Manipulation of data-frame data with dutility functions
Klaus Holst & Thomas Scheike
February 18, 2020

Simple data manipulation for data-frames

• Renaming variables, Deleting variables
• Looking at the data
• Making new variables for the analysis
• Making factors (groupings)
• Working with factors
• Making a factor from existing numeric variable and vice versa

Here are some key data-manipulation steps on a data-frame which is how we typically organize our data in R. After having read the data into R it will typically be a data-frame, if not we can force it to be a data-frame. The basic idea of the utility functions is to get a simple and easy to type way of making simple data-manipulation on a data-frame much like what is possible in SAS or STATA.

The functions, say, dcut, dfactor and so on are all functions that basically does what the base R cut, factor do, but are easier to use in the context of data-frames and have additional functionality.

```r
library(mets)
data(melanoma)
is.data.frame(melanoma)
```

[1] TRUE

Here we work on the melanoma data that is already read into R and is a data-frame.

dUtility functions

The structure for all functions is

• dfunction(dataframe,y~x|ifcond, . . .)

 to use the function on y in a dataframe grouped by x if condition ifcond is valid. The basic functions are
 Data processing
 • dsort
• dreshape
• dcut
• drm, drename, ddrop, dkeep, dsubset
• drelevel
• dlag
• dfactor, dnumeric

Data aggregation
• dby, dby2
• dscalar, deval, daggregate
• dmean, dsd, dsum, dquantile, dcor
• dtable, dcount

Data summaries
• dhead, dtail,
• dsummary,
• dprint, dlist, dlevels, dunique

A generic function daggregate, daggr, can be called with a function as the argument

• daggregate(dataframe,y~x|ifcond,fun=function, . . .)

without the grouping variable (x)

• daggregate(dataframe,~y|ifcond,fun=function, . . .)

A useful feature is that y and x as well as the subset condition can be specified using regular-expressions or by wildcards (default). Here to illustrate this, we compute the means of certain variables. First just overall

\[
dmean(melanoma,~thick+I\log(thick))
\]

\[
\begin{array}{ll}
\text{thick}\text{ I(log(thick))} \\
291.985366 & 5.223341 \\
\end{array}
\]

now only when days>500

\[
dmean(melanoma,~thick+I\log(thick))|I(\text{days>500})
\]

\[
\begin{array}{ll}
\text{thick}\text{ I(log(thick))} \\
271.582011 & 5.168691 \\
\end{array}
\]

and now after sex but only when days>500

\[
dmean(melanoma,\text{thick+I(log(thick))}-\text{sex}|I(\text{days>500})
\]
sex thick I(log(thick))
1 0 242.9580 5.060086
2 1 320.2429 5.353321

and finally after quartiles of days (via the dcut function)

```r
dmean(melanoma, thick + I(log(thick)) ~ I(dcut(days)))
```

<table>
<thead>
<tr>
<th>dcut(days)</th>
<th>thick</th>
<th>I(log(thick))</th>
</tr>
</thead>
<tbody>
<tr>
<td>[10, 1.52e+03]</td>
<td>482.1731</td>
<td>5.799525</td>
</tr>
<tr>
<td>(1.52e+03, 2e+03)</td>
<td>208.5490</td>
<td>4.987652</td>
</tr>
<tr>
<td>(2e+03, 3.04e+03)</td>
<td>223.2941</td>
<td>4.974759</td>
</tr>
<tr>
<td>(3.04e+03, 5.56e+03)</td>
<td>250.1961</td>
<td>5.120129</td>
</tr>
</tbody>
</table>

or summary of all variables starting with "s" and that contains "a"

```r
dmean(melanoma, "s*" + "a" ~ sex | I(days > 500))
```

<table>
<thead>
<tr>
<th>sex</th>
<th>status</th>
<th>days</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.831933</td>
<td>2399.143</td>
</tr>
<tr>
<td>1</td>
<td>1.714286</td>
<td>2169.800</td>
</tr>
</tbody>
</table>

