Package ‘mlr3hyperband’

September 13, 2021

Title Hyperband for 'mlr3'

Version 0.2.0

Description Implements hyperband method for hyperparameter tuning. Various termination criteria can be set and combined. The class 'AutoTuner' provides a convenient way to perform nested resampling in combination with 'mlr3'. The hyperband algorithm was proposed by Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh and Ameet Talwalkar (2018) <arXiv:1603.06560>.

License LGPL-3

URL https://mlr3hyperband.mlr-org.com,
https://github.com/mlr-org/mlr3hyperband

BugReports https://github.com/mlr-org/mlr3hyperband/issues

Depends mlr3tuning (>= 0.6.0), R (>= 3.1.0)

Imports bbotk (>= 0.3.0), checkmate (>= 1.9.4), data.table, lgr, mlr3 (>= 0.7.0), mlr3misc (>= 0.7.0), paradox (>= 0.7.0), R6

Suggests emoa, mlr3learners, mlr3pipelines, rpart, testthat (>= 3.0.0), xgboost

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

NeedsCompilation no

RoxygenNote 7.1.1

Collate 'TunerHyperband.R' 'TunerSuccessiveHalving.R'
'OptimizerHyperband.R' 'OptimizerSuccessiveHalving.R'
'nds_selection.R' 'bibentries.R' 'zzz.R'

Author Marc Becker [aut, cre] (<https://orcid.org/0000-0002-8115-0400>),
Sebastian Gruber [aut] (<https://orcid.org/0000-0002-8544-3470>),
Jakob Richter [aut] (<https://orcid.org/0000-0003-4481-5554>),
Julia Moosbauer [aut] (<https://orcid.org/0000-0002-0000-9297>),
Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>)
mlr3hyperband-package

mlr3hyperband-package mlr3hyperband: Hyperband for 'mlr3'

Description

Implements hyperband method for hyperparameter tuning. Various termination criteria can be set and combined. The class 'AutoTuner' provides a convenient way to perform nested resampling in combination with 'mlr3'. The hyperband algorithm was proposed by Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh and Ameet Talwalkar (2018) <arXiv:1603.06560>.

Author(s)

Maintainer: Marc Becker <marcbecker@posteo.de> (ORCID)

Authors:

• Sebastian Gruber <gruber_sebastian@t-online.de> (ORCID)
• Jakob Richter <jakob1richter@gmail.com> (ORCID)
• Julia Moosbauer <ju.moosbauer@googlemail.com> (ORCID)
• Bernd Bischl <bernd_bischl@gmx.net> (ORCID)

See Also

Useful links:

• https://mlr3hyperband.mlr-org.com
• https://github.com/mlr-org/mlr3hyperband
• Report bugs at https://github.com/mlr-org/mlr3hyperband/issues
Optimizer using the Hyperband algorithm

Description

OptimizerHyperband class that implements hyperband optimization. Hyperband is a budget oriented-procedure, weeding out suboptimal performing configurations early in a sequential training process, increasing optimization efficiency as a consequence.

For this, several brackets are constructed with an associated set of configurations for each bracket. Each bracket as several stages. Different brackets are initialized with different amounts of configurations and different budget sizes. To get an idea of how the bracket layout looks like for a given argument set, please have a look in the details.

To identify the budget for evaluating hyperband, the user has to specify explicitly which parameter of the objective function influences the budget by tagging a single parameter in the paradox::ParamSet with "budget".

Naturally, hyperband terminates once all of its brackets are evaluated, so a bbotk::Terminator in the OptimInstanceSingleCrit | OptimInstanceMultiCrit acts as an upper bound and should be only set to a low value if one is unsure of how long hyperband will take to finish under the given settings.

Dictionary

This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar function opt():

```r
mlr_optimizers$get("hyperband")
opt("hyperband")
```

Parameters

- **eta** numeric(1)
 Fraction parameter of the successive halving algorithm: With every step the configuration budget is increased by a factor of eta and only the best 1/eta configurations are used for the next stage. Non-integer values are supported, but eta is not allowed to be less or equal 1.

- **sampler** paradox::Sampler
 Object defining how the samples of the parameter space should be drawn during the initialization of each bracket. The default is uniform sampling.

