Package ‘metaBMA’

June 2, 2020

Type Package

Date 2020-05-30

Title Bayesian Model Averaging for Random and Fixed Effects Meta-Analysis

Version 0.6.3

Description Computes the posterior model probabilities for standard meta-analysis models (null model vs. alternative model assuming either fixed- or random-effects, respectively). These posterior probabilities are used to estimate the overall mean effect size as the weighted average of the mean effect size estimates of the random- and fixed-effect model as proposed by Gronau, Van Erp, Heck, Cesario, Jonas, & Wagenmakers (2017, <doi:10.1080/23743603.2017.1326760>). The user can define a wide range of non-informative or informative priors for the mean effect size and the heterogeneity coefficient. Moreover, using pre-compiled Stan models, meta-analysis with continuous and discrete moderators with Jeffreys-Zellner-Siow (JZS) priors can be fitted and tested. This allows to compute Bayes factors and perform Bayesian model averaging across random- and fixed-effects meta-analysis with and without moderators. For a primer on Bayesian model-averaged meta-analysis, see Gronau, Heck, Berkhout, Haaf, & Wagenmakers (2020, <doi:10.31234/osf.io/97qup>).

Depends R (>= 3.4.0), Rcpp (>= 1.0.0), methods

Imports mvtnorm, logspline, coda, LaplacesDemon, rstan (>= 2.18.1), rstantools (>= 1.5.1), bridgesampling

Suggests testthat, knitr

LinkingTo BH (>= 1.69.0-1), Rcpp (>= 1.0.0), RcppEigen (>= 0.3.3.5.0), rstan (>= 2.18.1), StanHeaders (>= 2.18.0)

VignetteBuilder knitr

URL https://github.com/danheck/metaBMA

License GPL-3

Encoding UTF-8

LazyData true

NeedsCompilation yes

SystemRequirements GNU make
metaBMA-package

RoxygenNote 7.1.0

Author Daniel W. Heck [aut, cre] (<https://orcid.org/0000-0002-6302-9252>),
Quentin F. Gronau [ctb],
Eric-Jan Wagenmakers [ctb]

Maintainer Daniel W. Heck <dheck@uni-marburg.de>

Repository CRAN

Date/Publication 2020-06-02 08:40:02 UTC

R topics documented:

metaBMA-package .. 2
bma ... 4
facial_feedback .. 5
inclusion ... 6
meta_bma .. 7
meta_default .. 9
meta_fixed ... 11
meta_ordered ... 12
meta_random ... 15
plot.meta_pred .. 17
plot.prior ... 17
plot_default ... 18
plot_forest ... 19
plot_posterior ... 20
power_pose ... 20
predicted_bf .. 22
prior .. 22
towels .. 24

Index 25

metaBMA-package metaBMA: Bayesian Model Averaging for Random and Fixed Effects
Meta-Analysis

Description

Fixed-effects meta-analyses assume that the effect size d is identical in all studies. In contrast, random-effects meta-analyses assume that effects vary according to a normal distribution with mean d and standard deviation τ. Both models can be compared in a Bayesian framework by assuming specific prior distribution for d and τ (see prior). Given the posterior model probabilities, the evidence for or against an effect (i.e., whether $d = 0$) and the evidence for or against random effects can be evaluated (i.e., whether $\tau = 0$). By using Bayesian model averaging, both tests can be performed by integrating over the other model. This allows to test whether an effect exists while accounting for uncertainty whether study heterogeneity exists (so-called inclusion Bayes factors). For a primer on Bayesian model-averaged meta-analysis, see Gronau, Heck, Berkhout, Haaf, and Wagenmakers (2020).
Details

The most general functions in metaBMA is `meta_bma`, which fits random- and fixed-effects models, compute the inclusion Bayes factor for the presence of an effect and the averaged posterior distribution of the mean effect \(d \) (which accounts for uncertainty regarding study heterogeneity). Prior distributions can be specified and plotted using the function `prior`.

Moreover, `meta_fixed` and `meta_random` fit a single meta-analysis models. The model-specific posteriors for \(d \) can be averaged by `bma` and inclusion Bayes factors be computed by `inclusion`.

Results can be visualized with the functions `plot_posterior`, which compares the prior and posterior density for a fitted meta-analysis, and `plot_forest`, which plots study and overall effect sizes.

For more details how to use the package, see the vignette: `vignette("metaBMA")`.

