit_xy()` function:
- Only factor, ordered factor, and numeric data will be used as xregs.
- Date and Date-time variables are not used as xregs
- Character data should be converted to factor.

**Xreg Example:** Suppose you have 3 features:
1. y (target)
2. date (time stamp),
3. month.lbl (labeled month as a ordered factor).

The `month.lbl` is an exogenous regressor that can be passed to the `arima_reg()` using `fit()`:
- `fit(y ~ date + month.lbl)` will pass `month.lbl` on as an exogenous regressor.
- `fit_xy(data[,c("date","month.lbl")], y = data$y)` will pass x, where x is a data frame containing `month.lbl` and the date feature. Only `month.lbl` will be used as an exogenous regressor.

Note that date or date-time class values are excluded from `xreg`.

**See Also**

`fit.arima_reg()`, `set_engine()`

**Examples**

```r
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750
```
# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

# ---- AUTO ARIMA ----
# Model Spec
model_spec <- arima_reg() %>%
  set_engine("auto_arima")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

# ---- STANDARD ARIMA ----
# Model Spec
model_spec <- arima_reg(
  seasonal_period = 12,
  non_seasonal_ar = 3,
  non_seasonal_differences = 1,
  non_seasonal_ma = 3,
  seasonal_ar = 1,
  seasonal_differences = 0,
  seasonal_ma = 1
) %>%
  set_engine("arima")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

arima_workflow_tuned  
Example ARIMA Tuning Results

Description
These objects are the results of an analysis of the M750 data set, which came from the M4 Forecast Competition.

Usage
arima_workflow_tuned

Format
An object of class tune_results (inherits from time_series_cv, rset, tbl_df, tbl, data.frame) with 2 rows and 4 columns.
Value

This is the output of `tune_grid()` for an ARIMA model created with `arima_reg()`.

Examples

`arima_workflow_tuned`

---

**arima_xgboost_fit_impl**

*Bridge ARIMA-XGBoost Modeling function*

---

**Description**

Bridge ARIMA-XGBoost Modeling function

**Usage**

```r
arima_xgboost_fit_impl(
 x,
 y,
 period = "auto",
 p = 0,
 d = 0,
 q = 0,
 P = 0,
 D = 0,
 Q = 0,
 include.mean = TRUE,
 include.drift = FALSE,
 include.constant,
 lambda = model$lambda,
 biasadj = FALSE,
 method = c("CSS-ML", "ML", "CSS"),
 model = NULL,
 max_depth = 6,
 nrounds = 15,
 eta = 0.3,
 subsample_bytree = 1,
 min_child_weight = 1,
 gamma = 0,
 subsample = 1,
 validation = 0,
 early_stop = NULL,
 ...
)
```
Arguments

- **x**: A dataframe of xreg (exogenous regressors)
- **y**: A numeric vector of values to fit
- **period**: A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided.
- **p**: The order of the non-seasonal auto-regressive (AR) terms.
- **d**: The order of integration for non-seasonal differencing.
- **q**: The order of the non-seasonal moving average (MA) terms.
- **P**: The order of the seasonal auto-regressive (SAR) terms.
- **D**: The order of integration for seasonal differencing.
- **Q**: The order of the seasonal moving average (SMA) terms.
- **include.mean**: Should the ARIMA model include a mean term? The default is TRUE for undifferenced series, FALSE for differenced ones (where a mean would not affect the fit nor predictions).
- **include.drift**: Should the ARIMA model include a linear drift term? (i.e., a linear regression with ARIMA errors is fitted.) The default is FALSE.
- **include.constant**: If TRUE, then include.mean is set to be TRUE for undifferenced series and include.drift is set to be TRUE for differenced series. Note that if there is more than one difference taken, no constant is included regardless of the value of this argument. This is deliberate as otherwise quadratic and higher order polynomial trends would be induced.
- **lambda**: Box-Cox transformation parameter. If lambda="auto", then a transformation is automatically selected using BoxCox.lambda. The transformation is ignored if NULL. Otherwise, data transformed before model is estimated.
- **biasadj**: Use adjusted back-transformed mean for Box-Cox transformations. If transformed data is used to produce forecasts and fitted values, a regular back transformation will result in median forecasts. If biasadj is TRUE, an adjustment will be made to produce mean forecasts and fitted values.
- **method**: Fitting method: maximum likelihood or minimize conditional sum-of-squares. The default (unless there are missing values) is to use conditional-sum-of-squares to find starting values, then maximum likelihood.
- **model**: Output from a previous call to Arima. If model is passed, this same model is fitted to y without re-estimating any parameters.
- **max_depth**: An integer for the maximum depth of the tree.
- **nrounds**: An integer for the number of boosting iterations.
- **eta**: A numeric value between zero and one to control the learning rate.
- **colsample_bytree**: Subsampling proportion of columns.
- **min_child_weight**: A numeric value for the minimum sum of instance weights needed in a child to continue to split.
gamma  A number for the minimum loss reduction required to make a further partition on a leaf node of the tree
subsample  Subsampling proportion of rows.
validation  A positive number. If on [0, 1) the value, validation is a random proportion of data in x and y that are used for performance assessment and potential early stopping. If 1 or greater, it is the number of training set samples use for these purposes.
early_stop  An integer or NULL. If not NULL, it is the number of training iterations without improvement before stopping. If validation is used, performance is base on the validation set; otherwise the training set is used.
...  Additional arguments passed to xgboost::xgb.train

arima_xgboost_predict_impl

Bridge prediction Function for ARIMA-XGBoost Models

Description

Bridge prediction Function for ARIMA-XGBoost Models

Usage

arima_xgboost_predict_impl(object, new_data, ...)

Arguments

object  An object of class model_fit
new_data  A rectangular data object, such as a data frame.
...  Additional arguments passed to predict.xgb.Booster()

auto_arima_fit_impl

Low-Level ARIMA function for translating modetime to forecast

Description

Low-Level ARIMA function for translating modetime to forecast
auto_arima_xgboost_fit_impl

Bridge ARIMA-XGBoost Modeling function

Description

Bridge ARIMA-XGBoost Modeling function

Usage

auto_arima_xgboost_fit_impl(
    x,
    y,
    period = "auto",
    max.p = 5,
    max.d = 2,
    max.q = 5,
    max.P = 2,
    max.D = 1,
    max.Q = 2,
    ...
)

Arguments

x A dataframe of xreg (exogenous regressors)
y A numeric vector of values to fit
period A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided.
max.p The maximum order of the non-seasonal auto-regressive (AR) terms.
max.d The maximum order of integration for non-seasonal differencing.
max.q The maximum order of the non-seasonal moving average (MA) terms.
max.P The maximum order of the seasonal auto-regressive (SAR) terms.
max.D The maximum order of integration for seasonal differencing.
max.Q The maximum order of the seasonal moving average (SMA) terms.
... Additional arguments passed to forecast::auto.arima
max.d = 2,
max.q = 5,
max.P = 2,
max.D = 1,
max.Q = 2,
max.order = 5,
d = NA,
D = NA,
start.p = 2,
start.q = 2,
start.P = 1,
start.Q = 1,
stationary = FALSE,
seasonal = TRUE,
ic = c("aicc", "aic", "bic"),
stepwise = TRUE,
nmodels = 94,
trace = FALSE,
approximation = (length(x) > 150 | frequency(x) > 12),
method = NULL,
truncate = NULL,
test = c("kpss", "adf", "pp"),
test.args = list(),
seasonal.test = c("seas", "ocsb", "hegy", "ch"),
seasonal.test.args = list(),
allowdrift = TRUE,
allowmean = TRUE,
lambda = NULL,
biasadj = FALSE,
max_depth = 6,
nrounds = 15,
eta = 0.3,
colsample_bytree = 1,
min_child_weight = 1,
gamma = 0,
subsample = 1,
validation = 0,
early_stop = NULL,
...)