Archive

The bbotk::Archive holds the following additional columns that are specific to the hyperband tuner:

- **bracket** (integer(1))
 The console logs about the bracket index are actually not matching with the original hyperband algorithm, which counts down the brackets and stops after evaluating bracket 0. The true bracket indices are given in this column.
• bracket_stage (integer(1))
 The bracket stage of each bracket. Hyperband starts counting at 0.
• budget_scaled (numeric(1))
 The intermediate budget in each bracket stage calculated by hyperband. Because hyperband
 is originally only considered for budgets starting at 1, some rescaling is done to allow budgets
 starting at different values. For this, budgets are internally divided by the lower budget bound
 to get a lower budget of 1. Before the objective function receives its budgets for evaluation,
 the budget is transformed back to match the original scale again.
• budget_real (numeric(1))
 The real budget values the objective function uses for evaluation after hyperband calculated
 its scaled budget.
• n_configs (integer(1))
 The amount of evaluated configurations in each stage. These correspond to the r_i in the
 original paper.

Custom sampler

Hyperband supports custom paradox::Sampler object for initial configurations in each bracket. A
custom sampler may look like this (the full example is given in the examples section):

```r
# - beta distribution with alpha = 2 and beta = 5
# - categorical distribution with custom probabilities
sampler = SamplerJointIndep$new(list(
  Sampler1DRfun$new(params[[2]], function(n) rbeta(n, 2, 5)),
  Sampler1DCateg$new(params[[3]], prob = c(0.2, 0.3, 0.5))
))
```

Runtime

The calculation of each bracket currently assumes a linear runtime in the chosen budget parameter
is always given. Hyperband is designed so each bracket requires approximately the same runtime
as the sum of the budget over all configurations in each bracket is roughly the same. This will not
hold true once the scaling in the budget parameter is not linear anymore, even though the sum of
the budgets in each bracket remains the same. A possible adaption would be to introduce a trafo,
like it is shown in the examples section.

Progress Bars

Soptimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Parallelization

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. The points of one stage in a bracket are evaluated in one batch. Paral-
lelization is supported via package future (see mlr3::benchmark()'s section on parallelization for
more details).
Logging

Hyperband uses a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk") to access and control the logger.

Super class

bbotk::Optimizer -> OptimizerHyperband

Methods

Public methods:
• OptimizerHyperband$new()
• OptimizerHyperband$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
OptimizerHyperband$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
OptimizerHyperband$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

Examples

library(bbotk)
library(data.table)

search_space = domain = ps(
 x1 = p_dbl(-5, 10),
 x2 = p_dbl(0, 15),
 fidelity = p_dbl(1e-2, 1, tags = "budget")
)

modified branin function
objective = ObjectiveRFunDt$new(
 fun = function(xdt) {
 a = 1
 b = 5.1 / (4 * (pi ^ 2))
 c = 5 / pi
 r = 6
 s = 10
 })
\[
\begin{align*}
t &= \frac{1}{(8 \times \pi)} \\
data.table(y = \\
(a \times ((xdt["x2"] \ - \\
b \times (xdt["x1"]^2) \ + \\
c \times xdt["x1"] - r)^2) + \\
(s \times (1 - t)) \times \cos(xdt["x1"]) + \\
s - (5 \times xdt["fidelity"] \times xdt["x1"]))) \\
\}, \\
domain &= domain, \\
codomain &= ps(y = p_dbl(tags = "minimize")) \\
\end{align*}
\]

\[
\begin{align*}
\text{instance} &= \text{OptimInstanceSingleCrit}$new(\\
\quad \text{objective} = \text{objective}, \\
\quad \text{search_space} = \text{search_space}, \\
\quad \text{terminator} = \text{trm("none")}) \\
\end{align*}
\]

\[
\begin{align*}
\text{optimizer} &= \text{opt("hyperband")} \\
\quad \# \text{modifies the instance by reference} \\
\quad \text{optimizer}$optimize(instance) \\
\quad \# \text{best scoring evaluation} \\
\quad \text{instance}$result \\
\quad \# \text{all evaluations} \\
\quad \text{as.data.table(instance}$archive
\end{align*}
\]

mlr_optimizers_successive_halving

Hyperparameter Optimization with Successive Halving

Description

OptimizerSuccessiveHalving class that implements the successive halving algorithm. The algorithm samples \(n\) points and evaluates them with the smallest budget (lower bound of the budget parameter). With every stage the budget is increased by a factor of \(\eta\) and only the best \(1/\eta\) points are promoted to the next stage. The optimization terminates when the maximum budget is reached (upper bound of the budget parameter).

To identify the budget, the user has to specify explicitly which parameter of the objective function influences the budget by tagging a single parameter in the search_space (paradox::ParamSet) with "budget".