Renaming, deleting, keeping, dropping variables

```r
melanoma = drename(melanoma, tykkelse ~ thick)

names(melanoma)
```

```
[1] "no"  "status"  "days"  "ulc"  "tykkelse"  "sex"
```

Deleting variables

```r
data(melanoma)
melanoma = drm(melanoma, ~ thick + sex)

names(melanoma)
```

```
[1] "no"  "status"  "days"  "ulc"
```

or **sas style**

```r
data(melanoma)
melanoma = ddrop(melanoma, ~ thick + sex)

names(melanoma)
```

```
[1] "no"  "status"  "days"  "ulc"
```

Alternatively we can also keep certain variables

```r
data(melanoma)
melanoma = dkeep(melanoma, ~ thick + sex + status + days)

names(melanoma)
```

```
[1] "thick"  "sex"  "status"  "days"
```

This can also be done with direct assignment

```r
data(melanoma)
ddrop(melanoma) <- ~ thick + sex

names(melanoma)
```

```
[1] "no"  "status"  "days"  "ulc"
```
Looking at the data

```r
data(melanoma)
dstr(melanoma)
```

'data.frame': 205 obs. of 6 variables:
$ no : int 789 13 97 16 21 469 685 7 932 944 ...
$ status: int 3 3 2 1 1 1 1 1 1 1 ...
$ days : int 10 30 35 99 185 204 210 232 232 279 ...
$ ulc : int 1 0 0 0 1 1 1 1 1 1 ...
$ thick : int 676 65 134 290 1208 484 516 1288 322 741 ...
$ sex : int 1 1 1 0 1 1 1 1 0 0 ...

The data can in Rstudio be seen as a data-table but to list certain parts of the data in output window

```r
dlist(melanoma)
no status days ulc thick sex
1 789 3 10 1 676 1
2 13 3 30 0 65 1
3 97 2 35 0 134 1
4 16 3 99 0 290 0
5 21 1 185 1 1208 1
---
201 317 2 4492 1 706 1
202 798 2 4668 0 612 0
203 806 2 4688 0 48 0
204 606 2 4926 0 226 0
205 328 2 5565 0 290 0

dlist(melanoma, ~.|sex==1)
no status days ulc thick
1 789 3 10 1 676
2 13 3 30 0 65
3 97 2 35 0 134
5 21 1 185 1 1208
6 469 1 204 1 484
---
191 445 2 3909 1 806
195 415 2 4119 0 65
197 175 2 4207 0 65
198 493 2 4310 0 210
201 317 2 4492 1 706

dlist(melanoma, ~ulc+days+thick+sex|sex==1)
ulc days thick sex
1 1 10 676 1
2 0 30 65 1
3 0 35 134 1
5 1 185 1208 1
6 1 204 484 1
---
191 1 3909 806 1
195 0 4119 65 1
197 0 4207 65 1
198 0 4310 210 1
201 1 4492 706 1
```

Getting summaries
dsummary(melanoma)

<table>
<thead>
<tr>
<th>no</th>
<th>status</th>
<th>days</th>
<th>ulc</th>
<th>thick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>:2.0</td>
<td>:1.00</td>
<td>:10</td>
<td>:0.000</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>:222.0</td>
<td>:1.00</td>
<td>:1525</td>
<td>:0.000</td>
</tr>
<tr>
<td>Median</td>
<td>:469.0</td>
<td>:2.00</td>
<td>:2005</td>
<td>:0.000</td>
</tr>
<tr>
<td>Mean</td>
<td>:463.9</td>
<td>:1.79</td>
<td>:2153</td>
<td>:0.439</td>
</tr>
<tr>
<td>3rd Qu.:731.0</td>
<td>:2.00</td>
<td>:3042</td>
<td>:1.000</td>
<td>:356</td>
</tr>
<tr>
<td>Max.</td>
<td>:992.0</td>
<td>:3.00</td>
<td>:5565</td>
<td>:1.000</td>
</tr>
</tbody>
</table>

sex

Min.	:0.000
1st Qu.	:0.000
Median	:0.0000
Mean	:0.3854
3rd Qu.	:1.0000
Max.	:1.0000

or for specific variables

dsummary(melanoma,-thick+status+sex)