Arguments

x                  A dataframe of xreg (exogenous regressors)
y                  A numeric vector of values to fit
period             A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided.
max.p  The maximum order of the non-seasonal auto-regressive (AR) terms.
max.d  The maximum order of integration for non-seasonal differencing.
max.q  The maximum order of the non-seasonal moving average (MA) terms.
max.P  The maximum order of the seasonal auto-regressive (SAR) terms.
max.D  The maximum order of integration for seasonal differencing.
max.Q  The maximum order of the seasonal moving average (SMA) terms.
max.order Maximum value of p+q+P+Q if model selection is not stepwise.
d  Order of first-differencing. If missing, will choose a value based on test.
D  Order of seasonal-differencing. If missing, will choose a value based on season.test.
start.p Starting value of p in stepwise procedure.
start.q Starting value of q in stepwise procedure.
start.P Starting value of P in stepwise procedure.
start.Q Starting value of Q in stepwise procedure.
stationary If TRUE, restricts search to stationary models.
seasonal If FALSE, restricts search to non-seasonal models.
ic Information criterion to be used in model selection.
stepwise If TRUE, will do stepwise selection (faster). Otherwise, it searches over all models. Non-stepwise selection can be very slow, especially for seasonal models.
nmodels Maximum number of models considered in the stepwise search.
trace If TRUE, the list of ARIMA models considered will be reported.
approximation If TRUE, estimation is via conditional sums of squares and the information criteria used for model selection are approximated. The final model is still computed using maximum likelihood estimation. Approximation should be used for long time series or a high seasonal period to avoid excessive computation times.
method fitting method: maximum likelihood or minimize conditional sum-of-squares. The default (unless there are missing values) is to use conditional-sum-of-squares to find starting values, then maximum likelihood. Can be abbreviated.
truncate An integer value indicating how many observations to use in model selection. The last truncate values of the series are used to select a model when truncate is not NULL and approximation=TRUE. All observations are used if either truncate=NULL or approximation=FALSE.
test Type of unit root test to use. See ndiffs for details.
test.args Additional arguments to be passed to the unit root test.
seasonal.test This determines which method is used to select the number of seasonal differences. The default method is to use a measure of seasonal strength computed from an STL decomposition. Other possibilities involve seasonal unit root tests.
seasonal.test.args Additional arguments to be passed to the seasonal unit root test. See nsdiffs for details.
allowdrift If TRUE, models with drift terms are considered.
allowmean If TRUE, models with a non-zero mean are considered.

lambda Box-Cox transformation parameter. If lambda="auto", then a transformation is automatically selected using BoxCox.lambda. The transformation is ignored if NULL. Otherwise, data transformed before model is estimated.

biasadj Use adjusted back-transformed mean for Box-Cox transformations. If transformed data is used to produce forecasts and fitted values, a regular back transformation will result in median forecasts. If biasadj is TRUE, an adjustment will be made to produce mean forecasts and fitted values.

max_depth An integer for the maximum depth of the tree.
nrounds An integer for the number of boosting iterations.
etra numeric value between zero and one to control the learning rate.
colsample_bytree Subsampling proportion of columns.
min_child_weight A numeric value for the minimum sum of instance weights needed in a child to continue to split.
gamma A number for the minimum loss reduction required to make a further partition on a leaf node of the tree
subsample Subsampling proportion of rows.
validation A positive number. If on [0, 1) the value, validation is a random proportion of data in x and y that are used for performance assessment and potential early stopping. If 1 or greater, it is the number of training set samples use for these purposes.
early_stop An integer or NULL. If not NULL, it is the number of training iterations without improvement before stopping. If validation is used, performance is base on the validation set; otherwise the training set is used.

... Additional arguments passed to xgboost::xgb.train

Description
These functions are designed to assist developers in extending the modeltime package. create_xregs_recipe() makes it simple to automate conversion of raw un-encoded features to machine-learning ready features.

Usage

create_xreg_recipe(  
data,  
prepare = TRUE,  
clean_names = TRUE,  
dummy_encode = TRUE,  
one_hot = FALSE  
)
create_xreg_recipe

Arguments

- **data**
  A data frame

- **prepare**
  Whether or not to run `recipes::prep()` on the final recipe. Default is to prepare. User can set this to FALSE to return an un prepared recipe.

- **clean_names**
  Uses `janitor::clean_names()` to process the names and improve robustness to failure during dummy (one-hot) encoding step.

- **dummy_encode**
  Should factors (categorical data) be

- **one_hot**
  If `dummy_encode = TRUE`, should the encoding return one column for each feature or one less column than each feature. Default is FALSE.

Details

The default recipe contains steps to:

1. Remove date features
2. Clean the column names removing spaces and bad characters
3. Convert ordered factors to regular factors
4. Convert factors to dummy variables
5. Remove any variables that have zero variance

Value

A recipe in either prepared or un-prepared format.

Examples

```r
library(dplyr)
library(timetk)
library(recipes)
library(lubridate)

predictors <- m4_monthly %>%
 filter(id == "M750") %>%
 select(-value) %>%
 mutate(month = month(date, label = TRUE))

Create default recipe
xreg_recipe_spec <- create_xreg_recipe(predictors, prepare = TRUE)

Extracts the preprocessed training data from the recipe (used in your fit function)
juice_xreg_recipe(xreg_recipe_spec)

Applies the prepared recipe to new data (used in your predict function)
bake_xreg_recipe(xreg_recipe_spec, new_data = predictors)
```
**default_forecast_accuracy_metric_set**

**Forecast Accuracy Metrics Sets**

**Description**

This is a wrapper for `metric_set()` with several common forecast / regression accuracy metrics included. These are the default time series accuracy metrics used with `modeltime_accuracy()`.

**Usage**

```r
default_forecast_accuracy_metric_set()
```

**Details**

The primary purpose is to use the default accuracy metrics to calculate the following forecast accuracy metrics using `modeltime_accuracy()`:

- **MAE** - Mean absolute error, `mae()`
- **MAPE** - Mean absolute percentage error, `mape()`
- **MASE** - Mean absolute scaled error, `mase()`
- **SMAPE** - Symmetric mean absolute percentage error, `smape()`
- **RMSE** - Root mean squared error, `rmse()`
- **RSQ** - R-squared, `rsq()`

**Examples**

```r
library(tibble)
library(dplyr)
library(timetk)

set.seed(1)
data <- tibble(
 time = tk_make_timeseries("2020", by = "sec", length_out = 10),
 y = 1:10 + rnorm(10),
 y_hat = 1:10 + rnorm(10)
)

Default Metric Specification
default_forecast_accuracy_metric_set()

Create a metric summarizer function from the metric set
calc_default_metrics <- default_forecast_accuracy_metric_set()

Apply the metric summarizer to new data
calc_default_metrics(data, y, y_hat)
```
ets_fit_impl

**Description**

Low-Level Exponential Smoothing function for translating modeltime to forecast

**Usage**

```r
ets_fit_impl(
 x,
 y,
 period = "auto",
 error = "auto",
 trend = "auto",
 season = "auto",
 damping = "auto",
 ...
)
```

**Arguments**

- `x` A dataframe of xreg (exogenous regressors)
- `y` A numeric vector of values to fit
- `period` A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided.
- `error` The form of the error term: "auto", "additive", or "multiplicative". If the error is multiplicative, the data must be non-negative.
- `trend` The form of the trend term: "auto", "additive", "multiplicative" or "none".
- `season` The form of the seasonal term: "auto", "additive", "multiplicative" or "none".
- `damping` Apply damping to a trend: "auto", "damped", or "none".
- `...` Additional arguments passed to `forecast::ets`

ets_predict_impl

**Description**

Bridge prediction function for Exponential Smoothing models

Bridge prediction function for Exponential Smoothing models
exp_smoothing

Usage

ets_predict_impl(object, new_data, ...)

Arguments

object          An object of class model_fit
new_data        A rectangular data object, such as a data frame.
...             Additional arguments passed to forecast::ets()

exp_smoothing

General Interface for Exponential Smoothing State Space Models

Description

exp_smoothing() is a way to generate a specification of an Exponential Smoothing model before fitting and allows the model to be created using different packages. Currently the only package is forecast.

Usage

exp_smoothing(
  mode = "regression",
  seasonal_period = NULL,
  error = NULL,
  trend = NULL,
  season = NULL,
  damping = NULL
)

Arguments

mode            A single character string for the type of model. The only possible value for this model is "regression".
seasonal_period A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.
error           The form of the error term: "auto", "additive", or "multiplicative". If the error is multiplicative, the data must be non-negative.
trend           The form of the trend term: "auto", "additive", "multiplicative" or "none".
season          The form of the seasonal term: "auto", "additive", "multiplicative" or "none".
damping         Apply damping to a trend: "auto", "damped", or "none".
exp_smoothing

Details

The data given to the function are not saved and are only used to determine the mode of the model. For exp_smoothing(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "ets" (default) - Connects to forecast::ets

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each engine:

<table>
<thead>
<tr>
<th>modeltime</th>
<th>forecast::ets</th>
</tr>
</thead>
<tbody>
<tr>
<td>seasonal_period()</td>
<td>ts(frequency)</td>
</tr>
<tr>
<td>error(), trend(), season()</td>
<td>model</td>
</tr>
<tr>
<td>damping()</td>
<td>damped</td>
</tr>
</tbody>
</table>

Other options can be set using set_engine().

ets (default engine)

The engine uses forecast::ets.