Parameters

\[
\begin{align*}
n &\text{ integer(1)} \\
&\quad \text{Number of points in first stage.}
\end{align*}
\]
eta numeric(1)

With every stage, the point budget is increased by a factor of \(\eta \) and only the best \(1/\eta \) points are used for the next stage. Non-integer values are supported, but \(\eta \) is not allowed to be less or equal 1.

sampler paradox::Sampler

Object defining how the samples of the parameter space should be drawn during the initialization of each bracket. The default is uniform sampling.

 Archive

The bbotk::Archive holds the following additional column that is specific to the successive halving algorithm:

- stage (integer(1))
 Stage index. Starts counting at 0.

 Custom sampler

Hyperband supports custom paradox::Sampler object for initial configurations in each bracket. A custom sampler may look like this (the full example is given in the examples section):

```r
# - beta distribution with alpha = 2 and beta = 5
# - categorical distribution with custom probabilities
sampler = SamplerJointIndep$new(list(
  Sampler1DRfun$new(params[[2]], function(n) rbeta(n, 2, 5)),
  Sampler1DCateg$new(params[[3]], prob = c(0.2, 0.3, 0.5))
))
```

 Runtime

The calculation of each bracket currently assumes a linear runtime in the chosen budget parameter is always given. Hyperband is designed so each bracket requires approximately the same runtime as the sum of the budget over all configurations in each bracket is roughly the same. This will not hold true once the scaling in the budget parameter is not linear anymore, even though the sum of the budgets in each bracket remains the same. A possible adaption would be to introduce a transformation, like it is shown in the examples section.

 Progress Bars

Soptimize() supports progress bars via the package progressr combined with a Terminator. Simply wrap the function in progressr::with_progress() to enable them. We recommend to use package progress as backend; enable with progressr::handlers("progress").

 Parallelization

In order to support general termination criteria and parallelization, we evaluate points in a batch-fashion of size batch_size. The points of one stage in a bracket are evaluated in one batch. Parallelization is supported via package future (see mlr3::benchmark()’s section on parallelization for more details).
Logging

Hyperband uses a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk") to access and control the logger.

Super class

bbotk::Optimizer -> OptimizerSuccessiveHalving

Methods

Public methods:
• OptimizerSuccessiveHalving$new()
• OptimizerSuccessiveHalving$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
OptimizerSuccessiveHalving$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerSuccessiveHalving$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

Source

Examples

library(bbotk)
library(data.table)

search_space = domain = ps(
x1 = p_dbl(-5, 10),
x2 = p_dbl(0, 15),
fidelity = p_dbl(1e-2, 1, tags = "budget")
)

modified branin function
objective = ObjectiveRFunDt$new(
 fun = function(xdt) {
 a = 1
 b = 5.1 / (4 * (pi ^ 2))
 c = 5 / pi
 r = 6

 a * (x1 ^ 2 - b * x2 ^ 2) - c * x2 - r
 }
)
s = 10
t = 1 / (8 * pi)
data.table(y =
 (a * ((xdt["x2"] -
 b * (xdt["x1"] ^ 2L) +
 c * xdt["x1"] - r) ^ 2) +
 ((s * (1 - t)) * cos(xdt["x1"]))) +
 s - (5 * xdt["fidelity"] * xdt["x1"债]))},
domain = domain,
codomain = ps(y = p_dbl(tags = "minimize"))
)

instance = OptimInstanceSingleCrit$new(
 objective = objective,
 search_space = search_space,
 terminator = trm("none")
)

optimizer = opt("successive_halving")

modifies the instance by reference
optimizer$optimize(instance)

best scoring evaluation
instance$result

all evaluations
as.data.table(instance$archive)

mlr_tuners_hyperband Tuner using the Hyperband algorithm

Description

TunerHyperband class that implements hyperband tuning. Hyperband is a budget oriented-procedure, weeding out suboptimal performing configurations early in a sequential training process, increasing tuning efficiency as a consequence.

For this, several brackets are constructed with an associated set of configurations for each bracket. Each bracket has several stages. Different brackets are initialized with different amounts of configurations and different budget sizes.

Within the context of hyperband each evaluation of a learner consumes a certain budget. This budget is not fixed but controlled by a certain hyperparameter, e.g. the number of boosting iterations or the number of trees in a random forest. The user has to specify explicitly which hyperparameter of the learner controls the consumption of the budget by tagging a single hyperparameter in the paradox::ParamSet with "budget". An alternative approach using subsampling and pipelines is described below.
Naturally, hyperband terminates once all of its brackets are evaluated, so a `bbotk::Terminator` in the tuning instance acts as an upper bound and should be only set to a low value if one is unsure of how long hyperband will take to finish under the given settings.

