Package ‘logitr’

October 25, 2021

Title Logit Models w/Preference & WTP Space Utility Parameterizations
Version 0.4.0
Description Fast estimation of multinomial (MNL) and mixed logit (MXL) models in R. Models can be estimated using "Preference" space or "Willingness-to-pay" (WTP) space utility parameterizations. Weighted models can also be estimated. An option is available to run a multi-start optimization loop with random starting points in each iteration, which is useful for non-convex problems like MXL models or models with WTP space utility parameterizations. The main optimization loop uses the 'nloptr' package to minimize the negative log-likelihood function. Additional functions are available for computing and comparing WTP from both preference space and WTP space models and for predicting expected choices and choice probabilities for sets of alternatives based on an estimated model. MXL models assume uncorrelated heterogeneity covariances and are estimated using maximum simulated likelihood based on the algorithms in Train (2009) "Discrete Choice Methods with Simulation, 2nd Edition" <doi:10.1017/CBO9780511805271>.

License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
VignetteBuilder knitr
Depends R (>= 3.5.0)
Suggests dplyr, fastDummies, knitr, rmarkdown, here, ggplot2, testthat
Imports nloptr, stats, randtoolbox, MASS
URL https://github.com/jhelvy/logitr
BugReports https://github.com/jhelvy/logitr/issues
NeedsCompilation no
Author John Helveston [aut, cre, cph]
 <https://orcid.org/0000-0002-2657-9191>,
 Connor Forsythe [ctb]
Maintainer John Helveston <john.helveston@gmail.com>
Repository CRAN
Date/Publication 2021-10-25 17:30:02 UTC
Index 25

cars_china Stated car choice observations by Chinese car buyers

Description

Data from Helveston et al. (2015) containing 448 stated choice observations from Chinese car buyers and 384 stated choice observations from US car buyers. Conjoint surveys were fielded in 2012 in four major Chinese cities (Beijing, Shanghai, Shenzhen, and Chengdu), online in the US on Amazon Mechanical Turk, and in person at the Pittsburgh Auto show. Participants were asked to select a vehicle from a set of three alternatives. Each participant answered 15 choice questions.

Usage

data(cars_china)

Format

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>individual identifiers</td>
</tr>
<tr>
<td>obsnum</td>
<td>identifier for unique choice observation</td>
</tr>
<tr>
<td>choice</td>
<td>dummy code for choice (1 or 0)</td>
</tr>
<tr>
<td>hev</td>
<td>dummy code for HEV vehicle type (1 or 0)</td>
</tr>
<tr>
<td>phev10</td>
<td>dummy code for PHEV vehicle type w/10 mile electric driving range (1 or 0)</td>
</tr>
</tbody>
</table>
phev20 dummy code for PHEV vehicle type w/20 mile electric driving range (1 or 0)
phev40 dummy code for PHEV vehicle type w/40 mile electric driving range (1 or 0)
bev75 dummy code for BEV vehicle type w/75 mile electric driving range (1 or 0)
bev100 dummy code for BEV vehicle type w/100 mile electric driving range (1 or 0)
bev150 dummy code for BEV vehicle type w/150 mile electric driving range (1 or 0)
phevFastcharge dummy code for whether PHEV vehicle had fast charging capability (1 or 0)
bevFastcharge dummy code for whether BEV vehicle had fast charging capability (1 or 0)
price price of vehicle ($USD)
opCost operating cost of vehicle (US cents / mile)
accelTime 0-60 mph acceleration time (seconds)
american dummy code for whether American brand (1 or 0)
japanese dummy code for whether Japanese brand (1 or 0)
chinese dummy code for whether Chinese brand (1 or 0)
skorean dummy code for whether S. Korean brand (1 or 0)
weights weights for each individual computed so that the sample age and income demographics matched with those

Source
Raw data downloaded from this repo

References

Examples
data(cars_china)

head(cars_china)

cars_us Stated car choice observations by US car buyers

Description
Data from Helveston et al. (2015) containing 448 stated choice observations from Chinese car buyers and 384 stated choice observations from US car buyers. Conjoint surveys were fielded in 2012 in four major Chinese cities (Beijing, Shanghai, Shenzhen, and Chengdu), online in the US on Amazon Mechanical Turk, and in person at the Pittsburgh Auto show. Participants were asked to select a vehicle from a set of three alternatives. Each participant answered 15 choice questions.
Usage

```r
data(cars_us)
```

