Package ‘modeltime’

June 7, 2022

Title The Tidymodels Extension for Time Series Modeling

Version 1.2.2

Description The time series forecasting framework for use with the 'tidymodels' ecosystem. Models include ARIMA, Exponential Smoothing, and additional time series models from the 'forecast' and 'prophet' packages. Refer to "Forecasting Principles & Practice, Second edition"

Refer to "Prophet: forecasting at scale"

URL https://github.com/business-science/modeltime.

https://business-science.github.io/modeltime/

BugReports https://github.com/business-science/modeltime/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports StanHeaders, timetk (>= 2.8.1), parsnip (>= 0.2.1), dials, yardstick (>= 0.0.8), workflows (>= 0.1.3), hardhat (>= 1.0.0), rlang (>= 0.1.2), glue, plotly, reactable, gt, ggplot2, tibble, tidyr, dplyr, purrr, stringr, forcats, scales, janitor, parallel, parallelly, doParallel, foreach, magrittr, forecast, xgboost (>= 1.2.0.1), prophet, methods, cli

Suggests rstan, slider, sparklyr, tidymodels, workflowsets, recipes, rsample, tune (>= 0.2.0), tidyverse, lubridate, progress, testthat, roxygen2, kernlab, glmnet, thief, smooth, greybox, earth, randomForest, tidymquant, trelliscopejs, knitr, rmarkdown (>= 2.9), webshot, qpdf, covr, TSrepr

VignetteBuilder knitr

RoxygenNote 7.2.0

NeedsCompilation no
R topics documented:

adam_params ... 3
adam_reg .. 5
add_modeltime_model 10
arima_boost ... 11
arima_params .. 17
arima_reg ... 18
combine_modeltime_tables 23
control_modeltime 24
create_model_grid 26
create_xreg_recipe 28
exp_smoothing .. 29
exp_smoothing_params 35
get_arima_description 37
get_model_description 38
get_tbats_description 39
log_extractors .. 39
m750 .. 40
m750_models .. 41
m750_splits ... 41
m750_training_resamples 42
maape ... 43
maape_vec .. 43
metric_sets ... 44
modeltime_accuracy 45
modeltime_calibrate 47
modeltime_fit_workflowset 49
modeltime_forecast 51
modeltime_nested_fit 55
modeltime_nested_forecast 56
modeltime_nested_refit 57
modeltime_nested_select_best 58
modeltime_refit .. 59
modeltime_residuals 60
modeltime_residuals_test 62
modeltime_table 64
naive_reg ... 66
new_modeltime_bridge 68
nnetar_params .. 69
nnetar_reg .. 70
Description

Tuning Parameters for ADAM Models

Usage

use_constant(values = c(FALSE, TRUE))

regressors_treatment(values = c("use", "select", "adapt"))

outliers_treatment(values = c("ignore", "use", "select"))

probability_model(
 values = c("none", "auto", "fixed", "general", "odds-ratio", "inverse-odds-ratio", "direct")
)

distribution(
 values = c("default", "dnorm", "dlaplace", "ds", "dgnorm", "dlnorm", "dinvgauss", "dinvnorm", "dinvweibull", "norm")
)
adam_params

 "dgamma")
)

information_criteria(values = c("AICc", "AIC", "BICc", "BIC"))

select_order(values = c(FALSE, TRUE))

Arguments

values A character string of possible values.

Details

The main parameters for ADAM models are:

- **non_seasonal_ar**: The order of the non-seasonal auto-regressive (AR) terms.
- **non_seasonal_differences**: The order of integration for non-seasonal differencing.
- **non_seasonal_ma**: The order of the non-seasonal moving average (MA) terms.
- **seasonal_ar**: The order of the seasonal auto-regressive (SAR) terms.
- **seasonal_differences**: The order of integration for seasonal differencing.
- **seasonal_ma**: The order of the seasonal moving average (SMA) terms.
- **use_constant**: Logical, determining, whether the constant is needed in the model or not.
- **regressors_treatment**: The variable defines what to do with the provided explanatory variables.
- **outliers_treatment**: Defines what to do with outliers.
- **probability_model**: The type of model used in probability estimation.
- **distribution**: What density function to assume for the error term.
- **information_criteria**: The information criterion to use in the model selection / combination procedure.
- **select_order**: If TRUE, then the function will select the most appropriate order.

Value

A dials parameter
A parameter
Examples

```r
use_constant()
regressors_treatment()
distribution()
```

Description

`adam_reg()` is a way to generate a specification of an ADAM model before fitting and allows the model to be created using different packages. Currently the only package is `smooth`.

Usage

```r
adam_reg(
  mode = "regression",
  ets_model = NULL,
  non_seasonal_ar = NULL,
  non_seasonal_differences = NULL,
  non_seasonal_ma = NULL,
  seasonal_ar = NULL,
  seasonal_differences = NULL,
  seasonal_ma = NULL,
  use_constant = NULL,
  regressors_treatment = NULL,
  outliers_treatment = NULL,
  outliers_ci = NULL,
  probability_model = NULL,
  distribution = NULL,
  loss = NULL,
  information_criteria = NULL,
  seasonal_period = NULL,
  select_order = NULL
)
```

Arguments

- **mode**: A single character string for the type of model. The only possible value for this model is "regression".
- **ets_model**: The type of ETS model. The first letter stands for the type of the error term ("A" or "M"), the second (and sometimes the third as well) is for the trend ("N", "A", "Ad", "M" or "Md"), and the last one is for the type of seasonality ("N", "A" or "M").
The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in pdq-notation.

The order of integration for non-seasonal differencing. Often denoted "d" in pdq-notation.

The order of the non-seasonal moving average (MA) terms. Often denoted "q" in pdq-notation.

The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in PDQ-notation.

The order of integration for seasonal differencing. Often denoted "D" in PDQ-notation.

The order of the seasonal moving average (SMA) terms. Often denoted "Q" in PDQ-notation.

Logical, determining, whether the constant is needed in the model or not. This is mainly needed for ARIMA part of the model, but can be used for ETS as well.

The variable defines what to do with the provided explanatory variables: "use" means that all of the data should be used, while "select" means that a selection using ic should be done, "adapt" will trigger the mechanism of time varying parameters for the explanatory variables.

Defines what to do with outliers: "ignore", so just returning the model, "detect" outliers based on specified level and include dummies for them in the model, or detect and "select" those of them that reduce ic value.

What confidence level to use for detection of outliers. Default is 99%.

The type of model used in probability estimation. Can be "none" - none, "fixed" - constant probability, "general" - the general Beta model with two parameters, "odds-ratio" - the Odds-ratio model with b=1 in Beta distribution, "inverse-odds-ratio" - the model with a=1 in Beta distribution, "direct" - the TSB-like (Teunter et al., 2011) probability update mechanism a+b=1, "auto" - the automatically selected type of occurrence model.

what density function to assume for the error term. The full name of the distribution should be provided, starting with the letter "d" - "density".

The type of Loss Function used in optimization.

The information criterion to use in the model selection / combination procedure.

A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.

If TRUE, then the function will select the most appropriate order. The values list(ar=...,i=...,ma=...) specify the maximum orders to check in this case.
Details

The data given to the function are not saved and are only used to determine the mode of the model. For `adam_reg()`, the mode will always be "regression".

The model can be created using the `fit()` function using the following engines:

- "auto_adam" (default) - Connects to `smooth::auto.adam()`
- "adam" - Connects to `smooth::adam()`

Main Arguments

The main arguments (tuning parameters) for the model are:

- `seasonal_period`: The periodic nature of the seasonality. Uses "auto" by default.
- `non_seasonal_ar`: The order of the non-seasonal auto-regressive (AR) terms.
- `non_seasonal_differences`: The order of integration for non-seasonal differencing.
- `non_seasonal_ma`: The order of the non-seasonal moving average (MA) terms.
- `seasonal_ar`: The order of the seasonal auto-regressive (SAR) terms.
- `seasonal_differences`: The order of integration for seasonal differencing.
- `seasonal_ma`: The order of the seasonal moving average (SMA) terms.
- `ets_model`: The type of ETS model.
- `use_constant`: Logical, determining, whether the constant is needed in the model or not.
- `regressors_treatment`: The variable defines what to do with the provided explanatory variables.
- `outliers_treatment`: Defines what to do with outliers.
- `probability_model`: The type of model used in probability estimation.
- `distribution`: what density function to assume for the error term.
- `loss`: The type of Loss Function used in optimization.
- `information_criteria`: The information criterion to use in the model selection / combination procedure.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using `set_engine()` (See Engine Details below).

If parameters need to be modified, `update()` can be used in lieu of recreating the object from scratch.

auto_adam (default engine)

The engine uses `smooth::auto.adam()`.

Function Parameters:

```r
## Registered S3 method overwritten by 'greybox':
## method from
## print.pcor lava
```
The MAXIMUM nonseasonal ARIMA terms (max.p, max.d, max.q) and seasonal ARIMA terms (max.P, max.D, max.Q) are provided to forecast::auto.arima() via arima_reg() parameters. Other options and argument can be set using set_engine().

Parameter Notes:

- All values of nonseasonal pdq and seasonal PDQ are maximums. The smooth::auto.adam() model will select a value using these as an upper limit.
- xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this manually). See Fit Details (below).

adam

The engine uses smooth::adam().

Function Parameters:

```r
## function (data, model = "ZXZ", lags = c(frequency(data)), orders = list(ar = c(0),
##   i = c(0), ma = c(0), select = FALSE), formula = NULL, regressors = c("use",
##   "select", "adapt"), occurrence = c("none", "auto", "fixed", "general",
##   "odds-ratio", "inverse-odds-ratio", "direct"), distribution = c("dnorm",
##   "dlaplace", "ds", "dgnorm", "dlnorm", "dinvgauss", "dgamma"), outliers = c("ignore",
##   "use", "select"), level = 0.99, h = 0, holdout = FALSE, persistence = NULL,
##   phi = NULL, initial = c("optimal", "backcasting"), arma = NULL, ic = c("AICc",
##   "AIC", "BIC", "BICc"), bounds = c("usual", "admissible", "none"),
##   silent = TRUE, parallel = FALSE, ...)
```

The nonseasonal ARIMA terms (orders) and seasonal ARIMA terms (orders) are provided to smooth::adam() via adam_reg() parameters. Other options and argument can be set using set_engine().

Parameter Notes:

- xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this manually). See Fit Details (below).

Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts date and date-time features and handles them internally.
Seasonal Period Specification

The period can be non-seasonal (`seasonal_period = 1` or "none") or yearly seasonal (e.g. For monthly time stamps, `seasonal_period = 12`, `seasonal_period = "12 months"`, or `seasonal_period = "yearly"`). There are 3 ways to specify:

1. `seasonal_period = "auto"`: A seasonal period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. `seasonal_period = 12`: A numeric frequency. For example, 12 is common for monthly data
3. `seasonal_period = "1 year"`: A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

Univariate (No xregs, Exogenous Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface (recommended): `fit(y ~ date)` will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)

The `xreg` parameter is populated using the `fit()` function:

- Only factor, ordered factor, and numeric data will be used as xregs.
- Date and Date-time variables are not used as xregs
- Character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. `y` (target)
2. `date` (time stamp),
3. `month.lbl` (labeled month as a ordered factor).

The `month.lbl` is an exogenous regressor that can be passed to the `arima_reg()` using `fit()`:

- `fit(y ~ date + month.lbl)` will pass `month.lbl` on as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

See Also

`fit.model_spec()`, `set_engine()`

Examples

```r
## Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(smooth)
```
Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

---- AUTO ADAM ----
Model Spec
model_spec <- adam_reg() %>%
 set_engine("auto_adam")

Fit Spec
model_fit <- model_spec %>%
 fit(log(value) ~ date, data = training(splits))
model_fit

---- STANDARD ADAM ----
Model Spec
model_spec <- adam_reg(
 seasonal_period = 12,
 non_seasonal_ar = 3,
 non_seasonal_differences = 1,
 non_seasonal_ma = 3,
 seasonal_ar = 1,
 seasonal_differences = 0,
 seasonal_ma = 1
) %>%
 set_engine("adam")

Fit Spec
model_fit <- model_spec %>%
 fit(log(value) ~ date, data = training(splits))
model_fit

End(Not run)

add_modeltime_model
Add a Model into a Modeltime Table

Description

Add a Model into a Modeltime Table

Usage

```r
add_modeltime_model(object, model, location = "bottom")
```
arima_boost

Arguments

- object: Multiple Modeltime Tables (class mdl_time_tbl)
- model: A model of class model_fit or a fitted workflow object
- location: Where to add the model. Either "top" or "bottom". Default: "bottom".

See Also

- combine_modeltime_tables(): Combine 2 or more Modeltime Tables together
- add_modeltime_model(): Adds a new row with a new model to a Modeltime Table
- update_modeltime_description(): Updates a description for a model inside a Modeltime Table
- update_modeltime_model(): Updates a model inside a Modeltime Table
- pull_modeltime_model(): Extracts a model from a Modeltime Table

Examples

library(tidymodels)

model_fit_ets <- exp_smoothing() %>%
 set_engine("ets") %>%
 fit(value ~ date, training(m750_splits))

m750_models %>%
 add_modeltime_model(model_fit_ets)

Description

arima_boost() is a way to generate a specification of a time series model that uses boosting to improve modeling errors (residuals) on Exogenous Regressors. It works with both "automated" ARIMA (auto.arima) and standard ARIMA (arima). The main algorithms are:

- Auto ARIMA + XGBoost Errors (engine = auto_arima_xgboost, default)
- ARIMA + XGBoost Errors (engine = arima_xgboost)
Usage

```r
arima_boost(
    mode = "regression",
    seasonal_period = NULL,
    non_seasonal_ar = NULL,
    non_seasonal_differences = NULL,
    non_seasonal_ma = NULL,
    seasonal_ar = NULL,
    seasonal_differences = NULL,
    seasonal_ma = NULL,
    mtry = NULL,
    trees = NULL,
    min_n = NULL,
    tree_depth = NULL,
    learn_rate = NULL,
    loss_reduction = NULL,
    sample_size = NULL,
    stop_iter = NULL
)
```

Arguments

- **mode**: A single character string for the type of model. The only possible value for this model is "regression".
- **seasonal_period**: A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.
- **non_seasonal_ar**: The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in pdq-notation.
- **non_seasonal_differences**: The order of integration for non-seasonal differencing. Often denoted "d" in pdq-notation.
- **non_seasonal_ma**: The order of the non-seasonal moving average (MA) terms. Often denoted "q" in pdq-notation.
- **seasonal_ar**: The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in PDQ-notation.
- **seasonal_differences**: The order of integration for seasonal differencing. Often denoted "D" in PDQ-notation.
- **seasonal_ma**: The order of the seasonal moving average (SMA) terms. Often denoted "Q" in PDQ-notation.
- **mtry**: A number for the number (or proportion) of predictors that will be randomly sampled at each split when creating the tree models (specific engines only).
trees An integer for the number of trees contained in the ensemble.
min_n An integer for the minimum number of data points in a node that is required for the node to be split further.
tree_depth An integer for the maximum depth of the tree (i.e. number of splits) (specific engines only).
learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-iteration (specific engines only).
loss_reduction A number for the reduction in the loss function required to split further (specific engines only).
sample_size number for the number (or proportion) of data that is exposed to the fitting routine.
stop_iter The number of iterations without improvement before stopping (xgboost only).

Details
The data given to the function are not saved and are only used to determine the mode of the model. For arima_boost(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "auto_arima_xgboost" (default) - Connects to forecast::auto.arima() and xgboost::xgb.train
• "arima_xgboost" - Connects to forecast::Arima() and xgboost::xgb.train

Main Arguments
The main arguments (tuning parameters) for the ARIMA model are:

• seasonal_period: The periodic nature of the seasonality. Uses "auto" by default.
• non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.
• non_seasonal_differences: The order of integration for non-seasonal differencing.
• non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.
• seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.
• seasonal_differences: The order of integration for seasonal differencing.
• seasonal_ma: The order of the seasonal moving average (SMA) terms.

The main arguments (tuning parameters) for the model XGBoost model are:

• mtry: The number of predictors that will be randomly sampled at each split when creating the tree models.
• trees: The number of trees contained in the ensemble.
• min_n: The minimum number of data points in a node that are required for the node to be split further.
• tree_depth: The maximum depth of the tree (i.e. number of splits).
• learn_rate: The rate at which the boosting algorithm adapts from iteration-to-iteration.
• loss_reduction: The reduction in the loss function required to split further.
• sample_size: The amount of data exposed to the fitting routine.
- **stop_iter**: The number of iterations without improvement before stopping.

These arguments are converted to their specific names at the time that the model is fit. Other options and argument can be set using `set_engine()` (See Engine Details below). If parameters need to be modified, `update()` can be used in lieu of recreating the object from scratch.