<table>
<thead>
<tr>
<th>thick</th>
<th>status</th>
<th>sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>:10.00</td>
<td>Min. :0.000</td>
</tr>
<tr>
<td>1st Qu.: :97</td>
<td>:1.00</td>
<td>1st Qu. :0.0000</td>
</tr>
<tr>
<td>Median : :194</td>
<td>Median :2.00</td>
<td>Median :0.0000</td>
</tr>
<tr>
<td>Mean : :292</td>
<td>Mean :1.79</td>
<td>Mean :0.3854</td>
</tr>
<tr>
<td>3rd Qu. : :356</td>
<td>3rd Qu. :2.00</td>
<td>3rd Qu. :1.0000</td>
</tr>
<tr>
<td>Max. : :1742</td>
<td>Max. :3.00</td>
<td>Max. :1.0000</td>
</tr>
</tbody>
</table>

Summaries in different groups (sex)

dsummary(melanoma,thick+days+status~sex)

<table>
<thead>
<tr>
<th>sex: 0</th>
<th>thick</th>
<th>days</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>:10.00</td>
<td>Min. :99</td>
<td>Min. :1.000</td>
</tr>
<tr>
<td>1st Qu.: :97</td>
<td>1st Qu.:1636</td>
<td>1st Qu. :2.000</td>
<td></td>
</tr>
<tr>
<td>Median : :162.0</td>
<td>Median :2059</td>
<td>Median :2.000</td>
<td></td>
</tr>
<tr>
<td>Mean : :248.6</td>
<td>Mean :2283</td>
<td>Mean :1.833</td>
<td></td>
</tr>
<tr>
<td>3rd Qu. : :306.0</td>
<td>3rd Qu. :3131</td>
<td>3rd Qu. :2.000</td>
<td></td>
</tr>
<tr>
<td>Max. : :1742.0</td>
<td>Max. :5565</td>
<td>Max. :3.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sex: 1</th>
<th>thick</th>
<th>days</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>:16.00</td>
<td>Min. :10</td>
<td>Min. :1.000</td>
</tr>
<tr>
<td>1st Qu.: :105.0</td>
<td>1st Qu.:1052</td>
<td>1st Qu.:1.000</td>
<td></td>
</tr>
<tr>
<td>Median : :258.0</td>
<td>Median :1860</td>
<td>Median :2.000</td>
<td></td>
</tr>
<tr>
<td>Mean : :361.1</td>
<td>Mean :1946</td>
<td>Mean :1.722</td>
<td></td>
</tr>
<tr>
<td>3rd Qu. : :484.0</td>
<td>3rd Qu. :2784</td>
<td>3rd Qu. :2.000</td>
<td></td>
</tr>
<tr>
<td>Max. : :1466.0</td>
<td>Max. :4492</td>
<td>Max. :3.000</td>
<td></td>
</tr>
</tbody>
</table>

and only among those with thin-tumours or only females (sex==1)

dsummary(melanoma,thick+days+status~sex|thick<97)

<table>
<thead>
<tr>
<th>sex: 0</th>
<th>thick</th>
<th>days</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>:10.00</td>
<td>Min. :356</td>
<td>Min. :1.000</td>
</tr>
<tr>
<td>1st Qu.: :32.00</td>
<td>1st Qu.:1762</td>
<td>1st Qu. :2.000</td>
<td></td>
</tr>
<tr>
<td>Median : :64.00</td>
<td>Median :2277</td>
<td>Median :2.000</td>
<td></td>
</tr>
<tr>
<td>Mean : :51.48</td>
<td>Mean :2425</td>
<td>Mean :2.034</td>
<td></td>
</tr>
<tr>
<td>3rd Qu. : :65.00</td>
<td>3rd Qu. :3185</td>
<td>3rd Qu. :2.000</td>
<td></td>
</tr>
<tr>
<td>Max. : :81.00</td>
<td>Max. :4688</td>
<td>Max. :3.000</td>
<td></td>
</tr>
</tbody>
</table>
sex: 1