Format

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>individual identifiers</td>
</tr>
<tr>
<td>obsnum</td>
<td>identifier for unique choice observation</td>
</tr>
<tr>
<td>choice</td>
<td>dummy code for choice (1 or 0)</td>
</tr>
<tr>
<td>hev</td>
<td>dummy code for HEV vehicle type (1 or 0)</td>
</tr>
<tr>
<td>phev110</td>
<td>dummy code for PHEV vehicle type w/10 mile electric driving range (1 or 0)</td>
</tr>
<tr>
<td>phev220</td>
<td>dummy code for PHEV vehicle type w/20 mile electric driving range (1 or 0)</td>
</tr>
<tr>
<td>phev440</td>
<td>dummy code for PHEV vehicle type w/40 mile electric driving range (1 or 0)</td>
</tr>
<tr>
<td>bev75</td>
<td>dummy code for BEV vehicle type w/75 mile electric driving range (1 or 0)</td>
</tr>
<tr>
<td>bev1100</td>
<td>dummy code for BEV vehicle type w/100 mile electric driving range (1 or 0)</td>
</tr>
<tr>
<td>bev1150</td>
<td>dummy code for BEV vehicle type w/150 mile electric driving range (1 or 0)</td>
</tr>
<tr>
<td>phevFastcharge</td>
<td>dummy code for whether PHEV vehicle had fast charging capability (1 or 0)</td>
</tr>
<tr>
<td>bevFastcharge</td>
<td>dummy code for whether BEV vehicle had fast charging capability (1 or 0)</td>
</tr>
<tr>
<td>price</td>
<td>price of vehicle ($USD)</td>
</tr>
<tr>
<td>opCost</td>
<td>operating cost of vehicle (US cents / mile)</td>
</tr>
<tr>
<td>accelTime</td>
<td>0-60 mph acceleration time (seconds)</td>
</tr>
<tr>
<td>american</td>
<td>dummy code for whether American brand (1 or 0)</td>
</tr>
<tr>
<td>japanese</td>
<td>dummy code for whether Japanese brand (1 or 0)</td>
</tr>
<tr>
<td>chinese</td>
<td>dummy code for whether Chinese brand (1 or 0)</td>
</tr>
<tr>
<td>skorean</td>
<td>dummy code for whether S. Korean brand (1 or 0)</td>
</tr>
<tr>
<td>weights</td>
<td>weights for each individual computed so that the sample age and income demographics matched with those of the general car-buying population</td>
</tr>
</tbody>
</table>

Source

Raw data downloaded from this repo

References

Examples

```r
data(cars_us)
head(cars_us)
```
dummyCode

Add dummy-coded variables to data frame.

Description

This function is depreciated. Use fastDummies::dummy_cols() instead.

Usage

```r
dummyCode(df, vars)
```

Arguments

- `df` A data frame.
- `vars` The variables in the data frame for which you want to create new dummy coded variables.

Value

A dataframe with new dummy-coded variables added.

fitted.logitr

Extract Model Fitted Values

Description

Returns fitted values from an object of class `logitr`.

Usage

```r
## S3 method for class 'logitr'
fitted(object, probs = NULL, ...)
```

Arguments

- `object` is an object of class `logitr` (a model estimated using the `logitr()` function).
- `probs` Predicted probabilities for an object of class `logitr` to use in computing fitted values. Defaults to `NULL`.
- `...` further arguments.

Value

A data frame of the obsID and the fitted values extracted from object.
Examples

library(logitr)

Estimate a preference space model
mnl_pref <- logitr(
 data = yogurt,
 outcome = "choice",
 obsID = "obsID",
 pars = c("price", "feat", "brand")
)

Extract the fitted values from the model
fitted(mnl_pref)

logitr

The main function for estimating logit models

Description

Use this function to estimate multinomial (MNL) and mixed logit (MXL) models with “Preference” space or “Willingness-to-pay” (WTP) space utility parameterizations. The function includes an option to run a multistart optimization loop with random starting points in each iteration, which is useful for non-convex problems like MXL models or models with WTP space utility parameterizations. The main optimization loop uses the nloptr() function to minimize the negative log-likelihood function.

