Package ‘migraph’

May 14, 2021

Title Multimodal and Multilevel Network Analysis
Version 0.6.6
Date 2021-05-13

Description A set of tools that extend common social network analysis packages for analysing multimodal and multilevel networks. It includes functions for one- and two-mode (and sometimes three-mode) centrality, centralization, clustering, and constraint, as well as for one- and two-mode network regression and block-modelling. All functions operate with matrices, edge lists, and ‘igraph’, 'network','sna', and 'tidygraph' objects. The package is released as a complement to 'Multimodal Political Networks' (2021, ISBN:9781108985000), and includes various datasets used in the book.

URL https://github.com/snlab-ch/migraph
BugReports https://github.com/snlab-ch/migraph/issues
Depends R (>= 3.6.0)
License MIT + file LICENSE
Language en-GB
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports igraph, tidygraph, ggplot2, magrittr, rlang, dplyr, purrr, tibble, tidyr, network, httr, jsonlite, lubridate, stringr
Suggests testthat, roxygen2, covr, knitr, rmarkdown
NeedsCompilation no
Author James Hollway [cph, cre, aut, ctb] (IHEID, <https://orcid.org/0000-0002-8361-9647>)
Maintainer James Hollway <james.hollway@graduateinstitute.ch>
Repository CRAN
Date/Publication 2021-05-13 23:20:10 UTC
R topics documented:

- blockmodel
- centrality
- centralization
- coercion
- create
- generate
- graph_clustering
- is
- mpn_bristol
- mpn_elite_mex
- mpn_elite_usa_advice
- mpn_elite_usa_money
- mpn_evs
- mpn_ryanair
- mpn_senate112
- netlm
- node_constraint
- node_smallworld
- plot.blockmodel
- plot.igraph
- plot_releases
- project
- read
- southern_women
- to

Index

Description

Blockmodelling

Usage

```r
blockmodel_concor(
  object,
  p = 1,
  cutoff = 0.999,
  max.iter = 25,
  block.content = "density"
)
```

```r
## S3 method for class 'blockmodel'
print(x, ...)
```
centrality

Arguments

object: A migraph-consistent object (matrix, igraph, tidygraph).
p: An integer representing the desired number of partitions.
cutoff: A value between 0 and 1 used to determine convergence.
max.iter: An integer representing the maximum number of iterations.
block.content: A string indicating which method to use for calculating block content. Options are: "density", "sum", "meanrowsum", "meancolsum", "median", "min", "max".
x: An object of class "blockmodel"
...
... Additional arguments passed to generic print method

Source

https://github.com/aslez/concoR

References

Examples

mex_concor <- blockmodel_concor(mpn_elite_mex)
mex_concor
plot(mex_concor)
usa_concor <- blockmodel_concor(mpn_elite_usa_advice)
usa_concor
plot(usa_concor)

centrality

Centrality for one- and two-mode networks

Description

These functions calculate common centrality measures for both one- and two-mode networks. They accept as objects matrices and igraph graphs, and can be used within a tidygraph workflow. Importantly, these functions also offer correct normalization for two-mode networks.

Usage

node_degree(
 object,
 weights = NULL,
 mode = "out",
 loops = TRUE,
 normalized = FALSE
)
node_closeness(
 object,
 weights = NULL,
 mode = "out",
 normalized = FALSE,
 cutoff = NULL
)

node_betweenness(
 object,
 weights = NULL,
 directed = TRUE,
 cutoff = NULL,
 nobigint = TRUE,
 normalized = FALSE
)

node_eigenvector(
 object,
 weights = NULL,
 directed = FALSE,
 options = igraph::arpack_defaults,
 scale = FALSE,
 normalized = FALSE
)

Arguments

- **object**: Either an igraph graph object or a matrix.
- **weights**: The weight of the edges to use for the calculation. Will be evaluated in the context of the edge data.
- **mode**: How should edges be followed. Ignored for undirected graphs.
- **loops**: Should loops be included in the calculation.
- **normalized**: For one-mode networks, should Borgatti and Everett normalization be applied?
- **cutoff**: maximum path length to use during calculations.
- **directed**: Should direction of edges be used for the calculations.
- **nobigint**: Should big integers be avoided during calculations.
- **options**: Settings passed on to igraph::arpack()
- **scale**: Should the scores be scaled to range between 0 and 1?