Engine Details

The standardized parameter names in `modeltime` can be mapped to their original names in each engine:

Model 1: ARIMA:

<table>
<thead>
<tr>
<th><code>modeltime</code></th>
<th><code>forecast::auto.arima</code></th>
<th><code>forecast::Arima</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>seasonal_period</td>
<td>ts(frequency)</td>
<td>ts(frequency)</td>
</tr>
<tr>
<td>non_seasonal_ar, non_seasonal_differences, non_seasonal_ma</td>
<td>max.p(5), max.d(2), max.q(5)</td>
<td>order = c(p(0), d(0), q(0))</td>
</tr>
<tr>
<td>seasonal_ar, seasonal_differences, seasonal_ma</td>
<td>max.P(2), max.D(1), max.Q(2)</td>
<td>seasonal = c(P(0), D(0), Q(0))</td>
</tr>
</tbody>
</table>

Model 2: XGBoost:

<table>
<thead>
<tr>
<th><code>modeltime</code></th>
<th><code>xgboost::xgb.train</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>tree_depth</td>
<td>max_depth (6)</td>
</tr>
<tr>
<td>trees</td>
<td>nrounds (15)</td>
</tr>
<tr>
<td>learn_rate</td>
<td>eta (0.3)</td>
</tr>
<tr>
<td>mtry</td>
<td>colsample_bynode (1)</td>
</tr>
<tr>
<td>min_n</td>
<td>min_child_weight (1)</td>
</tr>
<tr>
<td>loss_reduction</td>
<td>gamma (0)</td>
</tr>
<tr>
<td>sample_size</td>
<td>subsample (1)</td>
</tr>
<tr>
<td>stop_iter</td>
<td>early_stop</td>
</tr>
</tbody>
</table>

Other options can be set using `set_engine()`.

auto_arima_xgboost *(default engine)*

Model 1: Auto ARIMA *(forecast::auto.arima):*

```r
## function (y, d = NA, D = NA, max.p = 5, max.q = 5, max.P = 2, max.Q = 2,
## max.order = 5, max.d = 2, max.D = 1, start.p = 2, start.q = 2, start.P = 1,
## start.Q = 1, stationary = FALSE, seasonal = TRUE, ic = c("aicc", "aic",
## "bic"), stepwise = TRUE, nmodels = 94, trace = FALSE, approximation = (length(x) >
## 150 | frequency(x) > 12), method = NULL, truncate = NULL, xreg = NULL,
## test = c("kpss", "adf", "pp"), test.args = list(), seasonal.test = c("seas",
## "ocsb", "hegy", "ch"), seasonal.test.args = list(), allowdrift = TRUE,
## allowmean = TRUE, lambda = NULL, biasadj = FALSE, parallel = FALSE,
## num.cores = 2, x = y, ...)```

Parameter Notes:
• All values of nonseasonal pdq and seasonal PDQ are maximums. The auto.arima will select a value using these as an upper limit.
• xreg - This should not be used since XGBoost will be doing the regression

Model 2: XGBoost (xgboost::xgb.train):

```r
function (params = list(), data, nrounds, watchlist = list(), obj = NULL,
feval = NULL, verbose = 1, print_every_n = 1L, early_stopping_rounds = NULL,
maximize = NULL, save_period = NULL, save_name = "xgboost.model", xgb_model = NULL,
callbacks = list(), ...)
```

Parameter Notes:
• XGBoost uses a `params = list()` to capture. Parsnip / Modeltime automatically sends any args provided as ... inside of `set_engine()` to the `params = list(...)`.

Fit Details

Date and Date-Time Variable

It's a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

• `fit(y ~ date)`

Seasonal Period Specification

The period can be non-seasonal (`seasonal_period = 1`) or seasonal (e.g. `seasonal_period = 12` or `seasonal_period = "12 months"`). There are 3 ways to specify:

1. `seasonal_period = "auto"`: A period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. `seasonal_period = 12`: A numeric frequency. For example, 12 is common for monthly data
3. `seasonal_period = "1 year"`: A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

Univariate (No xregs, Exogenous Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface (recommended): `fit(y ~ date)` will ignore xreg’s.
• XY Interface: `fit_xy(x = data[,"date"], y = data$y)` will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)

The xreg parameter is populated using the `fit()` or `fit_xy()` function:

• Only factor, ordered factor, and numeric data will be used as xregs.
• Date and Date-time variables are not used as xregs
• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:
1. \( y \) (target)
2. date (time stamp),
3. month.lbl (labeled month as an ordered factor).

The month.lbl is an exogenous regressor that can be passed to the \texttt{arima_boost()} using \texttt{fit()}:  
- \( \texttt{fit(y \sim date + month.lbl)} \) will pass month.lbl on as an exogenous regressor.
- \( \texttt{fit_xy(data[, c("date", "month.lbl")], y = data$y)} \) will pass x, where x is a data frame containing month.lbl and the date feature. Only month.lbl will be used as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

\textbf{See Also}

\texttt{fit.model_spec()}, \texttt{set_engine()}

\textbf{Examples}

```r
library(tidyverse)
library(lubridate)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

MODEL SPEC ----
Set engine and boosting parameters
model_spec <- arima_boost(
 # ARIMA args
 seasonal_period = 12,
 non_seasonal_ar = 0,
 non_seasonal_differences = 1,
 non_seasonal_ma = 1,
 seasonal_ar = 0,
 seasonal_differences = 1,
 seasonal_ma = 1,

 # XGBoost Args
 tree_depth = 6,
 learn_rate = 0.1
) %>%
 set_engine(engine = "arima_xgboost")
```
# FIT ----

## Not run:

```r
Boosting - Happens by adding numeric date and month features
model_fit_boosted <- model_spec %>%
 fit(value ~ date + as.numeric(date) + month(date, label = TRUE),
 data = training(splits))

model_fit_boosted
```

## End(Not run)

---

### arima_params

**Tuning Parameters for ARIMA Models**

**Description**

Tuning Parameters for ARIMA Models

**Usage**

```r
non_seasonal_ar(range = c(0L, 5L), trans = NULL)
non_seasonal_differences(range = c(0L, 2L), trans = NULL)
non_seasonal_ma(range = c(0L, 5L), trans = NULL)
seasonal_ar(range = c(0L, 2L), trans = NULL)
seasonal_differences(range = c(0L, 1L), trans = NULL)
seasonal_ma(range = c(0L, 2L), trans = NULL)
```

**Arguments**

- `range`: A two-element vector holding the *defaults* for the smallest and largest possible values, respectively.
- `trans`: A `trans` object from the `scales` package, such as `scales::log10_trans()` or `scales::reciprocal_trans()`. If not provided, the default is used which matches the units used in `range`. If no transformation, `NULL`.

**Details**

The main parameters for ARIMA models are:

- `non_seasonal_ar`: The order of the non-seasonal auto-regressive (AR) terms.
• non_seasonal_differences: The order of integration for non-seasonal differencing.
• non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.
• seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.
• seasonal_differences: The order of integration for seasonal differencing.
• seasonal_ma: The order of the seasonal moving average (SMA) terms.

Examples

non_seasonal_ar()

non_seasonal_differences()

non_seasonal_ma()

arima_reg() is a way to generate a specification of an ARIMA model before fitting and allows the model to be created using different packages. Currently the only package is forecast.

Usage

arima_reg(
  mode = "regression",
  seasonal_period = NULL,
  non_seasonal_ar = NULL,
  non_seasonal_differences = NULL,
  non_seasonal_ma = NULL,
  seasonal_ar = NULL,
  seasonal_differences = NULL,
  seasonal_ma = NULL
)

Arguments

mode A single character string for the type of model. The only possible value for this model is "regression".

seasonal_period A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.
**Details**

The data given to the function are not saved and are only used to determine the *mode* of the model. For `arima_reg()`, the mode will always be "regression".

The model can be created using the `fit()` function using the following *engines*:

- "auto_arima" (default) - Connects to `forecast::auto.arima()`
- "arima" - Connects to `forecast::Arima()`

**Main Arguments**

The main arguments (tuning parameters) for the model are:

- `seasonal_period`: The periodic nature of the seasonality. Uses "auto" by default.
- `non_seasonal_ar`: The order of the non-seasonal auto-regressive (AR) terms.
- `non_seasonal_differences`: The order of integration for non-seasonal differencing.
- `non_seasonal_ma`: The order of the non-seasonal moving average (MA) terms.
- `seasonal_ar`: The order of the seasonal auto-regressive (SAR) terms.
- `seasonal_differences`: The order of integration for seasonal differencing.
- `seasonal_ma`: The order of the seasonal moving average (SMA) terms.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using `set_engine()` (See Engine Details below).

If parameters need to be modified, `update()` can be used in lieu of recreating the object from scratch.

**Engine Details**

The standardized parameter names in `modeltime` can be mapped to their original names in each engine:
Other options can be set using `set_engine()`.

**auto_arima (default engine)**

The engine uses `forecast::auto.arima()`.

Function Parameters:

```r
function (y, d = NA, D = NA, max.p = 5, max.q = 5, max.P = 2, max.Q = 2,
max.order = 5, max.d = 2, max.D = 1, start.p = 2, start.q = 2, start.P = 1,
start.Q = 1, stationary = FALSE, seasonal = TRUE, ic = c("aicc", "aic",
"bic"), stepwise = TRUE, nmodels = 94, trace = FALSE, approximation = (length(x) >
150 | frequency(x) > 12), method = NULL, truncate = NULL, xreg = NULL,
test = c("kpss", "adf", "pp"), test.args = list(), seasonal.test = c("seas",
"ocsb", "hegy", "ch"), seasonal.test.args = list(), allowdrift = TRUE,
allowmean = TRUE, lambda = NULL, biasadj = FALSE, parallel = FALSE,
num.cores = 2, x = y, ...)
```

The **MAXIMUM** nonseasonal ARIMA terms (max.p, max.d, max.q) and seasonal ARIMA terms (max.P, max.D, max.Q) are provided to `forecast::auto.arima()` via `arima_reg()` parameters. Other options and argument can be set using `set_engine()`.

Parameter Notes:

- All values of nonseasonal pdq and seasonal PDQ are maximums. The `forecast::auto.arima()` model will select a value using these as an upper limit.
- xreg - This is supplied via the parsnip / modetime `fit()` interface (so don’t provide this manually). See Fit Details (below).

**arima**

The engine uses `forecast::Arima()`.

Function Parameters:

```r
function (y, order = c(0, 0, 0), seasonal = c(0, 0, 0), xreg = NULL, include.mean = TRUE,
include.drift = FALSE, include.constant, lambda = model$lambda, biasadj = FALSE,
method = c("CSS-ML", "ML", "CSS"), model = NULL, x = y, ...)
```

The nonseasonal ARIMA terms (order) and seasonal ARIMA terms (seasonal) are provided to `forecast::Arima()` via `arima_reg()` parameters. Other options and argument can be set using `set_engine()`.

Parameter Notes:

- xreg - This is supplied via the parsnip / modetime `fit()` interface (so don’t provide this manually). See Fit Details (below).
• **method** - The default is set to "ML" (Maximum Likelihood). This method is more robust at the expense of speed and possible selections may fail unit root inversion testing. Alternatively, you can add `method = "CSS-ML"` to evaluate Conditional Sum of Squares for starting values, then Maximum Likelihood.

**Fit Details**

**Date and Date-Time Variable**

It’s a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

  • `fit(y ~ date)`

**Seasonal Period Specification**

The period can be non-seasonal (`seasonal_period = 1` or "none") or yearly seasonal (e.g. For monthly time stamps, `seasonal_period = 12`, `seasonal_period = "12 months"`, or `seasonal_period = "yearly"`). There are 3 ways to specify:

1. `seasonal_period = "auto"`: A seasonal period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. `seasonal_period = 12`: A numeric frequency. For example, 12 is common for monthly data
3. `seasonal_period = "1 year"`: A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

**Univariate (No xregs, Exogenous Regressors):**

For univariate analysis, you must include a date or date-time feature. Simply use:

  • Formula Interface (recommended): `fit(y ~ date)` will ignore xreg’s.
  • XY Interface: `fit_xy(x = data[,"date"], y = data$y)` will ignore xreg’s.

**Multivariate (xregs, Exogenous Regressors)**

The `xreg` parameter is populated using the `fit()` or `fit_xy()` function:

  • Only factor, ordered factor, and numeric data will be used as xregs.
  • Date and Date-time variables are not used as xregs
  • character data should be converted to factor.

**Xreg Example:** Suppose you have 3 features:

1. `y` (target)
2. `date` (time stamp),
3. `month.lbl` (labeled month as a ordered factor).

The `month.lbl` is an exogenous regressor that can be passed to the `arima_reg()` using `fit()`:

  • `fit(y ~ date + month.lbl)` will pass `month.lbl` on as an exogenous regressor.
  • `fit_xy(data[,c("date", "month.lbl")], y = data$y)` will pass `x`, where `x` is a data frame containing `month.lbl` and the date feature. Only `month.lbl` will be used as an exogenous regressor.

Note that date or date-time class values are excluded from `xreg`. 
See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

# ---- AUTO ARIMA ----
# Model Spec
model_spec <- arima_reg() %>%
  set_engine("auto_arima")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

# ---- STANDARD ARIMA ----
# Model Spec
model_spec <- arima_reg(
  seasonal_period = 12,
  non_seasonal_ar  = 3,
  non_seasonal_differences = 1,
  non_seasonal_ma  = 3,
  seasonal_ar     = 1,
  seasonal_differences = 0,
  seasonal_ma     = 1)
  %>%
  set_engine("arima")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit
**Description**

Combine multiple Modeltime Tables into a single Modeltime Table

**Usage**

```r
combine_modeltime_tables(...)```

Arguments

- `...`: Multiple Modeltime Tables (class `mdl_time_tbl`)

Details

This function combines multiple Modeltime Tables.

- The `.model_id` will automatically be renumbered to ensure each model has a unique ID.
- Only the `.model_id`, `.model`, and `.model_desc` columns will be returned.

Re-Training Models on the Same Datasets

One issue can arise if your models are trained on different datasets. If your models have been trained on different datasets, you can run `modeltime_refit()` to train all models on the same data.

Re-Calibrating Models

If your data has been calibrated using `modeltime_calibrate()`, the `.test` and `.calibration_data` columns will be removed. To re-calibrate, simply run `modeltime_calibrate()` on the newly combined Modeltime Table.

See Also

- `combine_modeltime_tables()`: Combine 2 or more Modeltime Tables together
- `add_modeltime_model()`: Adds a new row with a new model to a Modeltime Table
- `update_modeltime_description()`: Updates a description for a model inside a Modeltime Table
- `update_modeltime_model()`: Updates a model inside a Modeltime Table
- `pull_modeltime_model()`: Extracts a model from a Modeltime Table
Examples

```r
library(modeltime)
library(tidymodels)
library(tidyverse)
library(timetk)
library(lubridate)

# Setup
m750 <- m4_monthly %>% filter(id == "M750")

splits <- time_series_split(m750, assess = "3 years", cumulative = TRUE)

model_fit_arima <- arima_reg() %>%
  set_engine("auto_arima") %>%
  fit(value ~ date, training(splits))

model_fit_prophet <- prophet_reg() %>%
  set_engine("prophet") %>%
  fit(value ~ date, training(splits))

# Multiple Modeltime Tables
model_tbl_1 <- modeltime_table(model_fit_arima)
model_tbl_2 <- modeltime_table(model_fit_prophet)

# Combine
combine_modeltime_tables(model_tbl_1, model_tbl_2)
```

control_modeltime

Control aspects of the training process

Description

These functions are matched to the associated training functions:

- `control_refit()`: Used with `modeltime_refit()`
- `control_fit_workflowset()`: Used with `modeltime_fit_workflowset()`
- `control_nested_fit()`: Used with `modeltime_nested_fit()`
- `control_nested_refit()`: Used with `modeltime_nested_refit()`
- `control_nested_forecast()`: Used with `modeltime_nested_forecast()`

Usage

```r
control_refit(allow_par = FALSE, cores = -1, allow_par = FALSE, verbose = FALSE, allow_par = FALSE)

control_fit_workflowset(allow_par = FALSE)
```
control_modeltime

 cores = -1,
 packages = NULL

)

control_nested_fit(
 verbose = FALSE,
 allow_par = FALSE,
 cores = -1,
 packages = NULL
)

control_nested_refit(
 verbose = FALSE,
 allow_par = FALSE,
 cores = -1,
 packages = NULL
)

control_nested_forecast(
 verbose = FALSE,
 allow_par = FALSE,
 cores = -1,
 packages = NULL
)

Arguments

verbose Logical to control printing.
allow_par Logical to allow parallel computation. Default: FALSE (single threaded).
cores Number of cores for computation. If -1, uses all available physical cores. Default: -1.
packages An optional character string of additional R package names that should be loaded during parallel processing.
 • Packages in your namespace are loaded by default
 • Key Packages are loaded by default: tidymodels, parsnip, modeltime, dplyr, stats, lubridate and timetk.

Value

A List with the control settings.

See Also

• Setting Up Parallel Processing: parallel_start(), parallel_stop()]
• Training Functions: modeltime_refit(), modeltime_fit_workflowset(), modeltime_nested_fit(), modeltime_nested_refit()
create_model_grid

Helper to make parsnip model specs from a dials parameter grid

Description

Helper to make parsnip model specs from a dials parameter grid

Usage

create_model_grid(grid, f_model_spec, engine_name, ..., engine_params = list())

Arguments

grid A tibble that forms a grid of parameters to adjust
f_model_spec A function name (quoted or unquoted) that specifies a parsnip model specification function
engine_name A name of an engine to use. Gets passed to parsnip::set_engine().
... Static parameters that get passed to the f_model_spec
engine_params A list of additional parameters that can be passed to the engine via parsnip::set_engine(...)
create_model_grid

Details

This is a helper function that combines dials grids with parsnip model specifications. The intent is to make it easier to generate workflowset objects for forecast evaluations with `modeltime_fit_workflowset()`.

The process follows:

1. Generate a grid (hyperparameter combination)
2. Use `create_model_grid()` to apply the parameter combinations to a parsnip model spec and engine.

The output contains ".model" column that can be used as a list of models inside the `workflow_set()` function.

Value

Tibble with a new column named ".models"

See Also

- dials::grid_regular(): For making parameter grids.
- workflowsets::workflow_set(): For creating a workflowset from the ".models" list stored in the ".models" column.
- modeltime_fit_workflowset(): For fitting a workflowset to forecast data.

Examples

```r
library(tidymodels)
library(modeltime)

# Parameters that get optimized
grid_tbl <- grid_regular(
  learn_rate(),
  levels = 3
)

# Generate model specs
grid_tbl %>%
  create_model_grid(
    f_model_spec = boost_tree,
    engine_name = "xgboost",
    # Static boost_tree() args
    mode = "regression",
    # Static set_engine() args
    engine_params = list(
      max_depth = 5
    )
  )
```
create_xreg_recipe
Developer Tools for preparing XREGS (Regressors)

Description

These functions are designed to assist developers in extending the modeltime package. `create_xreg_recipe()` makes it simple to automate conversion of raw un-encoded features to machine-learning ready features.

Usage

```r
create_xreg_recipe(
  data,
  prepare = TRUE,
  clean_names = TRUE,
  dummy_encode = TRUE,
  one_hot = FALSE
)
```

Arguments

- `data`
 A data frame

- `prepare`
 Whether or not to run `recipes::prep()` on the final recipe. Default is to prepare. User can set this to FALSE to return an un-prepared recipe.

- `clean_names`
 Uses `janitor::clean_names()` to process the names and improve robustness to failure during dummy (one-hot) encoding step.

- `dummy_encode`
 Should factors (categorical data) be

- `one_hot`
 If `dummy_encode = TRUE`, should the encoding return one column for each feature or one less column than each feature. Default is FALSE.