Usage

logitr(
 data, outcome, obsID, pars,
 price = NULL, randPars = NULL, randPrice = NULL,
 modelSpace = "pref", weights = NULL, panelID = NULL,
 clusterID = NULL, robust = FALSE,
 startParBounds = c(-1, 1), startVals = NULL,
 numMultiStarts = 1, useAnalyticGrad = TRUE,
 scaleInputs = TRUE, standardDraws = NULL,
numDraws = 50,
vcov = FALSE,
predict = TRUE,
options = list(print_level = 0, xtol_rel = 1e-06, xtol_abs = 1e-06, ftol_rel = 1e-06,
 ftol_abs = 1e-06, maxeval = 1000, algorithm = "NLOPT_LD_LBFGS"),
choice,
parNames,
choiceName,
obsIDName,
priceName,
weightsName,
clusterName,
cluster
)

Arguments

data The data, formatted as a data.frame object.
outcome The name of the column that identifies the outcome variable, which should be
coded with a 1 for TRUE and 0 for FALSE.
obsID The name of the column that identifies each observation.
pars The names of the parameters to be estimated in the model. Must be the same as
the column names in the data argument. For WTP space models, do not include
price in pars.
price The name of the column that identifies the price variable. Required for WTP
space models. Defaults to NULL.
randPars A named vector whose names are the random parameters and values the distri-
bution: 'n' for normal or 'ln' for log-normal. Defaults to NULL.
randPrice The random distribution for the price parameter: 'n' for normal or 'ln' for
log-normal. Only used for WTP space MXL models. Defaults to NULL.
modelSpace Set to 'wtp' for WTP space models. Defaults to "pref".
weights The name of the column that identifies the weights to be used in model estima-
tion. Defaults to NULL.
panelID The name of the column that identifies the individual (for panel data where mul-
tiple observations are recorded for each individual). Defaults to NULL.
clusterID The name of the column that identifies the cluster groups to be used in model
estimation. Defaults to NULL.
robust Determines whether or not a robust covariance matrix is estimated. Defaults to
FALSE. Specification of a clusterID or weights will override the user setting
and set this to ‘TRUE’ (a warning will be displayed in this case). Replicates the
functionality of Stata’s cmcmixlogit.
startParBounds sets the lower and upper bounds for the starting parameters for each optimiza-
tion run, which are generated by runif(n,lower,upper). Defaults to c(-1,1).
startVals is vector of values to be used as starting values for the optimization. Only used
for the first run if numMultiStarts > 1. Defaults to NULL.
numMultiStarts is the number of times to run the optimization loop, each time starting from a different random starting point for each parameter between startParBounds. Recommended for non-convex models, such as WTP space models and mixed logit models. Defaults to 1.

useAnalyticGrad Set to FALSE to use numerically approximated gradients instead of analytic gradients during estimation. For now, using the analytic gradient is faster for MNL models but slower for MXL models. Defaults to TRUE.

scaleInputs By default each variable in data is scaled to be between 0 and 1 before running the optimization routine because it usually helps with stability, especially if some of the variables have very large or very small values (e.g. > 10^3 or < 10^-3). Set to FALSE to turn this feature off. Defaults to TRUE.

standardDraws By default, a new set of standard normal draws are generated during each call to logitr (the same draws are used during each multistart iteration). The user can override those draws by providing a matrix of standard normal draws if desired. Defaults to NULL.

numDraws The number of Halton draws to use for MXL models for the maximum simulated likelihood. Defaults to 50.

vcov Set to TRUE to evaluate and include the variance-covariance matrix and coefficient standard errors in the returned object. Defaults to FALSE.

predict If FALSE, predicted probabilities, fitted values, and residuals are not included in the returned object. Defaults to TRUE.

options A list of options for controlling the nloptr() optimization. Run nloptr::nloptr.print.options() for details.