Dictionary

This Optimizer can be instantiated via the dictionary `mlr_optimizers` or with the associated sugar function `opt()`:

```r
mlr_optimizers$get("hyperband")
opt("hyperband")
```

Parameters

- `eta numeric(1)`
 Fraction parameter of the successive halving algorithm: With every step the configuration budget is increased by a factor of `eta` and only the best $1/\eta$ configurations are used for the next stage. Non-integer values are supported, but `eta` is not allowed to be less or equal 1.

- `sampler paradox::Sampler`
 Object defining how the samples of the parameter space should be drawn during the initialization of each bracket. The default is uniform sampling.

Archive

The `mlr3tuning::ArchiveTuning` holds the following additional columns that are specific to the hyperband tuner:

- `bracket (integer(1))`
 The console logs about the bracket index are actually not matching with the original hyperband algorithm, which counts down the brackets and stops after evaluating bracket 0. The true bracket indices are given in this column.

- `bracket_stage (integer(1))`
 The bracket stage of each bracket. Hyperband starts counting at 0.

- `budget_scaled (numeric(1))`
 The intermediate budget in each bracket stage calculated by hyperband. Because hyperband is originally only considered for budgets starting at 1, some rescaling is done to allow budgets starting at different values. For this, budgets are internally divided by the lower budget bound to get a lower budget of 1. Before the learner receives its budgets for evaluation, the budget is transformed back to match the original scale again.

- `budget_real (numeric(1))`
 The real budget values the learner uses for evaluation after hyperband calculated its scaled budget.

- `n_configs (integer(1))`
 The amount of evaluated configurations in each stage. These correspond to the r_i in the original paper.
Hyperband without learner budget

Thanks to `mlr3pipelines`, it is possible to use hyperband in combination with learners lacking a natural budget parameter. For example, any `mlr3::Learner` can be augmented with a `mlr3pipelines::PipeOp` operator such as `mlr3pipelines::PipeOpSubsample`. With the subsampling rate as budget parameter, the resulting `mlr3pipelines::GraphLearner` is fitted on small proportions of the `mlr3::Task` in the first brackets, and on the complete Task in last brackets. See examples for some code.

Custom sampler

Hyperband supports custom `paradox::Sampler` object for initial configurations in each bracket. A custom sampler may look like this (the full example is given in the examples section):

```r
# - beta distribution with alpha = 2 and beta = 5
# - categorical distribution with custom probabilities
sampler = SamplerJointIndep$new(list(
  Sampler1DRfun$new(params[2], function(n) rbeta(n, 2, 5)),
  Sampler1DCateg$new(params[3], prob = c(0.2, 0.3, 0.5))
))
```

Runtime

The calculation of each bracket currently assumes a linear runtime in the chosen budget parameter is always given. Hyperband is designed so each bracket requires approximately the same runtime as the sum of the budget over all configurations in each bracket is roughly the same. This will not hold true once the scaling in the budget parameter is not linear anymore, even though the sum of the budgets in each bracket remains the same. A possible adaption would be to introduce a trafo, like it is shown in the examples section.

Progress Bars

`optimize()` supports progress bars via the package `progressr` combined with a `Terminator`. Simply wrap the function in `progressr::with_progress()` to enable them. We recommend to use package `progress` as backend; enable with `progressr::handlers("progress")`.

Parallelization

In order to support general termination criteria and parallelization, we evaluate points in a batch-fashion of size `batch_size`. The points of one stage in a bracket are evaluated in one batch. Parallelization is supported via package `future` (see `mlr3::benchmark()`’s section on parallelization for more details).

Logging

Hyperband uses a logger (as implemented in `lgr`) from package `bbotk`. Use `lgr::get_logger("bbotk")` to access and control the logger.

Super classes

`mlr3tuning::Tuner` -> `mlr3tuning::TunerFromOptimizer` -> `TunerHyperband`
Methods

Public methods:

- TunerHyperband$new()
- TunerHyperband$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerHyperband$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerHyperband$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

Examples

if(requireNamespace("xgboost")) {
 library(mlr3learners)

 # define hyperparameter and budget parameter
 search_space = ps(
 nrounds = p_int(lower = 1, upper = 16, tags = "budget"),
 eta = p_dbl(lower = 0, upper = 1),
 booster = p_fct(levels = c("gbtree", "gblinear", "dart")),
)

 # hyperparameter tuning on the pima indians diabetes data set
 instance = tune(
 method = "hyperband",
 task = tsk("pima"),
 learner = lrn("classif.xgboost", eval_metric = "logloss"),
 resampling = rsmp("cv", folds = 3),
 measure = msr("classif.ce"),
 search_space = search_space
)

 # best performing hyperparameter configuration
 instance$result
}
Hyperparameter Tuning with Successive Halving

Description

The `TunerSuccessiveHalving` class implements the successive halving algorithm. It samples `n` configurations and evaluates them with the smallest budget (lower bound of the `budget` parameter). With every stage the budget is increased by a factor of `eta` and only the best `1/eta` configurations are promoted to the next stage. The optimization terminates when the maximum budget is reached (upper bound of the `budget` parameter).