Details

The default recipe contains steps to:

1. Remove date features
2. Clean the column names removing spaces and bad characters
3. Convert ordered factors to regular factors
4. Convert factors to dummy variables
5. Remove any variables that have zero variance

Value

A recipe in either prepared or un-prepared format.
exp_smoothing

Examples

```r
library(dplyr)
library(timetk)
library(recipes)
library(lubridate)

predictors <- m4_monthly %>%
  filter(id == "M750") %>%
  select(-value) %>%
  mutate(month = month(date, label = TRUE))
predictors

# Create default recipe
xreg_recipe_spec <- create_xreg_recipe(predictors, prepare = TRUE)

# Extracts the preprocessed training data from the recipe (used in your fit function)
juice_xreg_recipe(xreg_recipe_spec)

# Applies the prepared recipe to new data (used in your predict function)
bake_xreg_recipe(xreg_recipe_spec, new_data = predictors)
```

exp_smoothing

General Interface for Exponential Smoothing State Space Models

Description

exp_smoothing() is a way to generate a specification of an Exponential Smoothing model before fitting and allows the model to be created using different packages. Currently the only package is forecast. Several algorithms are implemented:

- ETS - Automated Exponential Smoothing
- CROSTON - Croston’s forecast is a special case of Exponential Smoothing for intermittent demand
- Theta - A special case of Exponential Smoothing with Drift that performed well in the M3 Competition

Usage

```r
exp_smoothing(
  mode = "regression",
  seasonal_period = NULL,
  error = NULL,
  trend = NULL,
  season = NULL,
  damping = NULL,
  smooth_level = NULL,
  smooth_trend = NULL,
)```
smooth_seasonal = NULL
)

Arguments

mode A single character string for the type of model. The only possible value for this model is "regression".

seasonal_period A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.

error The form of the error term: "auto", "additive", or "multiplicative". If the error is multiplicative, the data must be non-negative.

trend The form of the trend term: "auto", "additive", "multiplicative" or "none".

season The form of the seasonal term: "auto", "additive", "multiplicative" or "none".

damping Apply damping to a trend: "auto", "damped", or "none".

smooth_level This is often called the "alpha" parameter used as the base level smoothing factor for exponential smoothing models.

smooth_trend This is often called the "beta" parameter used as the trend smoothing factor for exponential smoothing models.

smooth_seasonal This is often called the "gamma" parameter used as the seasonal smoothing factor for exponential smoothing models.

Details

Models can be created using the following engines:

- "ets" (default) - Connects to forecast::ets()
- "croston" - Connects to forecast::croston()
- "theta" - Connects to forecast::thetaf()
- "smooth_es" - Connects to smooth::es()

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each engine:

<table>
<thead>
<tr>
<th>parameter</th>
<th>mode</th>
<th>forecast::ets</th>
<th>forecast::croston</th>
<th>forecast::thetaf</th>
<th>smooth::es</th>
</tr>
</thead>
<tbody>
<tr>
<td>seasonal_period</td>
<td>ts(frequency)</td>
<td>ts(frequency)</td>
<td>ts(frequency)</td>
<td>ts(frequency)</td>
<td>ts(frequency)</td>
</tr>
<tr>
<td>error(), trend(), season()</td>
<td>model ('ZZZ')</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>model('ZZZ')</td>
</tr>
<tr>
<td>damping()</td>
<td>damped (NULL)</td>
<td>NA</td>
<td>NA</td>
<td>phi</td>
<td></td>
</tr>
<tr>
<td>smooth_level()</td>
<td>alpha (NULL)</td>
<td>alpha (0.1)</td>
<td>NA</td>
<td>persistence(alpha)</td>
<td></td>
</tr>
<tr>
<td>smooth_trend()</td>
<td>beta (NULL)</td>
<td>NA</td>
<td>NA</td>
<td>persistence(beta)</td>
<td></td>
</tr>
<tr>
<td>smooth_seasonal()</td>
<td>gamma (NULL)</td>
<td>NA</td>
<td>NA</td>
<td>persistence(gamma)</td>
<td></td>
</tr>
</tbody>
</table>
Other options can be set using `set_engine()`.

### ets (default engine)

The engine uses `forecast::ets()`.

**Function Parameters:**

```r
function (y, model = "ZZZ", damped = NULL, alpha = NULL, beta = NULL, gamma = NULL,
phi = NULL, additive.only = FALSE, lambda = NULL, biasadj = FALSE,
lower = c(rep(1e-04, 3), 0.8), upper = c(rep(0.9999, 3), 0.98), opt.crit = c("lik",
"amse", "mse", "sigma", "mae"), nmse = 3, bounds = c("both", "usual",
"admissible"), ic = c("aicc", "aic", "bic"), restrict = TRUE, allow.multiplicative.trend = FALSE,
use.initial.values = FALSE, na.action = c("na.contiguous", "na.interp",
"na.fail"), ...)```

The main arguments are `model` and `damped` are defined using:

- `error()` = "auto", "additive", and "multiplicative" are converted to "Z", "A", and "M"
- `trend()` = "auto", "additive", "multiplicative", and "none" are converted to "Z", "A", "M" and "N"
- `season()` = "auto", "additive", "multiplicative", and "none" are converted to "Z", "A", "M" and "N"
- `damping()` = "auto", "damped", "none" are converted to NULL, TRUE, FALSE
- `smooth_level()`, `smooth_trend()`, and `smooth_seasonal()` are automatically determined if not provided. They are mapped to "alpha", "beta" and "gamma", respectively.

By default, all arguments are set to "auto" to perform automated Exponential Smoothing using **in-sample data** following the underlying `forecast::ets()` automation routine.

Other options and argument can be set using `set_engine()`.

Parameter Notes:

- `xreg` - This model is not set up to use exogenous regressors. Only univariate models will be fit.

croston

The engine uses `forecast::croston()`.

Function Parameters:

```r
## function (y, h = 10, alpha = 0.1, x = y)
```

The main arguments are defined using:

- `smooth_level()`: The "alpha" parameter

Parameter Notes:

- `xreg` - This model is not set up to use exogenous regressors. Only univariate models will be fit.
theta
The engine uses \texttt{forecast::thetaf()}

Parameter Notes:

- \texttt{xreg} - This model is not set up to use exogenous regressors. Only univariate models will be fit.

smooth_es
The engine uses \texttt{smooth::es()}.

Function Parameters:

\begin{verbatim}
function (y, model = "ZZZ", persistence = NULL, phi = NULL, initial = c("optimal",
"backcasting"), initialSeason = NULL, ic = c("AICc", "AIC", "BIC",
"BICc"), loss = c("likelihood", "MSE", "MAE", "HAM", "MSEh", "TMSE",
"GTMSE", "MSCE"), h = 10, holdout = FALSE, cumulative = FALSE, interval = c("none",
"parametric", "likelihood", "semiparametric", "nonparametric"), level = 0.95,
bounds = c("usual", "admissible", "none"), silent = c("all", "graph",
"legend", "output", "none"), xreg = NULL, xregDo = c("use", "select"),
initialX = NULL, ...)
\end{verbatim}

The main arguments \texttt{model} and \texttt{phi} are defined using:

- \texttt{error()} = "auto", "additive" and "multiplicative" are converted to "Z", "A" and "M"
- \texttt{trend()} = "auto", "additive", "multiplicative", "additive_damped", "multiplicative_damped" and "none" are converted to "Z", "A", "M", "Ad", "Md" and "N".
- \texttt{season()} = "auto", "additive", "multiplicative", and "none" are converted "Z", "A", "M" and "N"
- \texttt{damping()} - Value of damping parameter. If NULL, then it is estimated.
- \texttt{smooth_level()}, \texttt{smooth_trend()}, and \texttt{smooth_seasonal()} are automatically determined if not provided. They are mapped to "persistence"("alpha", "beta" and "gamma", respectively).

By default, all arguments are set to "auto" to perform automated Exponential Smoothing using \emph{in-sample data} following the underlying \texttt{smooth::es()} automation routine.

Other options and argument can be set using \texttt{set_engine()}.

Parameter Notes:

- \texttt{xreg} - This is supplied via the \texttt{parsnip} / \texttt{modeltime fit()} interface (so don’t provide this manually). See Fit Details (below).

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The \texttt{fit()} interface accepts date and date-time features and handles them internally.

- \texttt{fit(y ~ date)}
Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or seasonal (e.g. seasonal_period = 12 or seasonal_period = "12 months"). There are 3 ways to specify:

1. seasonal_period = "auto": A period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data
3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

Univariate:

For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.
- XY Interface: fit_xy(x = data[, "date"], y = data$y) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)

Just for smooth engine.

The xreg parameter is populated using the fit() or fit_xy() function:

- Only factor, ordered factor, and numeric data will be used as xregs.
- Date and Date-time variables are not used as xregs
- character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),
3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the arima_reg() using fit():

- fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.
- fit_xy(data[, c("date", "month.lbl")], y = data$y) will pass x, where x is a data frame containing month.lbl and the date feature. Only month.lbl will be used as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()
Examples

```r
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(smooth)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

# ---- AUTO ETS ----
# Model Spec - The default parameters are all set
# to "auto" if none are provided
model_spec <- exp_smoothing() %>%
  set_engine("ets")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

# ---- STANDARD ETS ----
# Model Spec
model_spec <- exp_smoothing(
  seasonal_period = 12,
  error = "multiplicative",
  trend = "additive",
  season = "multiplicative"
) %>%
  set_engine("ets")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

# ---- CROSTON ----
# Model Spec
model_spec <- exp_smoothing(
  smooth_level = 0.2
) %>%
  set_engine("croston")
```
exp_smoothing_params

Tuning Parameters for Exponential Smoothing Models

Description

Tuning Parameters for Exponential Smoothing Models
Usage

error(values = c("additive", "multiplicative"))

trend(values = c("additive", "multiplicative", "none"))

trend_smooth(
 values = c("additive", "multiplicative", "none", "additive_damped",
 "multiplicative_damped")
)

season(values = c("additive", "multiplicative", "none"))

damping(values = c("damped", "none"))

damping_smooth(range = c(0, 2), trans = NULL)

smooth_level(range = c(0, 1), trans = NULL)

smooth_trend(range = c(0, 1), trans = NULL)

smooth_seasonal(range = c(0, 1), trans = NULL)

Arguments

values A character string of possible values.
range A two-element vector holding the defaults for the smallest and largest possible values, respectively.
trans A trans object from the scales package, such as scales::log10_trans() or scales::reciprocal_trans(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

The main parameters for Exponential Smoothing models are:

- error: The form of the error term: additive", or "multiplicative". If the error is multiplicative, the data must be non-negative.
- trend: The form of the trend term: "additive", "multiplicative" or "none".
- season: The form of the seasonal term: "additive", "multiplicative" or "none".
- damping: Apply damping to a trend: "damped", or "none".
- smooth_level: This is often called the "alpha" parameter used as the base level smoothing factor for exponential smoothing models.
- smooth_trend: This is often called the "beta" parameter used as the trend smoothing factor for exponential smoothing models.
- smooth_seasonal: This is often called the "gamma" parameter used as the seasonal smoothing factor for exponential smoothing models.
Examples

error()
trend()
season()

Source

• Forecast R Package, forecast::arima.string()
get_model_description Get model descriptions for parsnip, workflows & modeltime objects

Description
Get model descriptions for parsnip, workflows & modeltime objects

Usage
get_model_description(object, indicate_training = FALSE, upper_case = TRUE)

Arguments
- object: Parsnip or workflow objects
- indicate_training: Whether or not to indicate if the model has been trained
- upper_case: Whether to return upper or lower case model descriptions

Examples
library(dplyr)
library(timetk)
library(parsnip)
library(modeltime)

Model Specification ----
arima_spec <- arima_reg() %>%
 set_engine("auto_arima")

get_model_description(arima_spec, indicate_training = TRUE)

Fitted Model ----
m750 <- m4_monthly %>% filter(id == "M750")
arima_fit <- arima_spec %>%
 fit(value ~ date, data = m750)

get_model_description(arima_fit, indicate_training = TRUE)
get_tbats_description \hspace{1cm} Get model descriptions for TBATS objects

Description

Get model descriptions for TBATS objects

Usage

get_tbats_description(object)

Arguments

- **object**
 Objects of class tbats

Source

- Forecast R Package, forecast\:::as.character.tbats()

log_extractors \hspace{1cm} Log Extractor Functions for Modeltime Nested Tables

Description

Extract logged information calculated during the modeltime_nested_fit(), modeltime_nested_select_best(), and modeltime_nested_refit() processes.

Usage

- extract_nested_test_accuracy(object)

- extract_nested_test_forecast(object, .include_actual = TRUE, .id_subset = NULL)

- extract_nested_error_report(object)

- extract_nested_best_model_report(object)

- extract_nested_future_forecast(
 object,
 .include_actual = TRUE,
 .id_subset = NULL
)

- extract_nested_modeltime_table(object, .row_id = 1)

- extract_nested_train_split(object, .row_id = 1)

- extract_nested_test_split(object, .row_id = 1)
Arguments

object A nested modeltime table
.include_actual Whether or not to include the actual data in the extracted forecast. Default: TRUE.
.id_subset Can supply a vector of id’s to extract forecasts for one or more id’s, rather than extracting all forecasts. If NULL, extracts forecasts for all id’s.
.row_id The row number to extract from the nested data.

Description

The 750th Monthly Time Series used in the M4 Competition

Usage

m750

Format

A tibble with 306 rows and 3 variables:

• id Factor. Unique series identifier
• date Date. Timestamp information. Monthly format.
• value Numeric. Value at the corresponding timestamp.

Source

• M4 Competition Website

Examples

m750
Description

Three (3) Models trained on the M750 Data (Training Set)

Usage

m750_models

Format

An time_series_cv object with 6 slices of Time Series Cross Validation resamples made on the training(m750_splits)

Details

library(modeltime)
m750_models <- modetime_table(
 wflw_fit_arima,
 wflw_fit_prophet,
 wflw_fit_glmnet
)

Examples

library(modeltime)

m750_models

Description

The results of train/test splitting the M750 Data

Usage

m750_splits
Library(timetk)
m750_splits <- time_series_split(m750, assess = "2 years", cumulative = TRUE)

Examples

library(rsample)
m750_splits

training(m750_splits)

The Time Series Cross Validation Resamples the M750 Data (Training Set)

Description

The Time Series Cross Validation Resamples the M750 Data (Training Set)

Usage

m750_training_resamples

Format

An time_series_cv object with 6 slices of Time Series Cross Validation resamples made on the training(m750_splits)

Details

library(timetk)
m750_training_resamples <- time_series_cv(
data = training(m750_splits),
assess = "2 years",
skip = "2 years",
cumulative = TRUE,
slice_limit = 6
)
Examples

```r
library(rsample)

m750_training_resamples
```

maape

Mean Arctangent Absolute Percentage Error

Description

Useful when MAPE returns Inf typically due to intermittent data containing zeros. This is a wrapper to the function of `TSrepr::maape()`.

Usage

```r
maape(data, ...)
```

Arguments

- `data` A `data.frame` containing the truth and estimate columns.
- `...` Not currently in use.

maape_vec

Mean Arctangent Absolute Percentage Error

Description

This is basically a wrapper to the function of `TSrepr::maape()`.

Usage

```r
maape_vec(truth, estimate, na_rm = TRUE, ...)
```

Arguments

- `truth` The column identifier for the true results (that is numeric).
- `estimate` The column identifier for the predicted results (that is also numeric).
- `na_rm` Not in use...NA values managed by `TSrepr::maape`
- `...` Not currently in use
Description

This is a wrapper for `metric_set()` with several common forecast / regression accuracy metrics included. These are the default time series accuracy metrics used with `modeltime_accuracy()`.

Usage

```r
default_forecast_accuracy_metric_set(...)
extended_forecast_accuracy_metric_set(...)
```

Arguments

... Add additional yardstick metrics

Default Forecast Accuracy Metric Set

The primary purpose is to use the default accuracy metrics to calculate the following forecast accuracy metrics using `modeltime_accuracy()`:

- MAE - Mean absolute error, `mae()`
- MAPE - Mean absolute percentage error, `mape()`
- MASE - Mean absolute scaled error, `mase()`
- SMAPE - Symmetric mean absolute percentage error, `smape()`
- RMSE - Root mean squared error, `rmse()`
- RSQ - R-squared, `rsq()`

Adding additional metrics is possible via

Extended Forecast Accuracy Metric Set

Extends the default metric set by adding:

- MAAPE - Mean Arctangent Absolute Percentage Error, `maape()`. MAAPE is designed for intermittent data where MAPE returns Inf.

See Also

- `yardstick::metric_tweak()` - For modifying yardstick metrics
Examples

```r
library(tibble)
library(dplyr)
library(timetk)
library(yardstick)

fake_data <- tibble(
  y = c(1:12, 2*1:12),
  yhat = c(1 + 1:12, 2*1:12 - 1)
)

# ---- HOW IT WORKS ----

# Default Forecast Accuracy Metric Specification
default_forecast_accuracy_metric_set()

# Create a metric summarizer function from the metric set
calc_default_metrics <- default_forecast_accuracy_metric_set()

# Apply the metric summarizer to new data
calc_default_metrics(fake_data, y, yhat)

# ---- ADD MORE PARAMETERS ----

# Can create a version of mase() with seasonality = 12 (monthly)
mase12 <- metric_tweak(.name = "mase12", .fn = mase, m = 12)

# Add it to the default metric set
my_metric_set <- default_forecast_accuracy_metric_set(mase12)
my_metric_set

# Apply the newly created metric set
my_metric_set(fake_data, y, yhat)
```

modeltime_accuracy

Calculate Accuracy Metrics

Description

This is a wrapper for yardstick that simplifies time series regression accuracy metric calculations from a fitted `workflow` (trained workflow) or `model_fit` (trained parsnip model).

Usage

```r
modeltime_accuracy(
  object,
  new_data = NULL,
)```


```r
metric_set = default_forecast_accuracy_metric_set(),
acc_by_id = FALSE,
quiet = TRUE,
```

Arguments

- **object**: A Modeltime Table
- **new_data**: A tibble to predict and calculate residuals on. If provided, overrides any calibration data.
- **metric_set**: A yardstick::metric_set() that is used to summarize one or more forecast accuracy (regression) metrics.
- **acc_by_id**: Should a global or local model accuracy be produced? (Default: FALSE)
  - When FALSE, a global model accuracy is provided.
  - If TRUE, a local accuracy is provided group-wise for each time series ID. To enable local accuracy, an id must be provided during modeltime_calibrate().
- **quiet**: Hide errors (TRUE, the default), or display them as they occur?

Details

The following accuracy metrics are included by default via `default_forecast_accuracy_metric_set()`:

- **MAE** - Mean absolute error, `mae()`
- **MAPE** - Mean absolute percentage error, `mape()`
- **MASE** - Mean absolute scaled error, `mase()`
- **SMAPE** - Symmetric mean absolute percentage error, `smape()`
- **RMSE** - Root mean squared error, `rmse()`
- **RSQ** - R-squared, `rsq()`

Value

A tibble with accuracy estimates.

Examples

```r
library(tidymodels)
library(tidyverse)
library(lubridate)
library(timetk)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")
```
```r
Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

--- MODELS ---

Model 1: prophet ----
model_fit_prophet <- prophet_reg() %>%
 set_engine(engine = "prophet") %>%
 fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----
models_tbl <- modeltime_table(model_fit_prophet)

---- ACCURACY ----
models_tbl %>%
 modeltime_calibrate(new_data = testing(splits)) %>%
 modeltime_accuracy(metric_set = metric_set(mae, rmse, rsq))
```

---

**modetime_calibrate**  Preparation for forecasting

**Description**

Calibration sets the stage for accuracy and forecast confidence by computing predictions and residuals from out of sample data.

**Usage**

```r
modetime_calibrate(object, new_data, id = NULL, quiet = TRUE, ...)
```

**Arguments**

- **object**  A fitted model object that is either:
  1. A modetime table that has been created using `modetime_table()`
  2. A workflow that has been fit by `fit.workflow()` or
  3. A parsnip model that has been fit using `fit.model_spec()`

- **new_data**  A test data set tibble containing future information (timestamps and actual values).
id A quoted column name containing an identifier column identifying time series that are grouped.
quiet Hide errors (TRUE, the default), or display them as they occur?
... Additional arguments passed to `modeltime_forecast()`.

Details

The results of calibration are used for:

- **Forecast Confidence Interval Estimation**: The out of sample residual data is used to calculate the confidence interval. Refer to `modeltime_forecast()`.
- **Accuracy Calculations**: The out of sample actual and prediction values are used to calculate performance metrics. Refer to `modeltime_accuracy()`

The calibration steps include:

1. If not a Modetime Table, objects are converted to Modetime Tables internally
2. Two Columns are added:
   - `.type`: Indicates the sample type. This is:
     - "Test" if predicted, or
     - "Fitted" if residuals were stored during modeling.
   - `.calibration_data`:
     - Contains a tibble with Timestamps, Actual Values, Predictions and Residuals calculated from `new_data` (Test Data)
     - If `id` is provided, will contain a 5th column that is the identifier variable.

Value

A Modetime Table (`mdl_time_tbl`) with nested `.calibration_data` added

Examples