<table>
<thead>
<tr>
<th>thick</th>
<th>days</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. :16.00</td>
<td>Min. :30</td>
<td>Min. :1.000</td>
</tr>
<tr>
<td>1st Qu.:30.00</td>
<td>1st Qu.:1820</td>
<td>1st Qu.:2.000</td>
</tr>
<tr>
<td>Median :65.00</td>
<td>Median :2886</td>
<td>Median :2.000</td>
</tr>
<tr>
<td>Mean :55.75</td>
<td>Mean :2632</td>
<td>Mean :1.875</td>
</tr>
<tr>
<td>3rd Qu.:81.00</td>
<td>3rd Qu.:3328</td>
<td>3rd Qu.:2.000</td>
</tr>
<tr>
<td>Max. :81.00</td>
<td>Max. :4207</td>
<td>Max. :3.000</td>
</tr>
</tbody>
</table>

\[
\text{dsummary(melanoma, thick+status+1|sex==1)}
\]

<table>
<thead>
<tr>
<th>thick</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. :16.00</td>
<td>Min. :1.000</td>
</tr>
<tr>
<td>1st Qu.:105.0</td>
<td>1st Qu.:1.000</td>
</tr>
<tr>
<td>Median :258.0</td>
<td>Median :2.000</td>
</tr>
<tr>
<td>Mean :361.1</td>
<td>Mean :1.722</td>
</tr>
<tr>
<td>3rd Qu.:484.0</td>
<td>3rd Qu.:2.000</td>
</tr>
<tr>
<td>Max. :1466.0</td>
<td>Max. :3.000</td>
</tr>
</tbody>
</table>

or

\[
\text{dsummary(melanoma, -thick+status|sex==1)}
\]

<table>
<thead>
<tr>
<th>thick</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. :16.0</td>
<td>Min. :1.000</td>
</tr>
<tr>
<td>1st Qu.:105.0</td>
<td>1st Qu.:1.000</td>
</tr>
<tr>
<td>Median :258.0</td>
<td>Median :2.000</td>
</tr>
<tr>
<td>Mean :361.1</td>
<td>Mean :1.722</td>
</tr>
<tr>
<td>3rd Qu.:484.0</td>
<td>3rd Qu.:2.000</td>
</tr>
<tr>
<td>Max. :1466.0</td>
<td>Max. :3.000</td>
</tr>
</tbody>
</table>

To make more complex conditions need to use the I()

\[
\text{dsummary(melanoma, thick+days+status~sex|I(thick<97 & sex==1)}
\]

sex: 1

<table>
<thead>
<tr>
<th>thick</th>
<th>days</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. :16.00</td>
<td>Min. :30</td>
<td>Min. :1.000</td>
</tr>
<tr>
<td>1st Qu.:30.00</td>
<td>1st Qu.:1820</td>
<td>1st Qu.:2.000</td>
</tr>
<tr>
<td>Median :65.00</td>
<td>Median :2886</td>
<td>Median :2.000</td>
</tr>
<tr>
<td>Mean :55.75</td>
<td>Mean :2632</td>
<td>Mean :1.875</td>
</tr>
<tr>
<td>3rd Qu.:81.00</td>
<td>3rd Qu.:3328</td>
<td>3rd Qu.:2.000</td>
</tr>
<tr>
<td>Max. :81.00</td>
<td>Max. :4207</td>
<td>Max. :3.000</td>
</tr>
</tbody>
</table>