choice No longer used as of v0.4.0 - if provided, this is passed to the outcome argument and a warning is displayed.

parNames No longer used as of v0.2.3 - if provided, this is passed to the pars argument and a warning is displayed.

choiceName No longer used as of v0.2.3 - if provided, this is passed to the outcome argument and a warning is displayed.

obsIDName No longer used as of v0.2.3 - if provided, this is passed to the obsID argument and a warning is displayed.

priceName No longer used as of v0.2.3 - if provided, this is passed to the price argument and a warning is displayed.

weightsName No longer used as of v0.2.3 - if provided, this is passed to the weights argument and a warning is displayed.

clusterName No longer used as of v0.2.3 - if provided, this is passed to the clusterID argument and a warning is displayed.

cluster No longer used as of v0.2.3 - if provided, this is passed to the clusterID argument and a warning is displayed.

Details

The the options argument is used to control the detailed behavior of the optimization and must be passed as a list, e.g. options = list(....). Below are a list of the default options, but other options can be included. Run nloptr::nloptr.print.options() for more details.
Argument Description Default

xtol_rel The relative x tolerance for the nloptr optimization loop. 1.0e-6
xtol_abs The absolute x tolerance for the nloptr optimization loop. 1.0e-6
ftol_rel The relative f tolerance for the nloptr optimization loop. 1.0e-6
ftol_abs The absolute f tolerance for the nloptr optimization loop. 1.0e-6
maxeval The maximum number of function evaluations for the nloptr optimization loop. 1000
algorithm The optimization algorithm that nloptr uses. "NLOPT_LD_LBFGS"
print_level The print level of the nloptr optimization loop. 0

Value

The function returns a list object containing the following objects.

Value Description
coefficients The model coefficients at convergence.
logLik The log-likelihood value at convergence.
nullLogLik The null log-likelihood value (if all coefficients are 0).
gradient The gradient of the log-likelihood at convergence.
hessian The hessian of the log-likelihood at convergence.
probabilities Predicted probabilities. Not returned if predict = FALSE.
fitted.values Fitted values. Not returned if predict = FALSE.
residuals Residuals. Not returned if predict = FALSE.
startPars The starting values used.
multistartNumber The multistart run number for this model.
multistartSummary A summary of the log-likelihood values for each multistart run (if more than one multistart was used).
time The user, system, and elapsed time to run the optimization.
iterations The number of iterations until convergence.
message A more informative message with the status of the optimization result.
status An integer value with the status of the optimization (positive values are successes). Use statusCodes()
call The matched call to logitr().
inputs A list of the original inputs to logitr().
data A list of the original data provided to logitr() broken up into components used during model estimation.
numObs The number of observations.
numParams The number of model parameters.
freq The frequency counts of each alternative.
modelType The model type, 'mnl' for multinomial logit or 'mxl' for mixed logit.
weightsUsed TRUE or FALSE for whether weights were used in the model.
numClusters The number of clusters.
parSetup A summary of the distributional assumptions on each model parameter ("f"="fixed", "n"="normal distribution", "ln"="log-normal distribution").
parIDs A list identifying the indices of each parameter in coefficients by a variety of types.
scaleFactors A vector of the scaling factors used to scale each coefficient during estimation.
standardDraws The draws used during maximum simulated likelihood (for MXL models).
options A list of options for controlling the nloptr() optimization. Run nloptr::nloptr.print.options() for details.

Examples

For more detailed examples, visit
https://jhelvy.github.io/logitr/articles/

library(logitr)

Estimate a MNL model in the Preference space
mnl_pref <- logitr(
 data = yogurt,
 outcome = "choice",
 obsID = "obsID",
 pars = c("price", "feat", "brand")
)

Estimate a MNL model in the WTP space, using a 10-run multistart
mnl_wtp <- logitr(
 data = yogurt,
 outcome = "choice",
 obsID = "obsID",
 pars = c("feat", "brand"),
 price = "price",
 modelSpace = "wtp",
 numMultiStarts = 10
)

Estimate a MXL model in the Preference space with "feat"
following a normal distribution
mnl_pref <- logitr(
 data = yogurt,
 outcome = "choice",
 obsID = "obsID",
 pars = c("price", "feat", "brand"),
 randPars = c(feat = "n", brand = "n")
)

miscmethods.logitr Methods for logitr objects

Description

Miscellaneous methods for logitr class objects.