Value

Depending on how and what kind of an object is passed to the function, the function will return a tidygraph object where the nodes have been updated.
A numeric vector giving the betweenness centrality measure of each node.
A numeric vector giving the eigenvector centrality measure of each node.

References

See Also
Other two-mode measures: centralization, graph_clustering(), node_constraint(), node_smallworld()
Other node-level measures: node_constraint(), node_smallworld()

Examples
node_degree(mpn_elite_mex)
node_degree(southern_women)
node_closeness(mpn_elite_mex)
node_closeness(southern_women)
node_betweenness(mpn_elite_mex)
node_betweenness(southern_women)
node_eigenvector(mpn_elite_mex)
node_eigenvector(southern_women)
centralization

object,
directed = c("all", "out", "in", "total"),
normalized = TRUE
)

Arguments

object A matrix, igraph graph, or tidygraph object.
directed Character string, "out" for out-degree, "in" for in-degree, and "all" or "total" for the sum of the two. For two-mode networks, "all" uses as numerator the sum of differences between the maximum centrality score for the mode against all other centrality scores in the network, whereas "in" uses as numerator the sum of differences between the maximum centrality score for the mode against only the centrality scores of the other nodes in that nodeset.
normalized Logical scalar, whether the centrality scores are normalized. Different denominators are used depending on whether the object is one-mode or two-mode, the type of centrality, and other arguments.

Value

A single centralization score if the object was one-mode, and two centralization scores if the object was two-mode. In the case of a two-mode network, to return just the score for the first nodeset (rows), append $nodes1 to the end of the function call or returned object. To return just the score for the second nodeset (cols), append $nodes2 to the end of the function call or returned object.

References

See Also

Other two-mode measures: centrality.graph_clustering(), node_constraint(), node_smallworld()

Examples

graph_degree(southern_women, directed = "in")
graph_closeness(southern_women, directed = "in")
graph_betweenness(southern_women, directed = "in")
Description
The as_ functions in {migraph} coerce objects between several common classes of social network objects. These include:

- adjacency and incidence matrices
- edgelists (as data frames)
- {igraph} graph objects
- {tidygraph} tbl_graph objects
- {network} network objects

Usage

as_matrix(object)
as_igraph(object, twomode = FALSE)
as_tidygraph(object, twomode = FALSE)
as_network(object)

Arguments

object A data frame edgelist, matrix, igraph, tidygraph, or network object.
twomode An option to override the heuristics for distinguishing incidence from adjacency matrices. By default FALSE.

Details

Behaviour is a little different depending on the data format.

If the data frame is a 2 column edgelist, the first column will become the rows and the second column will become the columns. If the data frame is a 3 column edgelist, then the third column will be used as the cell values or tie weights.

Incidence matrices are typically inferred from unequal dimensions, but since in rare cases a matrix with equal dimensions may still be an incidence matrix, an additional argument twomode can be specified to override this heuristic. This information is usually already embedded in {igraph}, {tidygraph}, and {network} objects.

Value

An adjacency or incidence matrix, named if possible.
An igraph graph object.
A tidygraph tbl_graph class object
A sna/network network class object
create

Examples

test <- data.frame(id1 = c("A","B","B","C","C"),
id2 = c("I","G","I","G","H"))
as_matrix(test)
test <- data.frame(id1 = c("A","B","B","C","C"),
id2 = c("I","G","I","G","H"))
as_igraph(test)
test <- data.frame(id1 = c("A","B","B","C","C"),
id2 = c("I","G","I","G","H"))
as_tidygraph(test)
test <- data.frame(id1 = c("A","B","B","C","C"),
id2 = c("I","G","I","G","H"))
as_network(test)

create

Create networks with particular structures

Description

These functions create a variety of different network objects. Despite the common function names and syntax with existing packages, the common n argument can not only be passed a single integer to return a one-mode network, but also a vector of two integers to return a two-mode network.