Tables between variables

\[
\text{dtable(melanoma, status+sex)}
\]

<table>
<thead>
<tr>
<th>sex</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>91</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

All bivariate tables

\[
\text{dtable(melanoma, -status+sex+ulc, level=2)}
\]
Manipulation of data-frame data with dutility functions

<table>
<thead>
<tr>
<th>status</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>0</td>
<td>28</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>29</td>
<td>43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>status</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ulc</td>
<td>0</td>
<td>16</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>41</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sex</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ulc</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>43</td>
</tr>
</tbody>
</table>

All univariate tables

```r
dtable(melanoma,~status+sex+ulc,level=1)
```

<table>
<thead>
<tr>
<th>status</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>57</td>
<td>134</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sex</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>126</td>
<td>79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ulc</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>115</td>
<td>90</td>
</tr>
</tbody>
</table>

and with new variables

```r
dtable(melanoma,~status+sex+ulc+dcut(days)+I(days>300),level=1)
```

<table>
<thead>
<tr>
<th>status</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>57</td>
<td>134</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sex</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>126</td>
<td>79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ulc</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>115</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dcut(days)</th>
<th>[10,1.52e+03)</th>
<th>(1.52e+03,2e+03]</th>
<th>(2e+03,3.04e+03]</th>
<th>(3.04e+03,5.56e+03]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>52</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I(days > 300)</th>
<th>FALSE</th>
<th>TRUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>194</td>
</tr>
</tbody>
</table>

Sorting the data

To sort the data
Data manipulation with dutility functions

```r
data(melanoma)
mel = dsort(melanoma, ~days)
dsort(melanoma) <- ~days
head(mel)
```

<table>
<thead>
<tr>
<th>no</th>
<th>status</th>
<th>days</th>
<th>ulcer</th>
<th>thick</th>
<th>sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>789</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>676</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>3</td>
<td>30</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>97</td>
<td>2</td>
<td>35</td>
<td>0</td>
<td>134</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>3</td>
<td>99</td>
<td>0</td>
<td>290</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>1</td>
<td>185</td>
<td>1</td>
<td>1208</td>
</tr>
<tr>
<td>6</td>
<td>469</td>
<td>1</td>
<td>204</td>
<td>1</td>
<td>484</td>
</tr>
</tbody>
</table>

and to sort after multiple variables increasing and decreasing

```r
dsort(melanoma) <- ~days-status
head(melanoma)
```

<table>
<thead>
<tr>
<th>no</th>
<th>status</th>
<th>days</th>
<th>ulcer</th>
<th>thick</th>
<th>sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>789</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>676</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>3</td>
<td>30</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>97</td>
<td>2</td>
<td>35</td>
<td>0</td>
<td>134</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>3</td>
<td>99</td>
<td>0</td>
<td>290</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>1</td>
<td>185</td>
<td>1</td>
<td>1208</td>
</tr>
<tr>
<td>6</td>
<td>469</td>
<td>1</td>
<td>204</td>
<td>1</td>
<td>484</td>
</tr>
</tbody>
</table>

Making new variables for the analysis

To define a bunch of new covariates within a data-frame

```r
data(melanoma)
melanoma = transform(melanoma, thick2 = thick^2, lthick = log(thick))
```

<table>
<thead>
<tr>
<th>no</th>
<th>status</th>
<th>days</th>
<th>ulcer</th>
<th>thick</th>
<th>sex</th>
<th>thick2</th>
<th>lthick</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>789</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>676</td>
<td>456976</td>
<td>6.516193</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>3</td>
<td>30</td>
<td>0</td>
<td>65</td>
<td>4225</td>
<td>4.174387</td>
</tr>
<tr>
<td>3</td>
<td>97</td>
<td>2</td>
<td>35</td>
<td>0</td>
<td>134</td>
<td>17956</td>
<td>4.897840</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>3</td>
<td>99</td>
<td>0</td>
<td>290</td>
<td>84100</td>
<td>5.669881</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>1</td>
<td>185</td>
<td>1</td>
<td>1208</td>
<td>1459264</td>
<td>7.096721</td>
</tr>
<tr>
<td>6</td>
<td>469</td>
<td>1</td>
<td>204</td>
<td>1</td>
<td>484</td>
<td>234256</td>
<td>6.182085</td>
</tr>
</tbody>
</table>

