Package ‘mob’

July 31, 2021

Title Monotonic Optimal Binning
Version 0.4.2
Description Generate the monotonic binning and perform the woe (weight of evidence) transformation for the logistic regression used in the consumer credit scorecard development. The woe transformation is a piecewise transformation that is linear to the log odds. For a numeric variable, all of its monotonic functional transformations will converge to the same woe transformation.
License GPL (>= 2)
URL https://github.com/statcompute/mob
Author WenSui Liu
Maintainer WenSui Liu <liuwensui@gmail.com>
Depends R (>= 3.3.3)
Imports stats, gbm, Rborist
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2021-07-31 04:30:07 UTC

R topics documented:

arb_bin .. 2
bad_bin .. 2
batch_bin ... 3
batch_woe ... 4
cal_woe .. 4
gbm_bin .. 5
hmeq .. 6
iso_bin ... 7
knn_bin .. 7
The function `arb_bin` implements the monotonic binning based on the decision tree.

Usage

```
arb_bin(x, y)
```

Arguments

- `x` A numeric vector
- `y` A numeric vector with 0/1 binary values

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples

```r
data(hmeq)
arb_bin(hmeq$DEROG, hmeq$BAD)
```

The function `bad_bin` implements the quantile-based monotonic binning by the iterative discretization based on cases with `Y = 1`.

Usage

```
bad_bin(x, y)
```
Arguments

- **x**: A numeric vector
- **y**: A numeric vector with 0/1 binary values

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples

```r
data(hmeq)
bad_bin(hmeq$DEROG, hmeq$BAD)
```

Description

The function `batch_bin` applies multiple binning algorithms in batch to each vector in the dataframe.

Usage

```r
batch_bin(y, xs, method = 1)
```

Arguments

- **y**: A numeric vector with 0/1 binary values.
- **xs**: A dataframe with numeric vectors to discretize.

Value

A list of binning outcomes with 2 dataframes: `bin_sum`: A dataframe of binning summary. `bin_out`: A list of binning output from binning functions, e.g. `qtl_bin()`.

Examples

```r
data(hmeq)
batch_bin(hmeq$BAD, hmeq[, c('DEROG', 'DELINQ')])
```
batch_woe

Apply WoE transformations to vectors in dataframe

Description

The function batch_woe applies WoE transformations to vectors in the dataframe.

Usage

batch_woe(xs, bin_out)

Arguments

xs A dataframe with numeric vectors to discretize.
bin_out A binning output from the function batch_bin().

Value

A dataframe with identical headers as the input xs. However, values of each variable have been transformed to WoE values.

Examples

data(hmeq)
bin_out <- batch_bin(hmeq$BAD, hmeq[, c('DEROG', 'DELINQ')])$bin_out
head(batch_woe(hmeq[, c('DEROG', 'DELINQ')], bin_out))

cal_woe

Perform WoE transformation of a numeric variable

Description

The function cal_woe applies the WoE transformation to a numeric vector based on the binning outcome from a binning function, e.g. qtl_bin() or iso_bin().

Usage

cal_woe(x, bin)

Arguments

x A numeric vector that will be transformed to WoE values.
bin A list with the binning outcome from the binning function, e.g. qtl_bin() or iso_bin()
gbm_bin

Value

A numeric vector with WoE transformed values.

Examples

data(hmeq)
bin_out <- qtl_bin(hmeq$DEROG, hmeq$BAD)
cal_woe(hmeq$DEROG[1:10], bin_out)

Description

The function `gbm_bin` implements the monotonic binning based on the generalized boosted model (GBM).

Usage

`gbm_bin(x, y)`

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>A numeric vector</td>
</tr>
<tr>
<td>y</td>
<td>A numeric vector with 0/1 binary values</td>
</tr>
</tbody>
</table>

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples

data(hmeq)
`gbm_bin(hmeq$DEROG, hmeq$BAD)`
hmeq

Credit attributes of 5,960 home equity loans

Description

A dataset containing characteristics and delinquency information for 5,960 home equity loans.