```r
library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

--- MODELS ---

Model 1: prophet ----
```
model_fit_prophet <- prophet_reg() %>%
  set_engine(engine = "prophet") %>%
  fit(value ~ date, data = training(splits))

# ---- MODELTIME TABLE ----
models_tbl <- modeltime_table(
  model_fit_prophet
)

# ---- CALIBRATE ----
calibration_tbl <- models_tbl %>%
  modeltime_calibrate(
    new_data = testing(splits)
  )

# ---- ACCURACY ----
calibration_tbl %>%
  modeltime_accuracy()

# ---- FORECAST ----
calibration_tbl %>%
  modeltime_forecast(
    new_data = testing(splits),
    actual_data = m750
  )

modetime_fit_workflowset

Fit a workflowset object to one or multiple time series

Description

This is a wrapper for fit() that takes a workflowset object and fits each model on one or multiple time series either sequentially or in parallel.

Usage

modetime_fit_workflowset(
  object,
  data,
  ...,  
  control = control_fit_workflowset()
)
Arguments

object A workflow_set object, generated with the workflowsets::workflow_set function.
data A tibble that contains data to fit the models.
... Not currently used.
control An object used to modify the fitting process. See control_fit_workflowset().

Value

A Modeltime Table containing one or more fitted models.

See Also

control_fit_workflowset()

Examples

library(tidymodels)
library(modeltime)
library(workflowsets)
library(tidyverse)
library(lubridate)
library(timetk)

data_set <- m4_monthly

# SETUP WORKFLOWSETS

rec1 <- recipe(value ~ date + id, data_set) %>%
  step_mutate(date_num = as.numeric(date)) %>%
  step_mutate(month_lbl = lubridate::month(date, label = TRUE)) %>%
  step_dummy(all_nominal(), one_hot = TRUE)

mod1 <- linear_reg() %>% set_engine("lm")

mod2 <- prophet_reg() %>% set_engine("prophet")

wfsets <- workflowsets::workflow_set(
  preproc = list(rec1 = rec1),
  models = list(
    mod1 = mod1,
    mod2 = mod2
  ),
  cross = TRUE
)

# FIT WORKFLOWSETS
# - Returns a Modeltime Table with fitted workflowsets

wfsets %>% modeltime_fit_workflowset(data_set)
Description

The goal of `modeltime_forecast()` is to simplify the process of forecasting future data.

Usage

```r
modeltime_forecast(
 object,
 new_data = NULL,
 h = NULL,
 actual_data = NULL,
 conf_interval = 0.95,
 conf_by_id = FALSE,
 keep_data = FALSE,
 arrange_index = FALSE,
 ...
)
```

Arguments

- **object**: A Modeltime Table
- **new_data**: A tibble containing future information to forecast. If NULL, forecasts the calibration data.
- **h**: The forecast horizon (can be used instead of `new_data` for time series with no exogenous regressors). Extends the calibration data `h` periods into the future.
- **actual_data**: Reference data that is combined with the output tibble and given a `key = "actual"`
- **conf_interval**: An estimated confidence interval based on the calibration data. This is designed to estimate future confidence from *out-of-sample prediction error*.
- **conf_by_id**: Whether or not to produce confidence interval estimates by an ID feature.
  - When FALSE, a global model confidence interval is provided.
  - If TRUE, a local confidence interval is provided group-wise for each time series ID. To enable local confidence interval, an id must be provided during `modeltime_calibrate()`.
- **keep_data**: Whether or not to keep the `new_data` and `actual_data` as extra columns in the results. This can be useful if there is an important feature in the `new_data` and `actual_data` needed when forecasting. Default: FALSE.
- **arrange_index**: Whether or not to sort the index in rowwise chronological order (oldest to newest) or to keep the original order of the data. Default: FALSE.
- **...**: Not currently used
Details

The `modeltime_forecast()` function prepares a forecast for visualization with `plot_modeltime_forecast()`. The forecast is controlled by `new_data` or `h`, which can be combined with existing data (controlled by `actual_data`). Confidence intervals are included if the incoming Modeltime Table has been calibrated using `modeltime_calibrate()`. Otherwise confidence intervals are not estimated.

New Data

When forecasting you can specify future data using `new_data`. This is a future tibble with date column and columns for xregs extending the trained dates and exogenous regressors (xregs) if used.

- **Forecasting Evaluation Data**: By default, the `new_data` will use the `.calibration_data` if `new_data` is not provided. This is the equivalent of using `rsample::testing()` for getting test data sets.
- **Forecasting Future Data**: See `timetk::future_frame()` for creating future tibbles.
- **Xregs**: Can be used with this method

H (Horizon)

When forecasting, you can specify `h`. This is a phrase like "1 year", which extends the `.calibration_data` (1st priority) or the `actual_data` (2nd priority) into the future.

- **Forecasting Future Data**: All forecasts using `h` are extended after the calibration data or actual_data.
- Extending `.calibration_data` - Calibration data is given 1st priority, which is desirable after refitting with `modeltime_refit()`. Internally, a call is made to `timetk::future_frame()` to expedite creating new data using the date feature.
- Extending `actual_data` - If `h` is provided, and the modeltime table has not been calibrated, the "actual_data" will be extended into the future. This is useful in situations where you want to go directly from `modeltime_table()` to `modeltime_forecast()` without calibrating or refitting.
- **Xregs**: Cannot be used because future data must include new xregs. If xregs are desired, build a future data frame and use `new_data`.

Actual Data

This is reference data that contains the true values of the time-stamp data. It helps in visualizing the performance of the forecast vs the actual data.

When `h` is used and the Modeltime Table has not been calibrated, then the actual data is extended into the future periods that are defined by `h`.

Confidence Interval Estimation

Confidence intervals (`.conf_lo`, `.conf_hi`) are estimated based on the normal estimation of the testing errors (out of sample) from `modeltime_calibrate()`. The out-of-sample error estimates are then carried through and applied to applied to any future forecasts.

The confidence interval can be adjusted with the `conf_interval` parameter. An 80% confidence interval estimates a normal (Gaussian distribution) that assumes that 80% of the future data will fall within the upper and lower confidence limits.

The confidence interval is mean-adjusted, meaning that if the mean of the residuals is non-zero, the confidence interval is adjusted to widen the interval to capture the difference in means.
Refitting has no affect on the confidence interval since this is calculated independently of the refitted model (on data with a smaller sample size). New observations typically improve future accuracy, which in most cases makes the out-of-sample confidence intervals conservative.

**Keep Data**
Include the new data (and actual data) as extra columns with the results of the model forecasts. This can be helpful when the new data includes information useful to the forecasts. An example is when forecasting Panel Data and the new data contains ID features related to the time series group that the forecast belongs to.

**Arrange Index**
By default, `modeltime_forecast()` keeps the original order of the data. If desired, the user can sort the output by `.key`, `.model_id` and `.index`.

**Value**
A tibble with predictions and time-stamp data. For ease of plotting and calculations, the column names are transformed to:

- `.key`: Values labeled either "prediction" or "actual"
- `.index`: The timestamp index.
- `.value`: The value being forecasted.

Additionally, if the Modeltime Table has been previously calibrated using `modeltime_calibrate()`, you will gain confidence intervals.

- `.conf_lo`: The lower limit of the confidence interval.
- `.conf_hi`: The upper limit of the confidence interval.

Additional descriptive columns are included:

- `.model_id`: Model ID from the Modeltime Table
- `.model_desc`: Model Description from the Modeltime Table

Unnecessary columns are *dropped* to save space:

- `.model`
- `.calibration_data`

**Examples**
```r
library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")
```
# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

# --- MODELS ---

# Model 1: prophet ----
model_fit_prophet <- prophet_reg() %>%
  set_engine(engine = "prophet") %>%
  fit(value ~ date, data = training(splits))

# ---- MODELTIME TABLE ----
models_tbl <- modeltime_table(model_fit_prophet)

# ---- CALIBRATE ----
calibration_tbl <- models_tbl %>%
  modeltime_calibrate(new_data = testing(splits))

# ---- ACCURACY ----
calibration_tbl %>%
  modeltime_accuracy()

# ---- FUTURE FORECAST ----
calibration_tbl %>%
  modeltime_forecast(
    new_data = testing(splits),
    actual_data = m750
  )

# ---- ALTERNATIVE: FORECAST WITHOUT CONFIDENCE INTERVALS ----
# Skips Calibration Step, No Confidence Intervals
models_tbl %>%
  modeltime_forecast(
    new_data = testing(splits),
    actual_data = m750
  )

# ---- KEEP NEW DATA WITH FORECAST ----
# Keeps the new data. Useful if new data has information
# like ID features that should be kept with the forecast data

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

# --- MODELS ---

# Model 1: prophet ----
model_fit_prophet <- prophet_reg() %>%
  set_engine(engine = "prophet") %>%
  fit(value ~ date, data = training(splits))

# ---- MODELTIME TABLE ----
models_tbl <- modeltime_table(model_fit_prophet)

# ---- CALIBRATE ----
calibration_tbl <- models_tbl %>%
  modeltime_calibrate(new_data = testing(splits))

# ---- ACCURACY ----
calibration_tbl %>%
  modeltime_accuracy()

# ---- FUTURE FORECAST ----
calibration_tbl %>%
  modeltime_forecast(
    new_data = testing(splits),
    actual_data = m750
  )

# ---- ALTERNATIVE: FORECAST WITHOUT CONFIDENCE INTERVALS ----
# Skips Calibration Step, No Confidence Intervals
models_tbl %>%
  modeltime_forecast(
    new_data = testing(splits),
    actual_data = m750
  )

# ---- KEEP NEW DATA WITH FORECAST ----
# Keeps the new data. Useful if new data has information
# like ID features that should be kept with the forecast data

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

# --- MODELS ---

# Model 1: prophet ----
model_fit_prophet <- prophet_reg() %>%
  set_engine(engine = "prophet") %>%
  fit(value ~ date, data = training(splits))

# ---- MODELTIME TABLE ----
models_tbl <- modeltime_table(model_fit_prophet)

# ---- CALIBRATE ----
calibration_tbl <- models_tbl %>%
  modeltime_calibrate(new_data = testing(splits))

# ---- ACCURACY ----
calibration_tbl %>%
  modeltime_accuracy()

# ---- FUTURE FORECAST ----
calibration_tbl %>%
  modeltime_forecast(
    new_data = testing(splits),
    actual_data = m750
  )

# ---- ALTERNATIVE: FORECAST WITHOUT CONFIDENCE INTERVALS ----
# Skips Calibration Step, No Confidence Intervals
models_tbl %>%
  modeltime_forecast(
    new_data = testing(splits),
    actual_data = m750
  )

# ---- KEEP NEW DATA WITH FORECAST ----
# Keeps the new data. Useful if new data has information
# like ID features that should be kept with the forecast data

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

# --- MODELS ---

# Model 1: prophet ----
model_fit_prophet <- prophet_reg() %>%
  set_engine(engine = "prophet") %>%
  fit(value ~ date, data = training(splits))

# ---- MODELTIME TABLE ----
models_tbl <- modeltime_table(model_fit_prophet)

# ---- CALIBRATE ----
calibration_tbl <- models_tbl %>%
  modeltime_calibrate(new_data = testing(splits))

# ---- ACCURACY ----
calibration_tbl %>%
  modeltime_accuracy()

# ---- FUTURE FORECAST ----
calibration_tbl %>%
  modeltime_forecast(
    new_data = testing(splits),
    actual_data = m750
  )

# ---- ALTERNATIVE: FORECAST WITHOUT CONFIDENCE INTERVALS ----
# Skips Calibration Step, No Confidence Intervals
models_tbl %>%
  modeltime_forecast(
    new_data = testing(splits),
    actual_data = m750
  )

# ---- KEEP NEW DATA WITH FORECAST ----
# Keeps the new data. Useful if new data has information
# like ID features that should be kept with the forecast data

calibration_tbl %>%
  modeltime_forecast(
    new_data = testing(splits),
    keep_data = TRUE
  )
modeltime_nested_fit

Fit Tidymodels Workflows to Nested Time Series

Description

Fits one or more tidymodels workflow objects to nested time series data using the following process:

1. Models are iteratively fit to training splits.
2. Accuracy is calculated on testing splits and is logged. Accuracy results can be retrieved with `extract_nested_test_accuracy()`.
3. Any model that returns an error is logged. Error logs can be retrieved with `extract_nested_error_report()`.
4. Forecast is predicted on testing splits and is logged. Forecast results can be retrieved with `extract_nested_test_forecast()`.

Usage

```r
modeltime_nested_fit(
 nested_data,
 ...,
 model_list = NULL,
 metric_set = default_forecast_accuracy_metric_set(),
 conf_interval = 0.95,
 control = control_nested_fit()
)
```

Arguments

- `nested_data`: Nested time series data.
- `...`: Tidymodels workflow objects that will be fit to the nested time series data.
- `model_list`: Optionally, a list() of Tidymodels workflow objects can be provided.
- `metric_set`: A yardstick::metric_set() that is used to summarize one or more forecast accuracy (regression) metrics.
- `conf_interval`: An estimated confidence interval based on the calibration data. This is designed to estimate future confidence from out-of-sample prediction error.
- `control`: Used to control verbosity and parallel processing. See `control_nested_fit()`.
Details

Preparing Data for Nested Forecasting:
Use `extend_timeseries()`, `nest_timeseries()`, and `split_nested_timeseries()` for preparing data for Nested Forecasting. The structure must be a nested data frame, which is supplied in `modeltime_nested_fit(nested_data)`.

Fitting Models:
Models must be in the form of tidymodels workflow objects. The models can be provided in two ways:
1. Using `...` (dots): The workflow objects can be provided as dots.
2. Using `model_list` parameter: You can supply one or more workflow objects that are wrapped in a list().

Controlling the fitting process:
A control object can be provided during fitting to adjust the verbosity and parallel processing. See `control_nested_fit()`.

```
modeltime_nested_forecast

Modeltime Nested Forecast

Description

Make a new forecast from a Nested Modeltime Table.

Usage

```r
data_modeltime_nested_forecast(  
  object,  
  h = NULL,  
  include_actual = TRUE,  
  conf_interval = 0.95,  
  id_subset = NULL,  
  control = control_nested_forecast()  
)
```

Arguments

<table>
<thead>
<tr>
<th>object</th>
<th>A Nested Modeltime Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>The forecast horizon. Extends the "trained on" data "h" periods into the future.</td>
</tr>
<tr>
<td>include_actual</td>
<td>Whether or not to include the ".actual_data" as part of the forecast. If FALSE, just returns the forecast predictions.</td>
</tr>
</tbody>
</table>
| conf_interval | An estimated confidence interval based on the calibration data. This is designed to estimate future confidence from
out-of-sample prediction error. |
| id_subset | A sequence of ID’s from the modeltimetable to subset the forecasting process. This can speed forecasts up. |
| control | Used to control verbosity and parallel processing. See `control_nested_forecast()` |
Details

This function is designed to help users that want to make new forecasts other than those that are created during the logging process as part of the Nested Modeltime Workflow.

Logged Forecasts:
The logged forecasts can be extracted using:

• `extract_nested_future_forecast()`: Extracts the future forecast created after refitting with `modeltime_nested_refit()`.

• `extract_nested_test_forecast()`: Extracts the test forecast created after initial fitting with `modeltime_nested_fit()`.

The problem is that these forecasts are static. The user would need to redo the fitting, model selection, and refitting process to obtain new forecasts. This is why `modeltime_nested_forecast()` exists. So you can create a new forecast without retraining any models.

Nested Forecasts:
The main arguments is `h`, which is a horizon that specifies how far into the future to make the new forecast.

• If `h = NULL`, a logged forecast will be returned

• If `h = 12`, a new forecast will be generated that extends each series 12-periods into the future.

• If `h = "2 years"`, a new forecast will be generated that extends each series 2-years into the future.

Use the `id_subset` to filter the Nested Modeltime Table object to just the time series of interest.

Use the `conf_interval` to override the logged confidence interval. Note that this will have no effect if `h = NULL` as logged forecasts are returned. So be sure to provide `h` if you want to update the confidence interval.

Use the `control` argument to apply verbosity during the forecasting process and to run forecasts in parallel. Generally, parallel is better if many forecasts are being generated.

`modeltime_nested_refit`

Refits a Nested Modeltime Table

Description

Refits a Nested Modeltime Table to actual data using the following process:

1. Models are iteratively refit to `.actual_data`.
2. Any model that returns an error is logged. Errors can be retrieved with `extract_nested_error_report()`.
3. Forecast is predicted on `future_data` and is logged. Forecast can be retrieved with `extract_nested_future_forecast()`.

Usage

`modeltime_nested_refit(object, control = control_nested_refit())`
modeltime_nested_select_best

Select the Best Models from Nested Modeltime Table

Description

Finds the best models for each time series group in a Nested Modeltime Table using a metric that the user specifies.

- Logs the best results, which can be accessed with `extract_nested_best_model_report()`
- If `filter_test_forecasts = TRUE`, updates the test forecast log, which can be accessed `extract_nested_test_forecast()`

Usage

```r
modeltime_nested_select_best(
  object,
  metric = "rmse",
  minimize = TRUE,
  filter_test_forecasts = TRUE
)
```

Arguments

- **object**: A Nested Modeltime Table
- **metric**: A metric to minimize or maximize. By default available metrics are:
 - "rmse" (default)
 - "mae"
 - "mape"
 - "mase"
 - "smape"
 - "rsq"
- **minimize**: Whether to minimize or maximize. Default: TRUE (minimize).
- **filter_test_forecasts**: Whether or not to update the test forecast log to filter only the best forecasts. Default: TRUE.
Refit one or more trained models to new data

Description
This is a wrapper for fit() that takes a Modeltime Table and retrains each model on new data re-using the parameters and preprocessing steps used during the training process.

Usage
modeltime_refit(object, data, ..., control = control_refit())

Arguments
- object: A Modeltime Table
- data: A tibble that contains data to retrain the model(s) using.
- ...: Additional arguments to control refitting.

Ensemble Model Spec (modeltime.ensemble):
When making a meta-learner with modeltime.ensemble::ensemble_model_spec(), used to pass resamples argument containing results from modeltime.resample::modeltime_fit_resamples().

control: Used to control verbosity and parallel processing. See control_refit().

Details
Refitting is an important step prior to forecasting time series models. The modeltime_refit() function makes it easy to recycle models, retraining on new data.

Recycling Parameters
Parameters are recycled during retraining using the following criteria:

- **Automated models** (e.g. "auto arima") will have parameters recalculated.
- **Non-automated models** (e.g. "arima") will have parameters preserved.
- All preprocessing steps will be reused on the data

Refit
The modeltime_refit() function is used to retrain models trained with fit().

Refit XY
The XY format is not supported at this time.

Value
A Modeltime Table containing one or more re-trained models.