Funding

Funding for this research was provided by the Berkeley Initiative for Transparency in the Social Sciences, a program of the Center for Effective Global Action (CEGA), Laura and John Arnold Foundation, and by the German Research Foundation (grant GRK-2277: Statistical Modeling in Psychology).

Author(s)

Heck, D. W. & Gronau, Q. F.

References

See Also

Useful links:

- https://github.com/danheck/metaBMA
Bayesian Model Averaging

Description

Model averaging for different meta-analysis models (e.g., random-effects or fixed-effects with different priors) based on the posterior model probability.

Usage

\[
\text{bma}(\text{meta}, \text{prior} = 1, \text{parameter} = "d", \text{summarize} = "integrate", \text{ci} = 0.95, \text{rel.tol} = .Machine$double.eps^0.5)
\]

Arguments

- **meta**: list of meta-analysis models (fitted via `meta_random` or `meta_fixed`)
- **prior**: prior probabilities over models (possibly unnormalized). For instance, if the first model is as likely as models 2, 3 and 4 together: \(\text{prior} = c(3,1,1,1) \). The default is a discrete uniform distribution over models.
- **parameter**: either the mean effect "d" or the heterogeneity "tau" (i.e., the across-study standard deviation of population effect sizes).
- **summarize**: how to estimate parameter summaries (mean, median, SD, etc.): Either by numerical integration (summarize = "integrate") or based on MCMC/Stan samples (summarize = "stan").
- **ci**: probability for the credibility/highest-density intervals.
- **rel.tol**: relative tolerance used for numerical integration using `integrate`. Use `rel.tol = .Machine$double.eps` for maximal precision (however, this might be slow).

Examples

```r
# model averaging for fixed and random effects
data(towels)
fixed <- meta_fixed(logOR, SE, study, towels)
random <- meta_random(logOR, SE, study, towels, iter = 1000)

averaged <- bma(list("fixed" = fixed, "random" = random))
plot_posterior(averaged)
plot_forest(averaged, mar = c(4.5, 20, 4, .3))
```
Data Set: Facial Feedback

Description

Preregistered replication (Wagenmakers et al., 2016) that investigated the facial feedback hypothesis (Strack, Martin, & Stepper, 1988).

Usage

facial_feedback

Format

A data frame with three variables:

- study: Authors of original study (see Wagenmakers et al., 2016)
- d: Measure of effect size: Cohen's d (difference between smile vs. pout condition)
- SE: Measure of precision: standard error of Cohen's d

Details

The facial-feedback hypothesis states that people's affective responses can be influenced by their own facial expression (e.g., smiling, pouting), even when their expression did not result from their emotional experiences (Strack, Martin, & Stepper, 1988).

References

Examples

data(facial_feedback)
head(facial_feedback)
mf <- meta_fixed(d, SE, study, facial_feedback)
mf
plot_posterior(mf)
inclusion

Inclusion Bayes Factor

Description

Computes the inclusion Bayes factor for two sets of models (e.g., A={M1,M2} vs. B={M3,M4}).

Usage

inclusion(logml, include = 1, prior = 1)

Arguments

logml
a vector with log-marginal likelihoods. Alternatively, a list with meta-analysis models (fitted via `meta_random` or `meta_fixed`).

include
integer vector which models to include in inclusion Bayes factor/posterior probability. If only two marginal likelihoods/meta-analyses are supplied, the inclusion Bayes factor is identical to the usual Bayes factor BF_{M1,M2}. One can include models depending on the names of the models (such as "random_H1") by providing a character value, for instance: include="H1" (all H1 vs. all H0 models) or include="random" (all random- vs. all fixed-effects models).

prior
prior probabilities over models (possibly unnormalized). For instance, if the first model is as likely as models 2, 3 and 4 together: prior = c(3,1,1,1). The default is a discrete uniform distribution over models.

Examples

Example with simple Normal-distribution models

generate data:
x <- rnorm(50)

Model 1: x ~ Normal(0,1)
logm1 <- sum(dnorm(x, log = TRUE))

Model 2: x ~ Normal(.2, 1)
logm2 <- sum(dnorm(x, mean = .2, log = TRUE))

Model 3: x ~ Student-t(df=2)
logm3 <- sum(dt(x, df=2, log = TRUE))

BF: Correct (Model 1) vs. misspecified (2 & 3)
inclusion(c(logm1, logm2, logm3), include = 1)
Model Averaging for Meta-Analysis

Description

Fits random- and fixed-effects meta-analyses and performs Bayesian model averaging for H1 (d ≠ 0) vs. H0 (d = 0).