Usage

```r
## S3 method for class 'logitr'
logLik(object, ...)

## S3 method for class 'logitr'
terms(x, ...)

## S3 method for class 'logitr'
coef(object, ...)
```
predict.logitr

S3 method for class 'summary.logitr'
coef(object, ...)

S3 method for class 'logitr'
summary(object, ...)

S3 method for class 'logitr'
print(
x,
digits = max(3, getOption("digits") - 2),
width = getOption("width"),
...
)

Arguments

- **object** is an object of class logitr (a model estimated using the 'logitr()' function).
- **...** further arguments.
- **x** is an object of class logitr.
- **digits** the number of digits for printing, defaults to 3.
- **width** the width of the printing.

predict.logitr Predict probabilities and / or outcomes

Description

This method is used for computing predicted probabilities and / or outcomes for either the data used for model estimation or a new data set consisting of a single or multiple sets of alternatives.
Usage

S3 method for class 'logitr'
predict(
 object,
 newdata = NULL,
 obsID = NULL,
 price = NULL,
 type = "prob",
 returnData = FALSE,
 ci = NULL,
 numDrawsCI = 10^3,
 ...
)

Arguments

object is an object of class logitr (a model estimated using the 'logitr()' function).
newdata a data.frame. Each row is an alternative and each column an attribute corresponding to parameter names in the estimated model. Defaults to NULL, in which case predictions are made on the original data used to estimate the model.
obsID The name of the column that identifies each set of alternatives in the data. Required if newdata != NULL. Defaults to NULL, in which case the value for obsID from the data in object is used.
price The name of the column that identifies the price variable. Required if the object is a WTP space model and if newdata != NULL. Defaults to NULL.
type A character vector defining what to predict: prob for probabilities, outcomes for outcomes. If you want both outputs, use c("prob", "outcome"). Outcomes are predicted randomly according to the predicted probabilities. Defaults to "prob".
returnData If TRUE the data is also returned, otherwise only the predicted values ("prob" and / or "outcome") are returned. Defaults to FALSE.
-ci If a confidence interval (CI) for the predicted probabilities is desired, set ci to a number between 0 and 1 to define the CI sensitivity. For example, ci = 0.95 will return a 95% CI. Defaults to NULL, in which case no CI is computed.
numDrawsCI The number of draws to use in simulating uncertainty for the computed CI. Defaults to 10^3.
...
 further arguments.

Value

A data frame of predicted probabilities and / or outcomes.

Examples

library(logitr)

Estimate a preference space model
mnl_pref <- logitr(
 data = yogurt,
 outcome = "choice",
 obsID = "obsID",
 pars = c("price", "feat", "brand")
)

Predict probabilities and / or outcomes

Predict probabilities for each alternative in the model data
probs <- predict(mnl_pref)
head(probs)

Create a set of alternatives for which to make predictions.
Each row is an alternative and each column an attribute.
data <- subset(
 yogurt, obsID %in% c(42, 13),
 select = c('obsID', 'alt', 'price', 'feat', 'brand'))
data

Predict probabilities using the estimated model
predict(mnl_pref, newdata = data, obsID = "obsID")

Predict outcomes
predict(mnl_pref, newdata = data, obsID = "obsID", type = "outcome")

Predict outcomes and probabilities
predict(mnl_pref, newdata = data, obsID = "obsID", type = c("prob", "outcome"))

predictChoices Predict choices

Description

Returns the expected choices for a set of one or more alternatives based on the results from an estimated model.

Usage

predictChoices(model, alts, altID, obsID = NULL)

Arguments

- **model**: The output of a model estimated model using the `logitr()` function. Include if you want to compare true choices from actual observations (e.g. hold outs) to the predicted choices.
- **alts**: A data frame of a set of alternatives for which to predict choices. Each row is an alternative and each column an attribute corresponding to parameter names in the estimated model.
predictProbs

altID The name of the column that identifies each alternative in each set of alternatives.

obsID The name of the column that identifies each set of alternatives. Required if predicting results for more than one set of alternatives. Defaults to NULL (for a single set of alternatives).