Usage

create_empty(n)
create_complete(n)
create_ring(n, width = 1, directed = FALSE, ...)
create_components(n, components = 2)
create_star(n, directed = "in")

Arguments

n Number of nodes. If a single integer is given, e.g. n = 10, the function will create a one-mode network. If a vector of two integers is given, e.g. n = c(5, 10), the function will create a two-mode network.

width The width or breadth of the ring. This is typically double the degree.

directed One of the following options: "in", "out", or "none".

... Additional arguments passed on to igraph.

components Number of components to create.
Details

create_empty() creates an empty graph of the given dimensions.
create_complete() creates a filled graph of the given dimensions.
create_ring() creates a ring or chord graph of the given dimensions that loops around is of a certain width or thickness.
create_components() creates a graph in which the nodes are clustered into separate components.

Value

By default an igraph object will be returned, but this can be coerced into other types of objects using as_matrix(), as_tidygraph(), or as_network().

See Also

as_matrix as_tidygraph as_network

Other creation: generate

Examples

```r
g <- create_empty(c(8,6))
plot(g)
g <- create_complete(c(8,6))
plot(g)
g <- create_ring(c(8,6), width = 2)
plot(g)
plot(create_components(c(10, 12), components = 3))
plot(create_star(c(12,1)))
```

generate

Create networks from particular probabilities

Description

Create networks from particular probabilities

Usage

generate_random(n, p, m)

Arguments

- `n` Integer of length 1 or 2.
- `p` Number of edges in the network over the number of edges possible
- `m` Number of edges in the network
graph_clustering

Details

Creates a random network. If \texttt{length(n)}==1, then a one-mode network will be returned, equivalent to an Erdős-Renyi graph. If \texttt{length(n)}==1, then a two-mode network will be returned. The first number is the number of nodes in the first nodeset (rows), and the second number becomes the number of nodes in the second nodeset (columns).

See Also

Other creation: \texttt{create}

Examples

\texttt{plot(generate_random(c(10, 12), 0.25))}

\begin{verbatim}

graph_clustering

Clustering for one-, two-, and three- mode networks

Description

This function offers clustering methods for one-, two-, and three-mode networks.

Usage

\texttt{graph_clustering(object, object2 = NULL)}

Arguments

\begin{itemize}
 \item \texttt{object} A one-mode or two-mode matrix, igraph, or tidygraph
 \item \texttt{object2} Optionally, a second (two-mode) matrix, igraph, or tidygraph
\end{itemize}

Details

For one-mode networks, the function serves as a shallow wrapper for \texttt{igraph::transitivity}, since global transitivity is a regular measure for clustering or local density in one-mode networks.

For two-mode networks, we calculate the proportion of three-paths in the network that are closed by fourth tie to establish a "shared four-cycle" structure.

For three-mode networks, we calculate the proportion of three-paths spanning the two two-mode networks that are closed by a fourth tie to establish a "congruent four-cycle" structure.

References

See Also

Other one-mode measures: `node_constraint()`
Other two-mode measures: `centrality`, `centralization`, `node_constraint()`, `node_smallworld()`

Examples

```r
graph_clustering(southern_women)
```

is
Tests of network properties

Description

Tests of network properties

Usage

```r
is_twomode(object)

is_weighted(object)

is_directed(object)

is_labelled(object)
```

Arguments

object
A migraph-consistent class object (matrix, edgelist, igraph, network, tidygraph)

Value

TRUE if object is a two-mode network, otherwise FALSE
TRUE if object is a weighted network, otherwise FALSE
TRUE if object is a directed network, otherwise FALSE
TRUE if object is a labelled network, otherwise FALSE

Examples

```r
is_twomode(southern_women)
is_weighted(southern_women)
is_directed(southern_women)
is_labelled(southern_women)
```
mpn_bristol Multimodal (3) Bristol protest events, 1990-2002

Description
A multimodal (3) matrix containing individuals affiliations to civic organizations in Bristol and their participation in major protest and civic events between 1990-2002, and the involvement of the organizations in these events.