Usage

```r
meta_bma(
  y,
  SE,
  labels,
  data,
  d = prior("norm", c(mean = 0, sd = 0.3)),
  tau = prior("invgamma", c(shape = 1, scale = 0.15)),
  rscale_contin = 1/2,
  rscale_discrete = sqrt(2)/2,
  centering = TRUE,
  prior = c(1, 1, 1, 1),
  logml = "integrate",
  summarize = "stan",
  ci = 0.95,
  rel.tol = .Machine$double.eps^0.3,
  logml_iter = 5000,
  silent_stan = TRUE,
  ...
)
```

Arguments

- **y**: effect size per study. Can be provided as (1) a numeric vector, (2) the quoted or unquoted name of the variable in `data`, or (3) a `formula` to include discrete or continuous moderator variables.
- **SE**: standard error of effect size for each study. Can be a numeric vector or the quoted or unquoted name of the variable in `data`
- **labels**: optional: character values with study labels. Can be a character vector or the quoted or unquoted name of the variable in `data`
- **data**: data frame containing the variables for effect size `y`, standard error `SE`, `labels`, and moderators per study.
- **d**: prior distribution on the average effect size d. The prior probability density function is defined via `prior`
- **tau**: prior distribution on the between-study heterogeneity tau (i.e., the standard deviation of the study effect sizes dstudy in a random-effects meta-analysis. A (nonnegative) prior probability density function is defined via `prior`
rscale_contin scale parameter of the JZS prior for the continuous covariates.
rscale_discrete scale parameter of the JZS prior for discrete moderators.
centering whether continuous moderators are centered.
prior prior probabilities over models (possibly unnormalized) in the order c(fixed_H0,fixed_H1,random_H0,random_H1). For instance, if we expect fixed effects to be two times as likely as random effects and H0 and H1 to be equally likely: prior = c(2,2,1,1).
logml how to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000,warmup=1000).
summarize how to estimate parameter summaries (mean, median, SD, etc.): Either by numerical integration (summarize = "integrate") or based on MCMC/Stan samples (summarize = "stan").
ci probability for the credibility/highest-density intervals.
rel.tol relative tolerance used for numerical integration using integrate. Use rel.tol=.Machine$double.eps for maximal precision (however, this might be slow).
logml_iter number of iterations (per chain) from the posterior distribution of d and tau. The samples are used for computing the marginal likelihood of the random-effects model with bridge sampling (if logml="stan") and for obtaining parameter estimates (if summarize="stan"). Note that the argument iter=2000 controls the number of iterations for estimation of the random-effect parameters per study in random-effects meta-analysis.
silent_stan whether to suppress the Stan progress bar.
... further arguments passed to rstan::sampling (see stanmodel-method-sampling).

Details

Bayesian model averaging for four meta-analysis models: Fixed- vs. random-effects and H0 (d = 0) vs. H1 (e.g., d > 0). For a primer on Bayesian model-averaged meta-analysis, see Gronau, Heck, Berkhout, Haaf, and Wagenmakers (2020).

By default, the log-marginal likelihood is computed by numerical integration (logml="integrate"). This is relatively fast and gives precise, reproducible results. However, for extreme priors or data (e.g., very small standard errors), numerical integration is not robust and might provide incorrect results. As an alternative, the log-marginal likelihood can be estimated using MCMC/Stan samples and bridge sampling (logml="stan").

To obtain posterior summary statistics for the average effect size d and the heterogeneity parameter tau, one can also choose between numerical integration (summarize="integrate") or MCMC sampling in Stan (summarize="stan"). If any moderators are included in a model, both the marginal likelihood and posterior summary statistics can only be computed using Stan.
References

See Also

meta_fixed, meta_random

Examples

Note: The following example optimizes speed (for CRAN checks).
The settings are not suitable for actual data analysis!

data(towels)
set.seed(123)
mb <- meta_bma(logOR, SE, study, towels,
 d = prior("norm", c(mean=0, sd=.3), lower=0),
 tau = prior("invgamma", c(shape = 1, scale = 0.15)),
 rel.tol = .Machine$double.eps^.15, iter=1000)

plot_posterior(mb, "d")
data frame containing the variables for effect size \(y \), standard error \(SE \), labels, and moderators per study.

field: either "psychology" or "medicine" (uses partial matching, so "p" and "m" are sufficient)

effect: the type of effect size: either Cohen’s \(d \) ("d"), Pearson correlations ("r"), Fisher’s \(z \)-transformed correlations ("z"), or log-odds ratios ("logOR").