See Also
control_refit()
Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

model_fit_prophet <- prophet_reg() %>%
 set_engine(engine = "prophet") %>%
 fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
 model_fit_prophet
)

---- CALIBRATE ----
- Calibrate on training data set

calibration_tbl <- models_tbl %>%
 modeltime_calibrate(new_data = testing(splits))

---- REFIT ----
- Refit on full data set

refit_tbl <- calibration_tbl %>%
 modeltime_refit(m750)

modeltime_residuals Extract Residuals Information

Description

This is a convenience function to unnest model residuals
Usage

modeltime_residuals(object, new_data = NULL, quiet = TRUE, ...)

Arguments

object A Modetime Table
new_data A tibble to predict and calculate residuals on. If provided, overrides any calibration data.
quiet Hide errors (TRUE, the default), or display them as they occur?
...
Not currently used.

Value

A tibble with residuals.

Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---
Model 1: prophet ----
model_fit_prophet <- prophet_reg() %>%
 set_engine(engine = "prophet") %>%
 fit(value ~ date, data = training(splits))

--- MODETIME TABLE ----
models_tbl <- modeltime_table(model_fit_prophet)

--- RESIDUALS ----
In-Sample
models_tbl %>%
 modeltime_calibrate(new_data = training(splits)) %>%
 modeltime_residuals() %>%
 plot_modeltime_residuals(.interactive = FALSE)
Out-of-Sample
models_tbl %>%
 modeltime_calibrate(new_data = testing(splits)) %>%
 modeltime_residuals() %>%
 plot_modeltime_residuals(.interactive = FALSE)

modeltime_residuals_test

Apply Statistical Tests to Residuals

Description

This is a convenience function to calculate some statistical tests on the residuals models. Currently, the following statistics are calculated: the shapiro.test to check the normality of the residuals, the box-pierce and ljung-box tests and the durbin watson test to check the autocorrelation of the residuals. In all cases the p-values are returned.

Usage

modeltime_residuals_test(object, new_data = NULL, lag = 1, fitdf = 0, ...)

Arguments

- **object**: A tibble extracted from modeltime::modeltime_residuals().
- **new_data**: A tibble to predict and calculate residuals on. If provided, overrides any calibration data.
- **lag**: The statistic will be based on lag autocorrelation coefficients. Default: 1 (Applies to Box-Pierce, Ljung-Box, and Durbin-Watson Tests)
- **fitdf**: Number of degrees of freedom to be subtracted. Default: 0 (Applies Box-Pierce and Ljung-Box Tests)
- **...**: Not currently used

Details

Shapiro-Wilk Test

The Shapiro-Wilk tests the Normality of the residuals. The Null Hypothesis is that the residuals are normally distributed. A low P-Value below a given significance level indicates the values are NOT Normally Distributed.

If the p-value > 0.05 (good), this implies that the distribution of the data are not significantly different from normal distribution. In other words, we can assume the normality.

Box-Pierce and Ljung-Box Tests Tests

The Ljung-Box and Box-Pierce tests are methods that test for the absense of autocorrelation in residuals. A low p-value below a given significance level indicates the values are autocorrelated.
If the **p-value > 0.05 (good)**, this implies that the residuals of the data are are independent. In other words, we can assume the residuals are not autocorrelated.

For more information about the parameters associated with the Box Pierce and Ljung Box tests check ?Box.Test

Durbin-Watson Test

The Durbin-Watson test is a method that tests for the absence of autocorrelation in residuals. The Durbin Watson test reports a test statistic, with a value from 0 to 4, where:

- **2 is no autocorrelation (good)**
- From 0 to <2 is positive autocorrelation (common in time series data)
- From >2 to 4 is negative autocorrelation (less common in time series data)

Value

A tibble with the p-values of the calculated statistical tests.

See Also

`stats::shapiro.test()`, `stats::Box.test()`

Examples

```r
library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

# Data
m750 <- m4_monthly %>% filter(id == "M750")

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

# --- MODELS ---

# Model 1: prophet ----
model_fit_prophet <- prophet_reg() %>%
  set_engine(engine = "prophet") %>%
  fit(value ~ date, data = training(splits))

# ---- MODELTIME TABLE ----
models_tbl <- modeltime_table(model_fit_prophet)

# ---- RESIDUALS ----
```
In-Sample
models_tbl %>%
 modeltime_calibrate(new_data = training(splits)) %>%
 modeltime_residuals() %>%
 modeltime_residuals_test()

Out-of-Sample
models_tbl %>%
 modeltime_calibrate(new_data = testing(splits)) %>%
 modeltime_residuals() %>%
 modeltime_residuals_test()

modetime_table
Scale forecast analysis with a Modetime Table

Description

Designed to perform forecasts at scale using models created with `modeltime`, `parsnip`, `workflows`, and regression modeling extensions in the `tidymodels` ecosystem.

Usage

```r
modeltime_table(...) 

as_modeltime_table(.l)
```

Arguments

- `...` Fitted `parsnip` model or workflow objects
- `.l` A list containing fitted `parsnip` model or workflow objects

Details

- `modeltime_table()`:
 1. Creates a table of models
 2. Validates that all objects are models (parsnip or workflows objects) and all models have been fitted (trained)
 3. Provides an ID and Description of the models

- `as_modeltime_table()`:
 Converts a list of models to a modetime table. Useful if programatically creating Modetime Tables from models stored in a list.
Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---
Model 1: prophet ----
model_fit_prophet <- prophet_reg() %>%
 set_engine(engine = "prophet") %>%
 fit(value ~ date, data = training(splits))

Make a Modeltime Table
models_tbl <- modeltime_table(model_fit_prophet)

Can also convert a list of models
list(model_fit_prophet) %>%
 as_modeltime_table()

--- MODELTIME TABLE ----

Make a Modeltime Table
models_tbl <- modeltime_table(model_fit_prophet)

Can also convert a list of models
list(model_fit_prophet) %>%
 as_modeltime_table()

--- CALIBRATE ----
calibration_tbl <- models_tbl %>%
 modeltime_calibrate(new_data = testing(splits))

--- ACCURACY ----
calibration_tbl %>%
 modeltime_accuracy()

--- FORECAST ----
calibration_tbl %>%
 modeltime_forecast(
 new_data = testing(splits),
 actual_data = m750
)
naive_reg() is a way to generate a specification of an NAIVE or SNAIVE model before fitting and allows the model to be created using different packages.

Usage

```r
naive_reg(mode = "regression", id = NULL, seasonal_period = NULL)
```

Arguments

- **mode** A single character string for the type of model. The only possible value for this model is "regression".
- **id** An optional quoted column name (e.g. "id") for identifying multiple time series (i.e. panel data).
- **seasonal_period** SNAIVE only. A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.

Details

The data given to the function are not saved and are only used to determine the **mode** of the model. For naive_reg(), the mode will always be "regression".

The model can be created using the `fit()` function using the following **engines**:

- "naive" (default) - Performs a NAIVE forecast
- "snaive" - Performs a Seasonal NAIVE forecast

Engine Details

naive (default engine)

- The engine uses `naive_fit_impl()`
- The NAIVE implementation uses the last observation and forecasts this value forward.
- The id can be used to distinguish multiple time series contained in the data
- The `seasonal_period` is not used but provided for consistency with the SNAIVE implementation

snaive (default engine)

- The engine uses `snaive_fit_impl()`
- The SNAIVE implementation uses the last seasonal series in the data and forecasts this sequence of observations forward
• The id can be used to distinguish multiple time series contained in the data
• The seasonal_period is used to determine how far back to define the repeated series. This can be a numeric value (e.g. 28) or a period (e.g. "1 month")

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts date and date-time features and handles them internally.

• fit(y ~ date)

ID features (Multiple Time Series, Panel Data)
The id parameter is populated using the fit() or fit_xy() function:

ID Example: Suppose you have 3 features:
1. y (target)
2. date (time stamp),
3. series_id (a unique identifier that identifies each time series in your data).

The series_id can be passed to the naive_reg() using fit():

• naive_reg(id = "series_id") specifies that the series_id column should be used to identify each time series.
• fit(y ~ date + series_id) will pass series_id on to the underlying naive or snaive functions.

Seasonal Period Specification (snaive)
The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period = "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto": A seasonal period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data
3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

External Regressors (Xregs)
These models are univariate. No xregs are used in the modeling process.

See Also

fit.model_spec(), set_engine()
Examples

```r
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

# ---- NAIVE ----
# Model Spec
model_spec <- naive_reg() %>%
    set_engine("naive")

# Fit Spec
model_fit <- model_spec %>%
    fit(log(value) ~ date, data = training(splits))
model_fit

# ---- SEASONAL NAIVE ----
# Model Spec
model_spec <- naive_reg(
  id = "id",
  seasonal_period = 12
) %>%
    set_engine("snaive")

# Fit Spec
model_fit <- model_spec %>%
    fit(log(value) ~ date + id, data = training(splits))
model_fit
```

new_modeltime_bridge Constructor for creating modeltime models

Description

These functions are used to construct new modeltime bridge functions that connect the tidymodels infrastructure to time-series models containing date or date-time features.
Usage

```r
new_modeltime_bridge(class, models, data, extras = NULL, desc = NULL)
```

Arguments

- `class`
 A class name that is used for creating custom printing messages
- `models`
 A list containing one or more models
- `data`
 A data frame (or tibble) containing 4 columns: (date column with name that matches input data), .actual, .fitted, and .residuals.
- `extras`
 An optional list that is typically used for transferring preprocessing recipes to the predict method.
- `desc`
 An optional model description to appear when printing your modeltime objects

Examples

```r
library(stats)
library(tidyverse)
library(lubridate)
library(timetk)

lm_model <- lm(value ~ as.numeric(date) + hour(date) + wday(date, label = TRUE),
               data = taylor_30_min)

data = tibble(
  date = taylor_30_min$date,  # Important - The column name must match the modeled data
  # These are standardized names: .actual, .fitted, .residuals
  .actual = taylor_30_min$value,
  .fitted = lm_model$fitted.values %>% as.numeric(),
  .residuals = lm_model$residuals %>% as.numeric()
)

new_modeltime_bridge(
  class = "lm_time_series_impl",
  models = list(model_1 = lm_model),
  data = data,
  extras = NULL
)
```

Description

Tuning Parameters for NNETAR Models
Usage

num_networks(range = c(1L, 100L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible values, respectively.

trans A trans object from the scales package, such as scales::log10_trans() or scales::reciprocal_trans(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

The main parameters for NNETAR models are:

- non_seasonal_ar: Number of non-seasonal auto-regressive (AR) lags. Often denoted "p" in pdq-notation.
- seasonal_ar: Number of seasonal auto-regressive (SAR) lags. Often denoted "P" in PDQ-notation.
- hidden_units: An integer for the number of units in the hidden model.
- num_networks: Number of networks to fit with different random starting weights. These are then averaged when producing forecasts.
- penalty: A non-negative numeric value for the amount of weight decay.
- epochs: An integer for the number of training iterations.

See Also

non_seasonal_ar(), seasonal_ar(), dials::hidden_units(), dials::penalty(), dials::epochs()

Examples

num_networks()
Usage

nnetar_reg(
 mode = "regression",
 seasonal_period = NULL,
 non_seasonal_ar = NULL,
 seasonal_ar = NULL,
 hidden_units = NULL,
 num_networks = NULL,
 penalty = NULL,
 epochs = NULL
)

Arguments

mode A single character string for the type of model. The only possible value for this model is "regression".
seasonal_period A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.
non_seasonal_ar The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in pdq-notation.
seasonal_ar The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in PDQ-notation.
hidden_units An integer for the number of units in the hidden model.
um_networks Number of networks to fit with different random starting weights. These are then averaged when producing forecasts.
penalty A non-negative numeric value for the amount of weight decay.
epochs An integer for the number of training iterations.

Details

The data given to the function are not saved and are only used to determine the mode of the model. For nnetar_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

- "nnetar" (default) - Connects to forecast::nnetar()

Main Arguments

The main arguments (tuning parameters) for the model are the parameters in nnetar_reg() function. These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from scratch.
Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each engine:

- `modeltime` to `forecast::nnetar`
- `seasonal_period` to `ts(frequency)`
- `non_seasonal_ar` to `p (1)`
- `seasonal_ar` to `P (1)`
- `hidden_units` to `size (10)`
- `num_networks` to `repeats (20)`
- `epochs` to `maxit (100)`
- `penalty` to `decay (0)`

Other options can be set using `set_engine()`.

nnetar

The engine uses `forecast::nnetar()`.

Function Parameters:

```r
## function (y, p, P = 1, size, repeats = 20, xreg = NULL, lambda = NULL, 
## model = NULL, subset = NULL, scale.inputs = TRUE, x = y, ...)
```

Parameter Notes:

- `xreg` - This is supplied via the parsnip / modeltime `fit()` interface (so don’t provide this manually). See Fit Details (below).
- `size` - Is set to 10 by default. This differs from the forecast implementation.
- `p` and `P` - Are set to 1 by default.
- `maxit` and `decay` are `nnet::nnet` parameters that are exposed in the `nnetar_reg()` interface. These are key tuning parameters.

Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

- `fit(y ~ date)`

Seasonal Period Specification

The period can be non-seasonal (`seasonal_period = 1` or "none") or yearly seasonal (e.g. For monthly time stamps, `seasonal_period = 12`, `seasonal_period = "12 months"`, or `seasonal_period = "yearly"`). There are 3 ways to specify:

1. `seasonal_period = "auto"`: A seasonal period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data
3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to
 12 for monthly data.

Univariate (No xregs, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:
- Formula Interface (recommended): `fit(y ~ date)` will ignore xreg's.
- XY Interface: `fit_xy(x = data[, "date"], y = data$y)` will ignore xreg's.

Multivariate (xregs, Exogenous Regressors)
The xreg parameter is populated using the `fit()` or `fit_xy()` function:
- Only factor, ordered factor, and numeric data will be used as xregs.
- Date and Date-time variables are not used as xregs
- character data should be converted to factor.

Xreg Example: Suppose you have 3 features:
1. y (target)
2. date (time stamp),
3. month.lbl (labeled month as a ordered factor).

The `month.lbl` is an exogenous regressor that can be passed to the `nnetar_reg()` using `fit()`:
- `fit(y ~ date + month.lbl)` will pass `month.lbl` on as an exogenous regressor.
- `fit_xy(data[, c("date", "month.lbl")], y = data$y)` will pass x, where x is a data frame
 containing `month.lbl` and the date feature. Only `month.lbl` will be used as an exogenous
 regressor.

Note that date or date-time class values are excluded from xreg.

See Also

`fit.model_spec()`, `set_engine()`

Examples

```r
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)
```
--- NNETAR ---

Model Spec
model_spec <- nnetar_reg() %>%
 set_engine("nnetar")

Fit Spec
set.seed(123)
model_fit <- model_spec %>%
 fit(log(value) ~ date, data = training(splits))
model_fit

panel_tail

Filter the last N rows (Tail) for multiple time series

Description
Filter the last N rows (Tail) for multiple time series

Usage
panel_tail(data, id, n)

Arguments
- **data**: A data frame
- **id**: An "id" feature indicating which column differentiates the time series panels
- **n**: The number of rows to filter

Value
A data frame

See Also
- `recursive()` - used to generate recursive autoregressive models

Examples
library(timetk)

Get the last 6 observations from each group
m4_monthly %>%
 panel_tail(id = id, n = 6)
parallel_start

Start parallel clusters using parallel package

Usage

```
parallel_start(..., .method = c("parallel", "spark"))
```

parallel_stop()

Arguments

... Parameters passed to underlying functions (See Details Section)

.method The method to create the parallel backend. Supports:

- "parallel" - Uses the parallel and doParallel packages
- "spark" - Uses the sparklyr package

Parallel (.method = "parallel")

Performs 3 Steps:

1. Makes clusters using parallel::makeCluster(...). The parallel_start(...) are passed to parallel::makeCluster(...).
2. Registers clusters using doParallel::registerDoParallel().
3. Adds .libPaths() using parallel::clusterCall().

Spark (.method = "spark")

- Important, make sure to create a spark connection using sparklyr::spark_connect().
- Pass the connection object as the first argument. For example, parallel_start(sc, .method = "spark").
- The parallel_start(...) are passed to sparklyr::registerDoSpark(...).

Examples

```
# Starts 2 clusters
parallel_start(2)

# Returns to sequential processing
parallel_stop()
```
parse_index

Developer Tools for parsing date and date-time information

Description

These functions are designed to assist developers in extending the `modeltime` package.

Usage

- `parse_index_from_data(data)`
- `parse_period_from_index(data, period)`

Arguments

- `data`: A data frame
- `period`: A period to calculate from the time index. Numeric values are returned as-is. "auto" guesses a numeric value from the index. A time-based phrase (e.g. "7 days") calculates the number of timestamps that typically occur within the time-based phrase.

Value

- `parse_index_from_data()`: Returns a tibble containing the date or date-time column.
- `parse_period_from_index()`: Returns the numeric period from a tibble containing the index.

Examples

```r
library(dplyr)
library(timetk)

predictors <- m4_monthly %>%
  filter(id == "M750") %>%
  select(-value)

index_tbl <- parse_index_from_data(predictors)
index_tbl

period <- parse_period_from_index(index_tbl, period = "1 year")
period
```
plot_modeltime_forecast

Interactive Forecast Visualization

Description

This is a wrapper for plot_time_series() that generates an interactive (plotly) or static (ggplot2) plot with the forecasted data.

Usage

plot_modeltime_forecast(
 .data,
 .conf_interval_show = TRUE,
 .conf_interval_fill = "grey20",
 .conf_interval_alpha = 0.2,
 .smooth = FALSE,
 .legend_show = TRUE,
 .legend_max_width = 40,
 .facet_ncol = 1,
 .facet_nrow = 1,
 .facet_scales = "free_y",
 .title = "Forecast Plot",
 .x_lab = "",
 .y_lab = "",
 .color_lab = "Legend",
 .interactive = TRUE,
 .plotly_slider = FALSE,
 .trelliscope = FALSE,
 .trelliscope_params = list(),
 ...
)

Arguments

.data A tibble that is the output of modeltime_forecast()

.conf_interval_show Logical. Whether or not to include the confidence interval as a ribbon.

.conf_interval_fill Fill color for the confidence interval

.conf_interval_alpha Fill opacity for the confidence interval. Range (0, 1).

.smooth Logical - Whether or not to include a trendline smoother. Uses See smooth_vec() to apply a LOESS smoother.

.legend_show Logical. Whether or not to show the legend. Can save space with long model descriptions.
.legend_max_width
 Numeric. The width of truncation to apply to the legend text.
.facet_ncol Number of facet columns.
.facet_nrow Number of facet rows (only used for .trelliscope = TRUE)
.facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",
 "free_x"
.title Title for the plot
.x_lab X-axis label for the plot
.y_lab Y-axis label for the plot
.color_lab Legend label if a color_var is used.
.interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visual-
 alization
.plotly_slider If TRUE, returns a plotly date range slider.
.trelliscope Returns either a normal plot or a trelliscopejs plot (great for many time series)
 Must have trelliscopejs installed.
.trelliscope_params
 Pass parameters to the trelliscopejs::facet_trelliscope() function as a
 list(). The only parameters that cannot be passed are:
 • ncol: use .facet_ncol
 • nrow: use .facet_nrow
 • scales: use facet_scales
 • as_plotly: use .interactive

... Additional arguments passed to timetk::plot_time_series().