Usage
data(mpn_bristol)

Format
A matrix with 264 rows and columns. Node IDs are prefaced with a type identifier:
1_ 150 Individuals, anonymised
2_ 97 Bristol Civic Organizations
3_ 17 Major Protest and Civic Events in Bristol, 1990-2002

Source

mpn_elite_mex One-mode Mexican power elite database

Description
A network of 11 core members of the 1990s Mexican power elite (Knoke 2017), three of which were successively elected presidents of Mexico: José López Portillo (1976-82), Miguel de la Madrid (1982-88), and Carlos Salinas de Gortari (1988-94, who was also the son of another core member, Raúl Salinas Lozano). The undirected lines connecting pairs of men represent any formal, informal, or organizational relation between a dyad: for example, “common belonging (school, sports, business, political participation), or a common interest (political power)” (Mendieta et al. 1997: 37).

Usage
data(mpn_elite_mex)

Format
Matrix with 11 rows/columns
Source

Description

A 2-mode network of persons serving as directors or trustees of think tanks. Think tanks are “public-policy research analysis and engagement organizations that generate policy-oriented research, analysis, and advice on domestic and international issues, thereby enabling policymakers and the public to make informed decisions about public policy” (McGann 2016: 6). The Power Elite Database (Domhoff 2016) includes information on the directors of 33 prominent think tanks in 2012. Here we include only 14 directors who held three or more seats among 20 think tanks.

Usage

```r
data(mpn_elite_usa_advice)
```

Format

Matrix with 14 rows and 20 columns

References

Description

This data is based on 26 elites who sat on the boards of directors for at least two of six economic policy making organizations (Domhoff 2016), and also made campaign contributions to one or more of six candidates running in the primary election contests for the 2008 Presidential nominations of the Republican Party (Rudy Giuliani, John McCain, Mitt Romney) or the Democratic Party (Hillary Clinton, Christopher Dodd, Barack Obama).

Usage

```r
data(mpn_elite_usa_money)
```
Format

Matrix with 26 rows and 6+6 columns

References

mpn_evs

Two-mode European Values Survey, 1990 and 2008

Description

Usage

```r
data(mpn_IT_1990)
data(mpn_IT_2008)
data(mpn_DE_1990)
data(mpn_DE_2008)
data(mpn_UK_1990)
data(mpn_UK_2008)
```

Format

Matrices with 14 columns:

- **Welfare** 1 if individual associated
- **Religious** 1 if individual associated
- **Education.culture** 1 if individual associated
- **Unions** 1 if individual associated
- **Parties** 1 if individual associated
- **Local.political.groups** 1 if individual associated
- **Human.rights** 1 if individual associated
Environmental 1 if individual associated
Professional 1 if individual associated
Youth 1 if individual associated
Sports 1 if individual associated
Women 1 if individual associated
Peace 1 if individual associated
Health 1 if individual associated
An object of class tbl_graph (inherits from igraph) of length 10.
An object of class tbl_graph (inherits from igraph) of length 10.
An object of class tbl_graph (inherits from igraph) of length 10.
An object of class tbl_graph (inherits from igraph) of length 10.
An object of class tbl_graph (inherits from igraph) of length 10.

Source

Description

Network of anonymised actors reacting to the Ryanair/Charleroi decision of the EU Commission in February 2004. The relationships mapped comprise an account of public records of interaction supplemented with the cognitive network of key informants. Examination of relevant communiques, public statements and a number of off-the-record interviews provides confidence that the network mapped closely approximated interactions between 29 January and 12 February 2004. The time point mapped is at the height of influence and interest intermediation played by actors in the AER, a comparatively obscure body representing the interests of a number of European regional bodies at the EU institutions.

