Package ‘markerpen’

October 13, 2022

Type Package
Title Marker Gene Detection via Penalized Principal Component Analysis
Version 0.1.1
Date 2021-03-14
Author Yixuan Qiu, Jiebiao Wang, Jing Lei, and Kathryn Roeder
Maintainer Yixuan Qiu <yixuan.qiu@cos.name>
License GPL
Encoding UTF-8
LazyData true
Depends R (>= 3.5.0)
Imports Rcpp (>= 1.0.1), RSpectra, stats
LinkingTo Rcpp, RcppEigen, RSpectra
Suggests knitr, rmarkdown, prettydoc, scales
SystemRequirements C++11
VignetteBuilder knitr, rmarkdown
RoxygenNote 7.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-03-17 00:30:02 UTC

R topics documented:

 gene_mapping ... 2
 pca_pen ... 2
 refine_markers .. 4
 sort_markers ... 6
Index 8

gene_mapping
Mapping gene names to Ensembl IDs

Description
A data set showing the mapping between gene names and Ensembl gene IDs, derived from the EnsDb.Hsapiens.v79 Bioconductor package.

Usage
gene_mapping

Format
A data frame with 59074 rows and 2 variables:

- ensembl Ensembl gene IDs
- name corresponding gene names

Source

pca_pen
Penalized Principal Component Analysis for Marker Gene Selection

Description
This function solves the optimization problem

$$\min -\text{tr}(SX) + \lambda p(X),$$

$$s.t. \quad O \preceq X \preceq I, \quad X \geq 0, \quad \text{and} \quad \text{tr}(X) = 1,$$

where $O \preceq X \preceq I$ means all eigenvalues of X are between 0 and 1, $X \geq 0$ means all elements of X are nonnegative, and $p(X)$ is a penalty function defined in the article (see the References section).
Usage

pca_pen(
 S,
 gr,
 lambda,
 w = 1.5,
 alpha = 0.01,
 maxit = 1000,
 eps = 1e-04,
 verbose = 0
)

Arguments

S The sample correlation matrix of gene expression.
gr Indices of genes that are treated as markers in the prior information.
lambda Tuning parameter to control the sparsity of eigenvectors.
w Tuning parameter to control the weight on prior information. Larger w means genes not in the prior list are less likely to be selected as markers.
alpha Step size of the optimization algorithm.
maxit Maximum number of iterations.
eps Tolerance parameter for convergence.
verbose Level of verbosity.

Value

A list containing the following components:

 projection The estimated projection matrix.
 evecs The estimated eigenvectors.
 niter Number of iterations used in the optimization process.
 err_v The optimization error in each iteration.

References

Examples

set.seed(123)
n = 200 # Sample size
p = 500 # Number of genes
s = 50 # Number of true signals

The first s genes are true markers, and others are noise
Sigma = matrix(0, p, p)
Sigma[1:s, 1:s] = 0.9
diag(Sigma) = 1

Simulate data from the covariance matrix
x = matrix(rnorm(n * p), n) %*% chol(Sigma)

Sample correlation matrix
S = cor(x)

Indices of prior marker genes
Note that we have omitted 10 true markers, and included 10 false markers
g = c(1:(s - 10), (s + 11):(s + 20))

Run the algorithm
res = pca_pen(S, g, lambda = 0.1, verbose = 1)

See if we can recover the true correlation structure
image(res$projection, asp = 1)

refine_markers

Marker Gene Selection via Penalized Principal Component Analysis

Description

This function refines a prior marker gene list by combining information from bulk tissue data, based on the penalized principal component analysis. The current implementation computes on one cell type at a time. To get marker genes for multiple cell types, call this function iteratively.

Usage

refine_markers(
 mat_exp,
 range,
 markers,
 lambda,
 w = 1.5,
 thresh = 0.001,
 alpha = 0.01,
 maxit = 1000,
 eps = 1e-04,
 verbose = 0
)

Arguments

mat_exp The gene expression matrix in the original scale (not logarithm-transformed), with rows standing for observations and columns for genes. The matrix should include gene names as column names.
refine_markers

range A character vector of gene names, representing the range of genes in which markers are sought.
markers A character vector of gene names giving the prior marker gene list.
lambda A tuning parameter to control the number of selected marker genes. A larger value typically means a smaller number of genes.
w Tuning parameter to control the weight on prior information. Larger w means genes not in the prior list are less likely to be selected as markers.
thresh Below this threshold small factor loadings are treated as zeros.
alpha Step size of the optimization algorithm.
maxit Maximum number of iterations.
eps Tolerance parameter for convergence.
verbose Level of verbosity.

Value

A list containing the following components:

- **spca** The sparse PCA result as in `pca_pen()`.
- **markers** A character vector of selected markers genes.
- **markers_coef** The estimated factor loadings for the associated genes.

References

Examples

```r
# Data used in the vignette
load(system.file("examples", "gene_expr.RData", package = "markerpen"))
load(system.file("examples", "published_markers.RData", package = "markerpen"))
load(system.file("examples", "markers_range.RData", package = "markerpen"))

# Get expression matrix - rows are observations, columns are genes
ind = match(rownames(dat), markerpen::gene_mapping$name)
ind = na.omit(ind)
ensembl = markerpen::gene_mapping$ensembl[ind]
mat_exp = t(dat[markerpen::gene_mapping$name[ind], ])
colnames(mat_exp) = ensembl

# We compute the marker genes for two cell types with a reduced problem size
# See the vignette for the full example

# Markers for astrocytes
set.seed(123)
search_range = intersect(markers_range$astrocytes, ensembl)
search_range = sample(search_range, 300)
prior_markers = intersect(pub_markers$astrocytes, search_range)
```
sort_markers

Post-processing Selected Marker Genes

Description
This function reorders the selected marker genes using information of the sample correlation matrix.

Usage
sort_markers(corr, markers)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>corr</td>
<td>The sample correlation matrix, whose row and column names are gene names.</td>
</tr>
<tr>
<td>markers</td>
<td>A list of marker genes. Each component of the list is a vector of marker</td>
</tr>
<tr>
<td></td>
<td>gene names corresponding to a cell type. All the gene names in this list</td>
</tr>
<tr>
<td></td>
<td>must appear in the row/column names of corr.</td>
</tr>
</tbody>
</table>
sort_markers

Value

A list that has the same structure as the input markers argument, with the elements in each component reordered. See the example in refine_markers().
Index

* datasets
 gene_mapping, 2
 gene_mapping, 2
 pca_pen, 2, 5
 refine_markers, 4, 7
 sort_markers, 6