Usage

hmeq

Format

A data frame with 5960 rows and 13 variables:

- **BAD** indicator of applicant defaulted on loan or seriously delinquent
- **LOAN** Amount of the loan request, in dollar
- **MORTDUE** Amount due on existing mortgage, in dollar
- **VALUE** Value of current property, in dollar
- **REASON** DebtCon = debt consolidation; HomeImp = home improvement
- **JOB** Occupational categories
- **YOJ** Years at present job
- **DEROG** Number of major derogatory reports
- **DELINQ** Number of delinquent credit lines
- **CLAGE** Age of oldest credit line in months
- **NINQ** Number of recent credit inquiries
- **CLNO** Number of credit lines
- **DEBTINC** Debt-to-income ratio

Source

http://www.creditriskanalytics.net/datasets-private2.html
iso_bin

Monotonic binning based on isotonic regression

Description

The function `iso_bin` implements the monotonic binning based on the isotonic regression.

Usage

```r
iso_bin(x, y)
```

Arguments

- `x` A numeric vector
- `y` A numeric vector with 0/1 binary values

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples

```r
data(hmeq)
iso_bin(hmeq$DEROG, hmeq$BAD)
```

knn_bin

Monotonic binning based on k-means clustering

Description

The function `knn_bin` implements the monotonic binning based on the k-means clustering

Usage

```r
knn_bin(x, y)
```

Arguments

- `x` A numeric vector
- `y` A numeric vector with 0/1 binary values

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary
Examples

```r
data(hmeq)
knn_bin(hmeq$DEROG, hmeq$BAD)
```

pool_bin

Monotonic binning for the pool data

Description

The function `pool_bin` implements the monotonic binning for the pool data based on the generalized boosted model (GBM).

Usage

```r
pool_bin(x, num, den, log = FALSE)
```

Arguments

- `x` A numeric vector
- `num` A numeric vector with integer values for numerators to calculate bad rates
- `den` A numeric vector with integer values for denominators to calculate bad rates
- `log` A logical constant either TRUE or FALSE. The default is FALSE

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples

```r
data(hmeq)
df <- rbind(Reduce(rbind,
  lapply(split(hmeq, floor(hmeq$CLAGE)),
    function(d) data.frame(AGE = unique(floor(d$CLAGE)),
      NUM = sum(d$BAD),
      DEN = nrow(d))),
  data.frame(AGE = NA,
    NUM = sum(hmeq[is.na(hmeq$CLAGE),]$BAD),
    DEN = nrow(hmeq[is.na(hmeq$CLAGE),]))))
pool_bin(df$AGE, df$NUM, df$DEN, log = TRUE)
```
qcut

Discretizing a numeric vector

Description

The function `qcut` discretizes a numeric vector into N pieces based on quantiles.

Usage

```r
qcut(x, n)
```

Arguments

- `x`: A numeric vector.
- `n`: An integer indicating the number of categories to discretize.

Value

A numeric vector to divide the vector x into n categories.

Examples

```r
x <- 1:10
# [1]  1  2  3  4  5  6  7  8  9 10
v <- qcut(1:10, 4)
# [1]  3  5  8
findInterval(x, sort(c(v, -Inf, Inf)), left.open = TRUE)
# [1]  1  1  1  2  2  3  3  3  4  4
```

qtl_bin

Monotonic binning by quantile

Description

The function `qtl_bin` implements the quantile-based monotonic binning by the iterative discretization.

Usage

```r
qtl_bin(x, y)
```

Arguments

- `x`: A numeric vector
- `y`: A numeric vector with 0/1 binary values
rng_bin

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples

data(hmeq)
qtl_bin(hmeq$DEROG, hmeq$BAD)

rng_bin Monotonic binning by quantile based on value range

Description

The function rng_bin implements the quantile-based monotonic binning by the iterative discretization based on the equal-width range of values.

Usage

rng_bin(x, y)

Arguments

x A numeric vector
y A numeric vector with 0/1 binary values

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples

data(hmeq)
rng_bin(hmeq$DEROG, hmeq$BAD)
Index

datasets
 hmeq, 6
arb_bin, 2
bad_bin, 2
batch_bin, 3
batch_woe, 4
cal_woe, 4
gbm_bin, 5
hmeq, 6
iso_bin, 7
kmn_bin, 7
pool_bin, 8
qcut, 9
qtl_bin, 9
rng_bin, 10