mllrnrs: R6-Based ML Learners for 'mlexperiments'

Enhances 'mlexperiments' <> with additional machine learning ('ML') learners. The package provides R6-based learners for the following algorithms: 'glmnet' <>, 'ranger' <>, 'xgboost' <>, and 'lightgbm' <>. These can be used directly with the 'mlexperiments' R package.

Version: 0.0.2
Depends: R (≥ 2.10)
Imports: data.table, kdry, mlexperiments, R6, stats
Suggests: glmnet, knitr, lightgbm, lintr, mlbench, mlr3measures, ParBayesianOptimization, ranger, splitTools, testthat (≥ 3.0.1), xgboost
Published: 2023-07-18
Author: Lorenz A. Kapsner ORCID iD [cre, aut, cph]
Maintainer: Lorenz A. Kapsner <lorenz.kapsner at>
License: GPL (≥ 3)
NeedsCompilation: no
CRAN checks: mllrnrs results


Reference manual: mllrnrs.pdf
Vignettes: glmnet: Binary Classification
glmnet: Multiclass Classification
glmnet: Regression
lightgbm: Binary Classification
lightgbm: Multiclass Classification
lightgbm: Regression
ranger: Binary Classification
ranger: Multiclass Classification
ranger: Regression
xgboost: Binary Classification
xgboost: Multiclass Classification
xgboost: Regression


Package source: mllrnrs_0.0.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): mllrnrs_0.0.2.tgz, r-oldrel (arm64): mllrnrs_0.0.2.tgz, r-release (x86_64): mllrnrs_0.0.2.tgz, r-oldrel (x86_64): mllrnrs_0.0.2.tgz

Reverse dependencies:

Reverse imports: mlsurvlrnrs


Please use the canonical form to link to this page.