When the above definitions are done using a condition this can be achieved using the dtransform function that extends transform with a possible condition

```r
melanoma = dtransform(melanoma, ll = thick*1.05^ulc, sex==1)
melanoma = dtransform(melanoma, ll = thick, sex!=1)
dmean(melanoma, ll ~ sex+ulc)
```

<table>
<thead>
<tr>
<th>sex</th>
<th>ulcer</th>
<th>ll</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>173.7342</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>197.3611</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>374.5532</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>523.1198</td>
</tr>
</tbody>
</table>
Making factors (groupings)

On the melanoma data the variable thick gives the thickness of the melanoma tumour. For some analyses we would like to make a factor depending on the thickness. This can be done in several different ways

```r
melanoma=dcut(melanoma,-thick,breaks=c(0,200,500,800,2000))
```

New variable is named thickcat.0 by default.
To see levels of factors in data-frame

```r
dlevels(melanoma)
```

```r
thickcat.0 #levels=4
[1] "[0,200]" "(200,500]" "(500,800]" "(800,2e+03]"
```

Checking group sizes

```r
dtable(melanoma,~thickcat.0)
```

```r
thickcat.0
[0,200] [200,500] [500,800] [800,2e+03]
 109    64    20    12
```

With adding to the data-frame directly

```r
dcut(melanoma,breaks=c(0,200,500,800,2000)) <- gr.thick1-thick
dlevels(melanoma)
```

```r
thickcat.0 #levels=4
[1] "[0,200]" "(200,500]" "(500,800]" "(800,2e+03]"
```

```r
gr.thick1 #levels=4
[1] "[0,200]" "(200,500]" "(500,800]" "(800,2e+03]"
```

```r
new variable is named thickcat.0 (after first cut-point), or to get quartiles with default names thick.cat.4
```

```r
dcut(melanoma) <- ~ thick # new variable is thick.cat.4
dlevels(melanoma)
```

```r
thickcat.0 #levels=4
[1] "[0,200]" "(200,500]" "(500,800]" "(800,2e+03]"
```

```r
gr.thick1 #levels=4
[1] "[0,200]" "(200,500]" "(500,800]" "(800,2e+03]"
```

```r
thickcat.4 #levels=4
[1] "[10,97]" "(97,194]" "(194,356]" "(356,1.74e+03]"
```

or median groups, here starting again with the original data,

```r
data(melanoma)
dcut(melanoma,breaks=2) <- ~ thick # new variable is thick.2
dlevels(melanoma)
```
to control new names

```
1 data(melanoma)
2 mela = dcut(melanoma, thickcat4+dayscat4~thick+days, breaks=4)
3 dlevels(mela)
```

```
thickcat4 #levels=:4
[1] "[10,97]" "(97,194]" "(194,356]" "(356,1.74e+03]

dayscat4 #levels=:4
[1] "[10,1.52e+03]" "(1.52e+03,2e+03]" "(2e+03,3.04e+03]"
[4] "(3.04e+03,5.56e+03]
```

or

```
1 data(melanoma)
2 dcut(melanoma, breaks=4) <- thickcat4+dayscat4~thick+days
3 dlevels(melanoma)
```

```
thickcat4 #levels=:4
[1] "[10,97]" "(97,194]" "(194,356]" "(356,1.74e+03]

dayscat4 #levels=:4
[1] "[10,1.52e+03]" "(1.52e+03,2e+03]" "(2e+03,3.04e+03]"
[4] "(3.04e+03,5.56e+03]
```