... further arguments passed to meta_bma

Details

Default prior distributions can be plotted using plot_default.

For field = "psychology", the following defaults are used:

- effect = "d": Half-normal with SD=0.3 on mean effect and half-Cauchy with scale=.5 on standard deviation of effects.
- effect = "r": Half-normal with SD=0.3 on mean effect and half-Cauchy with scale=.5 on standard deviation of effects.
- effect = "z": Half-normal with SD=0.3 on mean effect and half-Cauchy with scale=.5 on standard deviation of effects.
- effect = "logOR": Half-normal with SD=0.3 on mean effect and half-Cauchy with scale=.5 on standard deviation of effects.

For field = "medicine", the following defaults are used:

- effect = "d": Half-normal with SD=0.3 on mean effect and half-Cauchy with scale=.5 on standard deviation of effects.
- effect = "r": Half-normal with SD=0.3 on mean effect and half-Cauchy with scale=.5 on standard deviation of effects.
- effect = "z": Half-normal with SD=0.3 on mean effect and half-Cauchy with scale=.5 on standard deviation of effects.
- effect = "logOR": Half-normal with SD=0.3 on mean effect and half-Cauchy with scale=.5 on standard deviation of effects.

References

See Also

meta_bma, plot_default
Examples

Note: The following example optimizes speed (for CRAN checks).
The settings are not suitable for actual data analysis!

data(towels)
set.seed(123)
md <- meta_default(logOR, SE, study, towels,
 field = "psych", effect = "logOR",
 rel.tol=.Machine$double.eps^.15, iter=1000)

md
plot_forest(md)

Description

Runs a Bayesian meta-analysis assuming that the mean effect \(d \) in each study is identical (i.e., a fixed-effects analysis).

Usage

meta_fixed(
 y,
 SE,
 labels,
 data,
 d = prior("norm", c(mean = 0, sd = 0.3)),
 rscale_contin = 1/2,
 rscale_discrete = sqrt(2)/2,
 centering = TRUE,
 logml = "integrate",
 summarize = "integrate",
 ci = 0.95,
 rel.tol = .Machine$double.eps^0.3,
 silent_stan = TRUE,
 ...
)

Arguments

y effect size per study. Can be provided as (1) a numeric vector, (2) the quoted or unquoted name of the variable in data, or (3) a formula to include discrete or continuous moderator variables.

SE standard error of effect size for each study. Can be a numeric vector or the quoted or unquoted name of the variable in data
meta_ordered

Meta-Analysis with Order-Constrained Study Effects

Description

Computes the Bayes factor for the hypothesis that the true study effects in a random-effects meta-analysis are all positive or negative.

Examples

```r
data(towels)
### Bayesian Fixed-Effects Meta-Analysis (H1: d>0 Cauchy)
mf <- meta_fixed(logOR, SE, study, data = towels,
                 d = prior("norm", c(mean=0, sd=.3), lower=0))
mf
plot_posterior(mf)
plot_forest(mf)
```

Arguments

- **labels**: optional: character values with study labels. Can be a character vector or the quoted or unquoted name of the variable in `data`
- **data**: data frame containing the variables for effect size `y`, standard error `SE`, `labels`, and moderators per study.
- **d**: prior distribution on the average effect size `d`. The prior probability density function is defined via `prior`.
- **rscale_contin**: scale parameter of the JZS prior for the continuous covariates.
- **rscale_discrete**: scale parameter of the JZS prior for discrete moderators.
- **centering**: whether continuous moderators are centered.
- **logml**: how to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with `logml="stan"`, many MCMC samples are required (e.g., `logml_iter=10000, warmup=1000`).
- **summarize**: how to estimate parameter summaries (mean, median, SD, etc.): Either by numerical integration (summarize = "integrate") or based on MCMC/Stan samples (summarize = "stan").
- **ci**: probability for the credibility/highest-density intervals.
- **rel.tol**: relative tolerance used for numerical integration using `integrate`. Use `rel.tol=Machine$double.eps` for maximal precision (however, this might be slow).
- **silent_stan**: whether to suppress the Stan progress bar.
- **...**: further arguments passed to `rstan::sampling` (see `stanmodel-method-sampling`). Relevant MCMC settings concern the number of warmup samples that are discarded (`warmup=500`), the total number of iterations per chain (`iter=2000`), the number of MCMC chains (`chains=4`), whether multiple cores should be used (`cores=4`), and control arguments that make the sampling in Stan more robust, for instance: `control=list(adapt_delta=.97)`.
Usage

```
meta_ordered(
  y,            
  SE,           
  labels,       
  data,         
  d = prior("norm", c(mean = 0, sd = 0.3), lower = 0),
  tau = prior("invgamma", c(shape = 1, scale = 0.15)),
  prior = c(1, 1, 1, 1),
  logml = "integrate",
  summarize = "stan",
  ci = 0.95,
  rel.tol = .Machine$double.eps^0.3,
  logml_iter = 5000,
  iter = 5000,
  silent_stan = TRUE,
  ...
)
```

