Package ‘mfGARCH’

June 17, 2021

Title Mixed-Frequency GARCH Models
Version 0.2.1
Description Estimating GARCH-MIDAS (MIxed-DAta-Sampling) models (Engle, Ghy-
sels, Sohn, 2013, <doi:10.1162/REST_a_00300>) and related statistical inference, accompanying the paper “Two are better than one: Volatility forecasting using multiplicative component GARCH models” by Conrad and Kleen (2020, <doi:10.1002/jae.2742>). The GARCH-
MIDAS model decomposes the conditional variance of (daily) stock returns into a short-
and long-term component, where the latter may depend on an exogenous covariate sampled at a lower frequency.

Depends R (>= 3.3.0)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports Rcpp, graphics, stats, numDeriv, zoo, maxLik
LinkingTo Rcpp
URL https://github.com/onnokleen/mfGARCH/
BugReports https://github.com/onnokleen/mfGARCH/issues
Suggests testthat, dplyr, ggplot2, covr, rmarkdown
NeedsCompilation yes
Author Onno Kleen [aut, cre] (<https://orcid.org/0000-0003-4731-4640>)
Maintainer Onno Kleen <r@onnokleen.de>
Repository CRAN
Date/Publication 2021-06-17 14:20:02 UTC

R topics documented:

df_financial . 2
df_mfgarch . 3
df_financial

Stock returns and financial conditions.

Description

A dataset containing the S&P 500 stock returns and the NFCI

Usage

df_financial

Format

A data frame with 11,306 rows and 5 variables:

- **date** date
- **return** daily S&P 500 log returns times 100
- **rv** 5-minute realized variances
- **week** a dummy for each year/week combination
- **nfci** National Financial Conditions Index

Source

https://github.com/onnokleen/mfGARCH/
https://finance.yahoo.com/
https://fred.stlouisfed.org/series/NFCI
https://realized.oxford-man.ox.ac.uk
df_mfgarch

Mixed-frequency data set.

Description

A dataset containing the S&P 500 stock returns, realized variances and macroeconomic variables

Usage

df_mfgarch

Format

A data frame with 11,938 rows and 11 variables:

- **date** date
- **return** daily S&P 500 log returns times 100
- **open_close** open-close returns
- **rv** 5-minute realized variances
- **vix** Cboe VIX
- **year_week** a dummy for each year/week combination
- **dhousing** changes in housing starts
- **dindpro** changes in industrial production
- **nai** NAI
- **nfci** National Financial Conditions Index
- **year_month** a dummy for each year/month combination

Source

https://github.com/onnokleen/mfGARCH/
https://finance.yahoo.com/
https://fred.stlouisfed.org
https://realized.oxford-man.ox.ac.uk
This function estimates a multiplicative mixed-frequency GARCH model. For the sake of numerical stability, it is best to multiply log returns by 100.

Description

This function estimates a multiplicative mixed-frequency GARCH model. For the sake of numerical stability, it is best to multiply log returns by 100.

Usage

```r
fit_mfgarch(
  data,
  y,
  x = NULL,
  K = NULL,
  low.freq = "date",
  var.ratio.freq = NULL,
  gamma = TRUE,
  weighting = "beta.restricted",
  x.two = NULL,
  K.two = NULL,
  low.freq.two = NULL,
  weighting.two = NULL,
  multi.start = FALSE,
  control = list(par.start = NULL)
)
```

Arguments

data: data frame containing a column named date of type 'Date'.
y: name of high frequency dependent variable in df.
x: covariate employed in mfGARCH.
K: an integer specifying lag length K in the long-term component.
low.freq: a string of the low frequency variable in the df.
var.ratio.freq: specify a frequency column on which the variance ratio should be calculated.
gamma: if TRUE, an asymmetric GJR-GARCH is used as the short-term component. If FALSE, a simple GARCH(1,1) is employed.
weighting: specifies the weighting scheme employed in the long-term component. Options are "beta.restricted" (default) or "beta.unrestricted"
x.two: optional second covariate
K.two: lag lgenth of optional second covariate
low.freq.two: low frequency of optional second covariate
weighting.two specifies the weighting scheme employed in the optional second long-term component. Currently, the only option is "beta.restricted"

multi.start if TRUE, optimization is carried out with multiple starting values

control a list

Value

A list of class mfGARCH with letters and numbers.

- par - vector of estimated parameters
- rob.std.err - sandwich/HAC-type standard errors
- broom.mgarch - a broom-like data.frame with entries 1) estimate: column of estimated parameters 2) rob.std.err - sandwich/HAC-type standard errors 3) p.value - p-values derived from sandwich/HAC-type standard errors 4) opg.std.err - Bollerslev-Wooldridge/OPG standard errors for GARCH processes 5) opg.p.value - corresponding alternative p-values
- tau - fitted long-term component
- g - fitted short-term component
- df.fitted - data frame with fitted values and residuals
- K - chosen lag-length in the long-term component
- weighting.scheme - chosen weighting scheme
- llh - log-likelihood value at estimated parameter vector
- bic - corresponding BIC value
- y - dependent variable y
- optim - output of the optimization routine
- K.two - lag-lenth of x.two if two covariates are employed
- weighting.scheme.two - chosen weighting scheme of x.two (if K.two != NULL)
- tau.forecast - one-step ahead forecast of the long-term component
- variance.ratio - calculated variance ratio
- est.weighting - estimated weighting scheme
- est.weighting.two - estimated weighting scheme of x.two (if K.two != NULL)