This can also be typed out more specifically

```
1 melanoma$gthick = cut(melanoma$thick, breaks=c(0,200,500,800,2000))
2 melanoma$gthick = cut(melanoma$thick, breaks=quantile(melanoma$thick), include.lowest=TRUE)
```

Working with factors

To see levels of covariates in data-frame

```
1 data(melanoma)
2 dcut(melanoma, breaks=4) <- thickcat4~thick
3 dlevels(melanoma)
```

```
thickcat4 #levels=:4
[1] "[10,97]" "(97,194]" "(194,356]" "(356,1.74e+03]
```

To relevel the factor

```
1 dtable(melanoma,-thickcat4)
2 melanoma = drelevel(melanoma,-thickcat4, ref="(194,356])")
3 dlevels(melanoma)
```
or to take the third level in the list of levels, same as above,

```r
melanoma = drelevel(melanoma, -thickcat4, ref=2)
dlevels(melanoma)
```

To combine levels of a factor (first combining first 3 groups into one)

```r
melanoma = drelevel(melanoma, -thickcat4, newlevels=1:3)
dlevels(melanoma)
```

or to combine groups 1 and 2 into one group and 3 and 4 into another

```r
dkeep(melanoma) <- ~thick+thickcat4
melanoma = drelevel(melanoma, gthick2-thickcat4, newlevels=list(1:2,3:4))
dlevels(melanoma)
```

Changing order of factor levels
Manipulation of data-frame data with dutility functions

```
1. dfactor(melanoma, levels=c(3,1,2,4)) <- thickcat4.2-thickcat4
2. dtable(melanoma, "thickcat4")
```

```
thickcat4 levels=4
[1] "[10,97]" "(97,194]" "(194,356]" "(356,1.74e+03]"

thickcat4.2 levels=4
[1] "(194,356]" "[10,97]" "(97,194]" "(356,1.74e+03]"

-----------------------------------------
thickcat4.2 (194,356] [10,97] (97,194] (356,1.74e+03]
[10,97] 0 56 0 0
(97,194] 0 0 53 0
(194,356] 45 0 0 0
(356,1.74e+03] 0 0 0 51
```

Combine levels but now control factor-level names

```
1. melanoma = drelevel(melanoma, gthick3-thickcat4, newlevels=list(group1.2=1:2, group3.4=3:4))
2. dlevels(melanoma)
```

```
thickcat4 levels=4
[1] "[10,97]" "(97,194]" "(194,356]" "(356,1.74e+03]"

gthick2 levels=2
[1] "[10,97]-(97,194]" "(194,356]-356,1.74e+03]"

gthick3 levels=2
[1] "group1.2" "group3.4"
```

Making a factor from existing numeric variable and vice versa

A numeric variable "status" with values 1,2,3 into a factor by

```
1. data(melanoma)
2. melanoma = dfactor(melanoma, ~status, labels=c("malignant-melanoma", "censoring", "dead-other"))
3. melanoma = dfactor(melanoma, sexl~sex, labels=c("females", "males"))
4. dtable(melanoma, ~sexl+status.f)
```

```
status.f malignant-melanoma censoring dead-other
sexl females 28 91 7
males 29 43 7
```

A gender factor with values "M", "F" can be converted into numerics by

```
1. melanoma = dnumeric(melanoma, ~sexl)
2. dstr(melanoma, "sex*")
3. dtable(melanoma, ~'sex*', level=2)
```
'data.frame': 205 obs. of 3 variables:
$ sex : int 1 1 1 0 1 1 1 0 0 ...
$ sexl : Factor w/ 2 levels "females","males": 2 2 2 1 2 2 2 2 1 1 ...
$ sexl.n: num 2 2 2 1 2 2 2 2 1 1 ...

sex
sexl 0 1
females 126 0
males 0 79

sex
sexl.n 0 1
1 126 0
2 0 79

sexl
sexl.n females males
1 126 0
2 0 79