Arguments

- **y**: effect size per study. Can be provided as (1) a numeric vector, (2) the quoted or unquoted name of the variable in `data`, or (3) a formula to include discrete or continuous moderator variables.

- **SE**: standard error of effect size for each study. Can be a numeric vector or the quoted or unquoted name of the variable in `data`.

- **labels**: optional: character values with study labels. Can be a character vector or the quoted or unquoted name of the variable in `data`.

- **data**: data frame containing the variables for effect size `y`, standard error `SE`, `labels`, and moderators per study.

- **d**: prior distribution on the average effect size `d`. The prior probability density function is defined via `prior`.

- **tau**: prior distribution on the between-study heterogeneity `tau` (i.e., the standard deviation of the study effect sizes `d_study` in a random-effects meta-analysis. A (nonnegative) prior probability density function is defined via `prior`.

- **prior**: prior probabilities over models (possibly unnormalized) in the order `c(fixed_H0, fixed_H1, ordered_H1, random_H1)`. Note that the model `random_H0` is not included in the comparison.

- **logml**: how to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with `logml="stan"`, many MCMC samples are required (e.g., `logml_iter=10000, warmup=1000`).

- **summarize**: how to estimate parameter summaries (mean, median, SD, etc.): Either by numerical integration (summarize = "integrate") or based on MCMC/Stan samples (summarize = "stan").

- **ci**: probability for the credibility/highest-density intervals.
rel.tol relative tolerance used for numerical integration using `integrate`. Use rel.tol= `.Machine$double.eps` for maximal precision (however, this might be slow).

logml_iter number of iterations (per chain) from the posterior distribution of d and tau. The samples are used for computing the marginal likelihood of the random-effects model with bridge sampling (if logml="stan") and for obtaining parameter estimates (if summarize="stan"). Note that the argument `iter=2000` controls the number of iterations for estimation of the random-effect parameters per study in random-effects meta-analysis.

iter number of MCMC iterations for the random-effects meta-analysis. Needs to be larger than usual to estimate the probability of all random effects being ordered (i.e., positive or negative).

silent_stan whether to suppress the Stan progress bar.

... further arguments passed to `rstan::sampling` (see `stanmodel-method-sampling`). Relevant MCMC settings concern the number of warmup samples that are discarded (`warmup=500`), the total number of iterations per chain (`iter=2000`), the number of MCMC chains (`chains=4`), whether multiple cores should be used (`cores=4`), and control arguments that make the sampling in Stan more robust, for instance: `control=list(adapt_delta=.97)`.

Details

Usually, in random-effects meta-analysis, the study-specific random-effects are allowed to be both negative or positive even when the prior on the overall effect size d is truncated to be positive). In contrast, the function `meta_ordered` fits and tests a model in which the random effects are forced to be either all positive or all negative. The direction of the study-specific random-effects is defined via the prior on the mode of the truncated normal distribution d. For instance, `d=prior("norm",c(0,.5),lower=0)` means that all random-effects are positive (not just the overall mean effect size).

The posterior summary statistics of the overall effect size in the model ordered refer to the the average/mean of the study-specific effect sizes (as implied by the fitted truncated normal distribution) and not to the location parameter d of the truncated normal distribution (which is only the mode, not the expected value of a truncated normal distribution).

The Bayes factor for the order-constrained model is computed using the encompassing Bayes factor. Since many posterior samples are required for this approach, the default number of MCMC iterations for `meta_ordered` is `iter=5000` per chain.