Function Parameters:

```r
function (y, model = "ZZZ", damped = NULL, alpha = NULL, beta = NULL, gamma = NULL,
phi = NULL, additive.only = FALSE, lambda = NULL, biasadj = FALSE,
lower = c(rep(1e-04, 3), 0.8), upper = c(rep(0.9999, 3), 0.98), opt.crit = c("lik",
"amse", "mse", "sigma", "mae"), nmse = 3, bounds = c("both", "usual",
"admissible"), ic = c("aicc", "aic", "bic"), restrict = TRUE, allow.multiplicative.trend = FALSE,
use.initial.values = FALSE, na.action = c("na.contiguous", "na.interp",
"na.fail"), ...)```

The main arguments are model and damped are defined using:

• error() = "auto", "additive", and "multiplicative" are converted to "Z", "A", and "M"
• trend() = "auto", "additive", "multiplicative", and "none" are converted to "Z", "A", "M" and "N"
• season() = "auto", "additive", "multiplicative", and "none" are converted to "Z", "A", "M" and "N"
• damping() - "auto", "damped", "none" are converted to NULL, TRUE, FALSE

By default, all arguments are set to "auto" to perform automated Exponential Smoothing using in-sample data following the underlying forecast::ets() automation routine. Other options and argument can be set using set_engine().

Parameter Notes:

• xreg - This model is not set up to use exogenous regressors. Only univariate models will be fit.
Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

- `fit(y ~ date)`

Seasonal Period Specification
The period can be non-seasonal (seasonal_period = 1 or "none") or seasonal (e.g. seasonal_period = 12 or seasonal_period = "12 months"). There are 3 ways to specify:

1. `seasonal_period = "auto"`: A period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. `seasonal_period = 12`: A numeric frequency. For example, 12 is common for monthly data
3. `seasonal_period = "1 year"`: A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

Univariate:
For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface (recommended): `fit(y ~ date)` will ignore xreg’s.
- XY Interface: `fit_xy(x = data[,"date"], y = data$y)` will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)
This model is not set up for use with exogenous regressors.

See Also
`fit.exp_smoothing()`, `set_engine()`

Examples

```r
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

# ---- AUTO ETS ----

# Model Spec - The default parameters are all set
# to "auto" if none are provided
model_spec <- exp_smoothing() %>%
```

```r
set_engine("ets")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

# ---- STANDARD ETS ----
# Model Spec
model_spec <- exp_smoothing(
  seasonal_period = 12,
  error = "multiplicative",
  trend = "additive",
  season = "multiplicative"
) %>%
  set_engine("ets")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit
```

exp_smoothing_params
Tuning Parameters for Exponential Smoothing Models

Description
Tuning Parameters for Exponential Smoothing Models

Usage
- `error(values = c("additive", "multiplicative"))`
- `trend(values = c("additive", "multiplicative", "none"))`
- `season(values = c("additive", "multiplicative", "none"))`
- `damping(values = c("damped", "none"))`

Arguments
- `values`
 A character string of possible values.
Details

The main parameters for Exponential Smoothing models are:

- **error**: The form of the error term: additive", or "multiplicative". If the error is multiplicative, the data must be non-negative.
- **trend**: The form of the trend term: "additive", "multiplicative" or "none".
- **season**: The form of the seasonal term: "additive", "multiplicative" or "none".
- **damping**: Apply damping to a trend: "damped", or "none".

Examples

```r
error()
trend()
season()
```

Description

`fit()` and `fit_xy()` take a model specification, translate the required code by substituting arguments, and execute the model fit routine.

Usage

```r
## S3 method for class 'arima_reg'
fit(object, formula, data, control = control_parsnip(), ...)

## S3 method for class 'arima_boost'
fit(object, formula, data, control = control_parsnip(), ...)

## S3 method for class 'exp_smoothing'
fit(object, formula, data, control = control_parsnip(), ...)

## S3 method for class 'prophet_reg'
fit(object, formula, data, control = control_parsnip(), ...)

## S3 method for class 'prophet_boost'
fit(object, formula, data, control = control_parsnip(), ...)

## S3 method for class 'seasonal_decomp'
fit(object, formula, data, control = control_parsnip(), ...)
Arguments

object
An object of class `model_spec` that has a chosen engine (via `set_engine()`).

formula
An object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.

data
Optional, depending on the interface (see Details below). A data frame containing all relevant variables (e.g. outcome(s), predictors, case weights, etc). Note: when needed, a named argument should be used.

control
A named list with elements `verbosity` and `catch`. See `control_parsnip()`.

...
Not currently used; values passed here will be ignored. Other options required to fit the model should be passed using `set_engine()`.

Details

`fit()` and `fit_xy()` substitute the current arguments in the model specification into the computational engine’s code, checks them for validity, then fits the model using the data and the engine-specific code. Different model functions have different interfaces (e.g. formula or x/y) and these functions translate between the interface used when `fit()` or `fit_xy()` were invoked and the one required by the underlying model.

When possible, these functions attempt to avoid making copies of the data. For example, if the underlying model uses a formula and `fit()` is invoked, the original data are references when the model is fit. However, if the underlying model uses something else, such as x/y, the formula is evaluated and the data are converted to the required format. In this case, any calls in the resulting model objects reference the temporary objects used to fit the model.

If the model engine has not been set, the model’s default engine will be used (as discussed on each model page). If the `verbosity` option of `control_parsnip()` is greater than zero, a warning will be produced.

Value

A `model_fit` object that contains several elements:

- `lvl`: If the outcome is a factor, this contains the factor levels at the time of model fitting.
- `spec`: The model specification object (object in the call to `fit`)
- `fit`: when the model is executed without error, this is the model object. Otherwise, it is a try-error object with the error message.
- `preproc`: any objects needed to convert between a formula and non-formula interface (such as the terms object)

The return value will also have a class related to the fitted model (e.g. ",glm") before the base class of "model_fit".

Examples

# TODO
**get_arima_description**  
*Get model descriptions for Arima objects*

**Description**  
Get model descriptions for Arima objects

**Usage**  
```r
get_arima_description(object, padding = FALSE)
```

**Arguments**

- `object`: Objects of class `Arima`
- `padding`: Whether or not to include padding

**Source**

- Forecast R Package, `forecast:::arima.string()`

**Examples**

```r
library(forecast)
arima_fit <- forecast::Arima(1:10)
get_arima_description(arima_fit)
```

---

**get_model_description**  
*Get model descriptions for parsnip, workflows & modetime objects*

**Description**  
Get model descriptions for parsnip, workflows & modetime objects

**Usage**  
```r
get_model_description(object, indicate_training = FALSE, upper_case = TRUE)
```

**Arguments**

- `object`: Parsnip or workflow objects
- `indicate_training`: Whether or not to indicate if the model has been trained
- `upper_case`: Whether to return upper or lower case model descriptions
Examples

library(dplyr)
library(timetk)
library(parsnip)
library(modeltime)

# Model Specification ----
arima_spec <- arima_reg() %>%
  set_engine("auto_arima")

get_model_description(arima_spec, indicate_training = TRUE)

# Fitted Model ----
m750 <- m4_monthly %>% filter(id == "M750")
arima_fit <- arima_spec %>%
  fit(value ~ date, data = m750)

get_model_description(arima_fit, indicate_training = TRUE)

-----------------------------------
modeltime_accuracy Calculate Accuracy Metrics
-----------------------------------

Description

This is a wrapper for yardstick that simplifies time series regression accuracy metric calculations from a fitted workflow (trained workflow) or model_fit (trained parsnip model).

Usage

modeltime_accuracy(
  object, 
  new_data = NULL, 
  metric_set = default_forecast_accuracy_metric_set(), 
  quiet = TRUE, 
  ...
)

Arguments

object A fitted model object that is either (1) a workflow that has been fit by `fit.workflow()` or (2) a parsnip model that has been fit using `fit.model_spec()`
new_data A tibble containing future information (timestamps and actual values).
metric_set

A `metric_set()` that is used to summarize one or more forecast accuracy (regression) metrics.

quiet

Hide errors (TRUE, the default), or display them as they occur?

... Additional arguments passed to `modeltime_forecast()`.

Details

The following accuracy metrics are included by default via `default_forecast_accuracy_metric_set()`:

- MAE - Mean absolute error, `mae()`
- MAPE - Mean absolute percentage error, `mape()`
- MASE - Mean absolute scaled error, `mase()`
- SMAPE - Symmetric mean absolute percentage error, `smape()`
- RMSE - Root mean squared error, `rmse()`
- RSQ - R-squared, `rsq()`

Value

A tibble with accuracy estimates.

Examples

```r
library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: auto_arima ----
model_fit_arima <- arima_reg() %>%
 set_engine(engine = "auto_arima") %>%
 fit(value ~ date, data = training(splits))

--- MODELTME TABLE ----
models_tbl <- modeltime_table(
 model_fit_arima
)

---- ACCURACY ----
```
modeltime_calibrate

models_tbl %>%
  modeltime_calibrate(new_data = testing(splits)) %>%
  modeltime_accuracy(
    metric_set = metric_set(mae, rmse, rsq)
  )

modeltime_calibrate  Preparation for forecasting

Description

Calibration sets the stage for accuracy and forecast confidence by computing predictions and residuals from out of sample data.

Usage

modeltime_calibrate(object, new_data, quiet = TRUE, ...)

Arguments

object  A fitted model object that is either:
  1. A modeltime table that has been created using modeltime_table()
  2. A workflow that has been fit by fit.workflow() or
  3. A parsnip model that has been fit using fit.model_spec()
new_data  A test data set tibble containing future information (timestamps and actual values).
quiet  Hide errors (TRUE, the default), or display them as they occur?
...  Additional arguments passed to modeltime_forecast().