Value

A data frame with the predicted choices for each alternative in alts.

predictProbs Predict expected choice probabilities

Description

Returns the expected choice probabilities for a single set or multiple sets of alternatives based on the results from an estimated model.

Usage

predictProbs(
 model,
 alts,
 altID,
 obsID = NULL,
 computeCI = TRUE,
 ci = 0.95,
 numDraws = 10^4,
 alpha
)

Arguments

model The output of a model estimated model using the logitr() function.
alts A data frame of a set of alternatives for which to predict choice probabilities. Each row is an alternative and each column an attribute corresponding to parameter names in the estimated model.
altID The name of the column that identifies each alternative in each set of alternatives.
obsID The name of the column that identifies each set of alternatives. Required if predicting results for more than one set of alternatives. Defaults to NULL (for a single set of alternatives).
computeCI Should a confidence interval be computed? Defaults to TRUE.
cl The sensitivity of the computed confidence interval (CI). Defaults to cl = 0.95, reflecting a 95% CI.
numDraws
The number of draws to use in simulating uncertainty for the computed confidence interval.

alpha
The sensitivity of the computed confidence interval. No longer used as of v0.2.7 - if provided, a warning is shown and ci is computed from alpha.

Value
A data frame with the estimated choice probabilities for each alternative in alts.

recodeData
Returns a list of the design matrix X and updated pars and randPars to include any dummy-coded categorical or interaction variables.

Description
Recodes the data and returns a list of the encoded design matrix (X) as well as two vectors (pars and randPars) with discrete (categorical) variables and interaction variables added to X, pars, and randPars.

Usage
```r
recodeData(data, pars, randPars)
```

Arguments
- **data**
The data, formatted as a data.frame object.
- **pars**
The names of the parameters to be estimated in the model. Must be the same as the column names in the data argument. For WTP space models, do not include price in pars.
- **randPars**
A named vector whose names are the random parameters and values the distribution: 'n' for normal or 'ln' for log-normal. Defaults to NULL.

Value
A list of the design matrix (X) and two vectors (pars and randPars) with discrete (categorical) variables and interaction variables added.

Examples
```
library(logitr)
data(yogurt)

# Recode the yogurt data
result <- recodeData(
  data = yogurt,
  pars = c("price", "feat", "brand", "price*brand"),
  randPars = c(feat = "n", brand = "n")
)```
residuals.logitr

Extract Model Residuals

Description

Returns model residuals from an object of class `logitr`.

Usage

```r
S3 method for class 'logitr'
residuals(object, fitted = NULL, ...)
```

Arguments

- `object`: is an object of class `logitr` (a model estimated using the `logitr()` function).
- `fitted`: Fitted values for an object of class `logitr` to use in computing residuals. Defaults to `NULL`.
- `...`: further arguments.

Value

A data frame of the `obsID` and the residuals (response minus fitted values) extracted from `object`.

Examples

```r
library(logitr)

Estimate a preference space model
mnl_pref <- logitr(
 data = yogurt,
 outcome = "choice",
 obsID = "obsID",
 pars = c("price", "feat", "brand")
)