References

See Also

`meta_bma`, `meta_random`
Examples

```r
### Bayesian Meta-Analysis with Order Constraints
# Note: The following code optimizes speed (for CRAN checks).
# The settings are not suitable for actual data analysis!

data(towels)
set.seed(123)
mo <- meta_ordered(logOR, SE, study, towels,
  d = prior("norm", c(mean=0, sd=.3), lower=0),
  rel.tol=.01, iter=1000)
mo
plot_posterior(mo)
```

meta_random
Bayesian Random-Effects Meta-Analysis

Description

Bayesian meta-analysis assuming that the effect size \(d \) varies across studies with standard deviation \(\tau \) (i.e., a random-effects model).

Usage

```r
meta_random(
  y,
  SE,
  labels,
  data,
  d = prior("norm", c(mean = 0, sd = 0.3)),
  tau = prior("invgamma", c(shape = 1, scale = 0.15)),
  rscale_contin = 1/2,
  rscale_discrete = sqrt(2)/2,
  centering = TRUE,
  logml = "integrate",
  summarize = "stan",
  ci = 0.95,
  rel.tol = .Machine$double.eps^0.3,
  logml_iter = 5000,
  silent_stan = TRUE,
  ...
)
```

Arguments

- **y**: effect size per study. Can be provided as (1) a numeric vector, (2) the quoted or unquoted name of the variable in `data`, or (3) a **formula** to include discrete or continuous moderator variables.
SE standard error of effect size for each study. Can be a numeric vector or the quoted or unquoted name of the variable in data.

labels optional: character values with study labels. Can be a character vector or the quoted or unquoted name of the variable in data.

data data frame containing the variables for effect size y, standard error SE, labels, and moderators per study.

d prior distribution on the average effect size d. The prior probability density function is defined via prior.

tau prior distribution on the between-study heterogeneity tau (i.e., the standard deviation of the study effect sizes dstudy in a random-effects meta-analysis. A (nonnegative) prior probability density function is defined via prior.

rscale_contin scale parameter of the JZS prior for the continuous covariates.

rscale_discrete scale parameter of the JZS prior for discrete moderators.

centering whether continuous moderators are centered.

logml how to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000, warmup=1000).

summarize how to estimate parameter summaries (mean, median, SD, etc.): Either by numerical integration (summarize = "integrate") or based on MCMC/Stan samples (summarize = "stan").

ci probability for the credibility/highest-density intervals.

rel.tol relative tolerance used for numerical integration using integrate. Use rel.tol=.Machine$double.eps for maximal precision (however, this might be slow).

logml_iter number of iterations (per chain) from the posterior distribution of d and tau. The samples are used for computing the marginal likelihood of the random-effects model with bridge sampling (if logml="stan") and for obtaining parameter estimates (if summarize="stan"). Note that the argument iter=2000 controls the number of iterations for estimation of the random-effect parameters per study in random-effects meta-analysis.

silent_stan whether to suppress the Stan progress bar.

... further arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are discarded (warmup=500), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust, for instance: control=list(adapt_delta=.97).

Examples

Bayesian Random-Effects Meta-Analysis

Note: The following code optimizes speed (for CRAN checks).
The settings are not suitable for actual data analysis!
```r
data(towels)
set.seed(123)
mr <- meta_random(logOR, SE, study, data = towels,
                 d = prior("norm", c(mean=0, sd=.3), lower = 0),
                 tau = prior("invgamma", c(shape = 1, scale = 0.15)),
                 rel.tol=.Machine$double.eps^.15, iter=1000)

mr
plot_posterior(mr)
```

plot.meta_pred

Plot Predicted Bayes Factors

Description
Plot Predicted Bayes Factors

Usage
```r
## S3 method for class 'meta_pred'
plot(x, which = "d_10_averaged", scale = "BF", ...)
```

Arguments
- `x`: an objct of the class "prediction" which contains observed and predicted Bayes factors
- `which`: a character value defining which Bayes factor to plot (one of "d_10_fixed", "d_10_random", "d_10_averaged", "H1_fixed_vs_random")
- `scale`: either plots Bayes factors ("BF"), inverse Bayes factors ("1/BF"), log Bayes factors ("log"), or the log-inverse Bayes factor ("1/log")
- `...`: arguments passed to `plot`

plot.prior

Plot Prior Distribution

Description
Plot the probability density function of a prior distribution.