Details

The results of calibration are used for:

- **Forecast Confidence Interval Estimation**: The out of sample residual data is used to calculate the confidence interval. Refer to modeltime_forecast().
- **Accuracy Calculations**: The out of sample actual and prediction values are used to calculate performance metrics. Refer to modeltime_accuracy()

The calibration steps include:

1. If not a Modeltime Table, objects are converted to Modeltime Tables internally
2. Two Columns are added:
   - .type: Indicates the sample type. Only "Test" is currently available.
   - .calibration_data: Contains a tibble with Timestamps, Actual Values, Predictions and Residuals calculated from new_data (Test Data)
Value

A Modeltime Table (mdl_time_tbl) with nested .calibration_data added

Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

# Data
m750 <- m4_monthly %>% filter(id == "M750")

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

# --- MODELS ---
# Model 1: auto_arima ----
model_fit_arima <- arima_reg() %>%
  set_engine(engine = "auto_arima") %>%
  fit(value ~ date, data = training(splits))

# ---- MODELTIME TABLE ----
models_tbl <- modeltime_table(model_fit_arima)

# ---- CALIBRATE ----
calibration_tbl <- models_tbl %>%
  modeltime_calibrate(new_data = testing(splits))

# ---- ACCURACY ----
calibration_tbl %>%
  modeltime_accuracy()

# ---- FORECAST ----
calibration_tbl %>%
  modeltime_forecast(new_data = testing(splits),
                     actual_data = m750)
modeltime_forecast

Forecast future data

Description
The goal of modeltime_forecast() is to simplify the process of forecasting future data.

Usage
modeltime_forecast(
  object,
  new_data = NULL,
  h = NULL,
  actual_data = NULL,
  conf_interval = 0.8,
  ...
)

Arguments
- object: A Modeltime Table that has been calibrated with modeltime_calibrate()
- new_data: A tibble containing future information to forecast. If NULL, forecasts the calibration data.
- h: The forecast horizon (can be used instead of new_data for time series with no exogenous regressors). Extends the calibration data h periods into the future.
- actual_data: Reference data that is combined with the output tibble and given a .key = "actual"
- conf_interval: An estimated confidence interval based on the in-sample residuals
- ...: Not currently used

Details
The key parameters are (controlled by new_data or h) and combining with existing data (controlled by actual_data) in preparation for visualization with plot_modeltime_forecast().

Specifying New Data or Horizon (h)
When forecasting you can specify future data using:

1. new_data: This is a future tibble with date column and columns for xregs extending the trained dates and exogenous regressors (xregs) if used.
   - **Forecasting Evaluation Data**: By default, the new_data will use the .calibration_data if new_data is not provided. This is the equivalent of using rsample::testing() for getting test data sets.
   - **Forecasting Future Data**: See future_frame() for creating future tibbles.
   - **Xregs**: Can be used with this method
2. h: This is a phrase like "1 year", which extends the .calibration_data into the future.
• **Forecasting Future Data:** All forecasts using h are extended after the calibration data, which is desirable after refitting with `modeltime_refit()`. Internally, a call is made to `future_frame()` to expedite creating new data using the date feature.

• **Xregs:** Cannot be used because future data must include new xregs.

### Actual Data

This is reference data that contains the true values of the time-stamp data. It helps in visualizing the performance of the forecast vs the actual data.

### Confidence Interval Estimation

Confidence intervals (`.conf_lo`, `.conf_hi`) are estimated based on the normal estimation of the testing errors (out of sample) from `modeltime_calibrate()`. The out-of-sample error estimates are then carried through and applied to applied to any future forecasts.

The confidence interval can be adjusted with the `conf_interval` parameter. An 80% confidence interval estimates a normal (Gaussian distribution) that assumes that 80% of the future data will fall within the upper and lower confidence limits.

The confidence interval is *mean-adjusted*, meaning that if the mean of the residuals is non-zero, the confidence interval is adjusted to widen the interval to capture the difference in means.

Refitting has no affect on the confidence interval since this is calculated independently of the refitted model (on data with a smaller sample size). New observations typically improve future accuracy, which in most cases makes the out-of-sample confidence intervals conservative.

### Value

A tibble with predictions and time-stamp data. For ease of plotting and calculations, the column names are transformed to:

• **.key:** Values labeled either "prediction" or "actual"
• **.index:** The timestamp index.
• **.value:** The value being forecasted.
• **.conf_lo:** The lower limit of the confidence interval.
• **.conf_hi:** The upper limit of the confidence interval.

Additional descriptive columns are included:

• **.model_id:** Model ID from the Modeltime Table
• **.model_desc:** Model Description from the Modeltime Table

Unnecessary columns are dropped to save space:

• **.model**
• **.calibration_data**
Examples

```r
library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: auto_arima ----
model_fit_arima <- arima_reg() %>%
 set_engine(engine = "auto_arima") %>%
 fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----
models_tbl <- modeltime_table(
 model_fit_arima
)

---- CALIBRATE ----

#calibration_tbl <- models_tbl %>%
modeltime_calibrate(new_data = testing(splits))

---- ACCURACY ----

calibration_tbl %>%
 modeltime_accuracy()

---- FORECAST ----

calibration_tbl %>%
 modeltime_forecast(
 new_data = testing(splits),
 actual_data = m750
)
```

---

**modelt time refit**

Refit one or more trained models to new data
Description

This is a wrapper for `fit()` that takes a Modeltime Table and retrains each model on new data re-using the parameters and preprocessing steps used during the training process.

Usage

```r
modeltime_refit(object, data, control = NULL, ...)
```

Arguments

- **object**: A Modeltime Table
- **data**: A tibble that contains data to retrain the model(s) using.
- **control**: Either `control_parsnip()` or `control_workflow()` depending on the object. If NULL, created automatically.
- **...**: Additional arguments passed to `fit()`.

Details

Refitting is an important step prior to forecasting time series models. The `modeltime_refit()` function makes it easy to recycle models, retraining on new data.

Recycling Parameters

Parameters are recycled during retraining using the following criteria:

- **Automated models** (e.g. "auto arima") will have parameters recalculated.
- **Non-automated models** (e.g. "arima") will have parameters preserved.
- All preprocessing steps will be reused on the data

Refit

The `modeltime_refit()` function is used to retrain models trained with `fit()`.

Refit XY

The XY format is not supported at this time.

Value

A Modeltime Table containing one or more re-trained models.

Examples

```r
library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")
```
# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

# --- MODELS ---

model_fit_auto_arima <- arima_reg() %>%
  set_engine(engine = "auto_arima") %>%
  fit(value ~ date, data = training(splits))

# ---- MODELTIME TABLE ----

models_tbl <- modeltime_table(model_fit_auto_arima)

# ---- CALIBRATE ----
# - Calibrate on training data set

calibration_tbl <- models_tbl %>%
  modeltime_calibrate(new_data = testing(splits))

# ---- REFIT ----
# - Refit on full data set

refit_tbl <- calibration_tbl %>%
  modeltime_refit(m750)

---

**modeltime_table**  
*Scale forecast analysis with a Modeltime Table*

**Description**

Designed to perform forecasts at scale using models created with modeltime, parsnip, workflows, and regression modeling extensions in the tidymodels ecosystem.

**Usage**

```r
modeltime_table(...)```

Arguments

```r
...               Fitted parsnip model or workflow objects```
Details

This function:

1. Creates a table of models
2. Validates that all objects are models (parsnip or workflows objects) and all models have been fitted (trained)
3. Provides an ID and Description of the models

Examples

```r
library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---
Model 1: auto_arima ----
model_fit_arima <- arima_reg() %>%
 set_engine(engine = "auto_arima") %>%
 fit(value ~ date, data = training(splits))

--- MODELTIME TABLE ----
models_tbl <- modeltime_table(model_fit_arima)

--- CALIBRATE ----
calibration_tbl <- models_tbl %>%
 modeltime_calibrate(new_data = testing(splits))

--- ACCURACY ----
calibration_tbl %>%
 modeltime_accuracy()

--- FORECAST ----
calibration_tbl %>%
 modeltime_forecast(
 new_data = testing(splits),
)
```
new_modeltime_bridge

constructor for creating modeltime models

Description

These functions are used to construct new modeltime bridge functions that connect the tidymodels infrastructure to time-series models containing date or date-time features.

Usage

new_modeltime_bridge(class, models, data, extras = NULL, desc = NULL)

Arguments

class
A class name that is used for creating custom printing messages

models
A list containing one or more models

data
A data frame (or tibble) containing 4 columns: (date column with name that matches input data), .actual, .fitted, and .residuals.

extras
An optional list that is typically used for transferring preprocessing recipes to the predict method.

desc
An optional model description to appear when printing your modeltime objects

Examples

library(stats)
library(tidyverse)
library(lubridate)
library(timetk)

lm_model <- lm(value ~ as.numeric(date) + hour(date) + wday(date, label = TRUE),
data = taylor_30_min)

data = tibble(
  date = taylor_30_min$date, # Important - The column name must match the modeled data
  # These are standardized names: .actual, .fitted, .residuals
  .actual = taylor_30_min$value,
  .fitted = lm_model$fitted.values %>% as.numeric(),
  .residuals = lm_model$residuals %>% as.numeric()
)

new_modeltime_bridge(
  class = "lm_time_series_impl",
  models = list(model_1 = lm_model),
  data = data,
)
Description

These functions are designed to assist developers in extending the modeltime package.

Usage

\texttt{parse_index_from_data(data)}

\texttt{parse_period_from_index(data, period)}

Arguments

- \texttt{data}: A data frame
- \texttt{period}: A period to calculate from the time index. Numeric values are returned as-is. "auto" guesses a numeric value from the index. A time-based phrase (e.g. "7 days") calculates the number of timestamps that typically occur within the time-based phrase.