Usage

data(mpn_ryanair)

Format

Matrix with 20 rows/columns

Source

mpn_senate112 Two-mode 112th Congress Senate Voting

Description

These datasets list the U.S. Senators who served in the 112th Congress, which met from January 3, 2011 to January 3, 2013. Although the Senate has 100 seats, 103 persons served during this period due to two resignations and a death. However, the third replacement occurred only two days before the end and cast no votes on the bills investigated here. Hence, the number of Senators we analyzed is 102.

Usage

 data(mpn_DemSxP)
 data(mpn_RepSxP)
 data(mpn_OverSxP)

Format

Matrix of 51 rows (Senators) and 63 columns (PACS)
Matrix of 62 rows (Senators) and 72 columns (PACS)
Matrix of 20 rows (Senators) and 32 columns (PACS)

Details

CQ Almanac identified 25 key bills on which the Senate voted during the 112th Congress, and which Democratic and Republican Senators voting “yea” and “nay” on each proposal.

Lastly, we obtained data on campaign contributions made by 92 PACs from the Open Secrets Website. We recorded all contributions made during the 2008, 2010, and 2012 election campaigns to the 102 persons who were Senators in the 112th Congress. The vast majority of PAC contributions to a candidate during a campaign was for $10,000 (the legal maximum is $5,000 each for a primary and the general election). We aggregated the contributions across all three electoral cycles, then dichotomized the sums into no contribution (0) and any contribution (1).

Source

Description

This function extends the multiple regression quadratic assignment procedure (MRQAP) of network linear model to two mode networks.

Usage

netlm(formula, data, ...)

S3 method for class 'netlm'
summary(object, reps = 1000, ...)

S3 method for class 'summary.netlm'
print(
 x,
 digits = max(3, getOption("digits") - 3),
 signif.stars = getOption("show.signif.stars"),
 ...
)

Arguments

formula A formula describing the relationship being tested.
data A named list of matrices, graphs, or a tidygraph object.
... Arguments passed on to lm().
object an object of class "netlm", usually as a result of a call to netlm().
reps Integer indicating the number of draws to use for quantile estimation. (Relevant to the null hypothesis test only - the analysis itself is unaffected by this parameter.) Note that, as for all Monte Carlo procedures, convergence is slower for more extreme quantiles. By default, reps=1000.
x an object of class "summary.netlm", usually, a result of a call to summary.netlm().
digits the number of significant digits to use when printing.
signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

Examples

mat1 <- matrix(c(0,1,0,0,1,1),4,2)
mat2 <- matrix(c(0,1,0,1,0,1),4,2)
mat3 <- matrix(c(0,0,1,0,0,1),4,2)
lmat <- list(mat1 = mat1, mat2 = mat2, mat3 = mat3)
model1 <- netlm(mat1 ~ mat2 + mat3, lmat)
summary(model1)
Description

This function measures constraint for both one-mode and two-mode networks. For one-mode networks, the function wraps the implementation of Ron Burt’s measure in \{igraph\}. For two-mode networks, the function employs the extension outlined in Hollway et al. (2020).

Usage

```r
node_constraint(object, nodes = V(object), weights = NULL)
```

Arguments

- `object`: A matrix, igraph graph, or tidygraph object.
- `nodes`: The vertices for which the constraint will be calculated. Defaults to all vertices.
- `weights`: The weights of the edges. If this is NULL and there is a weight edge attribute this is used. If there is no such edge attribute all edges will have the same weight.

Value

A named vector (one-mode) or a list of two named vectors ($nodes1, $nodes2).

References

See Also

Other one-mode measures: `graph_clustering()`
Other two-mode measures: `centrality, centralization, graph_clustering(), node_smallworld()`
Other node-level measures: `centrality, node_smallworld()`

Examples

```r
node_constraint(southern_women)
```
node_smallworld

Watts-Strogatz small-world model for two-mode networks

Description
Calculates small-world metrics for two-mode networks

Usage
node_smallworld(object, n = 100)

Arguments
object A matrix, igraph graph, or tidygraph object
n Number of simulations

Details
The first column of the returned table is simply the number of the second-mode column. The
next three columns report the observed and expected clustering, and the ratio of the former to the
later. The next three columns report the observed and expected path-length, and the ratio of the
former to the later. The last column reports the ratio of the observed/expected clustering ratio to the
observed/expected path-length ratio, which is known as a small-world metric. Expected clustering
and paths is the mean of twomode_clustering and mean_distance over 100 random simulations with
the same row and column sums.