Examples

```r
## Not run:
fit_mfgarch(data = df_financial, y = "return", x = "nfci", low.freq = "week", K = 52)
fit_mfgarch(data = df_mfgarch, y = "return", x = "nfci", low.freq = "year_week", K = 52, x.two = "dindpro", K.two = 12, low.freq.two = "year_month", weighting.two = "beta.restricted")
## End(Not run)
```
plot_weighting_scheme This function plots the weighting scheme of an estimated GARCH-MIDAS model

Description
This function plots the weighting scheme of an estimated GARCH-MIDAS model

Usage
plot_weighting_scheme(x)

Arguments
x mfGARCH object obtained by fit_mfgarch

simulate_mfgarch This function simulates a GARCH-MIDAS model. Innovations can follow a standard normal or student-t distribution.

Description
This function simulates a GARCH-MIDAS model. Innovations can follow a standard normal or student-t distribution.

Usage
simulate_mfgarch(
 n.days,
 mu,
 alpha,
 beta,
 gamma,
 m,
 theta,
 w1 = 1,
 w2,
 K,
 psi,
 sigma.psi,
 low.freq = 1,
 n.intraday = 288,
 student.t = NULL,
 corr = 0
)
Arguments

- **n.days**: number of days
- **mu**: mu
- **alpha**: alpha
- **beta**: beta
- **gamma**: gamma
- **m**: m
- **theta**: theta
- **w1**: w1
- **w2**: w2
- **K**: K
- **psi**: psi
- **sigma.psi**: sigma.psi
- **low.freq**: number of days per low-frequency period
- **n.intraday**: number of maximum intraday returns
- **student.t**: either NULL or degrees of freedom
- **corr**: correlation between innovations (should only be used for daily tau)

Examples

```r
simulate_mfgarch(n.days = 200, mu = 0, alpha = 0.06, beta = 0.92, gamma = 0, m = 0, theta = 0.1, w1 = 1, w2 = 3, K = 12, psi = 0.98, sigma.psi = 0.1, low.freq = 10)
```

Description

This function simulates a GARCH-MIDAS model where the short-term GARCH component is replaced by its diffusion limit, see Andersen (1998).

Usage

```r
simulate_mfgarch_diffusion(
  n.days,
  mu,
  alpha,
  beta,
  m,
```
simulate_mfgarch_rv_dependent

theta,
w1 = 1,
w2,
K,
ψ,
sigma.ψ,
low.freq = 1,
n.intraday = 288
)

Arguments

n.days number of days
mu μ
alpha α
beta β
m m
theta θ
w1 w1
w2 w2
K K
ψ ψ
sigma.ψ σ.ψ
low.freq low.freq
n.intraday n.intraday

Examples

Not run: simulate_mfgarch_diffusion(n.days = 200, mu = 0, alpha = 0.06, beta = 0.92, m = 0,
theta = 0.1, w1 = 1, w2 = 3, K = 12, psi = 0.98, sigma.ψ = 0.1, low.freq = 10)
End(Not run)

Simulate a GARCH-MIDAS similar to Wang/Ghysels with lagged RVol as covariate

Description

Simulate a GARCH-MIDAS similar to Wang/Ghysels with lagged RVol as covariate
Usage

```r
simulate_mfgarch_rv_dependent(
  n.days, 
  mu, 
  alpha, 
  beta, 
  gamma, 
  m, 
  theta, 
  w1 = 1, 
  w2, 
  K, 
  n.intraday = 288, 
  low.freq = 1, 
  rvol = FALSE
)
```

Arguments

- `n.days`: number of days
- `mu`: mu
- `alpha`: alpha
- `beta`: beta
- `gamma`: gamma
- `m`: m
- `theta`: theta
- `w1`: w1
- `w2`: w2
- `K`: K
- `n.intraday`: number of maximum intraday returns, default 288
- `low.freq`: number of days per low frequency
- `rvol`: if TRUE, the square root of the realized variance is used as a covariate

Examples

```r
simulate_mfgarch_rv_dependent(n.days = 2200, mu = 0, alpha = 0.06, beta = 0.92, gamma = 0, m = 0, theta = 0.1, w1 = 1, w2 = 3, K = 3, low.freq = 22)
```
Index

* datasets
 df_financial, 2
 df_mfgarch, 3

* fit_mfgarch
 fit_mfgarch, 4

* simulate_mfgarch
 simulate_mfgarch, 6
 simulate_mfgarch_diffusion, 7

 df_financial, 2
 df_mfgarch, 3

 fit_mfgarch, 4

plot_weighting_scheme, 6

 simulate_mfgarch, 6
 simulate_mfgarch_diffusion, 7
 simulate_mfgarch_rv_dependent, 8