Value

- \texttt{parse_index_from_data()}: Returns a tibble containing the date or date-time column.
- \texttt{parse_period_from_index()}: Returns the numeric period from a tibble containing the index.

Examples

\begin{verbatim}
library(dplyr)
library(timetk)

predictors <- m4_monthly %>%
  filter(id == "M750") %>%
  select(-value)

index_tbl <- parse_index_from_data(predictors)
index_tbl

period <- parse_period_from_index(index_tbl, period = "1 year")
period
\end{verbatim}
plot_modeltime_forecast

Interactive Forecast Visualization

Description

This is a wrapper for `plot_time_series()` that generates an interactive (plotly) or static (ggplot2) plot with the forecasted data.

Usage

```r
plot_modeltime_forecast(
 .data,
 .conf_interval_show = TRUE,
 .conf_interval_fill = "grey20",
 .conf_interval_alpha = 0.2,
 .legend_show = TRUE,
 .legend_max_width = 40,
 .title = "Forecast Plot",
 .x_lab = "",
 .y_lab = "",
 .color_lab = "Legend",
 .interactive = TRUE,
 .plotly_slider = FALSE,
 ...
)
```

Arguments

- `.data` A tibble that is the output of `modeltime_forecast()`
- `.conf_interval_show` Logical. Whether or not to include the confidence interval as a ribbon.
- `.conf_interval_fill` Fill color for the confidence interval
- `.conf_interval_alpha` Fill opacity for the confidence interval. Range (0, 1).
- `.legend_show` Logical. Whether or not to show the legend. Can save space with long model descriptions.
- `.legend_max_width` Numeric. The width of truncation to apply to the legend text.
- `.title` Title for the plot
- `.x_lab` X-axis label for the plot
- `.y_lab` Y-axis label for the plot
- `.color_lab` Legend label if a `color_var` is used.
plot_modeltime_forecast

.plot_modeltime_forecast(.interactive = FALSE)

.plotly_slider If TRUE, returns a plotly date range slider.

Additional arguments passed to timetk::plot_time_series().

Value

A static ggplot2 plot or an interactive plotly plot containing a forecast

Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

# Data
m750 <- m4_monthly %>% filter(id == "M750")

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

# --- MODELS ---
# Model 1: auto_arima ----
model_fit_arima <- arima_reg() %>%
  set_engine(engine = "auto_arima") %>%
  fit(value ~ date, data = training(splits))

# MODELTIME TABLE ----
models_tbl <- modeltime_table(model_fit_arima)

# FORECAST ----

plot_modeltime_forecast(.interactive = FALSE)
Description

`prophet_boost()` is a way to generate a specification of a Boosted PROPHET model before fitting and allows the model to be created using different packages. Currently the only package is prophet.

Usage

```r
prophet_boost(
 mode = "regression",
 growth = NULL,
 num_changepoints = NULL,
 season = NULL,
 prior_scale_changepoints = NULL,
 prior_scale_seasonality = NULL,
 prior_scale_holidays = NULL,
 mtry = NULL,
 trees = NULL,
 min_n = NULL,
 tree_depth = NULL,
 learn_rate = NULL,
 loss_reduction = NULL,
 sample_size = NULL,
 stop_iter = NULL
)
```

Arguments

- **mode** A single character string for the type of model. The only possible value for this model is "regression".
- **growth** String 'linear' or 'logistic' to specify a linear or logistic trend.
- **num_changepoints** Number of potential changepoints to include for modeling trend.
- **season** 'additive' (default) or 'multiplicative'.
- **prior_scale_changepoints** Parameter modulating the flexibility of the automatic changepoint selection. Large values will allow many changepoints, small values will allow few changepoints.
- **prior_scale_seasonality** Parameter modulating the strength of the seasonality model. Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the seasonality.
\texttt{prior\_scale\_holidays} \\
Parameter modulating the strength of the holiday components model, unless overridden in the holidays input.

\texttt{mtry} \\
A number for the number (or proportion) of predictors that will be randomly sampled at each split when creating the tree models (\texttt{xgboost} only).

\texttt{trees} \\
An integer for the number of trees contained in the ensemble.

\texttt{min\_n} \\
An integer for the minimum number of data points in a node that are required for the node to be split further.

\texttt{tree\_depth} \\
An integer for the maximum depth of the tree (i.e., number of splits) (\texttt{xgboost} only).

\texttt{learn\_rate} \\
A number for the rate at which the boosting algorithm adapts from iteration-to-iteration (\texttt{xgboost} only).

\texttt{loss\_reduction} \\
A number for the reduction in the loss function required to split further (\texttt{xgboost} only).

\texttt{sample\_size} \\
A number for the number (or proportion) of data that is exposed to the fitting routine. For \texttt{xgboost}, the sampling is done at each iteration while \texttt{C5.0} samples once during training.

\texttt{stop\_iter} \\
The number of iterations without improvement before stopping (\texttt{xgboost} only).

\section*{Details}

The data given to the function are not saved and are only used to determine the \textit{mode} of the model. For \texttt{prophet\_boost()}, the mode will always be "regression".

The model can be created using the \texttt{fit()} function using the following \textit{engines}:

- "\texttt{prophet\_xgboost}" (default) - Connects to \texttt{prophet::prophet()} and \texttt{xgboost::xgb.train()}

\section*{Main Arguments}

The main arguments (tuning parameters) for the \texttt{PROPHET} model are:

- \texttt{growth}: String 'linear' or 'logistic' to specify a linear or logistic trend.
- \texttt{num\_changepoints}: Number of potential changepoints to include for modeling trend.
- \texttt{season}: 'additive' (default) or 'multiplicative'.
- \texttt{prior\_scale\_changepoints}: Parameter modulating the flexibility of the automatic changepoint selection. Large values will allow many changepoints, small values will allow few changepoints.
- \texttt{prior\_scale\_seasonality}: Parameter modulating the strength of the seasonality model. Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the seasonality.
- \texttt{prior\_scale\_holidays}: Parameter modulating the strength of the holiday components model, unless overridden in the holidays input.

The main arguments (tuning parameters) for the model \texttt{XGBoost model} are:

- \texttt{mtry}: The number of predictors that will be randomly sampled at each split when creating the tree models.
• trees: The number of trees contained in the ensemble.
• min_n: The minimum number of data points in a node that are required for the node to be split further.
• tree_depth: The maximum depth of the tree (i.e. number of splits).
• learn_rate: The rate at which the boosting algorithm adapts from iteration-to-iteration.
• loss_reduction: The reduction in the loss function required to split further.
• sample_size: The amount of data exposed to the fitting routine.
• stop_iter: The number of iterations without improvement before stopping.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).
If parameters need to be modified, update() can be used in lieu of recreating the object from scratch.

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each engine:

Model 1: PROPHET:

<table>
<thead>
<tr>
<th>modeltime</th>
<th>prophet</th>
</tr>
</thead>
<tbody>
<tr>
<td>growth</td>
<td>growth</td>
</tr>
<tr>
<td>num_changepoints</td>
<td>n.changepoints</td>
</tr>
<tr>
<td>season</td>
<td>seasonality.mode</td>
</tr>
<tr>
<td>prior_scale_changepoints</td>
<td>changepoint.prior.scale</td>
</tr>
<tr>
<td>prior_scale_seasonality</td>
<td>seasonality.prior.scale</td>
</tr>
<tr>
<td>prior_scale_holidays</td>
<td>holidays.prior.scale</td>
</tr>
</tbody>
</table>

Model 2: XGBoost:

<table>
<thead>
<tr>
<th>modeltime</th>
<th>xgboost::xgb.train</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree_depth</td>
<td>max_depth</td>
</tr>
<tr>
<td>trees</td>
<td>nrounds</td>
</tr>
<tr>
<td>learn_rate</td>
<td>eta</td>
</tr>
<tr>
<td>mtry</td>
<td>.colsample_bytree</td>
</tr>
<tr>
<td>min_n</td>
<td>min_child_weight</td>
</tr>
<tr>
<td>loss_reduction</td>
<td>gamma</td>
</tr>
<tr>
<td>sample_size</td>
<td>subsample</td>
</tr>
</tbody>
</table>

Other options can be set using set_engine().

**prophet**

Model 1: PROPHET (prophet::prophet):

```r
function (df = NULL, growth = "linear", changepoints = NULL, n.changepoints = 25,
```
Parameter Notes:

- **df**: This is supplied via the parsnip / modeltime `fit()` interface (so don’t provide this manually). See Fit Details (below).
- **holidays**: A data.frame of holidays can be supplied via `set_engine()`
- **uncertainty.samples**: The default is set to 0 because the prophet uncertainty intervals are not used as part of the Modeltime Workflow. You can override this setting if you plan to use prophet’s uncertainty tools.

Limitations:

- prophet::add_seasonality() is not currently implemented. It’s used to specify non-standard seasonalities using fourier series. An alternative is to use step_fourier() and supply custom seasonalities as Extra Regressors.