Usage
```r
## S3 method for class 'prior'
plot(x, from, to, ...)
```
Arguments

- **x**: prior probability density function defined via `prior`.
- **from**: lower boundary
- **to**: upper boundary
- **...**: further arguments passed to `plot`

Examples

```r
p1 <- prior("t", c(location=0, scale=0.707, nu=1), 0, 3)
plot(p1, 0, 2)

# define custom prior pdf up to a constant:
p2 <- prior("custom", function(x) x^.5, 0, .5)
plot(p2)
```

Description

Plots default priors for the mean effect `d` and the standard deviation of effects `tau`.

Usage

```r
plot_default(field = "psychology", effect = "d", ...)
```

Arguments

- **field**: either "psychology" or "medicine" (uses partial matching, so "p" and "m" are sufficient)
- **effect**: the type of effect size: either Cohen’s `d` ("d"), Pearson correlations ("r"), Fisher’s `z`-transformed correlations ("z"), or log-odds ratios ("logOR").
- **...**: further arguments passed to `plot` (e.g., from, to)

See Also

`meta_default` for details on standard priors.

Examples

```r
plot_default("psychology", "ttest", 0, 2)
plot_default("medicine", "logOR", 0, 2)
```
plot_forest

Forest Plot for Meta-Analysis

Description

Plots estimated effect sizes for all studies.

Usage

plot_forest(
 meta, from, to, shrinked = "random", summary = c("mean", "hpd"),
 mar = c(4.5, 12, 4, 0.3), cex.axis = 1,
 ...)

Arguments

 meta fished meta-analysis model
 from lower limit of the x-axis
 to upper limit of the x-axis
 shrinked which meta-analysis model should be used to show (shrinked) estimates of the
 study effect sizes. The name must match the corresponding name in the list
 meta. Can be suppressed by shrinked = ""
 summary character vector with two values: first, either "mean" or "50%"; and second,
 either highest-probability-density interval "hpd" or the Bayesian credibility
 interval "bci".
 mar margin of the plot in the order c(bottom, left, top, right) (see par)
 cex.axis size of the y-axis annotation for the labels of studies.
 ... arguments passed to plot (e.g., from, to)

See Also

meta_bma, meta_fixed, meta_random

Examples

data(towels)
mf <- meta_fixed(logOR, SE, study, towels)
plot_forest(mf, mar = c(4.5,20,4,0.2), xlab="Log Odds Ratio")
plot_posterior

Plot Posterior Distribution

Description

Plot Posterior Distribution

Usage

```
plot_posterior(
  meta,
  parameter = "d",
  from,
  to,
  summary = c("mean", "hpd"),
  ...
)
```

Arguments

- `meta`: fitted meta-analysis model
- `parameter`: only for random-effects model: whether to plot "d" or "tau"
- `from`: lower limit of the x-axis
- `to`: upper limit of the x-axis
- `summary`: character vector with two values: first, either "mean" or "50%"; and second, either highest-probability-density interval "hpd" or the Bayesian credibility interval "bci".
- `...`: arguments passed to `plot`

See Also

`meta_bma`, `meta_fixed`, `meta_random`

power_pose

Data Set: Power Pose Effect

Description

Includes six pre-registered replication studies testing whether participants feel more powerful if they adopt expansive as opposed to constrictive body postures. In the data set `power_pose_unfamiliar`, only those participants are included who were unfamiliar with the power pose effect.
Usage

power_pose

power_pose_unfamiliar

Format

A data frame with three variables:

- study Authors of original study
- n_high_power number of participants in high-power condition
- n_low_power number of participants in low-power condition
- mean_high_power mean rating in high-power condition on a 5-point Likert scale
- mean_low_power mean rating in low-power condition on a 5-point Likert scale
- sd_high_power standard deviation of ratings in high-power condition
- sd_low_power standard deviation of ratings in low-power condition
- t_value t-value for two-sample t-test
- df degrees of freedom for two-sample t-test
- two_sided_p_value two-sided p-value of two-sample t-test
- one_sided_p_value one-sided p-value of two-sample t-test
- effectSize Cohen’s d, the standardized effect size (high vs. low power)
- SE Standard error of Cohen’s d

Data frame with 6 rows and 13 variables
An object of class data.frame with 6 rows and 13 columns.

Details

See Carney, Cuddy, and Yap (2010) for more details.