Value

A static ggplot2 plot or an interactive plotly plot containing a forecast

Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: prophet ----
model_fit_prophet <- prophet_reg() %>%
 set_engine(engine = "prophet") %>%
 fit(value ~ date, data = training(splits))

----- MODELTIME TABLE -----
models_tbl <- modeltime_table(
 model_fit_prophet
)

----- FORECAST -----
models_tbl %>%
 modeltime_calibrate(new_data = testing(splits)) %>%
 modeltime_forecast(
 new_data = testing(splits),
 actual_data = m750
) %>%
 plot_modeltime_forecast(.interactive = FALSE)

plot_modeltime_residuals

Interactive Residuals Visualization

Description

This is a wrapper for examining residuals using:

- Time Plot: plot_time_series()
- ACF Plot: plot_acf_diagnostics()
- Seasonality Plot: plot_seasonal_diagnostics()

Usage

plot_modeltime_residuals(
 .data,
 .type = c("timeplot", "acf", "seasonality"),
 .smooth = FALSE,
 .legend_show = TRUE,
 .legend_max_width = 40,
 .title = "Residuals Plot",
 .x_lab = "",
 .y_lab = "",
 .color_lab = "Legend",
 .interactive = TRUE,
 ...
)
Arguments

.data A tibble that is the output of `modeltime_residuals()`
.type One of "timeplot", "acf", or "seasonality". The default is "timeplot".
.smooth Logical - Whether or not to include a trendline smoother. Uses See `smooth_vec()`
 to apply a LOESS smoother.
.legend_show Logical. Whether or not to show the legend. Can save space with long model
descriptions.
.legend_max_width Numeric. The width of truncation to apply to the legend text.
.title Title for the plot
.x_lab X-axis label for the plot
.y_lab Y-axis label for the plot
.color_lab Legend label if a `color_var` is used.
.interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visualization
... Additional arguments passed to:
 • Time Plot: `plot_time_series()`
 • ACF Plot: `plot_acf_diagnostics()`
 • Seasonality Plot: `plot_seasonal_diagnostics()`

Value

A static ggplot2 plot or an interactive plotly plot containing residuals vs time

Examples

library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: prophet ----
model_fit_prophet <- prophet_reg() %>%
 set_engine(engine = "prophet") %>%
 fit(value ~ date, data = training(splits))
---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
 model_fit_prophet
)

---- RESIDUALS ----

residuals_tbl <- models_tbl %>%
 modeltime_calibrate(new_data = testing(splits)) %>%
 modeltime_residuals()

residuals_tbl %>%
 plot_modeltime_residuals(
 .type = "timeplot",
 .interactive = FALSE
)

\[\text{pluck_modeltime_model} \quad \text{Extract model by model id in a Modeltime Table} \]

\[\text{Description} \]

The `pull_modeltime_model()` and `pluck_modeltime_model()` functions are synonyms.

\[\text{Usage} \]

\[\text{pluck_modeltime_model(object, .model_id)} \]

\#\# S3 method for class 'mdl_time_tbl'
pluck_modeltime_model(object, .model_id)

\[\text{pull_modeltime_model(object, .model_id)} \]

\[\text{Arguments} \]

\[\text{object} \quad \text{A Modeltime Table} \]

\[\text{.model_id} \quad \text{A numeric value matching the .model_id that you want to update} \]

\[\text{See Also} \]

- `combine_modeltime_tables()`: Combine 2 or more Modeltime Tables together
- `add_modeltime_model()`: Adds a new row with a new model to a Modeltime Table
- `update_modeltime_description()`: Updates a description for a model inside a Modeltime Table
- `update_modeltime_model()`: Updates a model inside a Modeltime Table
- `pull_modeltime_model()`: Extracts a model from a Modeltime Table
Prepared Nested Modeltime Data

Description

A set of functions to simplify preparation of nested data for iterative (nested) forecasting with Nested Modeltime Tables.

Usage

extend_timeseries(.data, .id_var, .date_var, .length_future, ...)

nest_timeseries(.data, .id_var, .length_future, .length_actual = NULL)

split_nested_timeseries(.data, .length_test, .length_train = NULL, ...)

Arguments

.data A data frame or tibble containing time series data. The data should have:
 • identifier (.id_var): Identifying one or more time series groups
 • date variable (.date_var): A date or date time column
 • target variable (.value): A column containing numeric values that is to be forecasted

.id_var An id column

.date_var A date or datetime column

.length_future Varies based on the function:
 • extend_timeseries(): Defines how far into the future to extend the time series by each time series group.
 • nest_timeseries(): Defines which observations should be split into the .future_data.

... Additional arguments passed to the helper function. See details.

.length_actual Can be used to slice the .actual_data to a most recent number of observations.

.length_test Defines the length of the test split for evaluation.

.length_train Defines the length of the training split for evaluation.
Details

Preparation of nested time series follows a 3-Step Process:

Step 1: Extend the Time Series:
extend_timeseries(): A wrapper for timetk::future_frame() that extends a time series group-wise into the future.
- The group column is specified by .id_var.
- The date column is specified by .date_var.
- The length into the future is specified with .length_future.
- The ... are additional parameters that can be passed to timetk::future_frame()

Step 2: Nest the Time Series:
nest_timeseries(): A helper for nesting your data into .actual_data and .future_data.
- The group column is specified by .id_var
- The .length_future defines the length of the .future_data.
- The remaining data is converted to the .actual_data.
- The .length_actual can be used to slice the .actual_data to a most recent number of observations.

The result is a "nested data frame".

Step 3: Split the Actual Data into Train/Test Splits:
split_nested_timeseries(): A wrapper for timetk::time_series_split() that generates training/testing splits from the .actual_data column.
- The .length_test is the primary argument that identifies the size of the testing sample. This is typically the same size as the .future_data.
- The .length_train is an optional size of the training data.
- The ... (dots) are additional arguments that can be passed to timetk::time_series_split().

Helpers:
extract_nested_train_split() and extract_nested_test_split() are used to simplify extracting the training and testing data from the actual data. This can be helpful when making preprocessing recipes using the recipes package.

Examples

```r
library(tidyverse)
library(timetk)
library(modeltime)

nested_data_tbl <- walmart_sales_weekly %>%
  select(id, Date, Weekly_Sales) %>%
  set_names(c("id", "date", "value")) %>%

# Step 1: Extends the time series by id
extend_timeseries(
```
```r
```
```r
# Step 2: Nests the time series into .actual_data and .future_data
nest_timeseries(
  .id_var = id,
  .date_var = date,
  .length_future = 52
) %>%

# Step 3: Adds a column .splits that contains training/testing indicies
split_nested_timeseries(
  .length_test = 52
)

nested_data_tbl

# Helpers: Getting the Train/Test Sets
eextract_nested_train_split(nested_data_tbl, .row_id = 1)
```

prophet_boost

General Interface for Boosted PROPHET Time Series Models

Description

`prophet_boost()` is a way to generate a specification of a Boosted PROPHET model before fitting and allows the model to be created using different packages. Currently the only package is `prophet`.

Usage

```r
prophet_boost(
  mode = "regression",
  growth = NULL,
  changepoint_num = NULL,
  changepoint_range = NULL,
  seasonality_yearly = NULL,
  seasonality_weekly = NULL,
  seasonality_daily = NULL,
  season = NULL,
  prior_scale_changepoints = NULL,
  prior_scale_seasonality = NULL,
  prior_scale_holidays = NULL,
  logistic_cap = NULL,
  logistic_floor = NULL,
  mtry = NULL,
  trees = NULL,
  min_n = NULL,
```
Arguments

mode A single character string for the type of model. The only possible value for this model is "regression".
growth String 'linear' or 'logistic' to specify a linear or logistic trend.
changepoint_num Number of potential changepoints to include for modeling trend.
changepoint_range Adjusts the flexibility of the trend component by limiting to a percentage of data before the end of the time series. 0.80 means that a changepoint cannot exist after the first 80% of the data.
seasonality_yearly One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that models year-over-year seasonality.
seasonality_weekly One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that models week-over-week seasonality.
seasonality_daily One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that models day-over-day seasonality.
season 'additive' (default) or 'multiplicative'.
prior_scale_changepoints Parameter modulating the flexibility of the automatic changepoint selection. Large values will allow many changepoints, small values will allow few changepoints.
prior_scale_seasonality Parameter modulating the strength of the seasonality model. Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the seasonality.
prior_scale_holidays Parameter modulating the strength of the holiday components model, unless overridden in the holidays input.
logistic_cap When growth is logistic, the upper-bound for "saturation".
logistic_floor When growth is logistic, the lower-bound for "saturation".
mtry A number for the number (or proportion) of predictors that will be randomly sampled at each split when creating the tree models (specific engines only).
trees An integer for the number of trees contained in the ensemble.
min_n An integer for the minimum number of data points in a node that is required for the node to be split further.
tree_depth
An integer for the maximum depth of the tree (i.e. number of splits) (specific engines only).

learn_rate
A number for the rate at which the boosting algorithm adapts from iteration-to-iteration (specific engines only).

loss_reduction
A number for the reduction in the loss function required to split further (specific engines only).

sample_size
Number for the number (or proportion) of data that is exposed to the fitting routine.

stop_iter
The number of iterations without improvement before stopping (xgboost only).

Details
The data given to the function are not saved and are only used to determine the mode of the model. For prophet_boost(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

- "prophet_xgboost" (default) - Connects to prophet::prophet() and xgboost::xgb.train()

Main Arguments
The main arguments (tuning parameters) for the PROPHET model are:

- growth: String 'linear' or 'logistic' to specify a linear or logistic trend.
- changepoint_num: Number of potential changepoints to include for modeling trend.
- changepoint_range: Range changepoints that adjusts how close to the end the last changepoint can be located.
- season: 'additive' (default) or 'multiplicative'.
- prior_scale_changepoints: Parameter modulating the flexibility of the automatic changepoint selection. Large values will allow many changepoints, small values will allow few changepoints.
- prior_scale_seasonality: Parameter modulating the strength of the seasonality model. Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the seasonality.
- prior_scale_holidays: Parameter modulating the strength of the holiday components model, unless overridden in the holidays input.
- logistic_cap: When growth is logistic, the upper-bound for "saturation".
- logistic_floor: When growth is logistic, the lower-bound for "saturation".

The main arguments (tuning parameters) for the model XGBoost model are:

- mtry: The number of predictors that will be randomly sampled at each split when creating the tree models.
- trees: The number of trees contained in the ensemble.
- min_n: The minimum number of data points in a node that are required for the node to be split further.
- tree_depth: The maximum depth of the tree (i.e. number of splits).
• `learn_rate`: The rate at which the boosting algorithm adapts from iteration-to-iteration.
• `loss_reduction`: The reduction in the loss function required to split further.
• `sample_size`: The amount of data exposed to the fitting routine.
• `stop_iter`: The number of iterations without improvement before stopping.

These arguments are converted to their specific names at the time that the model is fit. Other options and argument can be set using `set_engine()` (See Engine Details below). If parameters need to be modified, `update()` can be used in lieu of recreating the object from scratch.

Engine Details

The standardized parameter names in `modeltime` can be mapped to their original names in each engine:

Model 1: PROPHET:

<table>
<thead>
<tr>
<th><code>modeltime</code></th>
<th><code>prophet</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>growth</code></td>
<td><code>growth ('linear')</code></td>
</tr>
<tr>
<td><code>changepoint_num</code></td>
<td><code>n.changepoints (25)</code></td>
</tr>
<tr>
<td><code>changepoint_range</code></td>
<td><code>changepoints.range (0.8)</code></td>
</tr>
<tr>
<td><code>seasonality_yearly</code></td>
<td><code>yearly.seasonality ('auto')</code></td>
</tr>
<tr>
<td><code>seasonality_weekly</code></td>
<td><code>weekly.seasonality ('auto')</code></td>
</tr>
<tr>
<td><code>seasonality_daily</code></td>
<td><code>daily.seasonality ('auto')</code></td>
</tr>
<tr>
<td><code>season</code></td>
<td><code>seasonality.mode ('additive')</code></td>
</tr>
<tr>
<td><code>prior_scale_changepoints</code></td>
<td><code>changepoint.prior.scale (0.05)</code></td>
</tr>
<tr>
<td><code>prior_scale_seasonality</code></td>
<td><code>seasonality.prior.scale (10)</code></td>
</tr>
<tr>
<td><code>prior_scale_holidays</code></td>
<td><code>holidays.prior.scale (10)</code></td>
</tr>
<tr>
<td><code>logistic_cap</code></td>
<td><code>df$cap (NULL)</code></td>
</tr>
<tr>
<td><code>logistic_floor</code></td>
<td><code>df$floor (NULL)</code></td>
</tr>
</tbody>
</table>

Model 2: XGBoost:

<table>
<thead>
<tr>
<th><code>modeltime</code></th>
<th><code>xgboost::xgb.train</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tree_depth</code></td>
<td><code>max_depth (6)</code></td>
</tr>
<tr>
<td><code>trees</code></td>
<td><code>nrounds (15)</code></td>
</tr>
<tr>
<td><code>learn_rate</code></td>
<td><code>eta (0.3)</code></td>
</tr>
<tr>
<td><code>mtry</code></td>
<td><code>colsample_bynode (1)</code></td>
</tr>
<tr>
<td><code>min_n</code></td>
<td><code>min_child_weight (1)</code></td>
</tr>
<tr>
<td><code>loss_reduction</code></td>
<td><code>gamma (0)</code></td>
</tr>
<tr>
<td><code>sample_size</code></td>
<td><code>subsample (1)</code></td>
</tr>
<tr>
<td><code>stop_iter</code></td>
<td><code>early_stop</code></td>
</tr>
</tbody>
</table>

Other options can be set using `set_engine()`.

prophet_xgboost
Model 1: PROPHET (prophet:::prophet):

```r
## function (df = NULL, growth = "linear", changepoints = NULL, n.changepoints = 25,
## changepoint.range = 0.8, yearly.seasonality = "auto", weekly.seasonality = "auto",
## daily.seasonality = "auto", holidays = NULL, seasonality.mode = "additive",
## seasonality.prior.scale = 10, holidays.prior.scale = 10, changepoint.prior.scale = 0.05,
## mcmc.samples = 0, interval.width = 0.8, uncertainty.samples = 1000,
## fit = TRUE, ...)
```

Parameter Notes:

- `df`: This is supplied via the parsnip / modeltime `fit()` interface (so don’t provide this manually). See Fit Details (below).
- `holidays`: A data.frame of holidays can be supplied via `set_engine()`
- `uncertainty.samples`: The default is set to 0 because the prophet uncertainty intervals are not used as part of the Modeltime Workflow. You can override this setting if you plan to use prophet’s uncertainty tools.

Logistic Growth and Saturation Levels:

- For `growth = "logistic"`, simply add numeric values for `logistic_cap` and/or `logistic_floor`. There is no need to add additional columns for "cap" and "floor" to your data frame.

Limitations:

- `prophet::add_seasonality()` is not currently implemented. It’s used to specify non-standard seasonalities using fourier series. An alternative is to use `step_fourier()` and supply custom seasonalities as Extra Regressors.

Model 2: XGBoost (xgboost:::xgb.train):

```r
## function (params = list(), data, nrounds, watchlist = list(), obj = NULL,
## feval = NULL, verbose = 1, print_every_n = 1L, early_stopping_rounds = NULL,
## maximize = NULL, save_period = NULL, save_name = "xgboost.model", xgb_model = NULL,
## callbacks = list(), ...)
```

Parameter Notes:

- XGBoost uses a `params = list()` to capture. Parsnip / Modeltime automatically sends any args provided as ... inside of `set_engine()` to the `params = list(...)`.

Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

- `fit(y ~ date)`

Univariate (No Extra Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:
- Formula Interface (recommended): `fit(y ~ date)` will ignore xreg’s.
- XY Interface: `fit_xy(x = data[, "date"], y = data$y)` will ignore xreg’s.

Multivariate (Extra Regressors)

Extra Regressors parameter is populated using the `fit()` or `fit_xy()` function:

- Only factor, ordered factor, and numeric data will be used as xregs.
- Date and Date-time variables are not used as xregs
- Character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. `y` (target)
2. `date` (time stamp).
3. `month.lbl` (labeled month as an ordered factor).

The `month.lbl` is an exogenous regressor that can be passed to the `arima_reg()` using `fit()`:

- `fit(y ~ date + month.lbl)` will pass `month.lbl` on as an exogenous regressor.
- `fit_xy(data[, c("date", "month.lbl")], y = data$y)` will pass `x`, where `x` is a data frame containing `month.lbl` and the `date` feature. Only `month.lbl` will be used as an exogenous regressor.

Note that date or date-time class values are excluded from `xreg`.

See Also

`fit.model_spec()`, `set_engine()`

Examples

```r
library(dplyr)
library(lubridate)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

# ---- PROPHET ----

# Model Spec
model_spec <- prophet_boost(
  learn_rate = 0.1
) %>%
```
set_engine("prophet_xgboost")

Fit Spec
Not run:
model_fit <- model_spec %>%
 fit(log(value) ~ date + as.numeric(date) + month(date, label = TRUE),
 data = training(splits))
model_fit

End(Not run)

prophet_params

Tuning Parameters for Prophet Models

Description

Tuning Parameters for Prophet Models

Usage

```r
growth(values = c("linear", "logistic"))

changepoint_num(range = c(0L, 50L), trans = NULL)

changepoint_range(range = c(0.6, 0.9), trans = NULL)

seasonality_yearly(values = c(TRUE, FALSE))

seasonality_weekly(values = c(TRUE, FALSE))

seasonality_daily(values = c(TRUE, FALSE))

prior_scale_changepoints(range = c(-3, 2), trans = \texttt{log10\_trans()})

prior_scale_seasonality(range = c(-3, 2), trans = \texttt{log10\_trans()})

prior_scale_holidays(range = c(-3, 2), trans = \texttt{log10\_trans()})
```

Arguments

- **values**
 - A character string of possible values.

- **range**
 - A two-element vector holding the _defaults_ for the smallest and largest possible values, respectively.

- **trans**
 - A `trans` object from the `scales` package, such as `scales::log10_trans()` or `scales::reciprocal_trans()`. If not provided, the default is used which matches the units used in `range`. If no transformation, `NULL`.

Details
The main parameters for Prophet models are:

- **growth**: The form of the trend: "linear", or "logistic".
- **changepoint_num**: The maximum number of trend changepoints allowed when modeling the trend.
- **changepoint_range**: The range affects how close the changepoints can go to the end of the time series. The larger the value, the more flexible the trend.
- **Yearly, Weekly, and Daily Seasonality**:

 - **Yearly**: `seasonality_yearly` - Useful when seasonal patterns appear year-over-year

 - **Weekly**: `seasonality_weekly` - Useful when seasonal patterns appear week-over-week (e.g. daily data)

 - **Daily**: `seasonality_daily` - Useful when seasonal patterns appear day-over-day (e.g. hourly data)
- **season**: The form of the seasonal term: "additive" or "multiplicative".

 - See `season()`.
- **"Prior Scale"**: Controls flexibility of

 - **Changepoints**: `prior_scale_changepoints`

 - **Seasonality**: `prior_scale_seasonality`

 - **Holidays**: `prior_scale_holidays`

 - The `log10_trans()` converts priors to a scale from 0.001 to 100, which effectively weights lower values more heavily than larger values.