Model 2: XGBoost (xgboost::xgb.train):

```
function (params = list(), data, nrounds, watchlist = list(), obj = NULL,
feval = NULL, verbose = 1, print_every_n = 1L, early_stopping_rounds = NULL,
maximize = NULL, save_period = NULL, save_name = "xgboost.model", xgb_model = NULL,
callbacks = list(), ...)
```

Parameter Notes:

- XGBoost uses a `params = list()` to capture. Parsnip / Modeltime automatically sends any args provided as ... inside of `set_engine()` to the `params = list(...)`.

Fit Details

**Date and Date-Time Variable**

It’s a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

- `fit(y ~ date)`

**Univariate (No Extra Regressors):**

For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface (recommended): `fit(y ~ date)` will ignore xreg’s.
- XY Interface: `fit_xy(x = data[, "date"], y = data$y)` will ignore xreg’s.

**Multivariate (Extra Regressors)**

Extra Regressors parameter is populated using the `fit()` or `fit_xy()` function:

- Only factor, ordered factor, and numeric data will be used as xregs.
• Date and Date-time variables are not used as xregs
• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp).
3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the arima_reg() using fit():

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.
• fit_xy(data[,c("date","month.lbl")], y = data$y) will pass x, where x is a data frame containing month.lbl and the date feature. Only month.lbl will be used as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.prophet_boost(), set_engine()

Examples

library(dplyr)
library(lubridate)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

# ---- PROPHET ----

# Model Spec
model_spec <- prophet_boost(
  learn_rate = 0.1
) %>%
  set_engine("prophet_xgboost")

# Fit Spec
## Not run:
model_fit <- model_spec %>%
  fit(log(value) ~ date + as.numeric(date) + month(date, label = TRUE),
      data = training(splits))
model_fit
prophet_fit_impl

Description

Low-Level PROPHET function for translating modeltime to PROPHET

Usage

prophet_fit_impl(
  x,
  y,
  growth = "linear",
  n.changepoints = 25,
  seasonality.mode = "additive",
  changepoint.prior.scale = 0.05,
  seasonality.prior.scale = 10,
  holidays.prior.scale = 10,
  ...
)

Arguments

x A dataframe of xreg (exogenous regressors)
y A numeric vector of values to fit
growth String 'linear' or 'logistic' to specify a linear or logistic trend.
n.changepoints Number of potential changepoints to include. Not used if input 'changepoints' is supplied. If 'changepoints' is not supplied, then n.changepoints potential changepoints are selected uniformly from the first 'changepoint.range' proportion of df$ds.
seasonality.mode 'additive' (default) or 'multiplicative'.
changepoint.prior.scale Parameter modulating the flexibility of the automatic changepoint selection. Large values will allow many changepoints, small values will allow few changepoints.
seasonality.prior.scale Parameter modulating the strength of the seasonality model. Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the seasonality. Can be specified for individual seasonalties using add_seasonality.
Description
Tuning Parameters for Prophet Models

Usage

growth(values = c("linear", "logistic"))

num_changepoints(range = c(0L, 50L), trans = NULL)

prior_scale_changepoints(range = c(-3, 2), trans = log10_trans())

prior_scale_seasonality(range = c(-3, 2), trans = log10_trans())

prior_scale_holidays(range = c(-3, 2), trans = log10_trans())

Arguments

values  A character string of possible values.
range   A two-element vector holding the defaults for the smallest and largest possible values, respectively.
trans   A trans object from the scales package, such as scales::log10_trans() or scales::reciprocal_trans(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details
The main parameters for Prophet models are:

- growth: The form of the trend: "linear", or "logistic".
- num_changepoints: The number of trend changepoints allowed in modeling the trend
- season:
  - The form of the seasonal term: "additive" or "multiplicative".
  - See season().
- "Prior Scale": Controls flexibility of
  - Changepoints: prior_scale_changepoints
  - Seasonality: prior_scale_seasonality
  - Holidays: prior_scale_holidays
  - The log10_trans() converts priors to a scale from 0.001 to 100, which effectively weights lower values more heavily than larger values.
Examples

growth()
num_changepoints()
season()
prior_scale_changepoints()

prophet_predict_impl  
Bridge prediction function for PROPHET models

Description

Bridge prediction function for PROPHET models

Usage

prophet_predict_impl(object, new_data, ...)

Arguments

object  
An object of class model_fit

new_data  
A rectangular data object, such as a data frame.

...  
Additional arguments passed to prophet::predict()

prophet_reg  
General Interface for PROPHET Time Series Models

Description

prophet_reg() is a way to generate a specification of a PROPHET model before fitting and allows the model to be created using different packages. Currently the only package is prophet.

Usage

prophet_reg(
    mode = "regression",
    growth = NULL,
    num_changepoints = NULL,
    season = NULL,
    prior_scale_changepoints = NULL,
    prior_scale_seasonality = NULL,
    prior_scale_holidays = NULL
)
**Arguments**

- **mode**: A single character string for the type of model. The only possible value for this model is "regression".

- **growth**: String 'linear' or 'logistic' to specify a linear or logistic trend.

- **num_changepoints**: Number of potential changepoints to include for modeling trend.

- **season**: 'additive' (default) or 'multiplicative'.

- **prior_scale_changepoints**: Parameter modulating the flexibility of the automatic changepoint selection. Large values will allow many changepoints, small values will allow few changepoints.

- **prior_scale_seasonality**: Parameter modulating the strength of the seasonality model. Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the seasonality.

- **prior_scale_holidays**: Parameter modulating the strength of the holiday components model, unless overridden in the holidays input.

**Details**

The data given to the function are not saved and are only used to determine the **mode** of the model. For **prophet_reg()**, the mode will always be "regression".

The model can be created using the **fit()** function using the following **engines**:

- "prophet" (default) - Connects to **prophet::prophet()**

**Main Arguments**

The main arguments (tuning parameters) for the model are:

- **growth**: String 'linear' or 'logistic' to specify a linear or logistic trend.

- **num_changepoints**: Number of potential changepoints to include for modeling trend.

- **season**: 'additive' (default) or 'multiplicative'.

- **prior_scale_changepoints**: Parameter modulating the flexibility of the automatic changepoint selection. Large values will allow many changepoints, small values will allow few changepoints.

- **prior_scale_seasonality**: Parameter modulating the strength of the seasonality model. Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the seasonality.

- **prior_scale_holidays**: Parameter modulating the strength of the holiday components model, unless overridden in the holidays input.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using **set_engine()** (See Engine Details below).

If parameters need to be modified, **update()** can be used in lieu of recreating the object from scratch.
Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each engine:

<table>
<thead>
<tr>
<th>modeltime</th>
<th>prophet</th>
</tr>
</thead>
<tbody>
<tr>
<td>growth</td>
<td>growth</td>
</tr>
<tr>
<td>num_changepoints</td>
<td>n.changepoints</td>
</tr>
<tr>
<td>season</td>
<td>seasonality.mode</td>
</tr>
<tr>
<td>prior_scale_changepoints</td>
<td>changepoint.prior.scale</td>
</tr>
<tr>
<td>prior_scale_seasonality</td>
<td>seasonality.prior.scale</td>
</tr>
<tr>
<td>prior_scale_holidays</td>
<td>holidays.prior.scale</td>
</tr>
</tbody>
</table>

Other options can be set using set_engine().

prophet

The engine uses prophet::prophet().

Function Parameters:

```r
function (df = NULL, growth = "linear", changepoints = NULL, n.changepoints = 25,
changepoint.range = 0.8, yearly.seasonality = "auto", weekly.seasonality = "auto",
daily.seasonality = "auto", holidays = NULL, seasonality.mode = "additive",
seasonality.prior.scale = 10, holidays.prior.scale = 10, changepoint.prior.scale = 0.05,
mcmc.samples = 0, interval.width = 0.8, uncertainty.samples = 1000,
fit = TRUE, ...)
```

Parameter Notes:

- **df**: This is supplied via the parsnip / modeltime fit() interface (so don’t provide this manually). See Fit Details (below).
- **holidays**: A data.frame of holidays can be supplied via set_engine()
- **uncertainty.samples**: The default is set to 0 because the prophet uncertainty intervals are not used as part of the Modeltime Workflow. You can override this setting if you plan to use prophet’s uncertainty tools.

Limitations:

- **prophet::add_seasonality()** is not currently implemented. It’s used to specify non-standard seasonalities using fourier series. An alternative is to use step_fourier() and supply custom seasonalities as Extra Regressors.

Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts date and date-time features and handles them internally.

- **fit(y ~ date)**
Univariate (No Extra Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface (recommended): `fit(y ~ date)` will ignore xreg’s.
- XY Interface: `fit_xy(x = data[,"date"], y = data$y)` will ignore xreg’s.

Multivariate (Extra Regressors)
Extra Regressors parameter is populated using the `fit()` or `fit_xy()` function:

- Only factor, ordered factor, and numeric data will be used as xregs.
- Date and Date-time variables are not used as xregs
- Character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),
3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the `arima_reg()` using `fit()`:

- `fit(y ~ date + month.lbl)` will pass `month.lbl` on as an exogenous regressor.
- `fit_xy(data[,c("date","month.lbl")], y = data$y)` will pass `x`, where `x` is a data frame containing `month.lbl` and the date feature. Only `month.lbl` will be used as an exogenous regressor.

Note that date or date-time class values are excluded from `xreg`.