To identify the budget, the user has to specify explicitly which parameter of the objective function influences the budget by tagging a single parameter in the `search_space` (`paradox::ParamSet`) with "budget".

Parameters

- `n integer(1)`
 - Number of configurations in first stage.
- `eta numeric(1)`
 - With every step, the configuration budget is increased by a factor of `eta` and only the best `1/eta` configurations are used for the next stage. Non-integer values are supported, but `eta` is not allowed to be less or equal 1.
- `sampler paradox::Sampler`
 - Object defining how the samples of the parameter space should be drawn during the initialization of each bracket. The default is uniform sampling.

Archive

The `mlr3tuning::ArchiveTuning` holds the following additional column that is specific to the successive halving algorithm:

- `stage integer(1)`
 - Stage index. Starts counting at 0.

Super classes

`mlr3tuning::Tuner` -> `mlr3tuning::TunerFromOptimizer` -> `TunerSuccessiveHalving`

Methods

Public methods:

- `TunerSuccessiveHalving$new()`
- `TunerSuccessiveHalving$clone()`

Method `new()`: Creates a new instance of this `R6` class.
Usage:
TunerSuccessiveHalving$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerSuccessiveHalving$clone(deep = FALSE)

Arguments:
deepl Whether to make a deep clone.

Source

Examples

```r
if(requireNamespace("xgboost")) {
  library(mlr3learners)

  # define hyperparameter and budget parameter
  search_space = ps(
    nrounds = p_int(lower = 1, upper = 16, tags = "budget"),
    eta = p_dbl(lower = 0, upper = 1),
    booster = p_fct(levels = c("gbtree", "gblinear", "dart"))
  )

  # hyperparameter tuning on the pima indians diabetes data set
  instance = tune(
    method = "successive_halving",
    task = tsk("pima"),
    learner = lrn("classif.xgboost", eval_metric = "logloss"),
    resampling = rsmp("cv", folds = 3),
    measure = msr("classif.ce"),
    search_space = search_space
  )

  # best performing hyperparameter configuration
  instance$result
}
```
nds_selection

Best points w.r.t. non dominated sorting with hypervolume contrib.

Description
Select best subset of points by non dominated sorting with hypervolume contribution for tie breaking. Works on an arbitrary dimension of size two or higher. Returns a vector of indices of selected points.

Value
integer()

Parameters

points matrix()
Numeric matrix with each column corresponding to a point.

n_select integer(1)
Amount of points to select.

ref_point integer()
Reference point for hypervolume.

minimize logical()
Should the ranking be based on minimization? (Single bool for all dimensions, or vector of bools with each entry corresponding to each dimension).
Index

bbotk::Archive, 3, 7
bbotk::Optimizer, 5, 8
bbotk::Terminator, 3, 10

dictionary, 3, 10

mlr3::benchmark(), 4, 7, 11
mlr3::Learner, 11
mlr3::Task, 11
mlr3hyperband (mlr3hyperband-package), 2
mlr3hyperband-package, 2
mlr3pipelines::GraphLearner, 11
mlr3pipelines::PipeOp, 11
mlr3pipelines::PipeOpSubsample, 11
mlr3tuning::ArchiveTuning, 10, 13
mlr3tuning::Tuner, 11, 13
mlr3tuning::TunerFromOptimizer, 11, 13
mlr_optimizers, 3, 10
mlr_optimizers_hyperband, 3
mlr_optimizers_successive_halving, 6
mlr_tuners_hyperband, 9
mlr_tuners_successive_halving, 13

nds_selection, 15

opt(), 3, 10
OptimInstanceMultiCrit, 3
OptimInstanceSingleCrit, 3
Optimizer, 3, 10
OptimizerHyperband
 (mlr_optimizers_hyperband), 3
OptimizerSuccessiveHalving
 (mlr_optimizers_successive_halving), 6

paradox::ParamSet, 3, 6, 9, 13
paradox::Sampler, 3, 4, 7, 10, 11, 13

R6, 5, 8, 12, 13

Terminator, 4, 7, 11