Examples

```r
growth()
changepoint_num()
season()
prior_scale_changepoints()
```

prophet_reg

General Interface for PROPHET Time Series Models

Description

`prophet_reg()` is a way to generate a *specification* of a PROPHET model before fitting and allows the model to be created using different packages. Currently the only package is `prophet`.
Usage

`prophet_reg(
 mode = "regression",
 growth = NULL,
 changepoint_num = NULL,
 changepoint_range = NULL,
 seasonality_yearly = NULL,
 seasonality_weekly = NULL,
 seasonality_daily = NULL,
 season = NULL,
 prior_scale_changepoints = NULL,
 prior_scale_seasonality = NULL,
 prior_scale_holidays = NULL,
 logistic_cap = NULL,
 logistic_floor = NULL
)
"

Arguments

`mode` A single character string for the type of model. The only possible value for this model is "regression".

`growth` String 'linear' or 'logistic' to specify a linear or logistic trend.

`changepoint_num` Number of potential changepoints to include for modeling trend.

`changepoint_range` Adjusts the flexibility of the trend component by limiting to a percentage of data before the end of the time series. 0.80 means that a changepoint cannot exist after the first 80% of the data.

`seasonality_yearly` One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that models year-over-year seasonality.

`seasonality_weekly` One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that models week-over-week seasonality.

`seasonality_daily` One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that models day-over-day seasonality.

`season` 'additive' (default) or 'multiplicative'.

`prior_scale_changepoints` Parameter modulating the flexibility of the automatic changepoint selection. Large values will allow many changepoints, small values will allow few changepoints.

`prior_scale_seasonality` Parameter modulating the strength of the seasonality model. Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the seasonality.
prior_scale_holidays
 Parameter modulating the strength of the holiday components model, unless
 overridden in the holidays input.

logistic_cap
 When growth is logistic, the upper-bound for "saturation".

logistic_floor
 When growth is logistic, the lower-bound for "saturation".

Details

The data given to the function are not saved and are only used to determine the mode of the model. For prophet_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

- "prophet" (default) - Connects to prophet::prophet()

Main Arguments

The main arguments (tuning parameters) for the model are:

- growth: String 'linear' or 'logistic' to specify a linear or logistic trend.
- changepoint_num: Number of potential changepoints to include for modeling trend.
- changepoint_range: Range changepoints that adjusts how close to the end the last change-
 point can be located.
- season: 'additive' (default) or 'multiplicative'.
- prior_scale_changepoints: Parameter modulating the flexibility of the automatic change-
 point selection. Large values will allow many changepoints, small values will allow few
 changepoints.
- prior_scale_seasonality: Parameter modulating the strength of the seasonality model.
 Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the
 seasonality.
- prior_scale_holidays: Parameter modulating the strength of the holiday components model,
 unless overridden in the holidays input.
- logistic_cap: When growth is logistic, the upper-bound for "saturation".
- logistic_floor: When growth is logistic, the lower-bound for "saturation".

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each

engine:

modeltime prophet
 growth growth ('linear')
 changepoint_num n.changepoints (25)
Other options can be set using set_engine().

prophet

The engine uses `prophet::prophet()`.

Function Parameters:

```r
## function (df = NULL, growth = "linear", changepoints = NULL, n.changepoints = 25,
## changepoint.range = 0.8, yearly.seasonality = "auto", weekly.seasonality = "auto",
## daily.seasonality = "auto", holidays = NULL, seasonality.mode = "additive",
## seasonality.prior.scale = 10, holidays.prior.scale = 10, changepoint.prior.scale = 0.05,
## mcmc.samples = 0, interval.width = 0.8, uncertainty.samples = 1000,
## fit = TRUE, ...)```

Parameter Notes:

- `df`: This is supplied via the parsnip / modeltime fit() interface (so don’t provide this manually). See Fit Details (below).
- `holidays`: A data.frame of holidays can be supplied via set_engine()
- `uncertainty.samples`: The default is set to 0 because the prophet uncertainty intervals are not used as part of the Modeltime Workflow. You can override this setting if you plan to use prophet’s uncertainty tools.

Regressors:

- Regressors are provided via the fit() or recipes interface, which passes regressors to `prophet::add_regressor()`
- Parameters can be controlled in set_engine() via: regressors.prior.scale, regressors.standardize, and regressors.mode
- The regressor prior scale implementation default is `regressors.prior.scale = 1e4`, which deviates from the prophet implementation (defaults to holidays.prior.scale)

Logistic Growth and Saturation Levels:

- For growth = "logistic", simply add numeric values for logistic_cap and / or logistic_floor. There is no need to add additional columns for "cap" and "floor" to your data frame.

Limitations:

- `prophet::add_seasonality()` is not currently implemented. It’s used to specify non-standard seasonalities using fourier series. An alternative is to use `step_fourier()` and supply custom seasonalities as Extra Regressors.
Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

- `fit(y ~ date)`

Univariate (No Extra Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface (recommended): `fit(y ~ date)` will ignore xreg’s.
- XY Interface: `fit_xy(x = data[, "date"], y = data$y)` will ignore xreg’s.

Multivariate (Extra Regressors)
Extra Regressors parameter is populated using the `fit()` or `fit_xy()` function:

- Only `factor`, `ordered factor`, and `numeric` data will be used as xregs.
- Date and Date-time variables are not used as xregs
- character data should be converted to factor.

Xreg Example: Suppose you have 3 features:
1. y (target)
2. date (time stamp),
3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the `arima_reg()` using `fit()`:

- `fit(y ~ date + month.lbl)` will pass month.lbl on as an exogenous regressor.
- `fit_xy(data[, c("date", "month.lbl")], y = data$y)` will pass x, where x is a data frame containing month.lbl and the date feature. Only month.lbl will be used as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

See Also

- `fit.model_spec()`, `set_engine()`

Examples

```r
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750
```
# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

# ---- PROPHET ----

# Model Spec
model_spec <- prophet_reg() %>%
  set_engine("prophet")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

---

pull_modeltime_residuals

Extracts modeltime residuals data from a Modeltime Model

---

**Description**

If a modeltime model contains data with residuals information, this function will extract the data frame.

**Usage**

pull_modeltime_residuals(object)

**Arguments**

- **object** A fitted parsnip/modeltime model or workflow

**Value**

A tibble containing the model timestamp, actual, fitted, and residuals data

---

pull_parsnip_preprocessor

*Pulls the Formula from a Fitted Parsnip Model Object*

---

**Description**

Pulls the Formula from a Fitted Parsnip Model Object
Usage

```r
pull_parsnip_preprocessor(object)
```

Arguments

- `object` A fitted parsnip model `model_fit` object

Value

A formula using `stats::formula()`

---

### Description

Wrappers for using `recipes::bake` and `recipes::juice` to process data returning data in either data frame or matrix format (Common formats needed for machine learning algorithms).

Usage

```r
juice_xreg_recipe(recipe, format = c("tbl", "matrix"))
bake_xreg_recipe(recipe, new_data, format = c("tbl", "matrix"))
```

Arguments

- `recipe` A prepared recipe
- `format` One of:
  - `tbl`: Returns a tibble (data.frame)
  - `matrix`: Returns a matrix
- `new_data` Data to be processed by a recipe

Value

Data in either the `tbl` (data.frame) or `matrix` formats

Examples

```r
library(dplyr)
library(timetk)
library(recipes)
library(lubridate)

predictors <- m4_monthly %>%
 filter(id == "M750") %>%
 select(-value) %>%
```
mutate(month = month(date, label = TRUE))
predictors

# Create default recipe
xreg_recipe_spec <- create_xreg_recipe(predictors, prepare = TRUE)

# Extracts the preprocessed training data from the recipe (used in your fit function)
juice_xreg_recipe(xreg_recipe_spec)

# Applies the prepared recipe to new data (used in your predict function)
bake_xreg_recipe(xreg_recipe_spec, new_data = predictors)

---

### recursive

Create a Recursive Time Series Model from a Parsnip or Workflow Regression Model

**Description**

Create a Recursive Time Series Model from a Parsnip or Workflow Regression Model

**Usage**

```r
recursive(object, transform, train_tail, id = NULL, ...)
```

**Arguments**

- `object`: An object of `model_fit` or a fitted `workflow` class
- `transform`: A transformation performed on `new_data` after each step of recursive algorithm.
  - **Transformation Function**: Must have one argument `data` (see examples)
- `train_tail`: A tibble with tail of training data set. In most cases it’ll be required to create some variables based on dependent variable.
- `id`: (Optional) An identifier that can be provided to perform a panel forecast. A single quoted column name (e.g. `id = "id"`).
- `...`: Not currently used.

**Details**

**What is a Recursive Model?**

A recursive model uses predictions to generate new values for independent features. These features are typically lags used in autoregressive models. It’s important to understand that a recursive model is only needed when the Lag Size < Forecast Horizon.

**Why is Recursive needed for Autoregressive Models with Lag Size < Forecast Horizon?**

When the lag length is less than the forecast horizon, a problem exists were missing values (NA) are generated in the future data. A solution that `recursive()` implements is to iteratively fill these missing values in with values generated from predictions.
**Recursive Process**

When producing forecast, the following steps are performed:

1. Computing forecast for first row of new data. The first row cannot contain NA in any required column.
2. Filling i-th place of the dependent variable column with already computed forecast.
3. Computing missing features for next step, based on already calculated prediction. These features are computed with a tibble object made from binded `train_tail` (i.e. tail of training data set) and `new_data` (which is an argument of predict function).
4. Jumping into point 2., and repeating rest of steps till the for-loop is ended.

**Recursion for Panel Data**

Panel data is time series data with multiple groups identified by an ID column. The `recursive()` function can be used for Panel Data with the following modifications:

1. Supply an `id` column as a quoted column name
2. Replace `tail()` with `panel_tail()` to use tails for each time series group.

**Value**

An object with added `recursive` class

**See Also**

- `panel_tail()` - Used to generate tails for multiple time series groups.

**Examples**

```r
Libraries & Setup ----
library(modeltime)
library(tidymodels)
library(tidyverse)
library(lubridate)
library(timetk)
library(slider)

---- SINGLE TIME SERIES (NON-PANEL) -----

Libraries & Setup ----
library(modeltime)
library(tidymodels)
library(tidyverse)
library(lubridate)
library(timetk)
library(slider)

---- SINGLE TIME SERIES (NON-PANEL) -----

m750

FORECAST_HORIZON <- 24

m750_extended <- m750 %>%
 group_by(id) %>%
 future_frame(
 .length_out = FORECAST_HORIZON,
 .bind_data = TRUE
) %>%
```
recursive

## TRANSFORM FUNCTION ----

- Function runs recursively that updates the forecasted dataset

```r
lag_roll_transformer <- function(data){
 # Lags
 data %>%
 tk_augment_lags(value, .lags = 1:12) %>%
 # Rolling Features
 mutate(rolling_mean_12 = lag(slide_dbl(
 value, .f = mean, .before = 12, .complete = FALSE
), 1))
}
```

### Data Preparation

```r
m750_rolling <- m750_extended %>%
 lag_roll_transformer() %>%
 select(-id)
train_data <- m750_rolling %>%
 drop_na()
future_data <- m750_rolling %>%
 filter(is.na(value))
```

### Modeling

- **Straight-Line Forecast**

```r
model_fit_lm <- linear_reg() %>%
 set_engine("lm") %>%
 fit(value ~ date, data = train_data)
```

- **Autoregressive Forecast**

```r
model_fit_lm_recursive <- linear_reg() %>%
 set_engine("lm") %>%
 fit(value ~ ., data = train_data) %>%
 recursive(
 transform = lag_roll_transformer,
 train_tail = tail(train_data, FORECAST_HORIZON)
)
```

### Forecasting

```r
model_time_table(
 model_fit_lm,
 model_fit_lm_recursive
) %>%
 update_model_description(2, "LM - Lag Roll") %>%
 model_time_forecast()
```
recursive

new_data = future_data,
actual_data = m750
}%>
plot_modelltime_forecast(
.interactive = FALSE,
.conf_interval_show = FALSE
)

# MULTIPLE TIME SERIES (PANEL DATA) -----

m4_monthly

FORECAST_HORIZON <- 24

m4_extended <- m4_monthly %>%
group_by(id) %>%
future_frame(
.length_out = FORECAST_HORIZON,
.bind_data = TRUE
) %>%
ungroup()

# TRANSFORM FUNCTION ----
# - NOTE - We create lags by group
lag_transformer_grouped <- function(data){
data %>%
group_by(id) %>%
tk_augment_lags(value, .lags = 1:FORECAST_HORIZON) %>%
ungroup()
}

m4_lags <- m4_extended %>%
lag_transformer_grouped()

train_data <- m4_lags %>%
drop_na()

future_data <- m4_lags %>%
filter(is.na(value))

# Modeling Autoregressive Panel Data
model_fit_lm_recursive <- linear_reg() %>%
set_engine("lm") %>%
fit(value ~ ., data = train_data) %>%
recursive( id = "id", # We add an id = "id" to specify the groups
transform = lag_transformer_grouped,
# We use panel_tail() to grab tail by groups
train_tail = panel_tail(train_data, id, FORECAST_HORIZON)
)

modelltime_table(
model_fit_lm_recursive
seasonal_reg

General Interface for Multiple Seasonality Regression Models
(TBATS, STLM)

Description

seasonal_reg() is a way to generate a specification of an Seasonal Decomposition model before fitting and allows the model to be created using different packages. Currently the only package is forecast.

Usage

seasonal_reg(
  mode = "regression",
  seasonal_period_1 = NULL,
  seasonal_period_2 = NULL,
  seasonal_period_3 = NULL
)

Arguments

mode A single character string for the type of model. The only possible value for this model is "regression".

seasonal_period_1 (required) The primary seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.

seasonal_period_2 (optional) A second seasonal frequency. Is NULL by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.
seasonal_period_3

(optional) A third seasonal frequency. Is NULL by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.

Details

The data given to the function are not saved and are only used to determine the mode of the model. For seasonal_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

- "tbats" - Connects to forecast::tbats()
- "stlm_ets" - Connects to forecast::stlm(), method = "ets"
- "stlm_arima" - Connects to forecast::stlm(), method = "arima"

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each engine:

<table>
<thead>
<tr>
<th>modeltime</th>
<th>forecast::stlm</th>
<th>forecast::tbats</th>
</tr>
</thead>
<tbody>
<tr>
<td>seasonal_period_1, seasonal_period_2, seasonal_period_3</td>
<td>msts(seasonal.periods)</td>
<td>msts(seasonal.periods)</td>
</tr>
</tbody>
</table>

Other options can be set using set_engine().

The engines use forecast::stlm().

Function Parameters:

```r
function (y, s.window = 7 + 4 * seq(6), robust = FALSE, method = c("ets", "arima"), modelfunction = NULL, model = NULL, etsmodel = "ZZN", lambda = NULL, biasadj = FALSE, xreg = NULL, allow.multiplicative.trend = FALSE, x = y, ...)
```

**tbats**

- **Method**: Uses method = "tbats", which by default is auto-TBATS.
- **Xregs**: Univariate. Cannot accept Exogenous Regressors (xregs). Xregs are ignored.

**stlm_ets**

- **Method**: Uses method = "stlm_ets", which by default is auto-ETS.
- **Xregs**: Univariate. Cannot accept Exogenous Regressors (xregs). Xregs are ignored.

**stlm_arima**

- **Method**: Uses method = "stlm_arima", which by default is auto-ARIMA.
- **Xregs**: Multivariate. Can accept Exogenous Regressors (xregs).
Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts date and date-time features and handles them internally.

• fit(y ~ date)

Seasonal Period Specification
The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period = "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto": A seasonal period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data
3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

Univariate (No xregs, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.
• XY Interface: fit_xy(x = data[,"date"], y = data$y) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)

• The tbats engine cannot accept Xregs.
• The stlm_ets engine cannot accept Xregs.
• The stlm_arima engine can accept Xregs

The xreg parameter is populated using the fit() or fit_xy() function:

• Only factor, ordered factor, and numeric data will be used as xregs.
• Date and Date-time variables are not used as xregs
• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),
3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the seasonal_reg() using fit():

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.
• fit_xy(data[,c("date", "month.lbl")], y = data$y) will pass x, where x is a data frame containing month.lbl and the date feature. Only month.lbl will be used as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.
summarize_accuracy_metrics

See Also

fit.model.spec(), set_engine()

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

# Data
taylor_30_min

# Split Data 80/20
splits <- initial_time_split(taylor_30_min, prop = 0.8)

# ---- STLM ETS ----

# Model Spec
model_spec <- seasonal_reg() %>%
  set_engine("stlm_ets")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

# ---- STLM ARIMA ----

# Model Spec
model_spec <- seasonal_reg() %>%
  set_engine("stlm_arima")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

summarize_accuracy_metrics

Summarize Accuracy Metrics

Description

This is an internal function used by modeltime_accuracy().
Usage

summarize_accuracy_metrics(data, truth, estimate, metric_set)

Arguments

data A data.frame containing the truth and estimate columns.
truth The column identifier for the true results (that is numeric).
estimate The column identifier for the predicted results (that is also numeric).
metric_set A yardstick::metric_set() that is used to summarize one or more forecast accuracy (regression) metrics.

Examples

library(tibble)
library(dplyr)
predictions_tbl <- tibble(
  group = c("model 1", "model 1", "model 1", 
              "model 2", "model 2", "model 2"),
  truth = c(1, 2, 3, 
            1, 2, 3),
  estimate = c(1.2, 2.0, 2.5, 
              0.9, 1.9, 3.3)
)
predictions_tbl %.>%
  group_by(group) %.>%
  summarize_accuracy_metrics(
    truth, estimate,
    metric_set = default_forecast_accuracy_metric_set()
  )

---

table_modeltime_accuracy

Interactive Accuracy Tables

Description

Converts results from modeltime_accuracy() into either interactive (reactable) or static (gt) tables.

Usage

table_modeltime_accuracy(
  .data, 
  .round_digits = 2,
Arguments

.data A tibble that is the output of `modeltime_accuracy()`
.round_digits Rounds accuracy metrics to a specified number of digits. If NULL, rounding is not performed.
.sortable Allows sorting by columns. Only applied to reactable tables. Passed to reactable(sortable).
.show_sortable Shows sorting. Only applied to reactable tables. Passed to reactable(showSortable).
.searchable Adds search input. Only applied to reactable tables. Passed to reactable(searchable).
.filterable Adds filters to table columns. Only applied to reactable tables. Passed to reactable(filterable).
.expand_groups Expands groups dropdowns. Only applied to reactable tables. Passed to reactable(defaultExpanded).
.title A title for static (gt) tables.
.interactive Return interactive or static tables. If TRUE, returns reactable table. If FALSE, returns static gt table.
... Additional arguments passed to `reactable::reactable()` or `gt::gt()` (depending on .interactive selection).

Details

Groups

The function respects `dplyr::group_by()` groups and thus scales with multiple groups.

Reactable Output

A reactable() table is an interactive format that enables live searching and sorting. When .interactive = TRUE, a call is made to `reactable::reactable()`.

`table_modeltime_accuracy()` includes several common options like toggles for sorting and searching. Additional arguments can be passed to `reactable::reactable()` via ....

GT Output

A gt table is an HTML-based table that is "static" (e.g. non-searchable, non-sortable). It’s commonly used in PDF and Word documents that do not support interactive content.

When .interactive = FALSE, a call is made to `gt::gt()`. Arguments can be passed via ....

Table customization is implemented using a piping workflow (%>%). For more information, refer to the GT Documentation.
temporal_hierarchy

Value

A static gt table or an interactive reactable table containing the accuracy information.

Examples