See Also

- `fit.prophet_reg()`, `set_engine()`

Examples

```r
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

---- PROPHET ----

Model Spec
model_spec <- prophet_reg() %>%
```
prophet_xgboost_fit_impl

**set_engine("prophet")**

# Fit Spec

```r
model_fit <- model_spec %>%
 fit(log(value) ~ date, data = training(splits))
model_fit
```

---

prophet_xgboost_fit_impl

*Low-Level PROPHET function for translating modeltime to Boosted PROPHET*

**Description**

Low-Level PROPHET function for translating modeltime to Boosted PROPHET

**Usage**

```r
prophet_xgboost_fit_impl(
 x,
 y,
 df = NULL,
 growth = "linear",
 changepoints = NULL,
 n.changepoints = 25,
 changepoint.range = 0.8,
 yearly.seasonality = "auto",
 weekly.seasonality = "auto",
 daily.seasonality = "auto",
 holidays = NULL,
 seasonality.mode = "additive",
 seasonality.prior.scale = 10,
 holidays.prior.scale = 10,
 changepoint.prior.scale = 10,
 mcmc.samples = 0,
 interval.width = 0.8,
 uncertainty.samples = 1000,
 fit = TRUE,
 max_depth = 6,
 nrounds = 15,
 eta = 0.3,
 colsample_bytree = 1,
 min_child_weight = 1,
 gamma = 0,
 subsample = 1,
)```
validation = 0,
early_stop = NULL,
...
)

Arguments

x A dataframe of xreg (exogenous regressors)
y A numeric vector of values to fit
df (optional) Dataframe containing the history. Must have columns ds (date type) and y, the time series. If growth is logistic, then df must also have a column cap that specifies the capacity at each ds. If not provided, then the model object will be instantiated but not fit; use fit.prophet(m, df) to fit the model.
growth String 'linear' or 'logistic' to specify a linear or logistic trend.
changepoints Vector of dates at which to include potential changepoints. If not specified, potential changepoints are selected automatically.
n.changepoints Number of potential changepoints to include. Not used if input 'changepoints' is supplied. If 'changepoints' is not supplied, then n.changepoints potential changepoints are selected uniformly from the first 'changepoint.range' proportion of df$ds.
changepoint.range Proportion of history in which trend changepoints will be estimated. Defaults to 0.8 for the first 80 'changepoints' is specified.
yearly.seasonality Fit yearly seasonality. Can be 'auto', TRUE, FALSE, or a number of Fourier terms to generate.
weekly.seasonality Fit weekly seasonality. Can be 'auto', TRUE, FALSE, or a number of Fourier terms to generate.
daily.seasonality Fit daily seasonality. Can be 'auto', TRUE, FALSE, or a number of Fourier terms to generate.
holidays data frame with columns holiday (character) and ds (date type) and optionally columns lower_window and upper_window which specify a range of days around the date to be included as holidays. lower_window=-2 will include 2 days prior to the date as holidays. Also optionally can have a column prior_scale specifying the prior scale for each holiday.
seasonality.mode 'additive' (default) or 'multiplicative'.
seasonality.prior.scale Parameter modulating the strength of the seasonality model. Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the season-ality. Can be specified for individual seasonalities using add_seasonality.
holidays.prior.scale Parameter modulating the strength of the holiday components model, unless overridden in the holidays input.
prophet_xgboost_predict_impl

Description

Bridge prediction function for Boosted PROPHET models
Usage

```r
prophet_xgboost_predict_impl(object, new_data, ...)
```

Arguments

object

An object of class `model_fit`

new_data

A rectangular data object, such as a data frame.

... Additional arguments passed to `prophet::predict()`

Description

Wrappers for using `recipes::bake` and `recipes::juice` to process data returning data in either data frame or matrix format (Common formats needed for machine learning algorithms).

Usage

```r
juice_xreg_recipe(recipe, format = c("tbl", "matrix"))
```

```r
bake_xreg_recipe(recipe, new_data, format = c("tbl", "matrix"))
```

Arguments

recipe

A prepared recipe

format

One of:

- `tbl`: Returns a tibble (data.frame)
- `matrix`: Returns a matrix

new_data

Data to be processed by a recipe

Value

Data in either the `tbl` (data.frame) or `matrix` formats

Examples

```r
library(dplyr)
library(timetk)
library(recipes)
library(lubridate)

predictors <- m4_monthly %>%
  filter(id == "M750") %>%
  select(-value) %>%
  mutate(month = month(date, label = TRUE))
```
seasonal_decomp

Create default recipe
xreg_recipe_spec <- create_xreg_recipe(predictors, prepare = TRUE)

Extracts the preprocessed training data from the recipe (used in your fit function)
juice_xreg_recipe(xreg_recipe_spec)

Applies the prepared recipe to new data (used in your predict function)
bake_xreg_recipe(xreg_recipe_spec, new_data = predictors)

seasonal_decomp

General Interface for Seasonal Decomposition Regression Models

Description

seasonal_decomp() is a way to generate a specification of an Seasonal Decomposition model before fitting and allows the model to be created using different packages. Currently the only package is forecast.

Usage

seasonal_decomp(
 mode = "regression",
 seasonal_period_1 = NULL,
 seasonal_period_2 = NULL,
 seasonal_period_3 = NULL
)

Arguments

mode A single character string for the type of model. The only possible value for this model is "regression".

seasonal_period_1 (required) The primary seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.

seasonal_period_2 (optional) A second seasonal frequency. Is NULL by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.

seasonal_period_3 (optional) A third seasonal frequency. Is NULL by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.
Details

The data given to the function are not saved and are only used to determine the mode of the model. For seasonal_decomp(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

- "stlm_ets" (default) - Connects to forecast::stlm(), method = "ets"
- "stlm_arima" (default) - Connects to forecast::stlm(), method = "arima"

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each engine:

<table>
<thead>
<tr>
<th></th>
<th>modeltime</th>
<th>forecast::stlm</th>
</tr>
</thead>
<tbody>
<tr>
<td>seasonal_period_1, seasonal_period_2, seasonal_period_3</td>
<td>msts(seasonal.periods)</td>
<td></td>
</tr>
</tbody>
</table>

Other options can be set using set_engine().

The engines use forecast::stlm().

Function Parameters:

```r
## function (y, s.window = 13, robust = FALSE, method = c("ets", "arima"),
## modelfunction = NULL, model = NULL, etsmodel = "ZZN", lambda = NULL,
## biasadj = FALSE, xreg = NULL, allow.multiplicative.trend = FALSE, x = y,
## ...)```

stlm_ets (default engine)

- **Method**: Uses method = "ets", which by default is auto-ETS.
- **Xregs**: Cannot accept Exogenous Regressors (xregs). Xregs are ignored.

stlm_arima

- **Method**: Uses method = "arima", which by default is auto-ARIMA.
- **Xregs**: Can accept Exogenous Regressors (xregs).

Fit Details

Date and Date-Time Variable

It's a requirement to have a date or date-time variable as a predictor. The fit() interface accepts date and date-time features and handles them internally.

- `fit(y ~ date)`

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period = "yearly"). There are 3 ways to specify:
1. `seasonal_period = "auto"`: A seasonal period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. `seasonal_period = 12`: A numeric frequency. For example, 12 is common for monthly data
3. `seasonal_period = "1 year"`: A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

**Univariate (No xregs, Exogenous Regressors):**

For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface (recommended): `fit(y ~ date)` will ignore xreg's.
- XY Interface: `fit_xy(x = data[,"date"], y = data$y)` will ignore xreg's.

**Multivariate (xregs, Exogenous Regressors)**

- The `stlm_ets` engine *cannot* accept Xregs.
- The `stlm_arima` engine can accept Xregs

The xreg parameter is populated using the `fit()` or `fit_xy()` function:

- Only factor, ordered factor, and numeric data will be used as xregs.
- Date and Date-time variables are not used as xregs
- Character data should be converted to factor.

**Xreg Example:** Suppose you have 3 features:

1. y (target)
2. date (time stamp),
3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the `seasonal_decomp()` using `fit()`:

- `fit(y ~ date + month.lbl)` will pass month.lbl on as an exogenous regressor.
- `fit_xy(data[,c("date","month.lbl")], y = data$y)` will pass x, where x is a data frame containing month.lbl and the date feature. Only month.lbl will be used as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

**See Also**

`fit.seasonal_decomp()`, `set_engine()`
Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

# Data
taylor_30_min

# Split Data 80/20
splits <- initial_time_split(taylor_30_min, prop = 0.8)

# ---- STLM ETS ----

# Model Spec
model_spec <- seasonal_decomp() %>%
  set_engine("stlm_ets")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

# ---- STLM ARIMA ----

# Model Spec
model_spec <- seasonal_decomp() %>%
  set_engine("stlm_arima")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

---

stlm_arima_fit_impl Low-Level stlm function for translating modeltime to forecast

Description

Low-Level stlm function for translating modeltime to forecast

Usage

stlm_arima_fit_impl(
x,
y,
stlm_arima_predict_impl

Arguments

- **x**: A dataframe of xreg (exogenous regressors)
- **y**: A numeric vector of values to fit
- **period_1**: (required) First seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided.
- **period_2**: (optional) First seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided.
- **period_3**: (optional) First seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided.
- ... Additional arguments passed to forecast::stlm()

---

stlm_arima_predict_impl

*Bridge prediction function for ARIMA models*

Description

Bridge prediction function for ARIMA models

Usage

stlm_arima_predict_impl(object, new_data, ...)