Value
Returns a table of small-world related metrics for each second-mode node.

See Also
graph_clustering for how clustering is calculated

Other two-mode measures: centrality, centralization, graph_clustering(), node_constraint()

Other node-level measures: centrality, node_constraint()

Examples
node_smallworld(southern_women)
plot.blockmodel

Description

ggplot2-based plotting of blockmodel results

Usage

```r
## S3 method for class 'blockmodel'
plot(x, ...)
```

Arguments

- `x` A blockmodel-class object.
- `...` Additional arguments passed on to ggplot2.

Examples

```r
usa_concor <- blockmodel_concor(mpn_elite_usa_advice)
plot(usa_concor)
```

plot.igraph

Description

Plotting of one-mode and two-mode graphs

Usage

```r
## S3 method for class 'igraph'
plot(x, ...)
```

Arguments

- `x` A migraph-compatible object, especially an igraph graph object.
- `...` Additional arguments passed on to igraph.

Examples

```r
mat1 <- create_ring(5,10)
plot(mat1)
```
plot_releases

A plotting function that visualises historical milestones/releases

Description
The function will take a data frame that details this information, or more usefully, a Github repository listing.

Usage
plot_releases(repo)

Arguments
repo
the github repository to track, e.g. "snlab-ch/migraph"

Details
The function creates a project timeline graphic using ggplot2 with historical milestones and milestone statuses gathered from a specified GitHub repository.

Value
A ggplot graph object

Source

Examples
if(!httr::http_error("https://api.github.com/repos/snlab-ch/migraph/releases")){
 plot_releases("snlab-ch/migraph")
}

project

Projecting two-mode objects into one-mode objects

Description
These functions `project` or convert a two-mode object in any format – tidygraph, igraph, or matrix – into a corresponding one-mode object.

Usage
project_rows(object)
project_cols(object)
Arguments

header_file
A character string giving the path to the header (.##h) file. If the function is called without a header, the specific file extension is used if the picker is opened to help users select it.

as
An output class. One of "igraph", "network", or "matrix". By default "igraph".

Details

project_rows()
results in a weighted one-mode object that retains the row nodes from a two-mode object and weights the ties between them on the basis of their joint ties to nodes in the second mode.

project_cols()
results in a weighted one-mode object that retains the column nodes from a two-mode object and weights the ties between them on the basis of their joint ties to nodes in the first mode.

Examples

project_rows(southern_women)
project_cols(southern_women)

Description

These functions import from and export to UCINET network files.

Usage

read_ucinet(header_file, as = c("igraph", "network", "matrix"))
write_ucinet(object, filename = deparse(substitute(object)), name = deparse(substitute(object)))

Arguments

header_file
A character string giving the path to the header (.##h) file. If the function is called without a header, the specific file extension is used if the picker is opened to help users select it.

as
An output class. One of "igraph", "network", or "matrix". By default "igraph".

object
A migraph-consistent object to be exported.

filename
UCINET filename (without ## extension). By default the files will have the same name as the object and be saved to the working directory.

name
Name of matrix to be known in UCINET. By default the name will be the same as the object and be saved to the working directory.

Examples

project_rows(southern_women)
project_cols(southern_women)

Reading from/writing to external formats

These functions import from and export to UCINET network files.

Details

A matrix of adjacency or淗-graph object.

Arguments

Read
southern_women

Details

These functions only work with relatively recent UCINET file formats, e.g. type 6406 files. To import earlier UCINET file types, you will need to update them first.

To import multiple matrices packed into a single UCINET file, you will need to unpack them and convert them one by one.

Value

By default, `read_ucinet()` will import into a matrix format, but can be easily coerced from there into other formats.