```r
library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---
Model 1: prophet ----
model_fit_prophet <- prophet_reg() %>%
 set_engine(engine = "prophet") %>%
 fit(value ~ date, data = training(splits))

MODELTIME TABLE ----
models_tbl <- modeltime_table(model_fit_prophet)

ACCURACY ----
models_tbl %>%
 modeltime_calibrate(new_data = testing(splits)) %>%
 modeltime_accuracy() %>%
 table_modeltime_accuracy()
```

temporal_hierarchy  General Interface for Temporal Hierarchical Forecasting (THIEF) Models

Description

temporal_hierachy() is a way to generate a specification of an Temporal Hierarchical Forecasting model before fitting and allows the model to be created using different packages. Currently the only package is thief. Note this function requires the thief package to be installed.
Usage

```r
temporal_hierarchy(
 mode = "regression",
 seasonal_period = NULL,
 combination_method = NULL,
 use_model = NULL
)
```

Arguments

- **mode**: A single character string for the type of model. The only possible value for this model is "regression".
- **seasonal_period**: A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.
- **combination_method**: Combination method of temporal hierarchies, taking one of the following values:
  - "struc" - Structural scaling: weights from temporal hierarchy
  - "mse" - Variance scaling: weights from in-sample MSE
  - "ols" - Unscaled OLS combination weights
  - "bu" - Bottom-up combination – i.e., all aggregate forecasts are ignored.
  - "shr" - GLS using a shrinkage (to block diagonal) estimate of residuals
  - "sam" - GLS using sample covariance matrix of residuals
- **use_model**: Model used for forecasting each aggregation level:
  - "ets" - exponential smoothing
  - "arima" - arima
  - "theta" - theta
  - "naive" - random walk forecasts
  - "snaive" - seasonal naive forecasts, based on the last year of observed data

Details

Models can be created using the following engines:
- "thief" (default) - Connects to `thief::thief()`

Engine Details

The standardized parameter names in `modeltime` can be mapped to their original names in each engine:

- `modeltime` to `thief::thief()`
- `combination_method` to `comb`
- `use_model` to `usemodel`
Other options can be set using `set_engine()`.

**thief (default engine)**

The engine uses `thief::thief()`.

Function Parameters:

```r
function (y, m = frequency(y), h = m * 2, comb = c("struc", "mse", "ols",
"bu", "shr", "sam"), usemodel = c("ets", "arima", "theta", "naive",
"snaive"), forecastfunction = NULL, aggregatelist = NULL, ...)
```

Other options and argument can be set using `set_engine()`.

Parameter Notes:

- `xreg` - This model is not set up to use exogenous regressors. Only univariate models will be fit.

**Fit Details**

**Date and Date-Time Variable**

It's a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

- `fit(y ~ date)`

**Univariate:**

For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface (recommended): `fit(y ~ date)` will ignore xreg’s.
- XY Interface: `fit_xy(x = data[,"date"], y = data$y)` will ignore xreg’s.

**Multivariate (xregs, Exogenous Regressors)**

This model is not set up for use with exogenous regressors.

**References**


**See Also**

`fit.model_spec`, `set_engine()`
Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(thief)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

# ---- HIERARCHICAL ----
# Model Spec - The default parameters are all set
# to "auto" if none are provided
model_spec <- temporal_hierarchy() %>%
  set_engine("thief")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

---

temporal_hierarchy_params

Tuning Parameters for TEMPORAL HIERARCHICAL Models

Description

Tuning Parameters for TEMPORAL HIERARCHICAL Models

Usage

combination_method()

use_model()

Details

The main parameters for Temporal Hierarchical models are:

- combination_method: Combination method of temporal hierarchies.
- use_model: Model used for forecasting each aggregation level.
Examples

combination_method()

use_model()

time_series_params Tuning Parameters for Time Series (ts-class) Models

Description

Tuning Parameters for Time Series (ts-class) Models

Usage

seasonal_period(values = c("none", "daily", "weekly", "yearly"))

Arguments

values A time-based phrase

Details

Time series models (e.g. Arima() and ets()) use stats::ts() or forecast::msts() to apply seasonality. We can do the same process using the following general time series parameter:

• period: The periodic nature of the seasonality.

It's usually best practice to not tune this parameter, but rather set to obvious values based on the seasonality of the data:

• Daily Seasonality: Often used with hourly data (e.g. 24 hourly timestamps per day)
• Weekly Seasonality: Often used with daily data (e.g. 7 daily timestamps per week)
• Yearly Seasonality: Often used with weekly, monthly, and quarterly data (e.g. 12 monthly observations per year).

However, in the event that users want to experiment with period tuning, you can do so with seasonal_period().

Examples

seasonal_period()
**update_modeltime_model**

*Update the model by model id in a Modeltime Table*

---

**Description**

Update the model by model id in a Modeltime Table

**Usage**

```r
update_modeltime_model(object, .model_id, .new_model)
```

**Arguments**

- `object`: A Modeltime Table
- `.model_id`: A numeric value matching the .model_id that you want to update
- `.new_model`: A fitted workflow, model_fit, or mdl_time_ensemble object

**See Also**

- `combine_modeltime_tables()`: Combine 2 or more Modeltime Tables together
- `add_modeltime_model()`: Adds a new row with a new model to a Modeltime Table
- `update_modeltime_description()`: Updates a description for a model inside a Modeltime Table
- `update_modeltime_model()`: Updates a model inside a Modeltime Table
- `pull_modeltime_model()`: Extracts a model from a Modeltime Table

**Examples**

```r
library(tidymodels)

model_fit_ets <- exp_smoothing() %>%
 set_engine("ets") %>%
 fit(value ~ date, training(m750_splits))

m750_models %>%
 update_modeltime_model(1, model_fit_ets)
```
update_model_description

Update the model description by model id in a Modeltime Table

Description

The update_model_description() and update_modeltime_description() functions are synonyms.

Usage

update_model_description(object, .model_id, .new_model_desc)

update_modeltime_description(object, .model_id, .new_model_desc)

Arguments

object A Modeltime Table
.model_id A numeric value matching the .model_id that you want to update
.new_model_desc Text describing the new model description

See Also

- combine_modeltime_tables(): Combine 2 or more Modeltime Tables together
- add_modeltime_model(): Adds a new row with a new model to a Modeltime Table
- update_modeltime_description(): Updates a description for a model inside a Modeltime Table
- update_modeltime_model(): Updates a model inside a Modeltime Table
- pull_modeltime_model(): Extracts a model from a Modeltime Table

Examples

m750_models %>%
update_modeltime_description(2, "PROPHET - No Regressors")
window_reg

General Interface for Window Forecast Models

Description

`window_reg()` is a way to generate a specification of a window model before fitting and allows the model to be created using different backends.

Usage

```r
window_reg(mode = "regression", id = NULL, window_size = NULL)
```

Arguments

- **mode**: A single character string for the type of model. The only possible value for this model is "regression".
- **id**: An optional quoted column name (e.g. "id") for identifying multiple time series (i.e. panel data).
- **window_size**: A window to apply the window function. By default, the window uses the full data set, which is rarely the best choice.

Details

A time series window regression is derived using `window_reg()`. The model can be created using the `fit()` function using the following engines:

- **"window_function"** (default) - Performs a Window Forecast applying a `window_function` (engine parameter) to a window of size defined by `window_size`

Engine Details

**function** (default engine)

The engine uses `window_function_fit_impl()`. A time series window function applies a `window_function` to a window of the data (last N observations).

- The function can return a scalar (single value) or multiple values that are repeated for each window
- Common use cases:
  - **Moving Average Forecasts**: Forecast forward a 20-day average
  - **Weighted Average Forecasts**: Exponentially weighting the most recent observations
  - **Median Forecasts**: Forecasting forward a 20-day median
  - **Repeating Forecasts**: Simulating a Seasonal Naive Forecast by broadcasting the last 12 observations of a monthly dataset into the future

The key engine parameter is the `window_function`. A function / formula:

- If a function, e.g. `mean`, the function is used with any additional arguments, ... in `set_engine()`.
• If a formula, e.g. `~ mean(., na.rm = TRUE)`, it is converted to a function.

This syntax allows you to create very compact anonymous functions.

**Fit Details**

**Date and Date-Time Variable**

It’s a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

• `fit(y ~ date)`

**ID features (Multiple Time Series, Panel Data)**

The `id` parameter is populated using the `fit()` or `fit_xy()` function:

**ID Example:** Suppose you have 3 features:

1. `y` (target)
2. `date` (time stamp),
3. `series_id` (a unique identifier that identifies each time series in your data).

The `series_id` can be passed to the `window_reg()` using `fit()`:

• `window_reg(id = "series_id")` specifies that the `series_id` column should be used to identify each time series.

• `fit(y ~ date + series_id)` will pass `series_id` on to the underlying functions.

**Window Function Specification (window_function)**

You can specify a function / formula using purrr syntax.

• If a function, e.g. `mean`, the function is used with any additional arguments, . . . in `set_engine()`.

• If a formula, e.g. `~ mean(., na.rm = TRUE)`, it is converted to a function.

This syntax allows you to create very compact anonymous functions.

**Window Size Specification (window_size)**

The period can be non-seasonal (`window_size = 1` or “none”) or yearly seasonal (e.g. For monthly time stamps, `window_size = 12`, `window_size = 12 months`, or `window_size = "yearly"`). There are 3 ways to specify:

1. `window_size = "all"`: A seasonal period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. `window_size = 12`: A numeric frequency. For example, 12 is common for monthly data
3. `window_size = "1 year"`: A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

**External Regressors (Xregs)**

These models are univariate. No xregs are used in the modeling process.
See Also

`fit.model_spec(), set_engine()`

Examples

```r
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

---- WINDOW FUNCTION ----
Used to make:
- Mean/Median forecasts
- Simple repeating forecasts

Median Forecast ----
Model Spec
model_spec <- window_reg(
 window_size = 12
) %>%
 set_engine(
 engine = "window_function",
 window_function = median,
 na.rm = TRUE
)

Fit Spec
model_fit <- model_spec %>%
 fit(log(value) ~ date, data = training(splits))

Predict
- The 12-month median repeats going forward
predict(model_fit, testing(splits))

---- PANEL FORECAST - WINDOW FUNCTION ----
Weighted Average Forecast
model_spec <- window_reg(
 # Specify the ID column for Panel Data
```
window_reg

    id      = "id",
    window_size = 12
  ) %>%
set_engine(
    engine = "window_function",
    # Create a Weighted Average
    window_function = ~ sum(tail(x, 3) * c(0.1, 0.3, 0.6)),
  )

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date + id, data = training(splits))
model_fit

# Predict: The weighted average (scalar) repeats going forward
predict(model_fit, testing(splits))

# ---- BROADCASTING PANELS (REPEATING) ----

# Simulating a Seasonal Naive Forecast by
# broadcasted model the last 12 observations into the future
model_spec <- window_reg(
    id      = "id",
    window_size = Inf
  ) %>%
set_engine(
    engine = "window_function",
    window_function = ~ tail(x, 12),
  )

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date + id, data = training(splits))
model_fit

# Predict: The sequence is broadcasted (repeated) during prediction
predict(model_fit, testing(splits))
Index

* datasets
  m750, 40
  m750_models, 41
  m750_splits, 41
  m750_training_resamples, 42

adam_params, 3
adam_reg, 5
add_modeltime_model, 10
add_modeltime_model(), 11, 23, 81, 113, 114
arima_boost, 11
arima_params, 17
arima_reg, 18
as_modeltime_table (modeltime_table), 64

bake_xreg_recipe (recipe_helpers), 97

changepoint_num (prophet_params), 90
changepoint_range (prophet_params), 90
combination_method
  (temporal_hierarchy_params), 111
combine_modeltime_tables, 23
combine_modeltime_tables(), 11, 23, 81, 113, 114
control_fit_workflowset
  (control_modeltime), 24
control_fit_workflowset(), 50
control_modeltime, 24
control_nested_fit (control_modeltime), 24
control_nested_fit(), 55, 56
control_nested_forecast
  (control_modeltime), 24
control_nested_forecast(), 56
control_nested_refit
  (control_modeltime), 24
control_nested_refit(), 56
control_refit (control_modeltime), 24

damping (exp_smoothing_params), 35
damping_smooth (exp_smoothing_params), 35
default_forecast_accuracy_metric_set
  (metric_sets), 44
default_forecast_accuracy_metric_set(), 46
dials::epochs(), 70
dials::grid_regular(), 27
dials::hidden_units(), 70
dials::penalty(), 70
distribution (adam_params), 3
derror (exp_smoothing_params), 35
exp_smoothing, 29
exp_smoothing_params, 35
extend_timeseries (prep_nested), 82
extend_timeseries(), 56
extended_forecast_accuracy_metric_set
  (metric_sets), 44
extract_nested_best_model_report
  (log_extractors), 39
extract_nested_best_model_report(), 58
extract_nested_error_report
  (log_extractors), 39
extract_nested_error_report(), 55, 57
extract_nested_future_forecast
  (log_extractors), 39
extract_nested_future_forecast(), 57
extract_nested_modeltime_table
  (log_extractors), 39
extract_nested_test_accuracy
  (log_extractors), 39
extract_nested_test_accuracy(), 55
extract_nested_test_forecast
  (log_extractors), 39
extract_nested_test_forecast(), 55, 57, 58
extract_nested_test_split
  (log_extractors), 39
extract_nested_test_split(), 83
extract_nested_train_split
  (log_extractors), 39
extract_nested_train_split(), 83
fit.model_spec(), 9, 16, 22, 33, 47, 67, 73, 89, 95, 105, 110, 117
fit.workflow(), 47
forecast::Arima(), 13, 19, 20
forecast::auto.arima(), 8, 13, 19, 20
forecast::croaton(), 30, 31
forecast::ets(), 30, 31
forecast::msts(), 112
forecast::nnetar(), 71, 72
forecast::thetaf(), 30, 32
get_arima_description, 37
growth(prophet_params), 90
gt::gt(), 107
information_criteria(adam_params), 3
juice_xreg_recipe(recipe_helpers), 97
log_extractors, 39
m750, 40
m750_models, 41
m750_splits, 41
m750_training_resamples, 42
maape, 43
maape_vec, 43
mae(), 44, 46
mape(), 44, 46
mase(), 44, 46
metric_set(), 44
metric_sets, 44
modeltime_accuracy, 45
modeltime_accuracy(), 44, 48, 106, 107
modeltime_calibrate, 47
modeltime_calibrate(), 23, 52, 53
modeltime_fit_workflowset, 49
modeltime_fit_workflowset(), 24, 27
modeltime_forecast, 51
modeltime_forecast(), 48, 77
modeltime_nested_fit, 55
modeltime_nested_fit(), 24
modeltime_nested_forecast, 56
modeltime_nested_forecast(), 24
modeltime_nested_refit, 57
modeltime_nested_refit(), 24
modeltime_nested_select_best, 58
modeltime_refit, 59
modeltime_refit(), 23, 24, 52
modeltime_residuals, 60
modeltime_residuals(), 80
modeltime_residuals_test, 62
modeltime_table, 64
modeltime_table(), 47
naive_fit_impl(), 66
naive_reg, 66
nest_timeseries(prep_nested), 82
nest_timeseries(), 56
new_modeltime_bridge, 68
nnetar_params, 69
nnetar_reg, 70
non_seasonal_ar(arima_params), 17
non_seasonal_ar(), 70
non_seasonal_differences
  (arima_params), 17
non_seasonal_ma(arima_params), 17
num_networks(nnetar_params), 69
outliers_treatment(adam_params), 3
panel_tail, 74
panel_tail(), 99
parallel_start, 75
parallel_start(), 25
parallel_stop(parallel_start), 75
parse_index, 76
parse_index_from_data(parse_index), 76
parse_period_from_index(parse_index), 76
plot_acf_diagnostics(), 79, 80
plot_modeltime_forecast, 77
plot_modeltime_forecast(), 52
plot_modeltime_residuals, 79
plot_seasonal_diagnostics(), 79, 80
plot_time_series, 77, 79, 80
pluck_modeltime_model, 81
prep_nested, 82
prior_scale_changepoints
(prophet_params), 90
prior_scale_holidays (prophet_params), 90
prior_scale_seasonality
(prophet_params), 90
probability_model (adam_params), 3
prophet::prophet(), 86, 93, 94
prophet_boost, 84
prophet_params, 90
prophet_reg, 91
pull_modeltime_model
(pluck_modeltime_model), 81
pull_modeltime_model(), 11, 23, 81, 113, 114
pull_modeltime_residuals, 96
pull_parsnip_preprocessor, 96
reactable::reactable(), 107
recipe_helpers, 97
recursive, 98
recursive(), 74
regressors_treatment (adam_params), 3
rmse(), 44, 46
rsq(), 44, 46
season (exp_smoothing_params), 35
season(), 91
seasonal_ar (arima_params), 17
seasonal_ar(), 70
seasonal_differences (arima_params), 17
seasonal_ma (arima_params), 17
seasonal_period (time_series_params), 112
seasonal_reg, 102
seasonality_daily (prophet_params), 90
seasonality_weekly (prophet_params), 90
seasonality_yearly (prophet_params), 90
select_order (adam_params), 3
set_engine(), 9, 16, 22, 33, 67, 73, 89, 95, 105, 110, 117
smape(), 44, 46
smooth::adam(), 7, 8
smooth::auto.adam(), 7
smooth::es(), 30, 32
smooth_level (exp_smoothing_params), 35
smooth_seasonal (exp_smoothing_params), 35
smooth_trend (exp_smoothing_params), 35
smooth_vec(), 77, 80
snaive_fit_impl(), 66
split_nested_timeseries (prep_nested), 82
split_nested_timeseries(), 56
stats::Box.test(), 63
stats::shapiro.test(), 63
stats::ts(), 112
summarize_accuracy_metrics, 105
table_modeltime_accuracy, 106
tail(), 99
temporal_hierarchy, 108
temporal_hierarchy_params, 111
time_series_params, 112
timetk::future_frame(), 83
timetk::plot_time_series(), 78
timetk::time_series_split(), 83
trend (exp_smoothing_params), 35
trend_smooth (exp_smoothing_params), 35
update_model_description, 114
update_modeltime_description
(update_model_description), 114
update_modeltime_description(), 11, 23, 81, 113, 114
update_modeltime_model, 113
update_modeltime_model(), 11, 23, 81, 113, 114
use_constant (adam_params), 3
use_model (temporal_hierarchy_params), 111
window_function_fit_impl(), 115
window_reg, 115
workflowsets::workflow_set(), 27
xgboost::xgb.train(), 13
xgboost::xgb.train(), 86
yardstick::metric_tweak(), 44