Arguments

- **object**: An object of class model_fit
- **new_data**: A rectangular data object, such as a data frame.
- ... Additional arguments passed to forecast::Arima()
stlm_ets_fit_impl

Low-Level stlm function for translating modeltime to forecast

Description

Low-Level stlm function for translating modeltime to forecast

Usage

stlm_ets_fit_impl(
  x,
  y,
  period_1 = "auto",
  period_2 = NULL,
  period_3 = NULL,
  ...
)

Arguments

x              A dataframe of xreg (exogenous regressors)
y              A numeric vector of values to fit
period_1       (required) First seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided.
period_2       (optional) First seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided.
period_3       (optional) First seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided.
...             Additional arguments passed to forecast::stlm()

stlm_ets_predict_impl

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

stlm_ets_predict_impl(object, new_data, ...)

...
Arguments

object  An object of class model_fit
new_data A rectangular data object, such as a data frame.
...  Additional arguments passed to forecast::Arima()

Description

Converts results from modeltime_accuracy() into either interactive (reactable) or static (gt) tables.

Usage

table_modeltime_accuracy(
  .data,
  .round_digits = 2,
  .sortable = TRUE,
  .show_sortable = TRUE,
  .searchable = TRUE,
  .filterable = FALSE,
  .expand_groups = TRUE,
  .title = "Accuracy Table",
  .interactive = TRUE,
  ...
)

Arguments

.data  A tibble that is the output of modeltime_accuracy()
.round_digits  Rounds accuracy metrics to a specified number of digits. If NULL, rounding is not performed.
.sortable  Allows sorting by columns. Only applied to reactable tables. Passed to reactable(sortable).
.show_sortable  Shows sorting. Only applied to reactable tables. Passed to reactable(showSortable).
.searchable  Adds search input. Only applied to reactable tables. Passed to reactable(searchable).
.filterable  Adds filters to table columns. Only applied to reactable tables. Passed to reactable(filterable).
.expand_groups  Expands groups dropdowns. Only applied to reactable tables. Passed to reactable(defaultExpanded).
.title  A title for static (gt) tables.


**interactive** Return interactive or static tables. If TRUE, returns reactable table. If FALSE, returns static gt table.

Additional arguments passed to `reactable::reactable()` or `gt::gt()` (depending on `.interactive` selection).

**Details**

**Groups**
The function respects `dplyr::group_by()` groups and thus scales with multiple groups.

**Reactable Output**
A `reactable()` table is an interactive format that enables live searching and sorting. When `.interactive = TRUE`, a call is made to `reactable::reactable()`.

table_modeltime_accuracy() includes several common options like toggles for sorting and searching. Additional arguments can be passed to `reactable::reactable()` via `...`.

**GT Output**
A `gt` table is an HTML-based table that is "static" (e.g. non-searchable, non-sortable). It’s commonly used in PDF and Word documents that does not support interactive content.

When `.interactive = FALSE`, a call is made to `gt::gt()`. Arguments can be passed via `...`.

Table customization is implemented using a piping workflow (`%>%`). For more information, refer to the GT Documentation.

**Value**
A static `gt` table or an interactive `reactable` table containing the accuracy information.

**Examples**

```r
library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: auto_arima ----
model_fit_arima <- arima_reg() %>%
 set_engine(engine = "auto_arima") %>%
 fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----
```
models_tbl <- modeltime_table(
  model_fit_arima
)

# ---- ACCURACY ----
models_tbl %>%
  modeltime_calibrate(new_data = testing(splits)) %>%
  modeltime_accuracy() %>%
  table_modeltime_accuracy()

time_series_params

Tuning Parameters for Time Series (ts-class) Models

Description

Tuning Parameters for Time Series (ts-class) Models

Usage

seasonal_period(values = c("none", "daily", "weekly", "yearly"))

Arguments

values A time-based phrase

Details

Time series models (e.g. Arima() and ets()) use stats::ts() or forecast::msts() to apply seasonality. We can do the same process using the following general time series parameter:

- period: The periodic nature of the seasonality.

It’s usually best practice to not tune this parameter, but rather set to obvious values based on the seasonality of the data:

- **Daily Seasonality**: Often used with **hourly data** (e.g. 24 hourly timestamps per day)
- **Weekly Seasonality**: Often used with **daily data** (e.g. 7 daily timestamps per week)
- **Yearly Seasonality**: Often used with **weekly, monthly, and quarterly data** (e.g. 12 monthly observations per year).

However, in the event that users want to experiment with period tuning, you can do so with seasonal_period().

Examples

seasonal_period()
type_sum.mdl_time_tbl

Succinct summary of Modletime Tables

Description

type_sum controls how objects are shown when inside tibble columns.

Usage

## S3 method for class 'mdl_time_tbl'


Arguments

x

A mdl_time_tbl object to summarise.

Value

A character value.
Index

*Topic datasets
- arima_workflow_tuned, 15
  arima_boost, 3
  Arima_fit_impl, 8
  arima_params, 9
  Arima_predict_impl, 10
  arima_reg, 11
  arima_reg(), 16
  arima_workflow_tuned, 15
  arima_xgboost_fit_impl, 16
  arima_xgboost_predict_impl, 18
  auto_arima_fit_impl, 18
  auto_arima_xgboost_fit_impl, 19
  bake_xreg_recipe (recipe_helpers), 61
  control_parsnip(), 31, 40
  control_workflow(), 40
  create_xreg_recipe, 22
  damping (exp_smoothing_params), 29
  default_forecast_accuracy_metric_set, 24
  default_forecast_accuracy_metric_set(), 34
  error (exp_smoothing_params), 29
  ets_fit_impl, 25
  ets_predict_impl, 25
  exp_smoothing, 26
  exp_smoothing_params, 29
  fit(), 40
  fit.arima_boost (fit.modeltime), 30
  fit.arima_boost(), 7
  fit.arima_reg (fit.modeltime), 30
  fit.arima_reg(), 14
  fit.exp_smoothing (fit.modeltime), 30
  fit.exp_smoothing(), 28
  fit.model_spec(), 33, 35
  fit.modeltime, 30
  fit.prophet_boost (fit.modeltime), 30
  fit.prophet_boost(), 51
  fit.prophet_reg (fit.modeltime), 30
  fit.prophet_reg(), 57
  fit.seasonal_decomp (fit.modeltime), 30
  fit.seasonal_decomp(), 64
  fit.workflow(), 33, 35
  forecast::Arima(), 4, 12, 13
  forecast::auto.arima(), 4, 12, 13
  forecast::ets(), 27
  forecast::msts(), 70
  future_frame(), 37, 38
  get_arima_description, 32
  get_model_description, 32
  growth (prophet_params), 53
  gt::gt(), 69
  juice_xreg_recipe (recipe_helpers), 61
  mae(), 24, 34
  mape(), 24, 34
  mase(), 24, 34
  metric_set(), 24, 34
  modeltime_accuracy, 33
  modeltime_accuracy(), 24, 35, 68
  modeltime_calibrate, 35
  modeltime_calibrate(), 37, 38
  modeltime_forecast, 37
  modeltime_forecast(), 34, 35, 45
  modeltime_refit, 39
  modeltime_refit(), 38
  modeltime_table, 41
  modeltime_table(), 35
  ndiffs, 21
  new_modeltime_bridge, 43
  non_seasonal_ar (arima_params), 9
  non_seasonal_differences (arima_params), 9
INDEX

non_seasonal_ma (arima_params), 9
trend (exp_smoothing_params), 29
nsdiffs, 21
type_sum.mdl_time_tbl, 71
num_changepoints (prophet_params), 53
xgboost::xgb.train, 4
parse_index, 44
xgboost::xgb.train(), 48
parse_index_from_data (parse_index), 44
parse_period_from_index (parse_index), 44
plot_modeltime_forecast, 45
plot_modeltime_forecast(), 37
plot_time_series, 45
prior_scale_changepoints
  (prophet_params), 53
prior_scale_holidays (prophet_params), 53
prior_scale_seasonality
  (prophet_params), 53
prophet::prophet, 48, 55, 56
prophet_boost, 47
prophet_fit_impl, 52
prophet_params, 53
prophet_predict_impl, 54
prophet_reg, 54
prophet_xgboost_fit_impl, 58
prophet_xgboost_predict_impl, 60
reactable::reactable(), 69
recipe_helpers, 61
rmse(), 24, 34
rsq(), 24, 34
season (exp_smoothing_params), 29
season(), 53
seasonal_ar (arima_params), 9
seasonal_decomp, 62
seasonal_differences (arima_params), 9
seasonal_ma (arima_params), 9
seasonal_period (time_series_params), 70
set_engine(), 7, 14, 28, 31, 51, 57, 64
smape(), 24, 34
stats::ts(), 70
stlm_arima_fit_impl, 65
stlm_arima_predict_impl, 66
stlm_ets_fit_impl, 67
stlm_ets_predict_impl, 67
table_modeltime_accuracy, 68
time_series_params, 70
timetk::plot_time_series(), 46