A pair of UCINET files in V6404 file format (.##h, .##h)

Author(s)

Christian Steglich, 18 June 2015

See Also

convert

Examples

```r
## Not run:
# import Roethlisberger & Dickson's horseplay game data set:
horseplay <- read_ucinet("WIRING-RDGAM.##h")

## End(Not run)
## Not run:
# export it again to UCINET under a different name:
write.ucinet(horseplay,"R&D-horseplay")

## End(Not run)
```

southern_women

Two-mode southern women dataset

Description

Two-mode network dataset collected by Davis, Gardner and Gardner (1941) about women and social events.

Usage

`data(southern_women)`

Format

igraph graph object
References

Description

Tools for reformatting networks, graphs, and matrices

Usage

to_unweighted(object, threshold = 1)
to_unnamed(object)

Arguments

object A matrix, {igraph} graph, {tidygraph} tbl_graph, or {network} object.
threshold For a matrix, the threshold to binarise/dichotomise at.

Examples

to_unweighted(project_rows(southern_women))
to_unnamed(project_rows(southern_women))
Index

* creation
 create, 8
 generate, 9

* datasets
 mpn_bristol, 12
 mpn_elite_mex, 12
 mpn_elite_usa_advice, 13
 mpn_elite_usa_money, 13
 mpn_evs, 14
 mpn_ryanair, 15
 mpn_senate112, 16
 southern_women, 23

* graph-level measures
 centralization, 5

* node-level measures
 centrality, 3
 node_constraint, 18
 node_smallworld, 19

* one-mode measures
 graph_clustering, 10
 node_constraint, 18

* plotting
 plot.igraph, 20

* three-mode measures
 graph_clustering, 10

* two-mode measures
 centrality, 3
 centralization, 5
 graph_clustering, 10
 node_constraint, 18
 node_smallworld, 19

as_igraph (coercion), 7
as_matrix (coercion), 7
as_network (coercion), 7
as_tidygraph (coercion), 7

blockmodel, 2
blockmodel_concor (blockmodel), 2

centrality, 3, 6, 11, 18, 19
centralization, 5, 5, 11, 18, 19
coercion, 7
convert, 23
create, 8, 10
create_complete (create), 8
create_components (create), 8
create_empty (create), 8
create_ring (create), 8
create_star (create), 8
generate, 9, 9
generate_random (generate), 9
graph_betweenness (centralization), 5
graph_closeness (centralization), 5
graph_clustering, 5, 6, 10, 18, 19
graph_degree (centralization), 5

is, 11
is_directed (is), 11
is_labelled (is), 11
is_twomode (is), 11
is_weighted (is), 11

mpn_bristol, 12
mpn_DE_1990 (mpn_evs), 14
mpn_DE_2008 (mpn_evs), 14
mpn_DemSxP (mpn_senate112), 16
mpn_elite_mex, 12
mpn_elite_usa_advice, 13
mpn_elite_usa_money, 13
mpn_evs, 14
mpn_IT_1990 (mpn_evs), 14
mpn_IT_2008 (mpn_evs), 14
mpn_OverSxP (mpn_senate112), 16
mpn_RepSxP (mpn_senate112), 16
mpn_ryanair, 15
mpn_senate112, 16
mpn_UK_1990 (mpn_evs), 14
mpn_UK_2008 (mpn_evs), 14
netlm, 17
node_betweenness (centrality), 3
node_closeness (centrality), 3
node_constraint, 5, 6, 11, 18, 19
node_degree (centrality), 3
node_eigenvector (centrality), 3
node_smallworld, 5, 6, 11, 18, 19

plot.blockmodel, 20
plot.igraph, 20
plot.releases, 21
print.blockmodel (blockmodel), 2
print.summary.netlm (netlm), 17
project, 21
project.cols (project), 21
project.rows (project), 21

read, 22
read.ucinet (read), 22
read.ucinet (), 23

southern.women, 23
summary.netlm (netlm), 17

to, 24
to.unnamed (to), 24
to.unweighted (to), 24

write.ucinet (read), 22