Extract the residuals from the model
residuals(mnl_pref)
```
**se**  

**Extract standard errors**

**Description**

Extract standard errors

**Usage**

se(object, ...)

**Arguments**

- **object** is an object of class logitr (a model estimated using the 'logitr()' function).
- ... further arguments.

---

**se.logitr**  

**Extract standard errors**

**Description**

Extract standard errors

**Usage**

## S3 method for class 'logitr'

se(object, ...)

**Arguments**

- **object** is an object of class logitr (a model estimated using the 'logitr()' function).
- ... further arguments.
simulateShares

Simulate expected shares

Description

This function has been depreciated since logitr version 0.1.4. Use predictProbs() instead.

Usage

simulateShares(
  model,
  alts,
  obsIDName = NULL,
  priceName = NULL,
  computeCI = TRUE,
  alpha = 0.025,
  numDraws = 10^4
)

Arguments

model The output of a model estimated model using the logitr() function.
alts A data frame of a set of alternatives for which to simulate shares. Each row is an alternative and each column an attribute corresponding to parameter names in the estimated model.
obsIDName The name of the column that identifies each set of alternatives. Required if simulating results for more than one set of alternatives. Defaults to NULL (for a single set of alternatives).
priceName The name of the parameter that identifies price. Only required for WTP space models. Defaults to NULL.
computeCI Should a confidence interval be computed? Defaults to TRUE.
alpha The sensitivity of the computed confidence interval. Defaults to alpha = 0.025, reflecting a 95% CI.
umDraws The number of draws to use in simulating uncertainty for the computed confidence interval.

Value

A data frame with the estimated shares for each alternative in alts.
**statusCodes**

*View a description the nloptr status codes*

---

**Description**

Prints a description of the status codes from the nloptr optimization routine.

**Usage**

```r
statusCodes()
```

**Value**

No return value; prints a summary of the nloptr status codes to the console.

**Examples**

```r
statusCodes()
```

---

**vcov.logitr**

*Calculate the variance-covariance matrix*

---

**Description**

Returns the variance-covariance matrix of the main parameters of a fitted model object.

**Usage**

```r
S3 method for class 'logitr'
vcov(object, ...)
```

**Arguments**

- `object` is an object of class `logitr` (a model estimated using the `logitr()` function).
- `...` further arguments.
wtp

Get WTP estimates a preference space model

Description

Returns the computed WTP from a preference space model.

Usage

wtp(object, price)

Arguments

object is an object of class logitr (a model estimated using the 'logitr()' function).
price The name of the parameter that identifies price.

Details

Willingness to pay is computed by dividing the estimated parameters of a utility model in the "preference" space by the price parameter. Uncertainty is handled via simulation.

Value

A data frame of the WTP estimates.

Examples

library(logitr)

# Estimate a preference space model
mnl_pref <- logitr(
  data = yogurt,
  outcome = "choice",
  obsID = "obsID",
  pars = c("price", "feat", "brand")
)

# Compute the WTP implied from the preference space model
wtp(mnl_pref, price = "price")
Get WTP from a preference space model

Description

Returns the computed WTP from a preference space model.

Usage

```r
S3 method for class 'logitr'
wtp(object, price)
```

Arguments

- `object` is an object of class `logitr` (a model estimated using the `logitr()` function).
- `price` The name of the parameter that identifies price.

Details

Willingness to pay is computed by dividing the estimated parameters of a utility model in the "preference" space by the price parameter. Uncertainty is handled via simulation.

Value

A data frame of the WTP estimates.

Examples

```r
library(logitr)

Estimate a preference space model
mnl_pref <- logitr(
 data = yogurt,
 outcome = "choice",
 obsID = "obsID",
 pars = c("price", "feat", "brand")
)

Compute the WTP implied from the preference space model
wtp(mnl_pref, price = "price")
```
wtpCompare

Compare WTP from preference and WTP space models

Description

Returns a comparison of the WTP between a preference space and WTP space model.

Usage

wtpCompare(model_pref, model_wtp, price)

Arguments

- `model_pref`: The output of a "preference space" model estimated using the `logitr()` function.
- `model_wtp`: The output of a "willingness to pay space" model estimated using the `logitr()` function.
- `price`: The name of the parameter that identifies price.

Details

Willingness to pay (WTP) is first computed from the preference space model by dividing the estimated parameters by the price parameter. Then those estimates are compared against the WTP values directly estimated from the "WTP" space model. Uncertainty is handled via simulation.

Value

A data frame comparing the WTP estimates from preference space and WTP space models.

Examples

```r
library(logitr)

Estimate a MNL model in the Preference space
mnl_pref <- logitr(
 data = yogurt,
 outcome = "choice",
 obsID = "obsID",
 pars = c("price", "feat", "brand")
)

Compute the WTP implied from the preference space model
wtp_mnl_pref <- wtp(mnl_pref, price = "price")

