bw.logCV
Optimal CV BW estimation for strictly positive distributions.

Description
Computes least squares cross-validation (CV) bandwidth (BW) for log domain KDE.

Usage
\[
\text{bw.logCV}(x, \text{grid} = 21, \text{NB} = 512)
\]

Arguments
- **x**: numeric vector of the data. Must be strictly positive, will be log transformed during estimation.
- **grid**: number of points used for BW selection CV grid.
- **NB**: number of points at which to estimate the KDE at during the CV loop.

Value
bw the optimal least squares CV bandwidth.

References

Examples
\[
\text{bw.logCV(rchisq(100,10), grid=21, NB=512)}
\]

bw.logG
Bandwidth estimation for strictly positive distributions.

Description
Computes bandwidth for log domain KDE using the Silverman rule.

Usage
\[
\text{bw.logG}(x)
\]
logdensity

Arguments

x numeric vector of the data. Must be strictly positive, will be log transformed during estimation.

Value

bw the optimal bandwidth.

References

Examples

bw.logG(rchisq(100, 10))

logdensity Kernel Density Estimates of strictly positive distributions.

Description

The function logdensity computes kernel density estimates (KDE) of strictly positive distributions by performing the KDE in the log domain and then transforming the result back again. The syntax and function structure is largely borrowed from the function density in package stats.

Usage

logdensity(x, bw = "nrd0", adjust = 1, kernel = "gaussian", weights = NULL, n = 512, from, to, cut = 3, na.rm = FALSE)

Arguments

x the data from which the estimate is to be computed.

bw the smoothing bandwidth to be used. Can also be a character string giving a rule to choose the bandwidth. Like density defaults to "nrd0". All options in help(bw.nrd) are available as well as "bw.logCV" and "bw.logG".

adjust the bandwidth used is actually adjust*bw.

kernel a character string giving the smoothing kernel to be used. Choose from "gaussian", "epanechnikov", "triangular", "uniform", "laplace" and "logistic". Default value is "gaussian".

weights numeric vector of non-negative observation weights of the same length as x.
The function `logdensity_fft` computes kernel density estimates (KDE) of strictly positive distributions by performing the KDE via fast fourier transform utilizing the `fft` function. The syntax and function structure is largely borrowed from the function `density` in package stats.

Description

The function `logdensity_fft` computes kernel density estimates (KDE) of strictly positive distributions by performing the KDE via fast fourier transform utilizing the `fft` function. The syntax and function structure is largely borrowed from the function `density` in package stats.

Usage

```r
logdensity_fft(x, bw = "nrd0", adjust = 1, kernel = "gaussian",
               weights = NULL, n = 512, from, to, cut = log(3), na.rm = FALSE)
```

Examples

```r
logdensity(abs(rnorm(100)), from = 1, to = 2, kernel = 'triangular')
```
Arguments

- **x**: the data from which the estimate is to be computed.
- **bw**: the smoothing bandwidth to be used. Can also be a character string giving a rule to choose the bandwidth. Like density defaults to "nrd0". All options in `help(bw.nrd)` are available as well as "bw.logCV" and "bw.logG".
- **adjust**: the bandwidth used is actually `adjust*bw`.
- **kernel**: a character string giving the smoothing kernel to be used. Choose from "gaussian", "epanechnikov", "triangular", "uniform", "laplace" and "logistic". Default value is "gaussian".
- **weights**: numeric vector of non-negative observation weights of the same length as x.
- **n**: the number of equally spaced points at which the density is to be estimated. Note that these are equally spaced in the log domain for `logdensity_fft`, and thus on a log scale when transformed back to the original domain.
- **from, to**: the left and right-most points of the grid at which the density is to be estimated; the defaults are cut * bw outside of range(x).
- **cut**: by default, the values of from and to are cut bandwidths beyond the extremes of the data.
- **na.rm**: logical; if TRUE, missing values are removed from x. If FALSE any missing values cause an error.

Value

An object with class "density". See `help(density)` for details.

References

See Also

density, plot.density, logdensity, bw.nrd, bw.logCV, bw.logG.

Examples

```r
logdensity_fft(abs(rnorm(100)), from = 0.01, to = 2.5, kernel = 'logistic')
```
Index

bw.logCV, 2, 4, 5
bw.logG, 2, 4, 5
bw.nrd, 4, 5

density, 4, 5

logdensity, 3, 5
logdensity_fft, 4, 4

plot.density, 4, 5