References

Examples

```r
data(power_pose)
head(power_pose)

# Simple fixed-effects meta-analysis
mfix <- meta_fixed(effectSize, SE, study, 
                   data = power_pose)

mfix
plot_posterior(mfix)
```

predicted_bf | Predicted Bayes Factors for a New Study

Description

How much can be learned by an additional study? To judge this, this function samples the distribution of predicted Bayes factors for a new study given the current evidence.

Usage

```r
predicted_bf(meta, SE, sample = 100, ...)
```

Arguments

- `meta`: model-averaged meta-analysis (fitted with `meta_bma`).
- `SE`: a scalar: the expected standard error of future study. For instance, SE = 1/sqrt(N) for standardized effect sizes and N = sample size)
- `sample`: number of simulated Bayes factors
- `...`: further arguments passed to `rstan::sampling` to draw posterior samples for d and tau.

prior | Prior Distribution

Description

Defines a prior distribution/probability density function for the average effect size d or for the heterogeneity of effect sizes τ.
prior

Usage

prior(
 family,
 param,
 lower,
 upper,
 label = "d",
 rel.tol = .Machine$double.eps^0.5
)

Arguments

family a character value defining the distribution family.
param numeric parameters for the distribution. See details for the definition of the
 parameters of each family.
lower lower boundary for truncation of prior density. If family="beta", the interval
 [0,1] is rescaled to the interval [lower,upper]. Must be specified if family =
 "custom".
upper See lower.
label optional: parameter label.
rel.tol relative tolerance used for integrating the density of family="custom".

Details

The following prior distributions are currently implemented:

- "norm": Normal distribution with param = c(mean, sd) (see Normal).
- "t": Student t distribution with param = c(location, scale, nu) (see dist.Student.t).
 Note that a Cauchy distribution is defined by setting the degrees of freedom nu=1.
- "invgamma": Inverse gamma distribution with param = c(shape, scale) (see dist.Inverse.Gamma).
- "beta": (Scaled) beta distribution with param = c(shape1, shape2) (see Beta).
- "custom": User-specified prior density function defined by param (see examples; the density
 must be nonnegative and vectorized, but is normalized internally). Integration is performed
 from (-Inf, Inf), which requires that the function returns zeros (and not NAs) for values not in
 the support of the distribution.

Value

an object of the class prior: a density function with the arguments x (parameter values) and log
 (whether to return density or log-density).

Examples

Half-Normal Distribution

```r
p1 <- prior("norm", c(mean=0, sd=.3), lower = 0)
p1
p1(c(-1,1,3))
```
Data Set: Reuse of Towels in Hotels

Description
Set of studies that investigated whether people reuse towels in hotels more often if they are provided with a descriptive norm (Scheibehenne, Jamil, & Wagenmakers, 2016).

Usage
towels

Format
A data frame with three variables:
- study: Authors of original study (see Scheibehenne et al., 2016)
- logOR: Measure of effect size: log-odds ratio of towel reuse (descriptive-social-norm vs. control)
- SE: Measure of precision: standard error of log-odds ratio per study

Details
Two groups of hotel guests received different messages that encouraged them to reuse their towels. One message simply informed the guests about the benefits of environmental protection (the control condition), and the other message indicated that the majority of guests actually reused their towels in the past (the descriptive-social-norm condition). The results suggested that the latter message facilitated towel reuse.

References

Examples
data(towels)
head(towels)
Index

*Topic **datasets**
 - facial_feedback, 5
 - power_pose, 20
 - towels, 24

Beta, 23
bma, 3, 4
dist.Inverse.Gamma, 23
dist.Student.t, 23

facial_feedback, 5
formula, 7, 9, 11, 13, 15

inclusion, 3, 6
integrate, 4, 8, 12, 14, 16

meta_bma, 3, 7, 10, 14, 19, 20, 22
meta_default, 9, 18
meta_fixed, 3, 4, 6, 9, 11, 19, 20
meta_ordered, 12
meta_random, 3, 4, 6, 9, 14, 15, 19, 20
metaBMA (metaBMA-package), 2
metaBMA-package, 2

Normal, 23

par, 19
plot, 17–20
plot.meta_pred, 17
plot.prior, 17
plot_default, 10, 18
plot_forest, 3, 19
plot_posterior, 3, 20
power_pose, 20
power_pose_unfamiliar (power_pose), 20
predicted_bf, 22
prior, 2, 3, 7, 12, 13, 16, 18, 22
towels, 24