Estimate a MNL model in the WTP Space, using the computed WTP values # from the preference space model as starting points
mnl_wtp <- logitr(
 data = yogurt,
 outcome = "choice",
 obsID = "obsID",
 pars = c("price", "feat", "brand")
)
```
yogurt

outcome = "choice",
obsID = "obsID",
pars = c("feat", "brand"),
price = "price",
modelSpace = "wtp",
startVals = wtp_mnl_pref$Estimate
)

# Compare the WTP between the two spaces
wtpCompare(mnl_pref, mnl_wtp, price = "price")

---

yogurt  
Choice observations of yogurt purchases by 100 households

Description

Data from Jain et al. (1994) containing 2,412 choice observations from a series of yogurt purchases by a panel of 100 households in Springfield, Missouri, over a roughly two-year period. The data were collected by optical scanners and contain information about the price, brand, and a "feature" variable, which identifies whether a newspaper advertisement was shown to the customer. There are four brands of yogurt: Yoplait, Dannon, Weight Watchers, and Hiland, with market shares of 34%, 40%, 23% and 3%, respectively.

Usage

data(yogurt)

Format

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>individual identifiers</td>
</tr>
<tr>
<td>obsID</td>
<td>identifier for unique choice observation</td>
</tr>
<tr>
<td>alt</td>
<td>alternative in each choice observation</td>
</tr>
<tr>
<td>choice</td>
<td>dummy code for choice (1 or 0)</td>
</tr>
<tr>
<td>price</td>
<td>price of yogurt</td>
</tr>
<tr>
<td>feat</td>
<td>dummy for whether a newspaper advertisement was shown to the customer (1 or 0)</td>
</tr>
<tr>
<td>brand</td>
<td>yogurt brand: &quot;yoplait&quot;, &quot;dannon&quot;, &quot;hiland&quot;, or &quot;weight&quot; (for weight watcher)</td>
</tr>
</tbody>
</table>

Source

Raw data downloaded from the package mlogit v0.3-0 by Yves Croissant archive
References


Examples

data(yogurt)

head(yogurt)
Index

* choice
  predictChoices, 13
* codes
  statusCodes, 19
* datasets
  cars_china, 2
cars_us, 3
yogurt, 23
* fitted.values
  fitted.logitr, 5
* fitted
  fitted.logitr, 5
* logitr
  fitted.logitr, 5
logitr, 6
predict.logitr, 11
predictChoices, 13
predictProbs, 14
residuals.logitr, 16
simulateShares, 18
statusCodes, 19
wtp, 20
wtp.logitr, 21
wtpCompare, 22
* logit
  logitr, 6
* mixed
  logitr, 6
* mnl
  logitr, 6
* mxl
  logitr, 6
* nloptr
  statusCodes, 19
* predict
  predict.logitr, 11
predictChoices, 13
predictProbs, 14
* probabilities
  predict.logitr, 11
predictProbs, 14
* residuals
  residuals.logitr, 16
* resid
  residuals.logitr, 16
* simulation
  predictChoices, 13
  predictProbs, 14
simulateShares, 18
* status
  statusCodes, 19
* willingness-to-pay
  logitr, 6
* wtp
  logitr, 6
wtp, 20
wtp.logitr, 21
wtpCompare, 22
cars_china, 2
cars_us, 3
coef.logitr (miscmethods.logitr), 10
coef.summary.logitr (miscmethods.logitr), 10
dummyCode, 5
fitted.logitr, 5
logitr, 6
logLik.logitr (miscmethods.logitr), 10
miscmethods.logitr, 10
predict.logitr, 11
predictChoices, 13
predictProbs, 14
print.logitr (miscmethods.logitr), 10
print.logitr_wtp (miscmethods.logitr), 10
print.summary.logitr
  (miscmethods.logitr), 10

recodeData, 15
residuals.logitr, 16

se, 17
se.logitr, 17
simulateShares, 18
statusCodes, 19
statusCodes(), 9
summary.logitr (miscmethods.logitr), 10

terms.logitr (miscmethods.logitr), 10

vcov.logitr, 19

wtp, 20
wtp.logitr, 21
wtpCompare, 22

yogurt, 23